JP5148917B2 - Semiconductor wafer test method - Google Patents
Semiconductor wafer test method Download PDFInfo
- Publication number
- JP5148917B2 JP5148917B2 JP2007112685A JP2007112685A JP5148917B2 JP 5148917 B2 JP5148917 B2 JP 5148917B2 JP 2007112685 A JP2007112685 A JP 2007112685A JP 2007112685 A JP2007112685 A JP 2007112685A JP 5148917 B2 JP5148917 B2 JP 5148917B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor wafer
- temperature
- wafer
- indicating material
- vacuum chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 33
- 238000010998 test method Methods 0.000 title description 5
- 239000000463 material Substances 0.000 claims description 25
- 238000012360 testing method Methods 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000002309 gasification Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 description 39
- 229910001385 heavy metal Inorganic materials 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000009529 body temperature measurement Methods 0.000 description 6
- 229920006015 heat resistant resin Polymers 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
この発明は半導体ウェハーのテスト方法、詳しくは、ICチップなどの製造において用いられる半導体ウェハーの真空チャンバー内における加熱処理の際の熱分布状況を確認する方法に関するものである。 The present invention relates to a method for testing a semiconductor wafer, and more particularly to a method for confirming a heat distribution state during heat treatment in a vacuum chamber of a semiconductor wafer used in the manufacture of an IC chip or the like.
ICチップの製造過程においては、素材である半導体ウェハーを真空チャンバー内のプラズマ雰囲気中において熱処理する工程があり、この熱処理工程の実施に先立ち、ダミーつまりテスト用のウェハーを真空チャンバー内に置き、プラズマ雰囲気中におけるウェハーの各部分の熱分布を実際に測定してみることが行われている。なお、テスト用のウェハーは、実際に熱処理されるものと同じものを用いる。
この熱分布の測定には、あらかじめ設定された特定の温度で不可逆的に発色する感温発色体を基板上に固定したシート状の温度測定片を用意し、これをダミーのウェハー本体の周縁や中央部などの所望部位に複数枚貼付し、真空チャンバー内のプラズマ雰囲気中で加熱処理した後、ウェハー本体に貼られている各温度測定片の発色状態を確認することによって行われている。この様に、温度測定の対象であるウェハー本体は真空チャンバーのプラズマ雰囲気中に置かれるが、プラズマ雰囲気中においては頻繁に放電現象が生起し、放電の際の電撃によって感温発色体が損傷し、温度の測定結果を正しく表示出来なくなってしまう場合がしばしばあった。 For this heat distribution measurement, a sheet-like temperature measurement piece is prepared on which a temperature-sensitive color former that irreversibly develops color at a specific preset temperature is fixed on a substrate. A plurality of sheets are affixed to a desired part such as a central part, heat-treated in a plasma atmosphere in a vacuum chamber, and then the color development state of each temperature measurement piece affixed to the wafer body is confirmed. In this way, the wafer body, which is the object of temperature measurement, is placed in the plasma atmosphere of the vacuum chamber. However, a discharge phenomenon frequently occurs in the plasma atmosphere, and the temperature sensitive color body is damaged by electric shock during discharge. In many cases, the temperature measurement result cannot be displayed correctly.
又、約300℃以上の高温領域の温度測定を行う感温発色体においては、耐熱性を持たせる為、その成分中にコバルトやニッケルなどの重金属が含まれることが多く、これらを含んだ感温発色体をそのままプラズマ雰囲気中に置いた場合、プラズマ放電によってこれら重金属がガス化し、このガスが真空チャンバー内に拡散し、これを汚染してしまい、汚染された真空チャンバーはウェハーの本来の熱処理作業に用いられなくなってしまうという重大な問題もあった。 In addition, in temperature sensitive color bodies that measure temperatures in a high temperature region of about 300 ° C. or more, in order to provide heat resistance, heavy metals such as cobalt and nickel are often included in the components, and When the warm color former is left in the plasma atmosphere, these heavy metals are gasified by plasma discharge, and this gas diffuses into the vacuum chamber and contaminates it, and the contaminated vacuum chamber is the original heat treatment of the wafer. There was also a serious problem that it could not be used for work.
本発明者は、半導体ウェハーの真空チャンバー内におけるプラズマ処理に先立ち行われる温度分布測定作業の際のプラズマ放電現象に起因する上記問題点を解決すべく研究を行った結果、プラズマ放電による損傷を回避出来、重金属ガスによる真空チャンバー内の汚染を防ぐことが出来るテスト用ウェハーを特願2005−241973として提案した。 The present inventor conducted research to solve the above problems caused by the plasma discharge phenomenon in the temperature distribution measurement work performed prior to the plasma processing in the vacuum chamber of the semiconductor wafer, and as a result, avoided damage due to the plasma discharge. A test wafer capable of preventing contamination in the vacuum chamber by heavy metal gas was proposed as Japanese Patent Application No. 2005-241973.
このテスト用ウェハーは、ウェハー本体の所望位置に、あらかじめ定められた設定温度に達すると、それまでの白濁した不透明状態から透明あるいは半透明状態に変化する温度表示体を固定し、その上を耐熱性樹脂層で覆ってテスト用ウェハーを構成したものである。 This test wafer fixes a temperature display body that changes from a cloudy opaque state to a transparent or translucent state when a predetermined set temperature is reached at a desired position on the wafer body, and heat-resistant on it. A test wafer is formed by covering with a conductive resin layer.
このテスト用ウェハーにおいては、これを真空チャンバー内に入れてテスト的な熱処理作業を行うと、ウェハー本体の各部分に固定されている温度表示体は、あらかじめ定められた設定温度を超過した時点で、その中の粉末状の化学物質が融解し、それまでの白濁していたものが透明化し、この温度表示体が塗布固定されている物質表面の色彩が透けて見える様になり、その視覚的変化によって設定温度超過の事実が外部に表示される。 In this test wafer, when it is put into a vacuum chamber and a test heat treatment is performed, the temperature display body fixed to each part of the wafer main body is at the time when a predetermined set temperature is exceeded. , The powdered chemical substance melts, and the white turbidity until then becomes transparent, so that the color of the surface of the substance on which this temperature indicator is applied and fixed can be seen through. The fact that the set temperature is exceeded is displayed externally due to the change.
従って、この温度表示体を、テスト用のウェハー本体の各部分に多数固定しておけば、ウェハー本体の各部分の温度分布を詳細に知ることが出来る。この際、温度表示体は耐熱性樹脂層によって覆われているので、真空チャンバー内においてプラズマ放電が起きても、温度表示体自体は電撃に直接晒されることはなく、プラズマ放電によってその温度表示機能に狂いが生じることはない。 Therefore, if a large number of the temperature display bodies are fixed to each part of the test wafer body, the temperature distribution of each part of the wafer body can be known in detail. At this time, since the temperature display body is covered with a heat-resistant resin layer, even if plasma discharge occurs in the vacuum chamber, the temperature display body itself is not directly exposed to electric shock, and the temperature display function is provided by plasma discharge. There will be no madness.
又、温度表示体は耐熱性樹脂層によって覆われているので、温度表示体がニッケルやコバルトなどの重金属類を含んでいても、これら重金属類がガス化して真空チャンバー内に拡散してこれを汚染するおそれはなく、ニッケルやコバルトなどの重金属類を含有した温度表示体を用いなければならない高温域の温度測定をより安全に行うことが出来、従来のものに比べ、すぐれた機能を有するものである。 Moreover, since the temperature display body is covered with a heat-resistant resin layer, even if the temperature display body contains heavy metals such as nickel and cobalt, these heavy metals are gasified and diffused into the vacuum chamber. There is no risk of contamination, and temperature measurements in heavy metals such as nickel and cobalt must be used. Temperature measurement in a high temperature range can be performed more safely, and has superior functions compared to conventional ones. It is.
しかしながら、半導体ウェハーの高機能化に伴い、近年真空チャンバー内での加熱温度を高くする要求が強く、500℃以上、あるいは1000℃以上といった超高温で加熱する場合があり、これに耐え得る温度表示体が求められており、重金属類の添加量も多くなる傾向にあり、重金属ガスの真空チャンバー内への拡散を防ぐ為の耐熱性樹脂層もより強固なものが求められている。しかしながら、高温に耐え、重金属ガスの飛散を防ぐ耐熱性樹脂層は、これを構成する材料の関係から不透明な場合も多く、温度表示体の視覚的変化をこの耐熱性樹脂層を通して確認することが出来なくなってしまう場合があった。本発明者は、この点に関する問題点を解決すべく研究を行った結果、重金属ガスを真空チャンバー内に拡散させることなく、例えば1000℃以上といった超高温下における温度分布も、確実に測定出来る画期的な半導体ウェハーのテスト方法を開発することに成功し、本発明としてここに提案するものである。 However, with the increasing functionality of semiconductor wafers, there is a strong demand in recent years to increase the heating temperature in the vacuum chamber, and there are cases where heating is performed at ultra-high temperatures such as 500 ° C. or higher, or 1000 ° C. or higher. The body is required, the amount of heavy metals added tends to increase, and the heat resistant resin layer for preventing diffusion of heavy metal gas into the vacuum chamber is required to be stronger. However, heat-resistant resin layers that can withstand high temperatures and prevent the scattering of heavy metal gases are often opaque due to the relationship of the materials that make up the heat-resistant resin layers, and visual changes in temperature indicators can be confirmed through this heat-resistant resin layer. In some cases, it could not be done. The present inventor conducted research to solve the problem related to this point, and as a result, it was possible to reliably measure the temperature distribution at an ultra-high temperature of, for example, 1000 ° C. or higher without diffusing heavy metal gas into the vacuum chamber. We have succeeded in developing an innovative semiconductor wafer test method, and are proposed here as the present invention.
透明あるいは半透明状をなしたテスト用の半導体ウェハーの表面側の所望箇所に、あらかじめ設定された特定の温度で、白濁した不透明状態から透明あるいは半透明に変化する示温材を付着せしめ、その上から前記示温材のガス化を阻止する防禦膜をコーティングした後、この半導体ウェハーを加熱用の真空チャンバー内に配置し、所定の加熱処理を行った後、該半導体ウェハーをチャンバー外へ取り出し、半導体ウェハーの裏面側からその肉厚を透かして示温材の変化状況を視認し、それによって半導体ウェハーの各部分のプラズマ放電下における温度分布状況を知る様にして、上記課題を解決した。 A temperature indicating material that changes from a cloudy opaque state to a transparent or translucent state is attached to a desired location on the surface side of a transparent or translucent test semiconductor wafer at a predetermined preset temperature. After coating a fouling film to prevent gasification of the temperature indicating material, the semiconductor wafer is placed in a heating vacuum chamber and subjected to a predetermined heat treatment. Then, the semiconductor wafer is taken out of the chamber, and the semiconductor The above problem was solved by visually recognizing the change state of the temperature indicating material from the back side of the wafer through the thickness thereof, thereby knowing the temperature distribution state of each part of the semiconductor wafer under plasma discharge.
このテスト方法においては、半導体ウェハーの裏面側から示温材の変化状況を透かして見る為、示温材のガス化を防ぐ防禦膜は、透明である必要は全くなく、その材質を選ばない為、より強固な防禦膜を用いることが出来、従来においてはむずかしかった超高温下の加熱テストも何ら問題なく実施出来る。 In this test method, since the change of the temperature indicating material is seen through from the back side of the semiconductor wafer, the protective film that prevents gasification of the temperature indicating material does not need to be transparent at all, and the material is not selected. A strong fender can be used, and a heating test at an extremely high temperature, which was difficult in the past, can be carried out without any problems.
示温材の変化状況を半導体ウェハーの裏面側から、その肉厚を透かして見る様にした点に、最大の特徴が存する。 The greatest feature exists in that the change of the temperature indicating material is viewed from the back side of the semiconductor wafer through the thickness of the semiconductor wafer.
以下、図面を参照しながら、この発明に係る半導体ウェハーのテスト方法の一実施例について説明する。テストに用いる半導体ウェハーとしては、表裏方向に透けて見える透明あるいは半透明素材のものを用いる。そして、この半導体ウェハーの本体1の表面側には、図1に示す様に、あらかじめ設定された特定の温度に達すると、白濁した不透明状態から透明あるいは半透明に変化する示温材2を所望のパターンで付着せしめる。示温材2自
体は特願2005−241973のものと同じであり、あらかじめ定められた設定温度で融解するワックスなどの固体状の化学物質の粉末とバインダーとを混合した常温では白濁した状態を呈した不透明物質であり、シルクスクリーン印刷などの技法により、半導体ウェハーの本体1の表面側に所望のパターンで付着せしめる。
Hereinafter, an embodiment of a semiconductor wafer test method according to the present invention will be described with reference to the drawings. As a semiconductor wafer used for the test, a transparent or translucent material that can be seen through in the front and back directions is used. Then, on the surface side of the
そして、この様に示温材2が固定されている半導体ウェハーの表面には、図2に示す様に耐熱性にすぐれ、超高温下においても、示温材2中の重金属がガス化して拡散することを防ぐことが出来る防禦膜3がコーティングされている。この防禦膜3は一般的に不透明であり、この防禦膜3を通して、示温材2を視認することは出来ない。
As shown in FIG. 2, the surface of the semiconductor wafer to which the
この様に、表面側に示温材2が塗布され、その上を防禦膜3でコーティングされたテスト用の半導体ウェハーを加熱用の真空チャンバー内に入れ、プラズマ放電を伴う所定の加熱処理を行った後、この加熱済みの半導体ウェハーを該チャンバー外へ取り出し、図3に示す様に、その裏面側からその肉厚を透かして加熱後の示温材2の変化状況を視認することにより、半導体ウェハーの各部分のプラズマ放電下における温度分布状況を知るのである。
In this way, the test semiconductor wafer coated with the
このテスト方法においては、半導体ウェハーの裏面側から示温材の変化状況を透かして見る為、ガス化を防ぐ防禦膜は、透明である必要は全くなく、その材質を選ばない為、より強固な防禦膜を用いることが出来、従来においてはむずかしかった超高温下の加熱テストも何ら問題なく実施出来る効果を有する。 In this test method, since the change of the temperature indicating material is viewed through the back side of the semiconductor wafer, the anti-gasification film need not be transparent at all, and since the material is not selected, it is more robust. A film can be used, and a heating test under an extremely high temperature, which has been difficult in the prior art, can be carried out without any problem.
半導体製造の分野において利用可能である。 It can be used in the field of semiconductor manufacturing.
1 本体
2 示温材
3 防禦膜
1
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007112685A JP5148917B2 (en) | 2007-04-23 | 2007-04-23 | Semiconductor wafer test method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007112685A JP5148917B2 (en) | 2007-04-23 | 2007-04-23 | Semiconductor wafer test method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008270586A JP2008270586A (en) | 2008-11-06 |
JP5148917B2 true JP5148917B2 (en) | 2013-02-20 |
Family
ID=40049678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007112685A Active JP5148917B2 (en) | 2007-04-23 | 2007-04-23 | Semiconductor wafer test method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5148917B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60254769A (en) * | 1984-05-31 | 1985-12-16 | Fujitsu Ltd | Position aligning method of semiconductor chip |
JP3759435B2 (en) * | 2001-07-11 | 2006-03-22 | ソニー株式会社 | XY address type solid-state imaging device |
JP4753662B2 (en) * | 2005-08-24 | 2011-08-24 | 株式会社ジークエスト | Test silicon wafer |
-
2007
- 2007-04-23 JP JP2007112685A patent/JP5148917B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008270586A (en) | 2008-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Joh et al. | Engineering the charge transport of Ag nanocrystals for highly accurate, wearable temperature sensors through all‐solution processes | |
CN105358949B (en) | For measuring the method and system of heat flux | |
US7828480B2 (en) | Thermocouple circuit and method and system for forming same | |
US20120275484A1 (en) | Temperature measuring device, temperature calibrating device and temperature calibrating method | |
US9126271B2 (en) | Method for embedding thin film sensor in a material | |
CN108885141A (en) | Heat flux meter and apparatus for diagnosis of abnormality | |
Tucker et al. | Integrated self-validating thermocouples with a reference temperature up to 1329° C | |
JP5148917B2 (en) | Semiconductor wafer test method | |
US20090217863A1 (en) | Method of indicating the presence of a hazardous substance and sticker therefor | |
CN108292623A (en) | Wafer alignment method and the aligning equipment for using this method | |
Inamdar et al. | Study of thermal aging behavior of epoxy molding compound for applications in harsh environments | |
JP4753662B2 (en) | Test silicon wafer | |
Datta et al. | Batch fabrication and characterization of micro-thin-film thermocouples embedded in metal | |
Lacy | Using nanometer platinum films as temperature sensors (constraints from experimental, mathematical, and finite-element analysis) | |
Reid et al. | Testing method for measuring corrosion resistance of surface mount chip resistors | |
Jasperson et al. | Thin film heat flux sensors fabricated on copper substrates for thermal measurements in microfluidic environments | |
JP4708769B2 (en) | Silicon wafer temperature measuring instrument | |
JPH032603A (en) | Heat resisting strain gage and strain measuring method | |
CN206551487U (en) | A kind of wax pattern 3D printing substrate of accurate temperature feedback | |
Jeong et al. | Lifetime and failure analysis of perovskite-based ceramic NTC thermistors by thermal cycling and abrasion combined stress | |
KR20120121852A (en) | Temperature measuring device, temperature calibrating device and temperature calibrating method | |
Majcherek et al. | Silicon based in-situ measurement system for flex loads on MLCCs in PCB manufacturing chain | |
Ramazan et al. | Fabrication and Characterization of Resistance Temperature Detector By Smart Mask Design | |
TWI835568B (en) | Device and method for measuring radial resistance uniformity of silicon wafers | |
CN108180846B (en) | Process control method and film thickness obtaining method of organic solderability preservative film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100416 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121016 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5148917 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151207 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |