JP5162088B2 - Cooling method using nitrogen-oxygen mixed refrigerant - Google Patents
Cooling method using nitrogen-oxygen mixed refrigerant Download PDFInfo
- Publication number
- JP5162088B2 JP5162088B2 JP2005280712A JP2005280712A JP5162088B2 JP 5162088 B2 JP5162088 B2 JP 5162088B2 JP 2005280712 A JP2005280712 A JP 2005280712A JP 2005280712 A JP2005280712 A JP 2005280712A JP 5162088 B2 JP5162088 B2 JP 5162088B2
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- oxygen
- cooling
- liquid
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
Description
本発明は、超伝導体等の被冷却体の63K以下の温度領域への窒素-酸素混合冷媒による冷却方法に関するものである。 The present invention relates to a cooling method using a nitrogen-oxygen mixed refrigerant to a temperature range of 63K or lower for a cooled object such as a superconductor.
超電導材料は臨界温度Tc以下において超電導特性を示すが、酸化物高温超電導体はその高い臨界温度Tcから液体窒素温度77Kでの使用が期待されている。超電導体を冷却する手段は大きく分けて二通りある。一つは冷凍機等による伝導冷却、もう一つは液体ヘリウムや液体窒素を液体の冷媒を用いる方法である。コイル又はバルク体の冷却には熱伝達及び熱伝導効率や温度の均一性の観点から冷媒を用いる冷却が望ましい。また、発熱部を有する場合は、特に冷媒冷却が望ましい。 Superconducting materials exhibit superconducting properties below the critical temperature Tc, but oxide high-temperature superconductors are expected to be used at liquid nitrogen temperatures of 77K due to their high critical temperature Tc. There are two main means for cooling the superconductor. One is conduction cooling by a refrigerator or the like, and the other is a method using liquid helium or liquid nitrogen as a liquid refrigerant. Cooling using a refrigerant is desirable for cooling the coil or bulk body from the viewpoint of heat transfer, heat conduction efficiency, and temperature uniformity. Moreover, when it has a heat generating part, coolant cooling is especially desirable.
NbTi等の金属系超伝導材料に対する酸化物超伝導体の高い臨界温度Tcの優位性を発揮するためには、液体ヘリウム温度(4.2K)以上でかつ液体窒素の沸点(77K)より低い温度領域へのより安価、簡便、安全な冷却方法が検討されてきた。77K〜4.2Kの温度領域に沸点を持つ物質は非特許文献1に示されており、水素及びネオンがある。液体水素(20K)は、空気に触れると酸素を液化させる。液体酸素と液体水素が混合した場合、極めて爆発の危険性が高い状態になる。ネオンは希ガスであり極めて高価な物質である。 In order to exhibit the superiority of the high critical temperature Tc of the oxide superconductor over the metallic superconductor such as NbTi, the temperature is higher than the liquid helium temperature (4.2K) and lower than the boiling point of liquid nitrogen (77K). Cheaper, simpler and safer cooling methods to the area have been studied. A substance having a boiling point in the temperature range of 77 K to 4.2 K is shown in Non-Patent Document 1, and includes hydrogen and neon. Liquid hydrogen (20K) liquefies oxygen when exposed to air. When liquid oxygen and liquid hydrogen are mixed, there is an extremely high risk of explosion. Neon is a rare gas and an extremely expensive substance.
冷却温度を下げるために、冷媒の沸点ではなく融点又は三重点に冷却する方法が検討されている。特許文献1には、窒素の三重点(63.1K)及び融点(63.9K)での冷却について記載されている。さらに、特許文献2には、酸素の三重点(54.36K)及び融点(54.4K)での冷却に関しても記載されている。 In order to lower the cooling temperature, a method of cooling to the melting point or triple point instead of the boiling point of the refrigerant has been studied. Patent Document 1 describes cooling at a triple point (63.1K) and a melting point (63.9K) of nitrogen. Patent Document 2 also describes cooling at a triple point (54.36 K) and a melting point (54.4 K) of oxygen.
