Nothing Special   »   [go: up one dir, main page]

JP5148917B2 - Semiconductor wafer test method - Google Patents

Semiconductor wafer test method Download PDF

Info

Publication number
JP5148917B2
JP5148917B2 JP2007112685A JP2007112685A JP5148917B2 JP 5148917 B2 JP5148917 B2 JP 5148917B2 JP 2007112685 A JP2007112685 A JP 2007112685A JP 2007112685 A JP2007112685 A JP 2007112685A JP 5148917 B2 JP5148917 B2 JP 5148917B2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
temperature
wafer
indicating material
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007112685A
Other languages
Japanese (ja)
Other versions
JP2008270586A (en
Inventor
健 小田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G Quest Co Ltd
Original Assignee
G Quest Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G Quest Co Ltd filed Critical G Quest Co Ltd
Priority to JP2007112685A priority Critical patent/JP5148917B2/en
Publication of JP2008270586A publication Critical patent/JP2008270586A/en
Application granted granted Critical
Publication of JP5148917B2 publication Critical patent/JP5148917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

この発明は半導体ウェハーのテスト方法、詳しくは、ICチップなどの製造において用いられる半導体ウェハーの真空チャンバー内における加熱処理の際の熱分布状況を確認する方法に関するものである。   The present invention relates to a method for testing a semiconductor wafer, and more particularly to a method for confirming a heat distribution state during heat treatment in a vacuum chamber of a semiconductor wafer used in the manufacture of an IC chip or the like.

ICチップの製造過程においては、素材である半導体ウェハーを真空チャンバー内のプラズマ雰囲気中において熱処理する工程があり、この熱処理工程の実施に先立ち、ダミーつまりテスト用のウェハーを真空チャンバー内に置き、プラズマ雰囲気中におけるウェハーの各部分の熱分布を実際に測定してみることが行われている。なお、テスト用のウェハーは、実際に熱処理されるものと同じものを用いる。
特願2004−340067 なし
In the manufacturing process of an IC chip, there is a step of heat-treating a semiconductor wafer as a material in a plasma atmosphere in a vacuum chamber. Prior to performing this heat treatment step, a dummy, that is, a test wafer is placed in a vacuum chamber, It is practiced to actually measure the heat distribution of each part of the wafer in the atmosphere. The test wafer is the same as that actually heat-treated.
Japanese Patent Application No. 2004-340067 None

この熱分布の測定には、あらかじめ設定された特定の温度で不可逆的に発色する感温発色体を基板上に固定したシート状の温度測定片を用意し、これをダミーのウェハー本体の周縁や中央部などの所望部位に複数枚貼付し、真空チャンバー内のプラズマ雰囲気中で加熱処理した後、ウェハー本体に貼られている各温度測定片の発色状態を確認することによって行われている。この様に、温度測定の対象であるウェハー本体は真空チャンバーのプラズマ雰囲気中に置かれるが、プラズマ雰囲気中においては頻繁に放電現象が生起し、放電の際の電撃によって感温発色体が損傷し、温度の測定結果を正しく表示出来なくなってしまう場合がしばしばあった。   For this heat distribution measurement, a sheet-like temperature measurement piece is prepared on which a temperature-sensitive color former that irreversibly develops color at a specific preset temperature is fixed on a substrate. A plurality of sheets are affixed to a desired part such as a central part, heat-treated in a plasma atmosphere in a vacuum chamber, and then the color development state of each temperature measurement piece affixed to the wafer body is confirmed. In this way, the wafer body, which is the object of temperature measurement, is placed in the plasma atmosphere of the vacuum chamber. However, a discharge phenomenon frequently occurs in the plasma atmosphere, and the temperature sensitive color body is damaged by electric shock during discharge. In many cases, the temperature measurement result cannot be displayed correctly.

又、約300℃以上の高温領域の温度測定を行う感温発色体においては、耐熱性を持たせる為、その成分中にコバルトやニッケルなどの重金属が含まれることが多く、これらを含んだ感温発色体をそのままプラズマ雰囲気中に置いた場合、プラズマ放電によってこれら重金属がガス化し、このガスが真空チャンバー内に拡散し、これを汚染してしまい、汚染された真空チャンバーはウェハーの本来の熱処理作業に用いられなくなってしまうという重大な問題もあった。   In addition, in temperature sensitive color bodies that measure temperatures in a high temperature region of about 300 ° C. or more, in order to provide heat resistance, heavy metals such as cobalt and nickel are often included in the components, and When the warm color former is left in the plasma atmosphere, these heavy metals are gasified by plasma discharge, and this gas diffuses into the vacuum chamber and contaminates it, and the contaminated vacuum chamber is the original heat treatment of the wafer. There was also a serious problem that it could not be used for work.

