Nothing Special   »   [go: up one dir, main page]

JP5164325B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP5164325B2
JP5164325B2 JP2005322168A JP2005322168A JP5164325B2 JP 5164325 B2 JP5164325 B2 JP 5164325B2 JP 2005322168 A JP2005322168 A JP 2005322168A JP 2005322168 A JP2005322168 A JP 2005322168A JP 5164325 B2 JP5164325 B2 JP 5164325B2
Authority
JP
Japan
Prior art keywords
anode
chemical conversion
tab terminal
lead tab
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005322168A
Other languages
Japanese (ja)
Other versions
JP2006253638A (en
Inventor
和雅 藤本
幸子 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Sanyo Industry Co Ltd, Sanyo Electric Co Ltd filed Critical Saga Sanyo Industry Co Ltd
Priority to JP2005322168A priority Critical patent/JP5164325B2/en
Publication of JP2006253638A publication Critical patent/JP2006253638A/en
Application granted granted Critical
Publication of JP5164325B2 publication Critical patent/JP5164325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、弁作用を有する金属の表面に酸化被膜が形成された陽極と、弁作用を有する金属を備えた陰極と、上記両極間に設けられたセパレータとを巻回してなるコンデンサ素子を備え、且つ、上記両極間には固体電解質が介在すると共に、上記陽極には、表面に酸化被膜が形成された陽極用リードタブ端子が固定され、上記陰極には、陰極用リードタブ端子が固定される構造の固体電解コンデンサの製造方法に関する。
The present invention includes a capacitor element formed by winding an anode having an oxide film formed on a surface of a metal having a valve action, a cathode provided with a metal having a valve action, and a separator provided between the two electrodes. A structure in which a solid electrolyte is interposed between the two electrodes, an anode lead tab terminal having an oxide film formed on the surface thereof is fixed to the anode, and a cathode lead tab terminal is fixed to the cathode. The present invention relates to a method for manufacturing a solid electrolytic capacitor.

タンタル或いはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、小型で大きな容量を得ることができることから、広く一般に用いられており、特に、電解コンデンサのうち、ポリピロール系、ポリチオフェン系、ポリアニリン系等の導電性高分子又はTCNQ錯塩を電解質に用いた固体電解コンデンサが注目されている。   Electrolytic capacitors using a metal having a valve action such as tantalum or aluminum are widely used because they are small and can obtain a large capacity. Particularly, among electrolytic capacitors, polypyrrole-based, polythiophene-based, A solid electrolytic capacitor using a conductive polymer such as polyaniline or a TCNQ complex salt as an electrolyte has attracted attention.

ここで、上記固体電解コンデンサは、以下のようにして作製される(下記特許文献1参照)。
先ず、エッチング処理、化成処理を行ったアルミニウム箔から成る陽極に化成処理を施した陽極用リードタブ端子を、陰極に陰極用リードタブ端子を、それぞれ固定した後、上記陽極と陰極とをセパレータ紙を介して円筒状に巻き取ってコンデンサ素子を形成し、更に、当該コンデンサ素子の切り口化成と熱処理とを行う。次に、酸化剤とモノマーとを含む溶液に上記コンデンサ素子を浸漬した後、熱重合させることにより、コンデンサ素子の両極間に導電性高分子層(固体電解質層)を形成させる。次いで、コンデンサ素子をアルミケースに収納固定後、アルミケースの開口部を封止し、更にエージング処理を行う。最後に、コンデンサのカール面に座板を挿入し、コンデンサのリード線をプレス加工・折り曲げを行って電極端子を作製することにより、固体電解コンデンサを完成させる。
Here, the solid electrolytic capacitor is manufactured as follows (see Patent Document 1 below).
First, an anode lead tab terminal subjected to chemical conversion treatment on an anode made of an aluminum foil subjected to etching treatment and chemical conversion treatment, and a cathode lead tab terminal fixed to the cathode, respectively, and then the anode and the cathode are connected via a separator paper. Then, the capacitor element is wound up into a cylindrical shape, and the capacitor element is cut and heat-treated. Next, after immersing the capacitor element in a solution containing an oxidizing agent and a monomer, a conductive polymer layer (solid electrolyte layer) is formed between both electrodes of the capacitor element by thermal polymerization. Next, after the capacitor element is housed and fixed in the aluminum case, the opening of the aluminum case is sealed, and further an aging process is performed. Finally, a seat plate is inserted into the curled surface of the capacitor, and the lead wire of the capacitor is pressed and bent to produce an electrode terminal, thereby completing the solid electrolytic capacitor.

特開平6−310381号公報JP-A-6-310381

ここで、上記固体電解コンデンサにおいて、高耐圧品の要望、需要が市場で非常に高まってきているが、固体電解コンデンサは電解液タイプの電解コンデンサと比較して、漏れ電流(LC)の自己修復機能が乏しい(劣る)という課題がある。このような固体電解コンデンサを高耐圧化するためには、予め陽極箔の誘電体酸化皮膜の耐電圧を高く(言い換えると陽極箔の化成処理電圧を高く)する必要がある。さらに同様の理由により、製造工程中では陽極箔の切り口部分に再度化成処理を行う必要がある。尚、切り口部分の化成は、固体電解コンデンサ特有の処理であり、高耐圧化の場合に限定して行なわれるものではない。   Here, in the above-mentioned solid electrolytic capacitors, the demand and demand for high voltage products are increasing in the market, but solid electrolytic capacitors are self-healing of leakage current (LC) compared to electrolytic electrolytic capacitors. There is a problem that the function is poor (inferior). In order to increase the breakdown voltage of such a solid electrolytic capacitor, it is necessary to increase the withstand voltage of the dielectric oxide film on the anode foil in advance (in other words, increase the chemical conversion voltage of the anode foil). Furthermore, for the same reason, it is necessary to perform chemical conversion treatment again on the cut portion of the anode foil during the manufacturing process. The formation of the cut end is a process unique to the solid electrolytic capacitor, and is not limited to the case of increasing the breakdown voltage.