液体ヘリウムを用いた冷却(2.19K、4.2K)では、ヘリウム自身が高価なことや取り扱いが不便であることなどから、77Kに比べ臨界電流密度は向上するものの、酸化物高温超電導体の高臨界温度と言う利点を活かすことができない。 In the cooling using liquid helium (2.19K, 4.2K), the helium itself is expensive and inconvenient to handle. Therefore, although the critical current density is improved as compared with 77K, the high-temperature oxide superconductor The advantage of high critical temperature cannot be utilized.
一方、液体窒素温度(77K)での使用では、現在、溶融法で作製したQMG材料(非特許文献3)が1Tの磁場中で3万A/cm2程度、Bi系銀シース線材では、4000A/cm2の臨界電流値Jcを記録しており、本格的な実用レベルに迫っている。 On the other hand, when used at a liquid nitrogen temperature (77 K), the QMG material (Non-patent Document 3) currently produced by the melting method is about 30,000 A / cm 2 in a 1 T magnetic field, and the Bi-based silver sheath wire is 4000 A. The critical current value Jc of / cm 2 is recorded, approaching a full-scale practical level.
しかしながら、これら酸化物超電導体の実用化を促進させるには、取り扱いの容易なより低温の冷媒を用い、より高い超電導特性を引き出すために約63K以下さらには50K程度の温度領域への簡便かつ安定した冷却方法が望まれる。 However, in order to promote the practical application of these oxide superconductors, a low-temperature refrigerant that is easy to handle is used, and in order to bring out higher superconducting characteristics, it is easy and stable to a temperature range of about 63K or less, or about 50K. A cooling method is desired.
しかしながら、液体酸素を冷媒とした場合、三重点が54.36K、152Paであり、蒸気圧が低いため、減圧により約54Kを得るには排気量の大きいポンプが必要となる。また、高濃度の酸素は高い助燃性を有することから、液体窒素に比べ、安全性の観点から取り扱いに注意が必要である。 However, when liquid oxygen is used as a refrigerant, the triple point is 54.36 K and 152 Pa, and the vapor pressure is low. Therefore, a pump with a large displacement is required to obtain about 54 K by decompression. In addition, since high concentration oxygen has a high combustion promoting property, care should be taken from the viewpoint of safety compared to liquid nitrogen.
そこで、本発明は、液体窒素が固化する融点又は三重点(約63K)以下の温度領域への簡便で安全な冷却方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a simple and safe cooling method to a temperature range below the melting point or triple point (about 63 K) at which liquid nitrogen solidifies.
本発明の要旨は、以下のとおりである。
(1)窒素と酸素の混合モル比が99:1〜30:70の範囲にある液体窒素と液体酸素の混合した冷媒を12600Pa未満に減圧することにより、50K以上63K未満の、窒素の固化が起きているが液相を有する状態として被冷却体を冷却することを特徴とする窒素-酸素混合冷媒による冷却方法。
(2)前記被冷却体が酸化物超伝導体を含むことを特徴とする(1)に記載の窒素-酸素混合冷媒による冷却方法。
(3)前記酸化物超伝導体がREBa2Cu3O7-x(REは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luの1種類又はそれらの組み合わせ。0.0≦x≦0.3)であることを特徴とする(2)に記載の窒素-酸素混合冷媒による冷却方法。
(4)前記酸化物超伝導体が単結晶状のREBa2Cu3O7-x(REは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luの1種類又はそれらの組み合わせ。0.0≦x≦0.3)相中に0.1〜5μmのRE2BaCuO5相が分散した超電導材料であることを特徴とする(2)に記載の窒素-酸素混合冷媒による冷却方法。
The gist of the present invention is as follows.
(1) Nitrogen solidification of 50K or more and less than 63K can be achieved by depressurizing a refrigerant mixed with liquid nitrogen and liquid oxygen having a mixed molar ratio of nitrogen and oxygen in the range of 99: 1 to 30:70 to less than 12600 Pa. nitrogen is happening is characterized in that to cool the cooled object in a state with the liquid phase - cooling method using oxygen mixed refrigerant.
( 2 ) The cooling method using a nitrogen-oxygen mixed refrigerant according to ( 1 ), wherein the object to be cooled includes an oxide superconductor.
( 3 ) The oxide superconductor is REBa 2 Cu 3 O 7-x (RE is one of Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, or those The cooling method using a nitrogen-oxygen mixed refrigerant according to ( 2 ), wherein 0.0 ≦ x ≦ 0.3).
( 4 ) The oxide superconductor is a single crystal REBa 2 Cu 3 O 7-x (RE is Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu. One or a combination thereof (0.0 ≦ x ≦ 0.3) a superconducting material in which a 0.1 to 5 μm RE 2 BaCuO 5 phase is dispersed in a phase, and the nitrogen according to ( 2 ) -Cooling method with oxygen mixed refrigerant.
本発明によれば、液体窒素に液体酸素を混合し、約63K〜50K近傍の温度領域において簡便、安価、安全に被冷却体を冷却し得る方法が提供される。この冷却方法は、多くの一般的な物質に対して有用であるが、特に50K以上の臨界温度を有する酸化物超電導体又はこれを用いた機器の冷却において有用である。したがって、このような冷却方法は各分野での応用が可能であり大きな工業的効果が期待できる。 ADVANTAGE OF THE INVENTION According to this invention, the liquid oxygen is mixed with liquid nitrogen and the method which can cool a to-be-cooled body simply, cheaply and safely in the temperature range of about 63K-50K vicinity is provided. This cooling method is useful for many general materials, but is particularly useful for cooling an oxide superconductor having a critical temperature of 50K or higher or equipment using the same. Therefore, such a cooling method can be applied in various fields and a great industrial effect can be expected.
以下、添付図面を参照して、本発明の好適な実施の形態について説明する。
本発明は、上記課題に鑑み、安価で取り扱いが比較的容易な窒素に酸素を適量混合することにより、酸化物超電導バルク体又はマグネット等の被冷却体を63.1K以下の温度領域に簡便に冷却する方法を提供するものである。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.
In view of the above-mentioned problems, the present invention can easily cool an oxide superconducting bulk body or a cooled object such as a magnet in a temperature region of 63.1 K or less by mixing an appropriate amount of oxygen with nitrogen that is inexpensive and relatively easy to handle. A method for cooling is provided.
本発明は、液体窒素と液体酸素の混合冷媒を減圧し冷却することで、63Kから酸素の三重点又は融点温度(約54K)近傍の温度領域へ簡便に冷却する手段に関するものである。なお、本発明を適用した方法ではないが、液体窒素と液体酸素の混合冷媒を大気圧中で液相、固相間の潜熱を利用して約54Kで安全に冷却する手段に関するものが考えられる。また、本発明を適用した方法ではないが、液体窒素と液体酸素の混合冷媒が固化した状態でさらに減圧することにより40K程度の温度領域にまで冷却する方法が考えられる。 The present invention, by reducing the pressure mixed refrigerant liquid nitrogen and liquid oxygen cooling, to a means for conveniently cooled from 63K to the triple point or melting temperature (about 54K) Temperature of the region near oxygen. Although it is not a method to which the present invention is applied, a method for safely cooling a mixed refrigerant of liquid nitrogen and liquid oxygen at about 54 K using latent heat between the liquid phase and the solid phase at atmospheric pressure can be considered. The Further , although not a method to which the present invention is applied, a method of cooling to a temperature range of about 40K by further reducing the pressure in a state where the mixed refrigerant of liquid nitrogen and liquid oxygen is solidified is conceivable .
純度の高い窒素を用いて減圧により冷却する場合、三重点超では液体のみであり、蒸気圧も約12600Paであり排気スピードの比較的小さい回転ポンプ等の排気装置により簡便に冷却が可能となる。 When cooling with high-purity nitrogen using reduced pressure, it is only liquid at the triple point and the vapor pressure is about 12600 Pa, and cooling can be easily performed by an exhaust device such as a rotary pump having a relatively low exhaust speed.
しかしながら、三重点以下では、窒素の固化が進行する。この際、気体の窒素を巻き込みながら、雪のような細かな結晶の集まりとして結晶化するために、実質的には体積の急激な膨張が起きる。雪のように固化した窒素により被冷却体を冷却しようとする場合、固化した窒素の表面から昇華により、潜熱を奪うことになるため、固化した窒素と被冷却体との間に隙間ができる。被冷却体内に少しでも発熱或いは他の発熱源から伝熱がある場合、より減圧し固化した窒素の温度を低下させようとすると、逆に被冷却体の温度を上げてしまうことになる。 However, solidification of nitrogen proceeds below the triple point. At this time, since the gaseous nitrogen is involved and crystallizes as a collection of fine crystals such as snow, the volume substantially expands rapidly. When the object to be cooled is cooled by nitrogen solidified like snow, latent heat is taken away from the surface of the solidified nitrogen by sublimation, so that a gap is formed between the solidified nitrogen and the object to be cooled. If there is any heat generation or heat transfer from another heat source in the body to be cooled, attempting to lower the temperature of the solidified nitrogen by further reducing the pressure will increase the temperature of the body to be cooled.
一方、純度の高い酸素を用いて減圧により冷却する場合、三重点は152Paと、蒸気圧が低いため排気スピードの大きい回転ポンプもしくはメカニカルブースター等のポンプを使用する必要がある。また、窒素と比較して三重点での蒸気圧が約二桁低いため、液体の酸素が気化する際には急激な体積膨張が発生し、激しい突沸を伴う。この突沸により飛び散った液体の酸素は、クライオスタット容器中の上部(高温部)に当たって蒸発し、急激にクライオスタット内の圧力を高めてしまう。このような突沸により、純度の高い酸素の場合、減圧による冷却は効率の低いものになってしまう。 On the other hand, when cooling by depressurization using high-purity oxygen, the triple point is 152 Pa, and since the vapor pressure is low, it is necessary to use a pump such as a rotary pump with high exhaust speed or a mechanical booster. Further, since the vapor pressure at the triple point is about two orders of magnitude lower than that of nitrogen, rapid volume expansion occurs when liquid oxygen is vaporized, which is accompanied by severe bumping. The liquid oxygen scattered by this bumping strikes the upper part (high temperature part) in the cryostat container and evaporates, and the pressure in the cryostat is rapidly increased. Due to such bumping, in the case of high-purity oxygen, cooling by decompression becomes inefficient.
そこで、窒素に酸素を混合した状態で減圧した場合、混合液体の大気圧での沸点及び三重点は、ほぼ図1に示すように変化する。酸素を10%程度添加するだけで、凝固点は約60Kに低下し、20%添加では、約56Kまで低下し、酸素の三重点温度近傍になる。さらに、窒素の割合が大きいために蒸気圧も千Paのオーダーであり、比較的排気スピードの小さい回転ポンプ等による減圧によって到達が可能となる。また、同様の理由により、突沸もなく冷却効率は高い。 Therefore, when the pressure is reduced in a state where oxygen is mixed with nitrogen, the boiling point and triple point of the mixed liquid at atmospheric pressure change as shown in FIG. By adding only about 10% oxygen, the freezing point is lowered to about 60K, and when added to 20%, the freezing point is lowered to about 56K, and near the triple point temperature of oxygen. Furthermore, since the ratio of nitrogen is large, the vapor pressure is in the order of 1000 Pa, and can be reached by pressure reduction using a rotary pump or the like having a relatively low exhaust speed. For the same reason, the cooling efficiency is high without bumping.
また、三重点(凝固点)より低い温度領域においても、純度の高い窒素の場合と異なり、急激な固化が起こらないため、雪のような固体にはならず、比較的密度の高い固体になり、被冷却媒体と密に接触する。したがって、40K程度の低温における昇華の状態においても被冷却体との熱接触を維持し固体内の熱伝導によって被冷却体を冷却することが可能になる。 Also, even in a temperature range lower than the triple point (freezing point), unlike the case of high-purity nitrogen, since it does not solidify rapidly, it does not become a snowy solid, it becomes a relatively dense solid, In close contact with the medium to be cooled. Therefore, even in the sublimation state at a low temperature of about 40K, it is possible to maintain the thermal contact with the object to be cooled and cool the object to be cooled by heat conduction in the solid.
窒素に混合する酸素の割合は、数%、例えば1%程度からも上記の効果が現れる。また、図1からも分かるように、70%酸素以上では、蒸気圧が数百Paのオーダーであり、突沸も起き易く安全性の面からも純酸素の場合に比べ、顕著な効用は得られなくなる。 The above effect appears even when the ratio of oxygen mixed with nitrogen is several percent, for example, about 1%. Also, as can be seen from FIG. 1, when the oxygen pressure is 70% or more, the vapor pressure is on the order of several hundred Pa, and bumping is likely to occur. From the standpoint of safety, remarkable utility can be obtained compared to pure oxygen. Disappear.
なお、本発明を適用した方法ではないが、冷凍機等を用い常圧での熱伝導により冷却する場合、冷媒はより冷温まで液相を維持していることが望ましく、また、安全面から高酸素濃度でないことが望まれる。したがって、冷凍機等を用い常圧での熱伝導により冷却する場合においても、窒素に酸素を混合することにより、凝固点を低下させ、かつ窒素の割合が高い冷媒を用い簡便、安価、安全に冷却することが望ましい。 Although it is not a method to which the present invention is applied, when cooling is performed by heat conduction at normal pressure using a refrigerator or the like, it is desirable that the refrigerant maintain a liquid phase to a colder temperature, and from a safety standpoint, Desirably not oxygen concentration. Therefore, even if cooling is performed by heat conduction at normal pressure using a refrigerator, etc., it is easy, cheap and safe to cool by using a refrigerant with a low freezing point and a high nitrogen ratio by mixing oxygen with nitrogen It is desirable to do.
被冷却体としては、約40K以上で超伝導を示す物質及びこれらを含む機器が最もこの冷却方法により効用が得られる。超伝導物質としては、2212又は2223と呼ばれるBi系超伝導体、希土類元素(RE:Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luの1種類又はそれらの組み合わせ)を含む90K級の超電導物質(REBaCuO系)が挙げられる。 As the object to be cooled, a substance exhibiting superconductivity at about 40K or more and an apparatus including these materials can be most effectively used by this cooling method. As the superconducting material, a Bi-based superconductor called 2212 or 2223, a rare earth element (RE: Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu or one kind thereof 90K class superconducting material (REBaCuO system).
また、これらの物質を含む銀シースBi系線材、REBaCuO系薄膜を有する線材及びデバイス等が挙げられる。 Moreover, the silver sheath Bi type | system | group wire material containing these substances, the wire material and device etc. which have a REBaCuO type | system | group thin film are mentioned.
さらに、現時点で最も大きな通電容量を有する導体であるバルク材料(QMG)では、77K又は63Kの臨界電流特性よりさらに高い臨界電流特性を得ることができ、用途が拡大される。ここで、QMGとは、単結晶状のREBa2Cu3O7-x相(0.0≦x≦0.3)中に0.1〜5μmのRE2BaCuO5相が微細分散したバルク材料を意味する。QMGは、RE2BaCuO5相が微細分散しているため、磁束ピンニングサイトとして機能させることによって高い臨界電流値Jcが得られる。特に、RE2BaCuO5相の大きさが0.1〜2μmであると、ピンニングサイトとして機能する超伝導相と非超伝導相との界面が十分得られるであるため、より好ましい。また、REBa2Cu3O7-x相の酸素欠損量xは、0.0≦x≦0.3の範囲にあれば、REBa2Cu3O7-x相は斜方晶に相転移しているため、好ましい。 Furthermore, in the bulk material (QMG) which is a conductor having the largest current carrying capacity at present, a critical current characteristic higher than that of 77K or 63K can be obtained, and the application is expanded. Here, QMG is a bulk material in which a 0.1 to 5 μm RE 2 BaCuO 5 phase is finely dispersed in a single crystal REBa 2 Cu 3 O 7-x phase (0.0 ≦ x ≦ 0.3). Means. In QMG, since the RE 2 BaCuO 5 phase is finely dispersed, a high critical current value Jc can be obtained by functioning as a magnetic flux pinning site. In particular, when the size of the RE 2 BaCuO 5 phase is 0.1 to 2 μm, an interface between the superconducting phase that functions as a pinning site and a non-superconducting phase is sufficiently obtained, which is more preferable. Moreover, oxygen deficiency x of REBa 2 Cu 3 O 7-x phase, if the range of 0.0 ≦ x ≦ 0.3, REBa 2 Cu 3 O 7-x phase phase transition in orthorhombic Therefore, it is preferable.
(実施例1)
単結晶状のGdBa2Cu3O7-x相中に約1μmのGd2BaCuO5相が微細に分散し10質量%の銀を添加した直径約60mm、厚さ20mmの銀添加Gd系円柱状試料を、特許文献3及び非特許文献2に記載の製造方法に準拠して作製した。これを厚さ1.0mmにスライス切断した後、外径55mm、7ターンの渦巻き形状(線幅約2.3mm、線間隔0.5mm)に加工した。約2μmのAgを両面にスパッタした後、酸素アニールを行った。得られた試料を図2に示す。各コイルは、渦巻き方向をそれぞれ交互に逆にした状態で8枚積層し端部を直列接続した。また、超伝導体内及び接続部での電圧発生を測定できるよう電圧端子を取り付けた。図3のように積層されたコイルを、補強用NiCrリング内に配置し、銅電極に接続した後、スタイキャスト及びGFRPを用いモールドし、マグネットを作製した。さらに、発生磁場を測定するため、マグネットの中心にホール素子を配置した。
Example 1
A silver-added Gd-based cylindrical column having a diameter of about 60 mm and a thickness of 20 mm in which a Gd 2 BaCuO 5 phase of about 1 μm is finely dispersed in a single-crystal GdBa 2 Cu 3 O 7-x phase and 10% by mass of silver is added. The sample was produced based on the manufacturing methods described in Patent Document 3 and Non-Patent Document 2. This was sliced and cut to a thickness of 1.0 mm, and then processed into a spiral shape having an outer diameter of 55 mm and 7 turns (line width: about 2.3 mm, line interval: 0.5 mm). After sputtering about 2 μm of Ag on both sides, oxygen annealing was performed. The obtained sample is shown in FIG. Eight coils were stacked in the state where the spiral directions were alternately reversed, and the ends were connected in series. In addition, a voltage terminal was attached so that voltage generation in the superconductor and in the connection portion could be measured. The coils laminated as shown in FIG. 3 were placed in a reinforcing NiCr ring, connected to a copper electrode, and then molded using stycast and GFRP to produce a magnet. Furthermore, in order to measure the generated magnetic field, a Hall element was arranged at the center of the magnet.
液体窒素中で77Kに冷却後、液体窒素を密閉容器中で12600Paまで減圧し、三重点(63K)での測定を行った。次に、液体窒素と液体酸素とのモル(mol)比が8:2になるように混合し、冷媒として使用した。混合冷媒を密閉容器に投入し、回転ポンプにて1500Paまで減圧し56Kに達した。さらに、1000Paまで減圧することにより、混合冷媒が固化している48Kにまで冷却した。減圧に際しては、240L/分の排気速度を有する油回転ポンプを使用した。 After cooling to 77K in liquid nitrogen, the liquid nitrogen was depressurized to 12600 Pa in a sealed container, and measurement was performed at the triple point (63K). Next, it mixed so that the molar ratio (mol) of liquid nitrogen and liquid oxygen might be set to 8: 2, and was used as a refrigerant | coolant. The mixed refrigerant was put into a sealed container, and the pressure was reduced to 1500 Pa with a rotary pump, reaching 56K. Furthermore, by reducing the pressure to 1000 Pa, the mixed refrigerant was cooled to 48K where it was solidified. For decompression, an oil rotary pump having an exhaust speed of 240 L / min was used.
各冷却温度(77K、63K、56K、47K)において、定電流電源を用い通電し、各部の電圧を記録すると同時に発生磁場を測定した。超電導内の20μVの電圧発生値を閾値として、臨界電流値及びそのときの磁場発生値を測定した。結果を次の表1に示す。 At each cooling temperature (77K, 63K, 56K, 47K), electricity was supplied using a constant current power source, and the generated magnetic field was measured simultaneously with recording the voltage of each part. The critical current value and the magnetic field generation value at that time were measured using the voltage generation value of 20 μV in the superconductivity as a threshold value. The results are shown in Table 1 below.
また、比較として、純粋な窒素を減圧し三重点以下で固化させ、56K、48Kへの冷却を試みたが、60K以下に冷却することはできず、逆に減圧により70K程度まで温度が上昇した。 For comparison, pure nitrogen was decompressed and solidified below the triple point, and cooling to 56K and 48K was attempted. However, cooling to 60K or less was not possible, and conversely the temperature rose to about 70K due to decompression. .
さらに、比較として、純粋な酸素を240L/分の排気速度を有する油回転ポンプを用い減圧し、冷却を試みたが、約65K、1450Paで飽和し、それ以下の低温へ冷却することはできなかった。 Furthermore, as a comparison, pure oxygen was depressurized using an oil rotary pump having a pumping speed of 240 L / min, and cooling was attempted. However, it was saturated at about 65 K and 1450 Pa, and could not be cooled to a lower temperature. It was.
表1及び比較実験の結果から、窒素-酸素混合冷媒により、63Kで1.53Tの磁場が、56K及び48Kでそれぞれ1.30及び1.42倍の特性向上をもたらすことが示された。 From the results of Table 1 and the comparative experiment, it was shown that a 1.53 T magnetic field at 63K provides 1.30 and 1.42 times improvement in characteristics at 56K and 48K, respectively, by the nitrogen-oxygen mixed refrigerant.
(実施例2)
銀シースBi2223系線材及びY系薄膜線材を銅のブスバーを介してホルダーに取り付け、通電による臨界電流の測定を行なった。液体窒素と液体酸素とのモル(mol)比が6:4になるように混合した冷媒中にホルダーを配置し、この冷媒を回転ポンプにより約1200Paに減圧することにより約55Kに冷却した。自己磁界中での臨界電流は、55Kにおいて、Bi系線材が205A及びY系線材が230Aであった。
(Example 2 )
A silver sheath Bi2223 series wire and a Y series thin film wire were attached to a holder via a copper bus bar, and the critical current was measured by energization. The holder was placed in a refrigerant mixed so that the molar ratio of liquid nitrogen to liquid oxygen was 6: 4, and the refrigerant was cooled to about 55 K by reducing the pressure to about 1200 Pa with a rotary pump. The critical current in the self magnetic field was 205A for the Bi-based wire and 230A for the Y-based wire at 55K.
また、次に、比較として、酸素を混合せずに液体窒素のみを減圧し、昇華の状態で55Kへの冷却を試みたが、一旦、59Kまで冷却することができたものの、線材及びブスバーの温度は、71K程度にまで温度上昇してしまった。そこで、加圧し液相を有する三重点61Kで測定を行なった。その結果、自己磁界中での臨界電流は、61Kにおいてそれぞれ150A及び170Aであった。 Next, as a comparison, only liquid nitrogen was decompressed without mixing oxygen, and cooling to 55K was attempted in a sublimation state, but although it could be cooled to 59K once, the wire rod and bus bar The temperature has risen to about 71K. Therefore, measurement was performed at a triple point 61K having a liquid phase under pressure. As a result, the critical currents in the self magnetic field were 150 A and 170 A, respectively, at 61K.
以上のように、冷媒として酸素を窒素に混合することによって、各線材のより優れた特性を引き出せることが明らかになった。 As described above, it has been clarified that superior characteristics of each wire can be obtained by mixing oxygen with nitrogen as a refrigerant.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005280712A JP5162088B2 (en) | 2005-09-27 | 2005-09-27 | Cooling method using nitrogen-oxygen mixed refrigerant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005280712A JP5162088B2 (en) | 2005-09-27 | 2005-09-27 | Cooling method using nitrogen-oxygen mixed refrigerant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007093059A JP2007093059A (en) | 2007-04-12 |
JP5162088B2 true JP5162088B2 (en) | 2013-03-13 |
Family
ID=37978992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005280712A Expired - Fee Related JP5162088B2 (en) | 2005-09-27 | 2005-09-27 | Cooling method using nitrogen-oxygen mixed refrigerant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5162088B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6493419B2 (en) * | 2015-01-21 | 2019-04-03 | 新日鐵住金株式会社 | Oxide superconducting bulk magnet |
CN104748474B (en) * | 2015-03-23 | 2017-01-11 | 华南理工大学 | Heat exchanging method of liquid natural gas cold energy used for high-temperature-level cold energy user |
CN112524840B (en) * | 2020-11-29 | 2021-08-17 | 清华大学 | Liquid helium temperature zone miniature throttling refrigerator |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6410079A (en) * | 1987-07-02 | 1989-01-13 | Asahi Glass Co Ltd | Cooling device |
JPH07106906B2 (en) * | 1990-04-13 | 1995-11-15 | 新日本製鐵株式会社 | Oxide superconducting material containing rare earth element and method for producing the same |
JP2556401B2 (en) * | 1990-06-07 | 1996-11-20 | 新日本製鐵株式会社 | Oxide superconductor and method for manufacturing the same |
JPH04350906A (en) * | 1991-05-28 | 1992-12-04 | Nippon Steel Corp | Method and apparatus for cooling oxide superconducting coil |
JPH08337774A (en) * | 1995-06-14 | 1996-12-24 | Sanai:Kk | Refrigerant composition |
JPH0936444A (en) * | 1995-07-25 | 1997-02-07 | Nippon Steel Corp | Cooling method for superconducting coil |
EP1026755A4 (en) * | 1998-05-22 | 2009-11-11 | Sumitomo Electric Industries | Method and device for cooling superconductor |
JP4821047B2 (en) * | 2001-02-02 | 2011-11-24 | 住友電気工業株式会社 | High temperature superconducting coil cooling system |
US6484516B1 (en) * | 2001-12-07 | 2002-11-26 | Air Products And Chemicals, Inc. | Method and system for cryogenic refrigeration |
-
2005
- 2005-09-27 JP JP2005280712A patent/JP5162088B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007093059A (en) | 2007-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yao et al. | A Solid Nitrogen Cooled ${\hbox {MgB}} _ {2} $“Demonstration” Coil for MRI Applications | |
Geballe et al. | Superconductivity—The State That Came in from the Cold | |
Lehndorff | High-Tc superconductors for magnet and energy technology: fundamental aspects | |
JP5162088B2 (en) | Cooling method using nitrogen-oxygen mixed refrigerant | |
US20040116302A1 (en) | Protected superconductor component and process for its production | |
Elouafi et al. | Excellent magnetocaloric effect at cryogenic temperature in amorphous (Fe35RE65)(RE= Er, Dy and Gd) alloys | |
Sato et al. | High field generation using silver-sheathed BSCCO conductor | |
Odhiambo et al. | Specific heat and entropy of a three electron model in bismuth based cuprate superconductor | |
Giunchi | The superconducting properties of high density bulk MgB2 obtained by reactive liquid Mg infiltration | |
Rahman et al. | A Review on High-T c Superconductors and Their Principle Applications | |
Silver et al. | 9 Developments in high temperature superconductivity | |
JP3766448B2 (en) | Superconducting current lead | |
JP2003151821A (en) | Superconductive coil device | |
JPH06243737A (en) | Oxide superconductive coil | |
JPH06231950A (en) | Superconducting magnet | |
Jian-xun | High T c superconducting materials for strong current applications: Approach at the first stage | |
Ohmatsu et al. | Recent progress of HTS magnet using Bi-2223 Ag-sheathed wire | |
Dubey | STUDY OF HIGH TEMPERATURE SUPERCONDUCTORS, ITS RARE EARTH NANOCOMPOSITES AND THEIR BULK TECHNOLOGY | |
Odhiambo et al. | Thermodynamic properties of an interaction between cooper pairs and electrons in bismuth based cuprate superconductivity | |
Sharma | Iron-Based Practical Superconductors | |
Grasso et al. | Transport properties of long monofilamentary Bi (2223) tapes | |
Malagoli et al. | FABRICATION AND CHARACTERIZATION OF N i-SHEATHED M g B2 SUPERCONDUCTING TAPES | |
Wang et al. | 14.1 Some parameters for superconductors | |
Yamada | Bi-based bulk current leads and their applications | |
JP2001224567A (en) | Heat insulating type multichannel measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110111 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111212 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20111219 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20120309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121030 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121217 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5162088 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151221 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |