Nothing Special   »   [go: up one dir, main page]

JP5162196B2 - Light modulator - Google Patents

Light modulator Download PDF

Info

Publication number
JP5162196B2
JP5162196B2 JP2007257805A JP2007257805A JP5162196B2 JP 5162196 B2 JP5162196 B2 JP 5162196B2 JP 2007257805 A JP2007257805 A JP 2007257805A JP 2007257805 A JP2007257805 A JP 2007257805A JP 5162196 B2 JP5162196 B2 JP 5162196B2
Authority
JP
Japan
Prior art keywords
ground conductor
conductor
optical
optical modulator
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007257805A
Other languages
Japanese (ja)
Other versions
JP2009086453A (en
Inventor
健治 河野
勇治 佐藤
雅也 名波
靖二 内田
信弘 五十嵐
中平  徹
英司 川面
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2007257805A priority Critical patent/JP5162196B2/en
Publication of JP2009086453A publication Critical patent/JP2009086453A/en
Application granted granted Critical
Publication of JP5162196B2 publication Critical patent/JP5162196B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、電気光学効果を利用して、光導波路に入射した光を高周波電気信号で変調して光信号パルスとして出射する光変調器に関する。   The present invention relates to an optical modulator that uses an electro-optic effect to modulate light incident on an optical waveguide with a high-frequency electrical signal and emit it as an optical signal pulse.

近年、高速、大容量の光通信システムが実用化されている。このような高速、大容量の光通信システムに組込むための高速、小型、低価格、かつ高安定な光変調器の開発が求められている。   In recent years, high-speed and large-capacity optical communication systems have been put into practical use. There is a demand for the development of a high-speed, small, low-cost, and highly stable optical modulator for incorporation into such a high-speed, large-capacity optical communication system.

このような要望に応える光変調器として、リチウムナイオベート(LiNbO)のように電界を印加することにより屈折率が変化する、いわゆる電気光学効果を有する基板(以下、LN基板と略す)に光導波路と進行波電極を形成した進行波電極型リチウムナイオベート光変調器(以下、LN光変調器と略す)がある。このLN光変調器は、その優れたチャーピング特性から2.5Gbit/s、10Gbit/sの大容量光通信システムに適用されている。最近はさらに40Gbit/sの超大容量光通信システムにも適用が検討されている。 As an optical modulator that meets such demands, a light modulator such as lithium niobate (LiNbO 3 ) is used for a substrate having a so-called electro-optical effect (hereinafter abbreviated as an LN substrate) whose refractive index changes by applying an electric field. There is a traveling wave electrode type lithium niobate optical modulator (hereinafter abbreviated as an LN optical modulator) in which a waveguide and a traveling wave electrode are formed. This LN optical modulator is applied to a large capacity optical communication system of 2.5 Gbit / s and 10 Gbit / s because of its excellent chirping characteristics. Recently, application to a 40 Gbit / s ultra-high capacity optical communication system is also being studied.

以下、従来、実用化され、又は提唱されてきたリチウムナイオベートの電気光学効果を利用したLN光変調器について説明する。   Hereinafter, an LN optical modulator using the electro-optic effect of lithium niobate that has been put to practical use or has been proposed will be described.

(第1の従来技術)
特許文献1に開示された、z−カットLN基板を用いて構成した、いわゆるリッジ型LN光変調器を第1の従来技術の光変調器として図8にその斜視図を示す。なお、図9は図8のA−A´線における断面図である。
(First prior art)
FIG. 8 shows a perspective view of a so-called ridge type LN optical modulator disclosed in Patent Document 1, which is configured using a z-cut LN substrate, as a first conventional optical modulator. 9 is a cross-sectional view taken along the line AA ′ of FIG.

z−カットLN基板1上に光導波路3が形成されている。この光導波路3は、金属Tiを1050℃で約10時間熱拡散して形成した光導波路であり、マッハツェンダ干渉系(あるいは、マッハツェンダ光導波路)を構成している。したがって、光導波路3の電気信号と光が相互作用する部(相互作用部と言う)には2本の相互作用光導波路3a、3b、つまりマッハツェンダ光導波路の2本のアームが形成されている。   An optical waveguide 3 is formed on the z-cut LN substrate 1. The optical waveguide 3 is an optical waveguide formed by thermally diffusing metal Ti at 1050 ° C. for about 10 hours, and constitutes a Mach-Zehnder interference system (or Mach-Zehnder optical waveguide). Therefore, two interacting optical waveguides 3a and 3b, that is, two arms of a Mach-Zehnder optical waveguide are formed in a portion (referred to as an interacting portion) where the electrical signal and light of the optical waveguide 3 interact.

この光導波路3の上面にSiOバッファ層2が形成され、このSiOバッファ層2の上面に進行波電極4が形成されている。進行波電極4としては、1つの中心導体4aと2つの接地導体4b、4cを有するコプレーナウェーブガイド(CPW)を用いている。なお、通常、進行波電極4はAuにより形成されている。5はz−カットLN基板1を用いて製作したLN光変調器に特有の焦電効果に起因する温度ドリフトを抑圧するための導電層であり、通常はSi導電層を用いる。中心導体4aの幅Sは7μm程度で、中心導体4aと接地導体4b、4cの間のギャップWは15μm程度である。なお、説明を簡単にするために、図8では図示した温度ドリフト抑圧のためのSi導電層5を図9においては省略している。また、以下においてもSi導電層5は省略して議論する。 An SiO 2 buffer layer 2 is formed on the upper surface of the optical waveguide 3, and a traveling wave electrode 4 is formed on the upper surface of the SiO 2 buffer layer 2. As the traveling wave electrode 4, a coplanar waveguide (CPW) having one central conductor 4a and two ground conductors 4b and 4c is used. Normally, the traveling wave electrode 4 is made of Au. Reference numeral 5 denotes a conductive layer for suppressing temperature drift caused by a pyroelectric effect peculiar to the LN optical modulator manufactured using the z-cut LN substrate 1, and usually a Si conductive layer is used. The width S of the center conductor 4a is about 7 μm, and the gap W between the center conductor 4a and the ground conductors 4b and 4c is about 15 μm. For simplification of explanation, the Si conductive layer 5 for suppressing temperature drift shown in FIG. 8 is omitted in FIG. In the following, the Si conductive layer 5 is omitted and discussed.

この第1の従来技術では、z−カットLN基板1をエッチングなどで掘り込むことにより、凹部9a、9b、及び9c(あるいは、リッジ部8a、8bとも言える)を形成している。ここで、10a、10bは外周部である。なお、リッジ部8a、8bを各々中心導体用リッジ部、接地導体用リッジ部とも呼ぶ。   In the first prior art, the recesses 9a, 9b and 9c (or ridges 8a and 8b) are formed by digging the z-cut LN substrate 1 by etching or the like. Here, 10a and 10b are outer peripheral parts. The ridge portions 8a and 8b are also referred to as a central conductor ridge portion and a ground conductor ridge portion, respectively.

このリッジ構造をとることにより、高周波電気信号の実効屈折率(あるいは、マイクロ波実効屈折率)、特性インピーダンス、変調帯域、駆動電圧などにおいて優れた特性を実現することができる。なお、図9では凹部9a、9b、及び9cの深さ(あるいはリッジ部8a、8bの高さ)を強調して描いているが、実際には2〜5μm程度であり、中心導体4aや接地導体4b、4cの厚み約20μmに比較するとその値は小さい。   By adopting this ridge structure, it is possible to realize excellent characteristics in the effective refractive index (or microwave effective refractive index), characteristic impedance, modulation band, driving voltage, and the like of a high-frequency electric signal. In FIG. 9, the depth of the recesses 9a, 9b, and 9c (or the height of the ridges 8a, 8b) is emphasized, but it is actually about 2 to 5 μm, and the center conductor 4a and grounding are shown. The value is small compared to the thickness of the conductors 4b and 4c of about 20 μm.

さて、この第1の従来技術はLN光変調器としての光変調帯域が広く、変調特性は優れているものの、安定性について問題があることがわかった。即ち、Si導電層5を使用しているにもかかわらず、温度ドリフト特性が悪いことが判明した。その原因は高い変調性能を生み出すリッジ構造に起因していると考えられる。   Now, it has been found that the first prior art has a wide optical modulation band as an LN optical modulator and has excellent modulation characteristics, but has a problem with stability. That is, it has been found that the temperature drift characteristic is poor despite the use of the Si conductive layer 5. The cause is thought to be due to the ridge structure that produces high modulation performance.

以下にその原因について詳しく説明する。図9からわかるように、中心導体4aの直下のリッジ部8aについては、接地導体4b、4cとは独立しているので、z−カットLN基板1の表面に平行な方向にリッジ部8aを引っ張る力は存在しない。   The cause will be described in detail below. As can be seen from FIG. 9, the ridge portion 8a immediately below the central conductor 4a is independent of the ground conductors 4b and 4c, and therefore the ridge portion 8a is pulled in a direction parallel to the surface of the z-cut LN substrate 1. There is no power.

ところが、リッジ部8bについては、前述のように約20μmの厚い接地導体4bが凹部9c、外周部10bとともに形成されている。そして、接地導体4bのAuとz−カットLN基板1の熱膨張係数は互いに大きく異なる。さらに、z−カットLN基板1の幅は数ミリメートル(例えば、約1mm〜5mm)と広い。一方、相互作用光導波路3a、3bのギャップは約15μm程度と狭いので、接地導体4bや4cの幅は各々z−カットLN基板1の幅の約半分と言えるくらいに広い(換言すると、外周部10aや10bが広い)。つまり、図9の接地導体4bの幅も広いので環境変化に起因する熱膨張や熱収縮などの応力が積み重なり、リッジ部8bへかなり大きな応力がかかる。なお、実際には接地導体4cの幅も広く、その影響も大きい。   However, in the ridge portion 8b, as described above, the thick ground conductor 4b having a thickness of about 20 μm is formed together with the concave portion 9c and the outer peripheral portion 10b. The Au of the ground conductor 4b and the thermal expansion coefficient of the z-cut LN substrate 1 are greatly different from each other. Furthermore, the width of the z-cut LN substrate 1 is as wide as several millimeters (for example, about 1 mm to 5 mm). On the other hand, since the gap between the interaction optical waveguides 3a and 3b is as narrow as about 15 μm, the width of the ground conductors 4b and 4c is so wide that it can be said to be about half the width of the z-cut LN substrate 1 (in other words, the outer peripheral portion). 10a and 10b are wide). That is, since the width of the ground conductor 4b in FIG. 9 is wide, stresses such as thermal expansion and thermal shrinkage caused by environmental changes accumulate, and a considerably large stress is applied to the ridge portion 8b. Actually, the width of the ground conductor 4c is wide and the influence is great.

ところが、z−カットLN基板1に応力がかかるとその屈折率が変化する(応力複屈折)ので、結果的に相互作用光導波路3aの屈折率が変化することになり、LN光変調器を動作させる際のDCバイアス点が変わってしまう。これがリッジ構造特有の温度ドリフト現象であり、LN光変調器としての安定性を損なう結果となる。ちなみに、LN光変調器の環境温度を室温から80℃まで変化させた際に、この第1の従来技術でのDCバイアス点の変化は6Vと大きかった。   However, when a stress is applied to the z-cut LN substrate 1, its refractive index changes (stress birefringence). As a result, the refractive index of the interactive optical waveguide 3a changes, and the LN optical modulator operates. The DC bias point when changing is changed. This is a temperature drift phenomenon peculiar to the ridge structure, and results in impairing the stability as the LN optical modulator. Incidentally, when the environmental temperature of the LN optical modulator was changed from room temperature to 80 ° C., the change of the DC bias point in the first prior art was as large as 6V.

(第2の従来技術)
この第1の従来技術の問題点を解決するために、特許文献2に開示された第2の従来技術の相互作用部における断面図を図10に示す。この図10からわかるように、リッジ部8bの上に形成された接地導体4b´と外周部10bの上に形成された接地導体4b´´(あるいは接続用接地導体4b´´と呼ぶ)の厚みは厚いが、凹部9cに形成された接地導体4b´´´の厚みを例えば約300nmと薄くしている。このように凹部9cにおける接地導体4b´´´の厚みを薄くすることにより、広い面積を有する接地導体4b´´がリッジ部8bへ与える応力を小さくすることができるので、温度安定性を改善できるという考え方である。
(Second prior art)
In order to solve the problem of the first prior art, a cross-sectional view of the interaction portion of the second prior art disclosed in Patent Document 2 is shown in FIG. As can be seen from FIG. 10, the thickness of the ground conductor 4b ′ formed on the ridge portion 8b and the ground conductor 4b ″ formed on the outer peripheral portion 10b (or called the connection ground conductor 4b ″). Is thick, but the thickness of the ground conductor 4b "" formed in the recess 9c is as thin as about 300 nm, for example. Thus, by reducing the thickness of the ground conductor 4b ″ in the concave portion 9c, the stress applied to the ridge portion 8b by the ground conductor 4b ″ having a large area can be reduced, so that the temperature stability can be improved. This is the idea.

しかしながら、以下のようにこの第2の従来技術には解決すべき重大な問題点がある。この第2の従来技術では接地導体としては4b´、4b´´及び4b´´´があるものの、前述のように接地導体4b´´´の厚みは薄く、10Gbit/s以上の高周波電気信号が伝搬することは困難である。その結果、表皮効果のために高周波電気信号の伝搬損失が増大する。   However, the second prior art has a serious problem to be solved as follows. In this second prior art, although there are 4b ′, 4b ″ and 4b ′ ″ as the ground conductors, as described above, the thickness of the ground conductor 4b ″ is small, and a high-frequency electric signal of 10 Gbit / s or more is generated. It is difficult to propagate. As a result, the propagation loss of high-frequency electrical signals increases due to the skin effect.

また、接地導体4b´と接地導体4b´´は高周波的にはほぼ完全に独立している。つまり、中心導体4aに対応して実際にほとんどの電流が流れている箇所は中心導体4aに相対向し、中心導体4aと同程度の幅の狭い接地導体4b´であり、接地導体においてほとんどの電流は接地導体用リッジ部8bの上に形成された接地導体4b´のみに流れている。   The ground conductor 4b ′ and the ground conductor 4b ″ are almost completely independent in terms of high frequency. That is, the portion where the most current actually flows corresponding to the center conductor 4a is the ground conductor 4b 'which is opposite to the center conductor 4a and is as narrow as the center conductor 4a. The current flows only through the ground conductor 4b 'formed on the ground conductor ridge 8b.

従って高周波電気信号はジュール熱となり消失し易く、変調帯域が図9に示した第1の従来技術と比較して著しく劣化した。実際に筆者らが実験で確かめたところ、光通信における伝送速度として2.5Gbit/sの変調がやっとであり、現在、主流となっている10Gbit/sの変調は困難であった。また、近い将来有望とされる40Gbit/sの変調は全くできなかった。   Therefore, the high-frequency electric signal is easily lost due to Joule heat, and the modulation band is significantly deteriorated as compared with the first prior art shown in FIG. When the authors actually confirmed through experiments, modulation of 2.5 Gbit / s was finally achieved as a transmission rate in optical communication, and modulation of 10 Gbit / s, which is currently mainstream, was difficult. Also, 40 Gbit / s modulation, which is promising in the near future, could not be performed at all.

(第3の従来技術)
図11に特許文献3に開示された第3の従来技術の上面図を示す。なお、z−カットLN基板1の幅は数ミリメートルあり、相互作用光導波路3a、3bのギャップは15μm程度である。またz−カットLN基板1の長さは5cm〜7cm程度である。
(Third prior art)
FIG. 11 shows a top view of the third prior art disclosed in Patent Document 3. As shown in FIG. The width of the z-cut LN substrate 1 is several millimeters, and the gap between the interaction optical waveguides 3a and 3b is about 15 μm. The length of the z-cut LN substrate 1 is about 5 cm to 7 cm.

ここで、B−B´とC−C´における断面図を図12と図13に示す。ここで、11a、11b、11c、及び11dは凹部9a、9b、9c及び9dがあることによる空隙部である。なお、4b(4)、4b(5)、4b(6)、4c(4)、4c(5)、4c(6)は接地導体である。接地導体4b(5)は接地導体4b(4)と4b(6)を接続している。また、10cは外周部である。8a、8b、8cはリッジ部である。空隙部11aと11dは接地導体において導体が欠落した部位(あるいは、接地導体に開けた窓)とも言える。また、13a、13dは空隙部11aと11dを接地導体4b(5)と4c(5)で埋めた埋め込み部である。 Here, FIG. 12 and FIG. 13 show cross-sectional views along BB ′ and CC ′. Here, 11a, 11b, 11c, and 11d are voids due to the presence of the recesses 9a, 9b, 9c, and 9d. 4b (4) , 4b (5) , 4b (6) , 4c (4) , 4c (5) , 4c (6) are ground conductors. The ground conductor 4b (5) connects the ground conductors 4b (4) and 4b (6) . Reference numeral 10c denotes an outer peripheral portion. Reference numerals 8a, 8b, and 8c denote ridge portions. It can be said that the gaps 11a and 11d are portions where the conductor is missing in the ground conductor (or windows opened in the ground conductor). Reference numerals 13a and 13d denote embedded portions in which the gap portions 11a and 11d are filled with the ground conductors 4b (5) and 4c (5) .

図からわかるように、接地導体4b(4)と4c(4)の幅は図10に示した第2の実施形態の接地導体4b´や中心導体4aと同程度に狭い。また、接地導体4b(6)、4c(6)は図10に示した第2の実施形態の接地導体4b´´のように広い。そして、この第3の従来技術において接地導体4b(4)と4b(6)を接続する接地導体4b(5)と、接地導体4c(4)と4c(6)を接続する接地導体4c(5)の厚みは、図10に示した第2の実施形態の接地導体4b´´´よりも厚く設定している。 As can be seen, the widths of the ground conductors 4b (4) and 4c (4) are as narrow as the ground conductor 4b 'and the center conductor 4a of the second embodiment shown in FIG. Further, the ground conductors 4b (6) and 4c (6) are as wide as the ground conductor 4b '' of the second embodiment shown in FIG. Then, this third in the prior art to connect the ground conductor 4b and (4) 4b (6) the ground conductor 4b (5), the ground conductor 4c for connecting with 4c (6) the ground conductor 4c (4) (5 ) Is set to be thicker than the ground conductor 4b ″ ″ of the second embodiment shown in FIG.

ところが、この第3の従来技術を実際に製作したところ、この構造ではリッジ構造に起因する温度ドリフトを充分には抑圧することができないという重要な問題があることがわかった。以下、その問題点について説明する。   However, when the third prior art was actually manufactured, it was found that this structure has an important problem that the temperature drift due to the ridge structure cannot be sufficiently suppressed. The problem will be described below.

光導波路3aと3bの中間の中心線に対して、リッジ8a、8b、8c(あるいは凹部9a、9b、9c、9d)が非対称に配置されている。リッジ8a、8b、8cの側面である傾斜面は−z面ではないので、環境温度の変化に伴う焦電効果による電荷の分布は凹部やz−カットLN基板1の上面と異なっている。また、進行波電極の配置も非対称である。これらのために、環境温度の変化とともに刻々と変化する不均一な電荷分布(即ち、不均一な電界分布)が生じるので光導波路3aと3bに不均一な電圧が印加される。これらの不均一な電界分布を打ち消すように外部回路からDCバイアスを印加する必要があるので、結果的に温度ドリフトを生じてしまうと結論できる。
特開平4−288518号公報 特開2004−157500号公報 特開2006−84537号公報
Ridges 8a, 8b, and 8c (or recesses 9a, 9b, 9c, and 9d) are arranged asymmetrically with respect to the center line between the optical waveguides 3a and 3b. Since the inclined surfaces which are the side surfaces of the ridges 8a, 8b and 8c are not the -z plane, the distribution of charges due to the pyroelectric effect accompanying the change in the environmental temperature is different from the concave portion and the upper surface of the z-cut LN substrate 1. Further, the arrangement of the traveling wave electrodes is also asymmetric. For this reason, a non-uniform charge distribution (that is, a non-uniform electric field distribution) that changes every moment with the change of the environmental temperature is generated, so that a non-uniform voltage is applied to the optical waveguides 3a and 3b. Since it is necessary to apply a DC bias from an external circuit so as to cancel these non-uniform electric field distributions, it can be concluded that a temperature drift results.
JP-A-4-288518 JP 2004-157500 A JP 2006-84537 A