本発明者は、半導体ウェハーの真空チャンバー内におけるプラズマ処理に先立ち行われる温度分布測定作業の際のプラズマ放電現象に起因する上記問題点を解決すべく研究を行った結果、プラズマ放電による損傷を回避出来、重金属ガスによる真空チャンバー内の汚染を防ぐことが出来るテスト用ウェハーを特願2005−241973として提案した。   The present inventor conducted research to solve the above problems caused by the plasma discharge phenomenon in the temperature distribution measurement work performed prior to the plasma processing in the vacuum chamber of the semiconductor wafer, and as a result, avoided damage due to the plasma discharge. A test wafer capable of preventing contamination in the vacuum chamber by heavy metal gas was proposed as Japanese Patent Application No. 2005-241973.

このテスト用ウェハーは、ウェハー本体の所望位置に、あらかじめ定められた設定温度に達すると、それまでの白濁した不透明状態から透明あるいは半透明状態に変化する温度表示体を固定し、その上を耐熱性樹脂層で覆ってテスト用ウェハーを構成したものである。   This test wafer fixes a temperature display body that changes from a cloudy opaque state to a transparent or translucent state when a predetermined set temperature is reached at a desired position on the wafer body, and heat-resistant on it. A test wafer is formed by covering with a conductive resin layer.

このテスト用ウェハーにおいては、これを真空チャンバー内に入れてテスト的な熱処理作業を行うと、ウェハー本体の各部分に固定されている温度表示体は、あらかじめ定められた設定温度を超過した時点で、その中の粉末状の化学物質が融解し、それまでの白濁していたものが透明化し、この温度表示体が塗布固定されている物質表面の色彩が透けて見える様になり、その視覚的変化によって設定温度超過の事実が外部に表示される。   In this test wafer, when it is put into a vacuum chamber and a test heat treatment is performed, the temperature display body fixed to each part of the wafer main body is at the time when a predetermined set temperature is exceeded. , The powdered chemical substance melts, and the white turbidity until then becomes transparent, so that the color of the surface of the substance on which this temperature indicator is applied and fixed can be seen through. The fact that the set temperature is exceeded is displayed externally due to the change.

従って、この温度表示体を、テスト用のウェハー本体の各部分に多数固定しておけば、ウェハー本体の各部分の温度分布を詳細に知ることが出来る。この際、温度表示体は耐熱性樹脂層によって覆われているので、真空チャンバー内においてプラズマ放電が起きても、温度表示体自体は電撃に直接晒されることはなく、プラズマ放電によってその温度表示機能に狂いが生じることはない。   Therefore, if a large number of the temperature display bodies are fixed to each part of the test wafer body, the temperature distribution of each part of the wafer body can be known in detail. At this time, since the temperature display body is covered with a heat-resistant resin layer, even if plasma discharge occurs in the vacuum chamber, the temperature display body itself is not directly exposed to electric shock, and the temperature display function is provided by plasma discharge. There will be no madness.

又、温度表示体は耐熱性樹脂層によって覆われているので、温度表示体がニッケルやコバルトなどの重金属類を含んでいても、これら重金属類がガス化して真空チャンバー内に拡散してこれを汚染するおそれはなく、ニッケルやコバルトなどの重金属類を含有した温度表示体を用いなければならない高温域の温度測定をより安全に行うことが出来、従来のものに比べ、すぐれた機能を有するものである。   Moreover, since the temperature display body is covered with a heat-resistant resin layer, even if the temperature display body contains heavy metals such as nickel and cobalt, these heavy metals are gasified and diffused into the vacuum chamber. There is no risk of contamination, and temperature measurements in heavy metals such as nickel and cobalt must be used. Temperature measurement in a high temperature range can be performed more safely, and has superior functions compared to conventional ones. It is.

しかしながら、半導体ウェハーの高機能化に伴い、近年真空チャンバー内での加熱温度を高くする要求が強く、500℃以上、あるいは1000℃以上といった超高温で加熱する場合があり、これに耐え得る温度表示体が求められており、重金属類の添加量も多くなる傾向にあり、重金属ガスの真空チャンバー内への拡散を防ぐ為の耐熱性樹脂層もより強固なものが求められている。しかしながら、高温に耐え、重金属ガスの飛散を防ぐ耐熱性樹脂層は、これを構成する材料の関係から不透明な場合も多く、温度表示体の視覚的変化をこの耐熱性樹脂層を通して確認することが出来なくなってしまう場合があった。本発明者は、この点に関する問題点を解決すべく研究を行った結果、重金属ガスを真空チャンバー内に拡散させることなく、例えば1000℃以上といった超高温下における温度分布も、確実に測定出来る画期的な半導体ウェハーのテスト方法を開発することに成功し、本発明としてここに提案するものである。   However, with the increasing functionality of semiconductor wafers, there is a strong demand in recent years to increase the heating temperature in the vacuum chamber, and there are cases where heating is performed at ultra-high temperatures such as 500 ° C. or higher, or 1000 ° C. or higher. The body is required, the amount of heavy metals added tends to increase, and the heat resistant resin layer for preventing diffusion of heavy metal gas into the vacuum chamber is required to be stronger. However, heat-resistant resin layers that can withstand high temperatures and prevent the scattering of heavy metal gases are often opaque due to the relationship of the materials that make up the heat-resistant resin layers, and visual changes in temperature indicators can be confirmed through this heat-resistant resin layer. In some cases, it could not be done. The present inventor conducted research to solve the problem related to this point, and as a result, it was possible to reliably measure the temperature distribution at an ultra-high temperature of, for example, 1000 ° C. or higher without diffusing heavy metal gas into the vacuum chamber. We have succeeded in developing an innovative semiconductor wafer test method, and are proposed here as the present invention.

透明あるいは半透明状をなしたテスト用の半導体ウェハーの表面側の所望箇所に、あらかじめ設定された特定の温度で、白濁した不透明状態から透明あるいは半透明に変化する示温材を付着せしめ、その上から前記示温材のガス化を阻止する防禦膜をコーティングした後、この半導体ウェハーを加熱用の真空チャンバー内に配置し、所定の加熱処理を行った後、該半導体ウェハーをチャンバー外へ取り出し、半導体ウェハーの裏面側からその肉厚を透かして示温材の変化状況を視認し、それによって半導体ウェハーの各部分のプラズマ放電下における温度分布状況を知る様にして、上記課題を解決した。 A temperature indicating material that changes from a cloudy opaque state to a transparent or translucent state is attached to a desired location on the surface side of a transparent or translucent test semiconductor wafer at a predetermined preset temperature. After coating a fouling film to prevent gasification of the temperature indicating material, the semiconductor wafer is placed in a heating vacuum chamber and subjected to a predetermined heat treatment. Then, the semiconductor wafer is taken out of the chamber, and the semiconductor The above problem was solved by visually recognizing the change state of the temperature indicating material from the back side of the wafer through the thickness thereof, thereby knowing the temperature distribution state of each part of the semiconductor wafer under plasma discharge.

このテスト方法においては、半導体ウェハーの裏面側から示温材の変化状況を透かして見る為、示温材のガス化を防ぐ防禦膜は、透明である必要は全くなく、その材質を選ばない為、より強固な防禦膜を用いることが出来、従来においてはむずかしかった超高温下の加熱テストも何ら問題なく実施出来る。   In this test method, since the change of the temperature indicating material is seen through from the back side of the semiconductor wafer, the protective film that prevents gasification of the temperature indicating material does not need to be transparent at all, and the material is not selected. A strong fender can be used, and a heating test at an extremely high temperature, which was difficult in the past, can be carried out without any problems.

示温材の変化状況を半導体ウェハーの裏面側から、その肉厚を透かして見る様にした点に、最大の特徴が存する。   The greatest feature exists in that the change of the temperature indicating material is viewed from the back side of the semiconductor wafer through the thickness of the semiconductor wafer.

以下、図面を参照しながら、この発明に係る半導体ウェハーのテスト方法の一実施例について説明する。テストに用いる半導体ウェハーとしては、表裏方向に透けて見える透明あるいは半透明素材のものを用いる。そして、この半導体ウェハーの本体1の表面側には、図1に示す様に、あらかじめ設定された特定の温度に達すると、白濁した不透明状態から透明あるいは半透明に変化する示温材2を所望のパターンで付着せしめる。示温材2自
体は特願2005−241973のものと同じであり、あらかじめ定められた設定温度で融解するワックスなどの固体状の化学物質の粉末とバインダーとを混合した常温では白濁した状態を呈した不透明物質であり、シルクスクリーン印刷などの技法により、半導体ウェハーの本体1の表面側に所望のパターンで付着せしめる。
Hereinafter, an embodiment of a semiconductor wafer test method according to the present invention will be described with reference to the drawings. As a semiconductor wafer used for the test, a transparent or translucent material that can be seen through in the front and back directions is used. Then, on the surface side of the main body 1 of the semiconductor wafer, as shown in FIG. 1, a desired temperature indicating material 2 which changes from a cloudy opaque state to a transparent or translucent state when a predetermined temperature is reached is desired. Adhere with a pattern. The temperature indicating material 2 itself is the same as that of Japanese Patent Application No. 2005-241973, and is white turbid at room temperature in which a powder of a solid chemical substance such as wax that melts at a preset temperature and a binder are mixed. It is an opaque material and is attached in a desired pattern on the surface side of the main body 1 of the semiconductor wafer by a technique such as silk screen printing.

そして、この様に示温2が固定されている半導体ウェハーの表面には、図2に示す様に耐熱性にすぐれ、超高温下においても、示温材2中の重金属がガス化して拡散することを防ぐことが出来る防禦膜3がコーティングされている。この防禦膜3は一般的に不透明であり、この防禦膜3を通して、示温材2を視認することは出来ない。 As shown in FIG. 2, the surface of the semiconductor wafer to which the temperature indicating material 2 is fixed has excellent heat resistance, and heavy metals in the temperature indicating material 2 are gasified and diffused even at an ultra-high temperature. A fouling film 3 that can prevent the above is coated. This fender film 3 is generally opaque, and the temperature indicating material 2 cannot be visually recognized through this fender film 3.

この様に、表面側に示温材2が塗布され、その上を防禦膜3でコーティングされたテスト用の半導体ウェハーを加熱用の真空チャンバー内に入れ、プラズマ放電を伴う所定の加熱処理を行った後、この加熱済みの半導体ウェハーを該チャンバー外へ取り出し、図3に示す様に、その裏面側からその肉厚を透かして加熱後の示温材2の変化状況を視認することにより、半導体ウェハーの各部分のプラズマ放電下における温度分布状況を知るのである。   In this way, the test semiconductor wafer coated with the temperature indicating material 2 on the surface side and coated with the fender film 3 is placed in a vacuum chamber for heating, and a predetermined heat treatment with plasma discharge is performed. Thereafter, the heated semiconductor wafer is taken out of the chamber, and as shown in FIG. 3, the change in the temperature indicating material 2 after heating is visually confirmed through the thickness of the back surface of the semiconductor wafer. Know the temperature distribution of each part under plasma discharge.

このテスト方法においては、半導体ウェハーの裏面側から示温材の変化状況を透かして見る為、ガス化を防ぐ防禦膜は、透明である必要は全くなく、その材質を選ばない為、より強固な防禦膜を用いることが出来、従来においてはむずかしかった超高温下の加熱テストも何ら問題なく実施出来る効果を有する。   In this test method, since the change of the temperature indicating material is viewed through the back side of the semiconductor wafer, the anti-gasification film need not be transparent at all, and since the material is not selected, it is more robust. A film can be used, and a heating test under an extremely high temperature, which has been difficult in the prior art, can be carried out without any problem.

半導体製造の分野において利用可能である。   It can be used in the field of semiconductor manufacturing.

この発明に係る半導体ウェハーのテスト方法によってテストされる半導体ウェハー表面に示温材を塗布した状態の斜視図。The perspective view of the state which applied the temperature indicating material to the semiconductor wafer surface tested by the testing method of the semiconductor wafer concerning this invention. 同じく、その上に防禦膜をコーティングした状態の斜視図。Similarly, the perspective view of the state which coated the fender film on it. 真空チャンバー内における加熱が終り、各部分の熱分布の状況を確認する際の状況の斜視図。The perspective view of the condition at the time of confirming the condition of the heat distribution of each part after the heating in a vacuum chamber is completed.

1 本体
2 示温材
3 防禦膜
1 Main body 2 Temperature indicating material 3 Antifouling film

Claims (1)

透明あるいは半透明をなしたテスト用の半導体ウェハーの表面側の所望箇所に、あらかじめ設定された特定の温度で、白濁した不透明状態から透明あるいは半透明に変化する示温材を付着せしめ、その上から前記示温材のガス化を阻止する防禦膜をコーティングした後、この半導体ウェハーを加熱用の真空チャンバー内に配置し、所定の加熱処理を行った後、該半導体ウェハーをチャンバー外へ取り出し、半導体ウェハーの裏面側からその肉厚を透かして示温材の変化状況を視認し、それによって半導体ウェハーの各部分のプラズマ放電下における温度分布状況を知る様にしたことを特徴とする半導体ウェハーのテスト方法。   At the desired location on the surface side of the test semiconductor wafer that is transparent or translucent, attach a temperature indicating material that changes from a cloudy opaque state to a transparent or translucent state at a specific temperature set in advance. After coating a fouling film that prevents gasification of the temperature indicating material, this semiconductor wafer is placed in a vacuum chamber for heating, and after performing a predetermined heat treatment, the semiconductor wafer is taken out of the chamber, and the semiconductor wafer A method for testing a semiconductor wafer, characterized in that the change of the temperature indicating material is visually recognized from the back side of the wafer, and the temperature distribution state of each part of the semiconductor wafer under plasma discharge is thereby known.
JP2007112685A 2007-04-23 2007-04-23 Semiconductor wafer test method Active JP5148917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112685A JP5148917B2 (en) 2007-04-23 2007-04-23 Semiconductor wafer test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007112685A JP5148917B2 (en) 2007-04-23 2007-04-23 Semiconductor wafer test method

Publications (2)

Publication Number Publication Date
JP2008270586A JP2008270586A (en) 2008-11-06
JP5148917B2 true JP5148917B2 (en) 2013-02-20

Family

ID=40049678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112685A Active JP5148917B2 (en) 2007-04-23 2007-04-23 Semiconductor wafer test method

Country Status (1)

Country Link
JP (1) JP5148917B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254769A (en) * 1984-05-31 1985-12-16 Fujitsu Ltd Position aligning method of semiconductor chip
JP3759435B2 (en) * 2001-07-11 2006-03-22 ソニー株式会社 XY address type solid-state imaging device
JP4753662B2 (en) * 2005-08-24 2011-08-24 株式会社ジークエスト Test silicon wafer

Also Published As

Publication number Publication date
JP2008270586A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
Joh et al. Engineering the charge transport of Ag nanocrystals for highly accurate, wearable temperature sensors through all‐solution processes
CN105358949B (en) For measuring the method and system of heat flux
US7828480B2 (en) Thermocouple circuit and method and system for forming same
US20120275484A1 (en) Temperature measuring device, temperature calibrating device and temperature calibrating method
US9126271B2 (en) Method for embedding thin film sensor in a material
CN108885141A (en) Heat flux meter and apparatus for diagnosis of abnormality
Tucker et al. Integrated self-validating thermocouples with a reference temperature up to 1329° C
JP5148917B2 (en) Semiconductor wafer test method
US20090217863A1 (en) Method of indicating the presence of a hazardous substance and sticker therefor
CN108292623A (en) Wafer alignment method and the aligning equipment for using this method
Inamdar et al. Study of thermal aging behavior of epoxy molding compound for applications in harsh environments
JP4753662B2 (en) Test silicon wafer
Datta et al. Batch fabrication and characterization of micro-thin-film thermocouples embedded in metal
Lacy Using nanometer platinum films as temperature sensors (constraints from experimental, mathematical, and finite-element analysis)
Reid et al. Testing method for measuring corrosion resistance of surface mount chip resistors
Jasperson et al. Thin film heat flux sensors fabricated on copper substrates for thermal measurements in microfluidic environments
JP4708769B2 (en) Silicon wafer temperature measuring instrument
JPH032603A (en) Heat resisting strain gage and strain measuring method
CN206551487U (en) A kind of wax pattern 3D printing substrate of accurate temperature feedback
Jeong et al. Lifetime and failure analysis of perovskite-based ceramic NTC thermistors by thermal cycling and abrasion combined stress
KR20120121852A (en) Temperature measuring device, temperature calibrating device and temperature calibrating method
Majcherek et al. Silicon based in-situ measurement system for flex loads on MLCCs in PCB manufacturing chain
Ramazan et al. Fabrication and Characterization of Resistance Temperature Detector By Smart Mask Design
TWI835568B (en) Device and method for measuring radial resistance uniformity of silicon wafers
CN108180846B (en) Process control method and film thickness obtaining method of organic solderability preservative film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

R150 Certificate of patent or registration of utility model

Ref document number: 5148917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250