通常、製造工程中で行う切り口化成の化成処理電圧は、陽極箔の化成処理電圧と同じ電圧で行うが、切り口化成の化成処理電圧が200V(特に、230V)を超えてくると、通常の陽極用リードタブ端子(化成処理電圧160V程度)を用いた場合には、切り口化成が安定せず、陽極用リードタブ端子溶接部の腐食などが多数発生していた。この結果、固体電解コンデンサのLC特性が安定化しないという課題を有していた。   Usually, the chemical conversion voltage for the cut formation performed in the manufacturing process is the same voltage as the chemical conversion voltage for the anode foil. However, when the chemical conversion voltage for the cut formation exceeds 200 V (particularly 230 V), the normal anode When the lead tab terminal for use (chemical conversion voltage of about 160 V) was used, the cut formation was not stable, and many corrosions of the welded portion of the anode lead tab terminal were generated. As a result, there has been a problem that the LC characteristics of the solid electrolytic capacitor are not stabilized.

従って、本発明は、上述した課題を解決するために提案されたものであり、その目的は、切り口化成を安定させ、陽極用リードタブ端子溶接部の腐食を抑制することにより、LC特性を安定化させることができる固体電解コンデンサの製造方法を提供することにある。
Therefore, the present invention has been proposed in order to solve the above-described problems, and its purpose is to stabilize the cut formation and stabilize the LC characteristics by suppressing the corrosion of the lead tab terminal weld for the anode. Another object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor that can be made to operate.

上記目的を達成するために、本発明のうち請求項記載の発明は、化成処理により、弁作用を有する金属からなる陽極の表面に酸化被膜を形成すると共に、陽極用リードタブ端子の表面に酸化被膜を形成する第1ステップと、上記陽極に上記陽極用リードタブ端子を、弁作用を有する金属を備えた陰極に陰極用リードタブ端子を、それぞれ固定する第2ステップと、上記陽極と、上記陰極と、これら両極間に設置されたセパレータとを巻回してコンデンサ素子を作製する第3ステップと、上記コンデンサ素子の切り口化成を行ない、上記陽極の端面に酸化被膜を形成する第4ステップと、上記コンデンサ素子に固体電解質を含ませる第5ステップと、を備えた定格電圧が50V以上の固体電解コンデンサの製造方法において、第1ステップで、上記陽極の表面に酸化被膜を形成する化成処理電圧に対する上記陽極リードタブ端子の表面に酸化被膜を形成する化成処理の電圧の比率が75%以上に規制されていることを特徴とする。
To achieve the above object, the invention according to claim 1 of the present invention, chemical conversion treatment with, thereby forming an oxide film on the surface of the anode made of a metal having a valve action, oxidation on the surface of the anode lead tab terminal A first step of forming a coating; a second step of fixing the anode lead tab terminal to the anode; and a cathode lead tab terminal to a cathode provided with a metal having a valve action; the anode; and the cathode; A third step of winding a separator disposed between the two electrodes to produce a capacitor element; a fourth step of forming the capacitor element and forming an oxide film on the end face of the anode; and the capacitor a fifth step of including the solid electrolyte element, the manufacturing method of a solid electrolytic capacitor rated voltage of more than 50V with a first step Wherein the ratio of the voltage conversion treatment to form a surface oxide film of the anode lead tab terminal for chemical conversion voltage to form an oxide film on the surface of the anode is restricted to 75% or more.

切り口化成が安定化しない、及び陽極用リードタブ端子溶接部が腐食するということの原因としては、陽極用リードタブ端子の化成処理電圧が切り口化成の化成処理電圧に対して低すぎることにあるということを本願発明者らは見出した。通常、固体電解コンデンサに用いる陽極用リードタブ端子の化成処理電圧は160Vであるため、切り口化成時に200V(特に、230V)を超える電圧を印加すると、陽極用リードタブ端子自体が大きく化成されてしまい、切り口化成が安定化しなくなると共に、化成されることで大電流が陽極用リードタブ端子を流れるため、陽極用リードタブ端子の溶接部が腐食する。   The reason why the cut formation is not stabilized and that the lead tab terminal weld for anode corrodes is that the chemical treatment voltage of the lead tab terminal for anode is too low with respect to the chemical conversion voltage of cut formation. The present inventors have found out. Usually, the chemical conversion voltage of the lead tab terminal for anode used in the solid electrolytic capacitor is 160V. Therefore, if a voltage exceeding 200V (particularly 230V) is applied at the time of the cut formation, the lead tab terminal for the anode itself is greatly formed. The formation is not stabilized and a large current flows through the lead tab terminal for anode due to the formation, and the welded portion of the lead tab terminal for anode corrodes.

そこで、切り口化成を安定化させる(固体電解コンデンサを高耐圧化させる)ために、陽極用リードタブ端子は、陽極化成の化成処理電圧の75%以上の電圧で化成処理しておく、即ち、陽極における酸化被膜の厚みに対する、陽極用リードタブ端子における酸化被膜の厚みの比率が75%以上となるように規制する。これにより、切り口化成の化成処理電圧(陽極の化成処理電圧と同等の電圧となるように設定される)が高くなっても、切り口化成を安定化させることができると共に、陽極用リードタブ端子に大電流が流れなくなるため、陽極用リードタブ端子の溶接部が腐食することを抑制できる。   Therefore, in order to stabilize the cut formation (to increase the breakdown voltage of the solid electrolytic capacitor), the lead tab terminal for the anode is subjected to chemical conversion treatment at a voltage of 75% or more of the chemical conversion treatment voltage for anodization. The ratio of the thickness of the oxide film in the lead tab terminal for anode to the thickness of the oxide film is regulated to be 75% or more. This makes it possible to stabilize the cut formation even when the cut formation voltage (set to be equal to the anode chemical conversion voltage) is high, and to make the lead tab terminal for the anode large. Since no current flows, corrosion of the welded portion of the anode lead tab terminal can be suppressed.

尚、陽極作製時の化成処理電圧に対する陽極用リードタブ端子作製時の化成処理電圧の比率は100%未満であることが望ましい。なぜなら、陽極作製時の化成処理電圧に対する陽極用リードタブ端子作製時の化成処理電圧の比率が100%以上になると、陽極用リードタブ端子の酸化被膜作製時における化成処理電力が大きくなりすぎて、陽極箔の酸化被膜の厚みまで増加してしまうからである。
In addition, it is desirable that the ratio of the chemical conversion voltage at the time of producing the lead tab terminal for anode to the chemical conversion voltage at the time of producing the anode is less than 100%. This is because when the ratio of the chemical conversion voltage at the time of preparation of the lead tab terminal for anode to the chemical conversion voltage at the time of preparation of the anode becomes 100% or more, the chemical conversion power at the preparation of the oxide film of the lead tab terminal for anode becomes too large, This is because the thickness of the oxide film increases.

請求項2記載の発明は請求項1記載の発明において、上記第5ステップにおいて、コンデンサ素子にモノマーを含浸させた後、熱重合することにより、コンデンサ素子に固体電解質を含ませることを特徴とする。
このような方法であれば、固体電解コンデンサを容易に作製することができる。。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, in the fifth step, the capacitor element is impregnated with a monomer and then thermally polymerized to cause the capacitor element to contain a solid electrolyte. .
With such a method, a solid electrolytic capacitor can be easily manufactured. .

請求項記載の発明は請求項記載の発明において、陽極作製時の化成処理電圧が300V以上であり、陽極用リードタブ端子作製時の化成処理電圧が225V以上であることを特徴とする。
このような方法であれば、高耐圧の電解コンデンサを容易に作製することができる。
According to a third aspect of the present invention, in the first aspect of the present invention, the chemical conversion voltage at the time of producing the anode is 300 V or higher, and the chemical conversion voltage at the time of preparing the lead tab terminal for the anode is 225 V or higher.
With such a method, a high voltage electrolytic capacitor can be easily manufactured.

本発明によれば、切り口化成を安定させ、陽極用リードタブ端子溶接部の腐食を抑制することにより、固体電解コンデンサのLC特性を安定化させることができるという優れた効果を奏する。   According to the present invention, there is an excellent effect that the LC characteristics of the solid electrolytic capacitor can be stabilized by stabilizing the cut formation and suppressing the corrosion of the lead tab terminal weld for anode.

以下、本発明をさらに詳細に説明するが、本発明は以下の最良の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail. However, the present invention is not limited to the following best modes, and can be appropriately modified and implemented without departing from the scope of the present invention.

図1は本発明の一例である固体電解コンデサに用いるコンデンサ素子斜視図、図2は本発明の一例である固体電解コンデサの断面図である。
図2に示すように、アルミケース9内にはコンデンサ素子1が配置されており、このコンデンサ素子1上には封止用ゴムパッキング10が挿入されている。また、アルミケース9の開口部は横絞りとカールすることで封止されており、この封止部上にはプラスチック製の座板11が挿入されている。この座板11上には、上記陰極2と陽極3とにそれぞれ電気的に接続された後述の陰極用リード線8、陽極用リード線7を、プレス加工、折り曲げ加工して形成される電極端子12が設けられている。
FIG. 1 is a perspective view of a capacitor element used in a solid electrolytic capacitor as an example of the present invention, and FIG. 2 is a cross-sectional view of the solid electrolytic capacitor as an example of the present invention.
As shown in FIG. 2, the capacitor element 1 is disposed in the aluminum case 9, and a sealing rubber packing 10 is inserted on the capacitor element 1. Moreover, the opening part of the aluminum case 9 is sealed by curling with a lateral diaphragm, and a plastic seat plate 11 is inserted on the sealing part. On the seat plate 11, electrode terminals formed by pressing and bending a cathode lead wire 8 and an anode lead wire 7, which will be described later, electrically connected to the cathode 2 and the anode 3, respectively. 12 is provided.

一方、上記コンデンサ素子1は、図1に示すように、表面が凹凸形状のアルミニウム箔の表面に酸化被膜が形成された陽極3と、表面が凹凸形状のアルミニウム箔から成る陰極2と、これら両極2,3間に設けられた紙製のセパレータ4とを有している。そして、これら両極2、3とセパレータ4とはロール状に巻回されて、円筒伏のコンデンサ素子1を構成しており、このコンデンサ素子1の巻回端部には固定用テープ5が貼着されている。また、上記両極2,3間には、ポリチオフェン系の導電性高分子層が形成されている。   On the other hand, as shown in FIG. 1, the capacitor element 1 includes an anode 3 having an oxide film formed on the surface of an aluminum foil having an uneven surface, a cathode 2 made of an aluminum foil having an uneven surface, and both of these electrodes. And a paper separator 4 provided between two and three. The bipolar electrodes 2 and 3 and the separator 4 are wound in a roll shape to form a cylindrical capacitor element 1. A fixing tape 5 is attached to the winding end of the capacitor element 1. Has been. A polythiophene-based conductive polymer layer is formed between the two electrodes 2 and 3.

ここで、図1中、6は陽極用リードタブ端子、7は陽極用リード線であり、具体的な構造は、図3に示すように、ボス部61とリブ部62と平打ち部63とから成るアルミニウム製の陽極用リードタブ端子6に、陽極用リード線7が溶接されるような構造である。尚、図3中、70は溶接部である。また、図1中、14は陰極用リードタブ端子、8は陰極用リード線であり、具体的な構造は、図3に示す陽極用リードタブ端子6及び陽極用リード線7と同様の構造となっている。但し、陰極用リードタブ端子7は、化成処理がなされていない点で陽極用リードタブ端子6とは異なる。   Here, in FIG. 1, 6 is an anode lead tab terminal and 7 is an anode lead wire. As shown in FIG. 3, the specific structure is composed of a boss portion 61, a rib portion 62, and a flat portion 63. The anode lead wire terminal 7 is welded to the aluminum anode lead tab terminal 6. In FIG. 3, reference numeral 70 denotes a welded portion. In FIG. 1, 14 is a cathode lead tab terminal, and 8 is a cathode lead wire. The specific structure is the same as the anode lead tab terminal 6 and anode lead wire 7 shown in FIG. Yes. However, the cathode lead tab terminal 7 is different from the anode lead tab terminal 6 in that the chemical conversion treatment is not performed.

上記構造の固体電解コンデンサを、以下のようにして作製した。
先ず、アルミニウム製シートから切り出された帯状のアルミニウム箔にエッチング処理を行なう。このようにエッチング処理を行うのは、アルミニウム箔の表面を粗面化して、表面積を拡大し、静電容量を大きくするためである。次に、アルミニウム箔を化成液に漬け、250Vの電圧を印加する(化成処理電圧を250Vとする)ことにより、アルミニウムを酸化して、アルミニウム酸化被膜(化成被膜)を形成した。これにより、陽極3が作製される。尚、化成液としては、リン酸塩、ホウ酸塩、アジピン酸塩等の溶液が知られているが、他の酸塩の溶液を用いてもよい。
ここで、アルミニウム酸化被膜の厚みは、化成処理電圧(印加電圧)1V当たり14×10−10mであり、化成処理電圧に比例するということから、上記陽極3に形成されたアルミニウム酸化被膜の厚みは以下(1)式のようになる。
250×14×10−10m=3.5×10−7m・・・(1)
A solid electrolytic capacitor having the above structure was produced as follows.
First, the strip-shaped aluminum foil cut out from the aluminum sheet is etched. The etching process is performed in order to roughen the surface of the aluminum foil, increase the surface area, and increase the capacitance. Next, the aluminum foil was immersed in the chemical conversion liquid, and a voltage of 250 V was applied (the chemical conversion treatment voltage was set to 250 V) to oxidize aluminum to form an aluminum oxide film (chemical conversion film). Thereby, the anode 3 is produced. In addition, as a chemical conversion liquid, solutions, such as a phosphate, a borate, an adipate, are known, However, You may use the solution of other acid salts.
Here, the thickness of the aluminum oxide film is 14 × 10 −10 m per 1 V of the chemical conversion voltage (applied voltage), and is proportional to the chemical conversion voltage. Therefore, the thickness of the aluminum oxide film formed on the anode 3 is as follows. Is expressed by the following equation (1).
250 × 14 × 10 −10 m = 3.5 × 10 −7 m (1)

上記正極作製工程と並行して、下記に示す条件で、アルミニウム製の陽極用リードタブ端子6にも電圧を印加する(化成処理を行なう)ことにより、アルミニウム酸化被膜(化成被膜)を形成した。但し、この場合の印加電圧は200Vとしたので、陽極用リードタブ端子6に形成されたアルミニウム酸化被膜の厚みは以下(2)式のようになる。
200×14×10−10m=2.8×10−7m・・・(2)
In parallel with the positive electrode preparation step, an aluminum oxide film (chemical conversion film) was formed by applying a voltage to the aluminum anode lead tab terminal 6 (chemical conversion treatment) under the following conditions. However, since the applied voltage in this case was 200 V, the thickness of the aluminum oxide film formed on the anode lead tab terminal 6 is expressed by the following equation (2).
200 × 14 × 10 −10 m = 2.8 × 10 −7 m (2)

但し、陽極用リードタブ端子6の一部(図3における二点鎖線より左側に存在する部分)64では、後述の切り口化成時に化成液と接することになるため、陽極3の化成処理電圧と同様の電圧(250V)で行なわれる切り口化成時に再度化成される。この結果、陽極用リードタブ端子6の一部64におけるアルミニウム酸化被膜の厚みは、前記陽極3に形成されたアルミニウム酸化被膜の厚みと同様、3.5×10−7mとなる。
次いで、上記陽極3に上記陽極用リードタブ端子6をざぐり加工により固定する一方、アルミニウム箔から成る陰極2には、陰極用リードタブ端子14をざぐり加工により固定した。
However, part of the anode lead tab terminal 6 (portion on the left side of the two-dot chain line in FIG. 3) 64 comes into contact with the chemical conversion solution at the time of cut formation described later, so that it is the same as the chemical conversion voltage of the anode 3. It is formed again at the time of cut formation performed at a voltage (250 V). As a result, the thickness of the aluminum oxide film in the part 64 of the lead tab terminal 6 for anode is 3.5 × 10 −7 m, similar to the thickness of the aluminum oxide film formed on the anode 3.
Next, the anode lead tab terminal 6 was fixed to the anode 3 by spotting, while the cathode lead tab terminal 14 was fixed to the cathode 2 made of aluminum foil by spotting.

しかる後、上記陽極3と、陰極2とを、絶縁体であるセパレータ4を介してロール状に巻回し、巻回終端をテープ5でとめ、コンデンサ素子1を作製した。ここで、陽極3は、前記の如く、アルミニウム製シートから切り出されて作成されるので、陽極3の端面には、アルミニウム酸化被膜(誘電体酸化被膜)が形成されていない。したがって、コンデンサ素子1の切り口化成を印化電圧250V(陽極3の化成処理電圧と同様の電圧)で行って、陽極の端面にもアルミニウム酸化被膜を形成した。この後、コンデンサ素子1を280℃で熱処理して、アルミニウム酸化被膜の特性を安定させた。   Thereafter, the anode 3 and the cathode 2 were wound in a roll shape through a separator 4 as an insulator, and the winding end was stopped with a tape 5 to produce a capacitor element 1. Here, as described above, since the anode 3 is cut out from the aluminum sheet, an aluminum oxide film (dielectric oxide film) is not formed on the end face of the anode 3. Therefore, cut formation of the capacitor element 1 was performed at a printing voltage of 250 V (a voltage similar to the chemical conversion voltage of the anode 3), and an aluminum oxide film was formed on the end face of the anode. Thereafter, the capacitor element 1 was heat-treated at 280 ° C. to stabilize the characteristics of the aluminum oxide film.

次に、モノマーとしての3,4−エチレンジオキシチオフェンと、酸化剤溶液としてのp−トルエンスルホン酸第二鉄とを含むブチルアルコール溶液に、コンデンサ素子1を浸漬後、熱重合して両極2,3間に導電性高分子層を形成し、コンデンサ素子1を完成させた。   Next, the capacitor element 1 is immersed in a butyl alcohol solution containing 3,4-ethylenedioxythiophene as a monomer and ferric p-toluenesulfonate as an oxidant solution, and then subjected to thermal polymerization to form both electrodes 2 , 3 to form a conductive polymer layer to complete the capacitor element 1.

その後、図2に示すように、上記のようにして作製したコンデンサ素子1をアルミケース9内に収納し、更に、コンデンサ素子1上のアルミケース9内に封止用ゴムパッキング10を挿入して固定した後、アルミケース9の開口部に対し横絞りとカールを施すことで封止を行った。最後に、エージング処理を行った後、コンデンサのカール面にプラスチック製の座板11を挿入し、更に、コンデンサのリード線7、8のプレス加工、折り曲げ加工を行って電極端子12を形成することにより、固体電解コンデンサを作製した。   After that, as shown in FIG. 2, the capacitor element 1 manufactured as described above is housed in an aluminum case 9, and a sealing rubber packing 10 is inserted into the aluminum case 9 on the capacitor element 1. After fixing, the opening of the aluminum case 9 was sealed by applying a lateral stop and curling. Finally, after performing the aging process, the plastic seat plate 11 is inserted into the curled surface of the capacitor, and further, the lead wires 7 and 8 of the capacitor are pressed and bent to form the electrode terminals 12. Thus, a solid electrolytic capacitor was produced.

このようにして作製した固体電解コンデンサは、定格電圧50Vであり、またアルミケース9の外形寸法は直径10.0mmで高さ8.0mmである。   The solid electrolytic capacitor thus fabricated has a rated voltage of 50 V, and the outer dimensions of the aluminum case 9 are 10.0 mm in diameter and 8.0 mm in height.

(実施例1)
上記発明を実施するための最良の形態と同様にして固体電解コンデンサを作製した。
このようにして作製した固体電解コンデンサを、以下本発明コンデンサA1と称する。
Example 1
A solid electrolytic capacitor was produced in the same manner as in the best mode for carrying out the invention.
The solid electrolytic capacitor thus produced is hereinafter referred to as the present invention capacitor A1.

(実施例2)
陽極3(陽極の切り口も含む、このことは、以下の実施例3及び比較例1〜3でも同様である)と陽極用リードタブ端子6とに化成処理を施す場合の印加電圧を、それぞれ、400V、300Vとした以外は、実施例1と同様にして固体電解コンデンサを作製した。
このようにして作製した固体電解コンデンサを、以下本発明コンデンサA2と称する。
(Example 2)
The applied voltage when the chemical conversion treatment is performed on the anode 3 (including the cut end of the anode, which is the same in the following Example 3 and Comparative Examples 1 to 3) and the lead tab terminal 6 for the anode is 400 V, respectively. A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the voltage was set to 300V.
The solid electrolytic capacitor thus produced is hereinafter referred to as the present invention capacitor A2.

尚、陽極3におけるに形成されたアルミニウム酸化被膜の厚みは以下(3)式のようになり、陽極用リードタブ端子6に形成されたアルミニウム酸化被膜の厚みは以下(4)式のようになる。
400×14×10−10m=5.6×10−7m・・・(3)
300×14×10−10m=4.2×10−7m・・・(4)
The thickness of the aluminum oxide film formed on the anode 3 is expressed by the following formula (3), and the thickness of the aluminum oxide film formed on the anode lead tab terminal 6 is expressed by the following formula (4).
400 × 14 × 10 −10 m = 5.6 × 10 −7 m (3)
300 × 14 × 10 −10 m = 4.2 × 10 −7 m (4)

(実施例3)
陽極3と陽極用リードタブ端子6とに化成処理を施す場合の印加電圧を、それぞれ、450V、400Vとした以外は、実施例1と同様にして固体電解コンデンサを作製した。
このようにして作製した固体電解コンデンサを、以下本発明コンデンサA3と称する。
(Example 3)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the applied voltage when the chemical conversion treatment was applied to the anode 3 and the lead tab terminal 6 for anode was 450 V and 400 V, respectively.
The solid electrolytic capacitor thus produced is hereinafter referred to as the present invention capacitor A3.

尚、陽極3におけるに形成されたアルミニウム酸化被膜の厚みは以下(5)式のようになり、陽極用リードタブ端子6に形成されたアルミニウム酸化被膜の厚みは以下(6)式のようになる。
450×14×10−10m=6.3×10−7m・・・(5)
400×14×10−10m=5.6×10−7m・・・(6)
The thickness of the aluminum oxide film formed on the anode 3 is expressed by the following formula (5), and the thickness of the aluminum oxide film formed on the anode lead tab terminal 6 is expressed by the following formula (6).
450 × 14 × 10 −10 m = 6.3 × 10 −7 m (5)
400 × 14 × 10 −10 m = 5.6 × 10 −7 m (6)

(比較例1)
陽極3と陽極用リードタブ端子6とに化成処理を施す場合の印加電圧を、それぞれ、250V、160Vとした以外は、実施例1と同様にして固体電解コンデンサを作製した。
このようにして作製した固体電解コンデンサを、以下比較コンデンサX1と称する。
(Comparative Example 1)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the applied voltages when the chemical conversion treatment was performed on the anode 3 and the anode lead tab terminal 6 were 250 V and 160 V, respectively.
The solid electrolytic capacitor thus manufactured is hereinafter referred to as a comparative capacitor X1.

尚、陽極3におけるに形成されたアルミニウム酸化被膜の厚みは以下(7)式のようになり、陽極用リードタブ端子6に形成されたアルミニウム酸化被膜の厚みは以下(8)式のようになる。
250×14×10−10m=3.5×10−7m・・・(7)
160×14×10−10m=2.24×10−7m・・・(8)
The thickness of the aluminum oxide film formed on the anode 3 is expressed by the following formula (7), and the thickness of the aluminum oxide film formed on the anode lead tab terminal 6 is expressed by the following formula (8).
250 × 14 × 10 −10 m = 3.5 × 10 −7 m (7)
160 × 14 × 10 −10 m = 2.24 × 10 −7 m (8)

(比較例2)
陽極3と陽極用リードタブ端子6とに化成処理を施す場合の印加電圧を、それぞれ、400V、200Vとした以外は、実施例1と同様にして固体電解コンデンサを作製した。
このようにして作製した固体電解コンデンサを、以下比較コンデンサX2と称する。
(Comparative Example 2)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the applied voltage when the chemical conversion treatment was applied to the anode 3 and the lead tab terminal 6 for anode was 400 V and 200 V, respectively.
The solid electrolytic capacitor thus fabricated is hereinafter referred to as a comparative capacitor X2.

尚、陽極3におけるに形成されたアルミニウム酸化被膜の厚みは以下(9)式のようになり、陽極用リードタブ端子6に形成されたアルミニウム酸化被膜の厚みは以下(10)式のようになる。
400×14×10−10m=5.6×10−7m・・・(9)
200×14×10−10m=2.8×10−7m・・・(10)
The thickness of the aluminum oxide film formed on the anode 3 is expressed by the following formula (9), and the thickness of the aluminum oxide film formed on the anode lead tab terminal 6 is expressed by the following formula (10).
400 × 14 × 10 −10 m = 5.6 × 10 −7 m (9)
200 × 14 × 10 −10 m = 2.8 × 10 −7 m (10)

(比較例3)
陽極3と陽極用リードタブ端子6とに化成処理を施す場合の印加電圧を、それぞれ、450V、300Vとした以外は、実施例1と同様にして固体電解コンデンサを作製した。
このようにして作製した固体電解コンデンサを、以下比較コンデンサX3と称する。
(Comparative Example 3)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the applied voltage when the chemical conversion treatment was performed on the anode 3 and the lead tab terminal 6 for anode was 450 V and 300 V, respectively.
The solid electrolytic capacitor thus manufactured is hereinafter referred to as a comparative capacitor X3.

尚、陽極3におけるに形成されたアルミニウム酸化被膜の厚みは以下(11)式のようになり、陽極用リードタブ端子6に形成されたアルミニウム酸化被膜の厚みは以下(12)式のようになる。
450×14×10−10m=6.3×10−7m・・・(11)
300×14×10−10m=4.2×10−7m・・・(12)
The thickness of the aluminum oxide film formed on the anode 3 is expressed by the following equation (11), and the thickness of the aluminum oxide film formed on the anode lead tab terminal 6 is expressed by the following equation (12).
450 × 14 × 10 −10 m = 6.3 × 10 −7 m (11)
300 × 14 × 10 −10 m = 4.2 × 10 −7 m (12)

(実験1)
上記本発明コンデンサA1〜A3及び比較コンデンサX1〜X3において、切り口化成工程における腐食発生率を調べたので、その結果を表1に示す。尚、試料数は、各コンデンサ20個とした。
(Experiment 1)
Table 1 shows the results of the corrosion occurrence rate in the cut formation process in the capacitors A1 to A3 of the present invention and the comparative capacitors X1 to X3. The number of samples was 20 capacitors.

上記表1から明らかなように、比較コンデンサX1〜X3では多数の腐食が発生しているのに対して、本発明コンデンサA1〜A3では全く腐食が発生していないことが認められる。したがって、陽極におけるアルミニウム酸化被膜の膜厚に対する、陽極用リードタブ端子におけるアルミニウム酸化被膜の膜厚(陽極における化成処理電圧に対する陽極用リードタブ端子における化成処理電圧)の比率を、75%以上に規制する必要があることがわかる。   As is apparent from Table 1 above, it can be seen that many corrosions have occurred in the comparative capacitors X1 to X3, whereas no corrosion has occurred in the capacitors A1 to A3 of the present invention. Therefore, it is necessary to regulate the ratio of the thickness of the aluminum oxide film in the lead tab terminal for the anode (the chemical conversion voltage in the lead tab terminal for the anode to the chemical conversion voltage in the anode) to the thickness of the aluminum oxide film in the anode to 75% or more. I understand that there is.

(実験2)
上記本発明コンデンサA1〜A3及び比較コンデンサX1〜X3において、初期LC特性を調べたので、その結果を表2に示す。尚、試料数は、各コンデンサ20個とし、また、表2にはそれらの平均値を示した。
(Experiment 2)
The initial LC characteristics of the capacitors A1 to A3 of the present invention and the comparative capacitors X1 to X3 were examined, and the results are shown in Table 2. The number of samples was 20 capacitors, and Table 2 shows the average values.

上記表2から明らかなように、本発明コンデンサA1〜A3は比較コンデンサX1〜X3に比べて、初期LC特性が格段に向上していることが認められる。したがって、陽極におけるアルミニウム酸化被膜の膜厚に対する、陽極用リードタブ端子におけるアルミニウム酸化被膜の膜厚(陽極における化成処理電圧に対する陽極用リードタブ端子における化成処理電圧)の比率を、75%以上に規制する必要があることがわかる。   As is apparent from Table 2 above, it is recognized that the initial LC characteristics of the capacitors A1 to A3 of the present invention are remarkably improved as compared with the comparative capacitors X1 to X3. Therefore, it is necessary to regulate the ratio of the thickness of the aluminum oxide film in the lead tab terminal for the anode (the chemical conversion voltage in the lead tab terminal for the anode to the chemical conversion voltage in the anode) to the thickness of the aluminum oxide film in the anode to 75% or more. I understand that there is.

〔その他の事項〕
(1)上記実施例では、電極の母材にエッチドアルミニウム箔を用いているが、プレーン(未エッチド)アルミニウム箔を用いても良いことは勿論である。
(2)固体電解質にはポリチオフェン系導電性高分子を用いているが、これに限定するものではなく、ポリピロール系、ポリアニリン系等の導電性高分子又はTCNQ錯塩を用いても良いことは勿論である。
[Other matters]
(1) In the above embodiment, an etched aluminum foil is used as the base material of the electrode, but it goes without saying that a plain (unetched) aluminum foil may be used.
(2) A polythiophene-based conductive polymer is used as the solid electrolyte. However, the present invention is not limited to this, and a polypyrrole-based or polyaniline-based conductive polymer or a TCNQ complex salt may be used. is there.

(3)陽極用リードタブ端子の化成処理は、陽極用リードタブ端子の製造の前後を問わない。即ち、陽極用リードタブ端子を製造する場合には、アルミニウム等から成る金属シートを打ち抜くことにより形成しているが、打ち抜きの前に化成処理を行なっても、又は打ち抜きの後に化成処理を行なっても良い。また、上記実施例では、陽極用リードタブ端子にのみ化成処理を行なっているが、陰極用リードタブ端子にも化成処理を行なっても良いことは勿論である。尚、このように陰極用リードタブ端子にも化成処理を行なったものを用いると、両リードタブ端子を共通化できるので、生産性の向上を図ることができる。 (3) The chemical conversion treatment of the lead tab terminal for anode may be performed before or after the production of the lead tab terminal for anode. That is, when manufacturing a lead tab terminal for an anode, it is formed by punching a metal sheet made of aluminum or the like. However, the chemical conversion treatment may be performed before punching or the chemical conversion treatment may be performed after punching. good. In the above-described embodiment, the chemical conversion treatment is performed only on the lead tab terminal for anode, but it is needless to say that the chemical conversion treatment may be performed on the lead tab terminal for cathode. If the lead tab terminal for cathode that has been subjected to chemical conversion treatment is used in this way, both lead tab terminals can be used in common, so that productivity can be improved.

(4)弁作用を有する金属としては上記アルミニウムに限定するものではなく、タンタル、ニオブ等であっても良い。
(5)陽極3と陽極の切り口との化成処理は同一の電圧に限定するものではないが、切り口化成を安定させ、陽極用リードタブ端子溶接部の腐食を抑制するには、両者の化成処理を同一の電圧で行なうのが望ましい。
(4) The metal having a valve action is not limited to the above aluminum, but may be tantalum, niobium or the like.
(5) Although the chemical conversion treatment of the anode 3 and the cut end of the anode is not limited to the same voltage, in order to stabilize the cut cut formation and suppress corrosion of the lead tab terminal welded portion for the anode, both chemical conversion treatments are performed. It is desirable to carry out at the same voltage.

本発明は、例えば携帯電話、ノートパソコン、PDA等の電子機器のプリント配線基板における表面実装用電子部品等として用いることができる。   The present invention can be used, for example, as an electronic component for surface mounting on a printed wiring board of an electronic device such as a mobile phone, a notebook computer, or a PDA.

本発明の一例である固体電解コンデサに用いるコンデンサ素子斜視図である。It is a capacitor | condenser element perspective view used for the solid electrolytic capacitor which is an example of this invention. 本発明の一例である固体電解コンデサの断面図である。It is sectional drawing of the solid electrolytic capacitor which is an example of this invention. 本発明の一例である固体電解コンデサの陽極用リードタブ端子の平面図である。It is a top view of the lead tab terminal for anodes of the solid electrolytic capacitor which is an example of the present invention.

符号の説明Explanation of symbols

1 コンデンサ素子
2 陰極
3 陽極
6 陽極用リードタブ端子
7 リード線
14 陰極用リードタブ端子
70 溶接部
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Cathode 3 Anode 6 Lead tab terminal for anode 7 Lead wire 14 Lead tab terminal for cathode 70 Welded part

Claims (3)

化成処理により、弁作用を有する金属からなる陽極の表面に酸化被膜を形成する第1ステップと、
化成処理により、陽極用リードタブ端子の表面に酸化被膜を形成する第2ステップと、
上記陽極に上記陽極用リードタブ端子を、陰極に陰極用リードタブ端子を、それぞれ固定する第3ステップと、
上記陽極と、上記陰極と、これら両極間に設置されたセパレータとを巻回してコンデンサ素子を作製する第4ステップと、
上記コンデンサ素子の切り口化成を行ない、上記陽極の切り口部分に酸化被膜を形成する第5ステップと、
上記コンデンサ素子に固体電解質を含ませる第6ステップと、
を備えた定格電圧が50V以上の固体電解コンデンサの製造方法において、
上記第2ステップにおける化成処理の電圧は、上記第1ステップにおける化成処理の電圧に対して75%以上に規制されるとともに、上記第5ステップにおける切り口化成の電圧に対して75%以上に規制されていることを特徴とする固体電解コンデンサの製造方法。
A first step of forming an oxide film on the surface of the anode made of a metal having a valve action by chemical conversion;
A second step of forming an oxide film on the surface of the lead tab terminal for anode by chemical conversion;
A third step of fixing the anode lead tab terminal to the anode and the cathode lead tab terminal to the cathode; and
A fourth step in which a capacitor element is manufactured by winding the anode, the cathode, and a separator disposed between the two electrodes;
A fifth step of performing cut formation of the capacitor element and forming an oxide film on the cut portion of the anode;
A sixth step of including a solid electrolyte in the capacitor element;
In a method for manufacturing a solid electrolytic capacitor having a rated voltage of 50 V or more , comprising:
The voltage of the chemical conversion treatment in the second step is regulated to 75% or more with respect to the voltage of chemical conversion treatment in the first step, and is regulated to 75% or more with respect to the voltage of cut formation in the fifth step. A method for producing a solid electrolytic capacitor, comprising:
上記第6ステップにおいて、コンデンサ素子にモノマーを含浸させた後、熱重合することにより、コンデンサ素子に固体電解質を含ませる、請求項1記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein, in the sixth step, the capacitor element is impregnated with a monomer and then subjected to thermal polymerization, thereby including the solid electrolyte in the capacitor element. 上記第1ステップにおける化成処理の電圧が300V以上であり、上記第2ステップにおける化成処理の電圧が225V以上である、請求項1または2記載の固体電解コンデンサの製造方法。
The manufacturing method of the solid electrolytic capacitor of Claim 1 or 2 whose voltage of the chemical conversion treatment in the said 1st step is 300V or more, and whose voltage of the chemical conversion treatment in the said 2nd step is 225V or more.
JP2005322168A 2005-02-14 2005-11-07 Manufacturing method of solid electrolytic capacitor Active JP5164325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005322168A JP5164325B2 (en) 2005-02-14 2005-11-07 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005036092 2005-02-14
JP2005036092 2005-02-14
JP2005322168A JP5164325B2 (en) 2005-02-14 2005-11-07 Manufacturing method of solid electrolytic capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011234736A Division JP5328870B2 (en) 2005-02-14 2011-10-26 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2006253638A JP2006253638A (en) 2006-09-21
JP5164325B2 true JP5164325B2 (en) 2013-03-21

Family

ID=37093741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005322168A Active JP5164325B2 (en) 2005-02-14 2005-11-07 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5164325B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825235B1 (en) * 2006-10-02 2008-04-25 주식회사 디지털텍 Method for coating lead wire of polymer condenser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145827A (en) * 1997-07-25 1999-02-16 Matsushita Electric Ind Co Ltd Manufacture of high-pressure level aluminum electroytic capacitor electrode foil
JPH11283874A (en) * 1998-01-28 1999-10-15 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP3416099B2 (en) * 1999-06-04 2003-06-16 松下電器産業株式会社 Capacitor and manufacturing method thereof
JP2001284174A (en) * 2000-03-30 2001-10-12 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method

Also Published As

Publication number Publication date
JP2006253638A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4587996B2 (en) Electrolytic capacitor
JP4592792B2 (en) Electrolytic capacitor
JP2006190878A (en) Electrolyte capacitor and manufacturing method thereof
JP5328870B2 (en) Electrolytic capacitor
JP5072857B2 (en) Electrolytic capacitor manufacturing method
JP5159598B2 (en) Electrolytic capacitor
JP5933397B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2008130859A (en) Electrolytic capacitor
JP2007036282A (en) Electrode foil for solid electrolytic capacitor and manufacturing method thereof
JP2008198681A (en) Solid electrolytic capacitor and its manufacturing method
JP4688710B2 (en) Electrolytic capacitor manufacturing method
JP5164325B2 (en) Manufacturing method of solid electrolytic capacitor
TWI243390B (en) Solid electrolytic condenser
JP5289016B2 (en) Manufacturing method of solid electrolytic capacitor
JP4878967B2 (en) Electrolytic capacitor
JP2005064352A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2005203402A (en) Solid electrolytic capacitor
JP4442411B2 (en) Manufacturing method of solid electrolytic capacitor
JP2022144218A (en) Electrolytic capacitor and manufacturing method therefor
JP2008205405A (en) Method for manufacturing solid electrolytic capacitor
JP2005101155A (en) Solid-state electrolyte capacitor and method of manufacturing the same
JP2007134351A (en) Manufacture of solid electrolytic capacitor
JP2008047783A (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111207

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5164325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250