以上のように、リッジ型LN光変調器として提案された従来の第1技術では電極を構成するAuとz−カットLN基板との熱膨張係数の差に起因する接地導体からの応力が温度とともに最適DCバイアス点を変化させる温度ドリフトを生じた。この温度特性を改善するために提案された第2の従来技術では、中心導体に隣接する厚みが厚い接地導体と凹部以外の厚い接地導体とを接続する凹部における接続用接地導体の厚みが薄いので、表皮効果のためにその接続用接地導体においてジュール熱が発生し、高周波電気信号の伝搬損失が増大し、光変調帯域を狭くする。また、接地導体においてほとんどの電流が流れているのは、幅の狭い接地導体用リッジ部の上に形成された箇所であり、従って高周波電気信号はジュール熱となり消失し易い。このように、第2の従来技術は高速変調の観点から光変調器としての基本特性に問題を有している。また、第3の従来技術では進行波電極が中心導体に対して対称であるため、高周波電気信号の安定で低損失な伝搬という観点から有利であったが、温度ドリフト特性に問題があった。これは、主にリッジ部(あるいは凹部)の構成が2本の光導波路に対して非対称であったため、凹部の底面やリッジの上面に誘起される電荷とリッジの傾斜面とに誘起される電荷に大きな差があることが起因している。これらの結果、光変調器としての高速性・低駆動電圧性を犠牲にしないで温度安定化を実現できる光変調器の開発が急務となっている。   As described above, in the conventional first technique proposed as the ridge-type LN optical modulator, the stress from the ground conductor due to the difference in thermal expansion coefficient between Au and the z-cut LN substrate constituting the electrode increases with temperature. A temperature drift occurred that changed the optimum DC bias point. In the second prior art proposed to improve this temperature characteristic, the thickness of the connecting ground conductor in the concave portion connecting the thick ground conductor adjacent to the central conductor and the thick ground conductor other than the concave portion is small. Due to the skin effect, Joule heat is generated in the connecting ground conductor, the propagation loss of the high-frequency electric signal is increased, and the light modulation band is narrowed. Further, most of the current flows through the ground conductor at a portion formed on the narrow ridge portion for the ground conductor, and therefore, the high-frequency electric signal is easily lost due to Joule heat. As described above, the second prior art has a problem in basic characteristics as an optical modulator from the viewpoint of high-speed modulation. In the third prior art, the traveling wave electrode is symmetrical with respect to the central conductor, which is advantageous from the viewpoint of stable and low-loss propagation of a high-frequency electric signal, but has a problem in temperature drift characteristics. This is mainly because the structure of the ridge portion (or recess) is asymmetric with respect to the two optical waveguides, so that the charge induced on the bottom surface of the recess or the top surface of the ridge and the charge induced on the inclined surface of the ridge. This is due to the large difference between the two. As a result, there is an urgent need to develop an optical modulator that can achieve temperature stabilization without sacrificing high speed and low drive voltage as an optical modulator.

本発明はこのような事情に鑑みてなされたものであり、光変調特性が高性能であるとともに、安定性について改善された光変調器を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an optical modulator having high performance in light modulation characteristics and improved stability.

上記課題を解決するために、本発明の請求項1の光変調器は、電気光学効果を有する基板と、前記基板に形成された2本の光導波路と、前記基板の上に形成されたバッファ層と、該バッファ層の上方に配置された中心導体と接地導体からなる進行波電極と、前記基板の少なくとも一部を掘り下げることにより形成した複数の凹部により構成されるリッジ部とを具備し、該リッジ部は前記中心導体が上方に形成された中心導体用リッジ部と、当該中心導体用リッジ部に共通の凹部を介して隣接し、前記接地導体が上方に形成された接地導体用リッジ部からなり、前記中心導体用リッジ部に前記2本の光導波路のうちの1本が形成されている光変調器において、前記中心導体用リッジ部の両側の前記凹部には前記接地導体が形成されておらず、前記接地導体用リッジ部の前記共通の凹部ではない側の前記凹部における前記接地導体は、その一部に欠落した部位が形成されているとともに、当該欠落した部位以外(以下、接続用接地導体という)の厚みが前記中心導体もしくは前記接地導体の少なくとも一部と略同じに形成されており、前記2本の光導波路の中間に設けた中心線に対して前記複数の凹部と前記進行波電極が対称な配置であり、前記接地導体用リッジ部の前記共通の凹部ではない側の前記凹部において、前記接続用接地導体は、前記光導波路における光導波方向に5μm〜500μmの長さで複数個形成され、前記欠落した部位は、前記光導波路における光導波方向に30μm〜3mmの長さで複数個形成され、さらに、前記欠落した部位の各々の長さが前記接続用接地導体の各々の長さよりも長い組合せで交互に形成されていることを特徴とする。 In order to solve the above problems, an optical modulator according to claim 1 of the present invention includes a substrate having an electro-optic effect, two optical waveguides formed on the substrate, and a buffer formed on the substrate. comprising a layer, the upwardly disposed central conductor of the buffer layer and the traveling wave electrode formed of the ground conductor, and a front Symbol ridge composed of a plurality of recesses formed by digging at least a portion of the substrate The ridge portion is adjacent to the central conductor ridge portion with the central conductor formed above , through a common recess, and the ground conductor ridge portion with the ground conductor formed upward. In the optical modulator, one of the two optical waveguides is formed in the central conductor ridge portion, and the ground conductor is formed in the concave portions on both sides of the central conductor ridge portion. Not before The ground conductors in said common recess in the recess on the side not the ridge ground conductor, with its missing part sites are formed, other than the region that the missing (hereinafter, referred to as the ground connection conductor) Is formed to be substantially the same as at least a part of the center conductor or the ground conductor, and the plurality of recesses and the traveling wave electrode are paired with respect to a center line provided in the middle of the two optical waveguides . universal arrangement der is, a plurality in the recess of the non-common recess side of the ground conductor ridge portion, the ground connection conductor is a length of 5μm~500μm in the optical waveguide direction in the optical waveguide A plurality of the missing portions are formed with a length of 30 μm to 3 mm in the optical waveguide direction of the optical waveguide, and the length of each of the missing portions is the connection ground conductor. It characterized that you have been formed alternately in longer combinations than the length of each.

本発明の請求項2の光変調器は、前記凹部に隣接する接地導体が前記中心導体もしくは前記接地導体の少なくとも一部とほぼ同じ厚みを持つことを特徴とする。   The optical modulator according to claim 2 of the present invention is characterized in that a ground conductor adjacent to the recess has substantially the same thickness as at least a part of the center conductor or the ground conductor.

本発明の請求項3の光変調器は、前記複数の凹部を除く、前記光導波路と交わる方向であって当該光導波路から所定距離離れた領域における前記接地導体の少なくとも一部の厚みを、当該領域以外の領域における接地導体の厚みよりも少なくとも一部で薄くしたことを特徴とする。 The optical modulator according to claim 3 of the present invention, except for the plurality of recesses, at least a portion of the thickness of the ground conductor in the optical waveguide and the region in which a direction a predetermined distance away from the optical waveguide crossing, the It is characterized in that it is made at least partially thinner than the thickness of the ground conductor in a region other than the region.

本発明の請求項4の光変調器は、前記光導波路を下方に具備しない前記接地導体の下方に前記凹部を具備しない構造であることを特徴とする。   According to a fourth aspect of the present invention, there is provided an optical modulator having a structure in which the concave portion is not provided below the ground conductor which is not provided with the optical waveguide below.

本発明の請求項5の光変調器は、前記基板がリチウムナイオベートからなることを特徴とする。   The optical modulator according to claim 5 of the present invention is characterized in that the substrate is made of lithium niobate.

本発明の請求項6の光変調器は、前記基板が半導体からなることを特徴とする。   The optical modulator according to claim 6 of the present invention is characterized in that the substrate is made of a semiconductor.

本発明に係る光変調器では、リッジやそれを構成する凹部と電極の配置を2本の光導波路の中間に設けた中心線に対して実質的にほぼ対称とするとともに、凹部における接続用接地導体の厚みを厚くするとともに、応力を緩和するためにその一部を欠落させる。これにより、環境温度の変化に対応して起こる電荷の分布(即ち、電界の分布)が2本の光導波路の中間に設けた中心線に対してほぼ対称となり、第3の従来技術と比較して極めて改善された温度ドリフト特性を実現できる。また、進行波電極も2本の光導波路の中間に設けた中心線に対して実質的にほぼ対称とする。これにより、進行波電極を伝搬する電磁界の中心導体の中心線に対する対称性は崩れるものの、第2の従来技術と異なり接続用接地導体の厚みが厚いので、接続用接地導体における表皮効果による伝搬損失が小さい。また、光導波路を形成していない側の接地導体には導体が欠落した部位がないので高周波電気信号の伝搬損失という観点からはやや有利となる。さらに、本発明には外周部の導体の厚みを薄くする構造も含まれている。この外周部の導体の厚みを薄くする構造により、環境温度が変化する際に、導体とz−カットLN基板の熱膨張係数の差に起因して生じる広い接地導体からの導体の応力を緩和することができるので、一層の温度ドリフト特性の改善に寄与するばかりでなく、高価な貴金属材料であるAuの使用量を減らすことができるので光変調器としてのコスト低減も可能となる。   In the optical modulator according to the present invention, the arrangement of the ridge and the concave portion constituting the ridge and the electrode is substantially symmetrical with respect to the center line provided in the middle of the two optical waveguides, and the connection ground in the concave portion is provided. While increasing the thickness of the conductor, a part of the conductor is omitted to relieve stress. As a result, the distribution of electric charges (that is, the distribution of the electric field) that occurs in response to changes in the environmental temperature is substantially symmetric with respect to the center line provided between the two optical waveguides. Can achieve extremely improved temperature drift characteristics. The traveling wave electrode is also substantially symmetric with respect to the center line provided in the middle of the two optical waveguides. As a result, although the symmetry of the electromagnetic field propagating through the traveling wave electrode with respect to the center line of the central conductor is broken, unlike the second conventional technique, the thickness of the connection ground conductor is thick, so that propagation due to the skin effect in the connection ground conductor is caused. Loss is small. In addition, since the ground conductor on the side where the optical waveguide is not formed does not have a portion where the conductor is missing, it is somewhat advantageous from the viewpoint of propagation loss of high-frequency electrical signals. Furthermore, the present invention includes a structure in which the thickness of the conductor on the outer peripheral portion is reduced. By reducing the thickness of the conductor at the outer peripheral portion, when the environmental temperature changes, the stress of the conductor from the wide ground conductor caused by the difference in thermal expansion coefficient between the conductor and the z-cut LN substrate is relieved. Therefore, not only can the temperature drift characteristics be further improved, but also the amount of Au, which is an expensive noble metal material, can be reduced, so that the cost as an optical modulator can be reduced.

以下、本発明の実施形態について説明するが、図8から図13に示した従来技術と同一の符号は同一機能部に対応しているため、ここでは同一の符号を持つ機能部の説明を省略する。   Hereinafter, embodiments of the present invention will be described. However, since the same reference numerals as those in the prior art shown in FIG. 8 to FIG. To do.

(第1の実施形態)
図1に本発明の第1の実施形態についてその上面図を示す。また、D−D´、E−E´における断面図を各々図2と図3に示す。ここで、4b(4)、4b(5)、4b(6)、及び4cは接地導体である。図からわかるように、高周波電気信号としての表皮効果の影響を受けにくいように厚みを厚くした接地導体4b(5)が接地導体4b(4)と4b(6)とを接続している(接地導体4b(5)は接続用接地導体と呼ばれる)。
(First embodiment)
FIG. 1 shows a top view of the first embodiment of the present invention. In addition, cross-sectional views taken along DD ′ and EE ′ are shown in FIGS. 2 and 3, respectively. Here, 4b (4) , 4b (5) , 4b (6) and 4c are ground conductors. As can be seen from the figure, a ground conductor 4b (5) thickened so as not to be affected by the skin effect as a high-frequency electrical signal connects the ground conductors 4b (4) and 4b (6) (ground). Conductor 4b (5) is called a connecting ground conductor).

また、中心導体4aの幅Sは7μm、中心導体4aと接地導体4b(4)、もしくは接地導体4cとのギャップWは15μmとした。ここで、中心導体4aの幅と接地導体4b(4)の幅はほぼ同程度に(あるいは、互いに異なってもその差は数μm程度とし、大きくは異ならないように)した。10aと10bは接地導体の外周部である。なお、図3において、13aは空隙部11aが接地導体4b(5)により埋まった埋め込み部である。 The width S of the center conductor 4a is 7 μm, and the gap W between the center conductor 4a and the ground conductor 4b (4) or the ground conductor 4c is 15 μm. Here, the width of the center conductor 4a and the width of the ground conductor 4b (4) are approximately the same (or even if they are different from each other, the difference is about several μm, so that they do not differ greatly). Reference numerals 10a and 10b denote outer peripheral portions of the ground conductor. In FIG. 3, reference numeral 13a denotes a buried portion in which the gap portion 11a is filled with the ground conductor 4b (5) .

本発明において重要なことが2つある。まず、図2からわかるように、光導波路3aと3bにとって中心導体4aと接地導体4bを含む進行波電極と凹部9a、9b、9cを含むリッジ8aと8bの構造を、光導波路3aと3bの中間に設けた中心線Vに対して実質的にほぼ対称としている点である。その結果、光導波路に対して非対称な凹部やリッジの傾斜面を有し、凹部、リッジの上面、及びリッジの傾斜面に誘起される電荷による電界が2本の光導波路に不均一に印加される図12に示した第3の従来技術と異なり、極めて安定な温度ドリフト特性を実現できる。   There are two important things in the present invention. First, as can be seen from FIG. 2, the structure of the traveling wave electrode including the center conductor 4a and the ground conductor 4b and the ridges 8a and 8b including the recesses 9a, 9b and 9c for the optical waveguides 3a and 3b is the same as that of the optical waveguides 3a and 3b. This is a point that is substantially symmetric with respect to the center line V provided in the middle. As a result, there is a recess or a ridge inclined surface that is asymmetric with respect to the optical waveguide, and an electric field caused by charges induced in the recess, the upper surface of the ridge, and the inclined surface of the ridge is applied nonuniformly to the two optical waveguides. Unlike the third prior art shown in FIG. 12, extremely stable temperature drift characteristics can be realized.

図4には環境温度Tを20℃から80℃まで変化させた場合の本発明における第1の実施形態についての実験結果を示す。比較のために、図には第1の従来技術、第2の従来技術、及び第3の従来技術についての測定結果も示している。ここで、中心導体4aの幅Sは7μm、中心導体4aと接地導体4b(4)、もしくは接地導体4c(4)とのギャップWは15μmとした。また、空隙部11aと11bの幅Wwが15μmで、それらの長さLwと接地導体4b(5)の長さLeが各々1mmと100μmとした。 FIG. 4 shows the experimental results for the first embodiment of the present invention when the environmental temperature T is changed from 20 ° C. to 80 ° C. For comparison, the figure also shows the measurement results for the first prior art, the second prior art, and the third prior art. Here, the width S of the center conductor 4a is 7 μm, and the gap W between the center conductor 4a and the ground conductor 4b (4) or the ground conductor 4c (4) is 15 μm. Further, the widths Ww of the gap portions 11a and 11b were 15 μm, and the length Lw thereof and the length Le of the ground conductor 4b (5) were 1 mm and 100 μm, respectively.

図からわかるように、本実施形態を採用することにより、進行波電極が光導波路3a、3bの中間に設けた中心線に対して対称であるため、高周波光変調の観点から有利な第3の従来技術よりも温度ドリフトを大幅に抑えることが可能となった。このように実験結果からも本発明の考え方が正しいことを実証できた。ここで、空隙部11aと11bの長さLwと接地導体4b(5)の長さLeは各々30μm〜3mm、及び5μm〜500μm程度まで変化させても効率よく温度ドリフトを抑圧できた。 As can be seen from the figure, by adopting this embodiment, the traveling wave electrode is symmetrical with respect to the center line provided in the middle of the optical waveguides 3a and 3b. It has become possible to greatly suppress the temperature drift compared to the prior art. Thus, it was proved from the experimental results that the concept of the present invention is correct. Here, even when the lengths Lw of the gap portions 11a and 11b and the length Le of the ground conductor 4b (5) were changed to about 30 μm to 3 mm and about 5 μm to 500 μm, respectively, the temperature drift could be efficiently suppressed.

第2の重要な点は光変調特性である。温度ドリフトについては図10に示した第2の従来技術も優れているが、先に述べたように第2の従来技術における接続用接地導体の厚みは薄いので、第2の従来技術は高周波電気信号の伝搬損失が大きくなるという問題を有している。本発明の図3からわかるように、接地導体4b(4)と4b(6)を接続する接地導体4b(5)の厚みが厚い。従って、第2の従来技術と比較して高周波電気信号の伝搬損失が小さいので、光変調帯域として有利となる。 The second important point is the light modulation characteristic. Although the second prior art shown in FIG. 10 is also excellent in terms of temperature drift, as described above, the thickness of the connecting ground conductor in the second prior art is thin. There is a problem that the propagation loss of the signal becomes large. As can be seen from FIG. 3 of the present invention, the ground conductor 4b (5) connecting the ground conductors 4b ( 4) and 4b (6) is thick. Accordingly, the propagation loss of the high-frequency electrical signal is small compared to the second prior art, which is advantageous as an optical modulation band.

さて、進行波電極が光導波路3aと3bの中間に設けた中心線に対して厳密に対称でないと本発明の効果を発揮できないかというとそれは正しくない。接地導体4b(4)と4cの幅はその少なくとも一方が中心導体4aの幅と数μm異なっていても良く、これを含めて進行波電極に関する構造を光導波路3aと3bの中間に設けた中心線に対して対称(あるいは、実質的にほぼ対称)としている。また、接地導体4b(6)や4cの影響を及ぼさない箇所に凹部を新たに設けても良い。 If the traveling wave electrode is not strictly symmetrical with respect to the center line provided between the optical waveguides 3a and 3b, it is not correct if the effect of the present invention can be exhibited. At least one of the widths of the ground conductors 4b (4) and 4c may be different from the width of the center conductor 4a by several μm, and the center of the structure related to the traveling wave electrode including the above is provided between the optical waveguides 3a and 3b. Symmetric (or substantially nearly symmetrical) with respect to the line. Moreover, you may newly provide a recessed part in the location which does not exert influence of the grounding conductors 4b (6) and 4c.

そしてこれらの第1の実施形態における2本の光導波路、及び進行波電極の導体4aの配置を実質的にほぼ対称にするという考え方は本発明の全ての実施形態について言える。   The concept of making the arrangement of the two optical waveguides and the traveling wave electrode conductors 4a in these first embodiments substantially symmetric can be said for all the embodiments of the present invention.

(第2の実施形態)
図5に本発明の第2の実施形態についてその上面図を示す。また、F−F´、G−G´における断面図を各々図6と図7に示す。ここで、4b(14)、4b(15)、4b(16)、4b(17)、及び、4c(14)、4c(15)は接地導体である。図からわかるように、高周波電気信号としての表皮効果の影響を受けにくいように厚みを厚くした接地導体4b(15)が接地導体4b(14)と4b(16)とを接続している。
(Second Embodiment)
FIG. 5 shows a top view of the second embodiment of the present invention. In addition, cross-sectional views taken along lines FF ′ and GG ′ are shown in FIGS. 6 and 7, respectively. Here, 4b (14) , 4b (15) , 4b (16) , 4b (17) and 4c (14) , 4c (15) are ground conductors. As can be seen from the figure, a ground conductor 4b (15) thickened so as not to be affected by the skin effect as a high-frequency electrical signal connects the ground conductors 4b (14) and 4b (16) .

接地導体の厚みが厚いと、てこの原理によりリッジ部8bに加わる応力(モーメント)が大きくなるので、本発明の第2の実施形態では外周部10bの接地導体4b(17)の厚みを薄くし、応力を小さくしている。なお、本発明の効果を一層顕著とするために、外周部10a上に形成した接地導体4c(15)の厚みも同じく薄くしている。 If the thickness of the ground conductor is large, the stress (moment) applied to the ridge portion 8b due to the lever principle increases. Therefore, in the second embodiment of the present invention, the thickness of the ground conductor 4b (17) of the outer peripheral portion 10b is reduced. The stress is reduced. In order to make the effect of the present invention more remarkable, the thickness of the ground conductor 4c (15) formed on the outer peripheral portion 10a is also reduced.

図6からわかるように、本実施形態においても、凹部9a、9b、9cやリッジ8a、8b、さらに中心導体4a、接地導体4b(14)、4b(15)、4b(16)、4b(17)、及び、4c(14)、4c(15)を2本の光導波路3aと3bの中間に設けた中心線Vに対して対称に配置している。 As can be seen from FIG. 6, also in this embodiment, the recesses 9a, 9b, 9c and the ridges 8a, 8b, the center conductor 4a, the ground conductor 4b (14) , 4b (15) , 4b (16) , 4b (17 ) And 4c (14) and 4c (15) are arranged symmetrically with respect to a center line V provided in the middle between the two optical waveguides 3a and 3b.

先に述べたように、相互作用光導波路3aと3bのギャップが15μm程度であることを考慮すると、高周波電気信号と相互作用光導波路3a、3bを伝搬する光が相互作用する相互作用部の幅は、z−カットLN基板1の幅(約1mm〜5mm程度)と比較して著しく狭い。従って、接地導体4b(17)と4c(15)の厚みを薄くすることにより、高価なAuの使用量を著しく低減することができ、LN光変調器の原価の低減に貢献できる。 As described above, considering that the gap between the interaction optical waveguides 3a and 3b is about 15 μm, the width of the interaction portion where the high-frequency electric signal interacts with the light propagating through the interaction optical waveguides 3a and 3b. Is significantly narrower than the width of the z-cut LN substrate 1 (about 1 mm to 5 mm). Therefore, by reducing the thickness of the ground conductors 4b (17) and 4c (15) , the amount of expensive Au used can be remarkably reduced, and the cost of the LN optical modulator can be reduced.

なお、厚みは薄いものの面積が広い接地導体4b(17)と4c(15)は高周波電気信号の観点からしっかりとした電気的アースの確立と電気的アースである筐体とのワイヤやリボンによる接続の観点から有用である。このことは本発明の全ての実施形態について言える。 The ground conductors 4b (17) and 4c (15) , which are thin but have a large area, establish a firm electrical ground from the viewpoint of high-frequency electrical signals and connect them to the housing that is the electrical ground by wires or ribbons. It is useful from the point of view. This is true for all embodiments of the invention.

(各実施形態)
分岐光導波路の例としてマッハツェンダ光導波路を用いたが、方向性結合器などその他の分岐合波型の光導波路にも本発明を適用可能であることは言うまでもなく、考え方は3本以上の光導波路にも適用可能であるし、光導波路が1本の位相変調器にも適用できる。また光導波路の形成法としてはTi熱拡散法の他に、プロトン交換法など光導波路の各種形成法を適用できるし、バッファ層としてAl等のSiO以外の各種材料も適用できる。
(Each embodiment)
Although the Mach-Zehnder optical waveguide is used as an example of the branched optical waveguide, it goes without saying that the present invention can be applied to other branched / multiplexed optical waveguides such as directional couplers. The present invention is also applicable to a phase modulator having a single optical waveguide. As a method for forming the optical waveguide, various methods for forming the optical waveguide such as a proton exchange method can be applied in addition to the Ti thermal diffusion method, and various materials other than SiO 2 such as Al 2 O 3 can be applied as the buffer layer.

また、z−カットLN基板について説明したが、x−カットやy−カットなどその他の面方位のLN基板でも良いし、リチウムタンタレート基板、さらには半導体基板など異なる材料の基板でも良い。   Further, although the z-cut LN substrate has been described, an LN substrate having other plane orientation such as x-cut and y-cut may be used, or a lithium tantalate substrate or a substrate made of a different material such as a semiconductor substrate may be used.

また、通常、各凹部は同じ程度の幅で形成するが、外周部に近い凹部が極めて広くなるように(外周部が凹部の底部とほぼ同じ高さとなるように)エッチングしている場合には、その広くエッチングされた部分を事実上の外周部と考え、本発明を適用することが可能である。   Usually, each recess is formed with the same width, but when etching is performed so that the recess close to the outer periphery becomes very wide (the outer periphery is almost the same height as the bottom of the recess). It is possible to apply the present invention by considering the widely etched portion as the actual outer peripheral portion.

以上のように、本発明に係る光変調器は、高性能なリッジ型の光変調器において、広い面積の接地導体の厚みを薄くすることにより、温度ドリフト特性が優れた、またコストを低減した光変調器として有用である。   As described above, the optical modulator according to the present invention has excellent temperature drift characteristics and reduced cost by reducing the thickness of a large-area ground conductor in a high-performance ridge-type optical modulator. It is useful as an optical modulator.

本発明の第1の実施形態に係わる光変調器の概略構成を示す上面図1 is a top view showing a schematic configuration of an optical modulator according to a first embodiment of the present invention. 図1のD−D´における断面図Sectional drawing in DD 'of FIG. 図1のE−E´における断面図Sectional view taken along line EE ′ of FIG. 本発明の第1の実施形態の温度ドリフト特性を説明する図The figure explaining the temperature drift characteristic of the 1st Embodiment of this invention 本発明の第2の実施形態に係わる光変調器の概略構成を示す上面図FIG. 5 is a top view showing a schematic configuration of an optical modulator according to a second embodiment of the present invention. 図4のF−F´における断面図Sectional drawing in FF 'of FIG. 図4のG−G´における断面図Sectional drawing in GG 'of FIG. 第1の従来技術の光変調器についての概略構成を示す斜視図The perspective view which shows schematic structure about the optical modulator of 1st prior art 図8のA−A´における断面図Sectional view in AA 'of FIG. 第2の従来技術の光変調器についての概略構成を示す断面図Sectional drawing which shows schematic structure about the optical modulator of 2nd prior art 第3の従来技術の光変調器についての概略構成を示す上面図3 is a top view showing a schematic configuration of a third conventional optical modulator. FIG. 図11のB−B´における断面図Sectional drawing in BB 'of FIG. 図11のC−C´における断面図Sectional drawing in CC 'of FIG.

符号の説明Explanation of symbols

1:z−カットLN基板(LN基板)
2、14、15:SiO2バッファ層(バッファ層)
3:マッハツェンダ光導波路(光導波路)
3a、3b:マッハツェンダ光導波路を構成する相互作用光導波路
4:進行波電極
4a:中心導体
4b、4b´、4b´´4b´´´、4b(4)、4b(5)、4b(6)、4b(14)、4b(15)、4b(16)、4b(17)、4c、4c(4)、4c(5)、4c(6)、4c(14)、4c(15):接地導体
5:Si導電層
6:高周波(RF)電気信号給電線
7:高周波(RF)電気信号出力線
8a:リッジ部(中心導体用リッジ部)
8b、8c:リッジ部(接地導体用リッジ部)
9a、9b、9c、9d:凹部
10a、10b、10c:外周部
11a、11b、11c、11d:空隙部(導体が欠落した部位
3a、13d:埋め込み部
1: z-cut LN substrate (LN substrate)
2, 14, 15: SiO2 buffer layer (buffer layer)
3: Mach-Zehnder optical waveguide (optical waveguide)
3a, 3b: interaction optical waveguide constituting Mach-Zehnder optical waveguide 4: traveling wave electrode 4a: central conductor 4b, 4b ′, 4b ″ 4b ″, 4b (4), 4b (5), 4b (6) 4b (14), 4b (15), 4b (16), 4b (17), 4c, 4c (4), 4c (5), 4c (6), 4c (14), 4c (15): ground conductor 5: Si conductive layer 6: High frequency (RF) electric signal feeder 7: High frequency (RF) electric signal output line 8a: Ridge portion (ridge portion for central conductor)
8b, 8c: Ridge portion (ridge portion for grounding conductor)
9a, 9b, 9c, 9d: concave portions 10a, 10b, 10c: outer peripheral portions 11a, 11b, 11c, 11d: void portions (portions where conductors are missing )
1 3a, 13d: embedded portion

Claims (6)

電気光学効果を有する基板と、前記基板に形成された2本の光導波路と、前記基板の上に形成されたバッファ層と、該バッファ層の上方に配置された中心導体と接地導体からなる進行波電極と、前記基板の少なくとも一部を掘り下げることにより形成した複数の凹部により構成されるリッジ部とを具備し、該リッジ部は前記中心導体が上方に形成された中心導体用リッジ部と、当該中心導体用リッジ部に共通の凹部を介して隣接し、前記接地導体が上方に形成された接地導体用リッジ部からなり、前記中心導体用リッジ部に前記2本の光導波路のうちの1本が形成されている光変調器において、
前記中心導体用リッジ部の両側の前記凹部には前記接地導体が形成されておらず、
前記接地導体用リッジ部の前記共通の凹部ではない側の前記凹部における前記接地導体は、その一部に欠落した部位が形成されているとともに、当該欠落した部位以外(以下、接続用接地導体という)の厚みが前記中心導体もしくは前記接地導体の少なくとも一部と略同じに形成されており、
前記2本の光導波路の中間に設けた中心線に対して前記複数の凹部と前記進行波電極が対称な配置であり、
前記接地導体用リッジ部の前記共通の凹部ではない側の前記凹部において、
前記接続用接地導体は、前記光導波路における光導波方向に5μm〜500μmの長さで複数個形成され、
前記欠落した部位は、前記光導波路における光導波方向に30μm〜3mmの長さで複数個形成され、さらに、前記欠落した部位の各々の長さが前記接続用接地導体の各々の長さよりも長い組合せで交互に形成されていることを特徴とする光変調器。
Progression comprising a substrate having an electro-optic effect, two optical waveguides formed on the substrate, a buffer layer formed on the substrate, a central conductor disposed above the buffer layer, and a ground conductor and wave electrode, and a pre-SL; and a formed ridge portion of a plurality of recesses formed by digging at least a portion of the substrate, the ridge center conductor ridge portion in which the center conductor is formed above A ground conductor ridge portion adjacent to the central conductor ridge portion through a common recess, and the ground conductor is formed on the upper side. The central conductor ridge portion is formed of the two optical waveguides. In the optical modulator in which one is formed,
The ground conductor is not formed in the recesses on both sides of the central conductor ridge,
The ground conductor in the concave portion on the side that is not the common concave portion of the ground conductor ridge portion has a missing portion formed in a part thereof, and other than the missing portion (hereinafter referred to as a connecting ground conductor). ) Is formed to be substantially the same as at least a part of the center conductor or the ground conductor,
The are two pieces of the traveling wave electrode is symmetric arrangement der and the plurality of recesses against the middle provided with the center line of the optical waveguide,
In the concave portion on the side that is not the common concave portion of the ridge portion for the ground conductor,
A plurality of the connection ground conductors are formed with a length of 5 μm to 500 μm in the optical waveguide direction in the optical waveguide,
A plurality of the missing portions are formed with a length of 30 μm to 3 mm in the optical waveguide direction in the optical waveguide, and each of the missing portions is longer than each of the connection ground conductors. optical modulator, wherein that you have been formed alternately in combination.
前記凹部に隣接する接地導体が前記中心導体もしくは前記接地導体の少なくとも一部とほぼ同じ厚みを持つことを特徴とする請求項1に記載の光変調器。   2. The optical modulator according to claim 1, wherein a ground conductor adjacent to the recess has substantially the same thickness as at least a part of the center conductor or the ground conductor. 前記複数の凹部を除く、前記光導波路と交わる方向であって当該光導波路から所定距離離れた領域における前記接地導体の少なくとも一部の厚みを、当該領域以外の領域における接地導体の厚みよりも少なくとも一部で薄くしたことを特徴とする請求項1もしくは請求項2の何れか1項に記載の光変調器。 Except for the plurality of recesses, the thickness of at least a part of the ground conductor in a region intersecting the optical waveguide and separated from the optical waveguide by a predetermined distance is at least greater than the thickness of the ground conductor in a region other than the region. The optical modulator according to claim 1, wherein the optical modulator is partially thinned. 前記光導波路を下方に具備しない前記接地導体の下方に前記凹部を具備しない構造であることを特徴とする請求項1から請求項3の何れか1項に記載の光変調器。   4. The optical modulator according to claim 1, wherein the optical modulator has a structure in which the concave portion is not provided below the ground conductor that does not include the optical waveguide below. 5. 前記基板がリチウムナイオベートからなることを特徴とする請求項1から請求項4の何れか1項に記載の光変調器。   The optical modulator according to any one of claims 1 to 4, wherein the substrate is made of lithium niobate. 前記基板が半導体からなることを特徴とする請求項1から請求項4の何れか1項に記載の光変調器。   The optical modulator according to any one of claims 1 to 4, wherein the substrate is made of a semiconductor.
JP2007257805A 2007-10-01 2007-10-01 Light modulator Expired - Fee Related JP5162196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007257805A JP5162196B2 (en) 2007-10-01 2007-10-01 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007257805A JP5162196B2 (en) 2007-10-01 2007-10-01 Light modulator

Publications (2)

Publication Number Publication Date
JP2009086453A JP2009086453A (en) 2009-04-23
JP5162196B2 true JP5162196B2 (en) 2013-03-13

Family

ID=40659921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007257805A Expired - Fee Related JP5162196B2 (en) 2007-10-01 2007-10-01 Light modulator

Country Status (1)

Country Link
JP (1) JP5162196B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487793B (en) * 2020-04-17 2021-04-13 中国科学院半导体研究所 Z-cut LNOI electro-optical modulator capable of improving modulation efficiency and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667130A (en) * 1992-08-14 1994-03-11 Nippon Telegr & Teleph Corp <Ntt> Light control element
JPH1090638A (en) * 1996-09-13 1998-04-10 Nippon Telegr & Teleph Corp <Ntt> Optical control element
JPH11295675A (en) * 1998-04-08 1999-10-29 Nippon Telegr & Teleph Corp <Ntt> High-rate optical modulator
US7171063B2 (en) * 2004-12-01 2007-01-30 Jds Uniphase Corporation Controllable electro-optic device having substrate trenches between electrodes

Also Published As

Publication number Publication date
JP2009086453A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5113102B2 (en) Light modulation device
JP4151798B2 (en) Light modulator
JP5010559B2 (en) Light modulator
US20100310206A1 (en) Optical modulator
JP2014123032A (en) Optical modulator
JP5162207B2 (en) Light modulator
JP4671993B2 (en) Light modulator
JP5145402B2 (en) Light modulator
JP5162196B2 (en) Light modulator
JP5314060B2 (en) Light modulator
JP5033084B2 (en) Light modulator
JP4170376B1 (en) Light modulator
JP5075055B2 (en) Light modulator
JP4754608B2 (en) Light modulator
JP4922086B2 (en) Light modulator
JP2014153537A (en) Optical modulator
JP4149490B2 (en) Light modulator
JP5033083B2 (en) Light modulator
JP5010408B2 (en) Light modulator
JP5162223B2 (en) Light modulator
JP5145403B2 (en) Light modulator
JP5025600B2 (en) Light modulator
JP2009015118A (en) Optical modulator
JP5124382B2 (en) Light modulator
JP5390544B2 (en) Optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees