Nothing Special   »   [go: up one dir, main page]

JP5024693B2 - Vacuum deaerator - Google Patents

Vacuum deaerator Download PDF

Info

Publication number
JP5024693B2
JP5024693B2 JP2001120224A JP2001120224A JP5024693B2 JP 5024693 B2 JP5024693 B2 JP 5024693B2 JP 2001120224 A JP2001120224 A JP 2001120224A JP 2001120224 A JP2001120224 A JP 2001120224A JP 5024693 B2 JP5024693 B2 JP 5024693B2
Authority
JP
Japan
Prior art keywords
vacuum degassing
vacuum
tower
water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001120224A
Other languages
Japanese (ja)
Other versions
JP2002316145A (en
Inventor
永 正 洋 徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2001120224A priority Critical patent/JP5024693B2/en
Publication of JP2002316145A publication Critical patent/JP2002316145A/en
Application granted granted Critical
Publication of JP5024693B2 publication Critical patent/JP5024693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、純水又は超純水の製造プラントにおける水などの被処理原液中の溶存酸素等のガスを除去するための真空脱気装置に関する。
【0002】
【従来の技術】
純水または超純水製造プラントにおいて、所定の処理を経て不純物が除去された水から溶存酸素を除去してその含有量を低下させることは、配管材、熱交換器、ボイラーの腐食防止、イオン交換樹脂の酸化劣化防止などの面から非常に重要である。
また、近年LSIや超LSIを生産する電子工業分野において、半導体ウェハー上の酸化膜形成防止のため、水中の溶存酸素を10ppb以下、好ましくは5ppb以下にすることが要求されている。
【0003】
このため溶存酸素を低下させる方法として従来から、真空脱気法、窒素ガス曝気法、膜脱気法、触媒脱気法などの多くの方法が提案されている。
これらの方法のうち、真空脱気法は、真空脱気塔内の圧力を所定の水温における飽和蒸気圧以下の真空度に保ちながら、真空脱気塔の中に詰められた充填材の上から被処理水を噴霧落下させることにより溶存ガスを除去する方法であり、経済的でコンタミネーションの危険性も少ないという利点がある。
【0004】
一方で、この真空脱気法は溶存酸素濃度の到達限界が数十ppbとやや高く、脱気能の点で問題があった。
そこで、脱気能を向上させるため装置内の減圧度を上げると、抽気量が増加し真空脱気装置の排気容量が著しく大きくなる問題点があった。特に、最先端の半導体産業で必要とされる超純水の製造工程で要求される5ppb以下の低濃度は勿論のこと、50ppb以下の低濃度まで溶存酸素濃度を低下させようとすると、抽気量が著しく増大し、真空脱気装置が事実上これに対応できなくなっていた。
【0005】
これを解決するため例えば、特開平5−228305号公報には、図3に示すような概念図により、比較的小容量の真空ポンプを用いて50ppb〜10ppb以下の低濃度まで溶存酸素濃度を低下させる真空脱気法が提案されている。
すなわち、真空脱気装置200は、真空脱気塔101の内部に設けられた充填層103を挟んで、その上方に被処理水120を供給する被処理水供給装置105と、下方に処理水(脱酸素水)121を貯留する処理水貯留部102と、且つ、充填層103と処理水貯留部102との間の空間部102aと真空ポンプ116を連結する抽気用配管115a及び115の途中に凝縮器110を有している。
被処理水120の温度は、大気飽和の通常25℃前後の常温であるが、凝縮器110を冷却する冷却水は冷凍機で冷却され、冷却水供給管113の入口では10℃以下である。
真空脱気塔101の空間部102a内から抽気されて凝縮器110に入った脱気に混入した被処理水120の蒸気は70%以上が、冷却水供給管113及び冷却水排出管114に連通する冷却器110aにより冷却され凝縮し、その凝縮水122は凝縮器110の下部に連通する凝縮水排出管117を経て凝縮水貯糟118内に溜まる。このため、凝縮器110の後に設けられた真空ポンプ116は、被処理水120の未凝縮の残留蒸気30%以下を含んだ脱気酸素などのガス分を排出することになるため排気容量を小型化することができる。
かくして得られた処理水貯留部102内の処理水(脱酸素水)121は、処理水貯留部102の下部に設けられた処理水移送管107を経て図示しない後段に送り出される。
【0006】
【発明が解決しようとする課題】
しかし、このような従来の技術には、下記の問題点があった。
凝縮水貯層118内の凝縮水122の水面レベルが下がり凝縮水排出管117の下端部が大気に露出すると外気が逆流して凝縮器を経由し真空脱気塔内に入り処理水(脱酸素水)121を汚染する、いわゆる逆流汚染を引き起こす難点があった。
また、凝縮水122は、汚染の関係もあり通常廃棄されて無駄になる。
また、凝縮水貯層118は、大気圧に対する真空を保持するため通常水柱10.33m以上の高さを有する下方の位置に設置される。このため、凝縮水排出管117を含む凝縮水貯層118の設置スペース及びその物量が必要となるなどコスト面でも不利である。
【0007】
これらの問題点を解決すべく、本発明の目的は、逆流汚染がなく、高い生産能力で高性能(例えば超純水の溶存酸素濃度5ppb以下にまで低減可能)な、省スペースで、コスト的にも有利な真空脱気装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の真空脱気装置は、かかる問題を解決するために、内部に充填層を有し、真空脱気により被処理原液中の溶存ガスを除去するための真空脱気塔と、真空脱気塔に連通して抽気するための脱気用配管及び真空ポンプからなり、真空脱気塔内を真空にするための真空排気手段と、被処理原液を充填層の上部から供給散布する被処理原液供給手段と、真空脱気塔の下部に設けられ、脱気処理された処理液を貯留する処理液貯留部と、を有する真空脱気装置であって
更に、真空脱気塔と脱気用配管との間に介在して、真空脱気塔の上部の内部、又は真空脱気塔の上部の外部に連通して設けられ、被処理原液の蒸気を凝縮し、凝縮液を直接真空脱気塔の内部に流下させる凝縮器を有するように構成した。
【0009】
また、前記充填層と処理液貯留部との間の空間部に前記原液の供給体積流量に対し適宜の割合の不活性ガスを連続的に流入させる不活性ガス供給管を備えた。
【0010】
また、前記不活性ガスの流入割合は、原液の供給体積流量に対し0.001乃至0.5体積流量比であることを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の一実施の形態について、添付図面を参照し詳細に説明する。
図1は、本発明に係る一実施の形態による真空脱気装置の概念図である。
本発明の一実施の形態による真空脱気装置100は、真空脱気塔1内を真空にするため真空脱気塔1の上部に設けられた真空排気手段10を除き、既に本発明の出願人が出願した特願平2−321854「純水又は超純水中の溶存酸素の除去方法」の特公平6−73603号公報に示された構成と同様である。
したがって、真空脱気塔1内の作用を含む詳細な説明は省略するが、本発明の真空脱気装置100の主要な構成は、次の通りである。
内部の仕切り板4の上部に充填層3を有し、真空脱気により所定の処理を経て不純物が除去された水などの被処理原液20中の溶存酸素などのガスを除去するための真空脱気塔1と、真空脱気塔1の上部に近接してノズル12を介して連通するように設けられ、被処理原液20の蒸気を凝縮する凝縮器10aとこれに連結して抽気する脱気用配管15及び真空ポンプ16とからなる真空排気手段10と、充填層3の上部から給液管5aを経由して被処理原液20を供給散布する散液装置6からなる被処理原液供給手段5と、真空脱気塔1の下部に設けられて脱気処理された脱酸素水などの処理液21を貯留する処理液貯留部2とを備えている。
【0012】
真空脱気塔1は、気液平衡が達成されるよう、詳細は省略するが、通状のガス吸収理論に基づいて設計されており、充填層3には、ラシヒリングなどの充填材が所定の高さに充填されている。
また、充填層3と処理液貯留部2との間の空間部2aに処理原液20の供給体積流量に対し0.001乃至0.5体積流量比の割合の窒素ガスやアルゴンガスなどの不活性ガスを連続的に流入させる不活性ガス供給管9を備えている。
前記不活性ガスの注入に関しては、前記特公平6−73603号公報に詳細に示されており、ここでは詳細な説明は省略するが、このような方法によって、真空脱気塔1の上部から真空引きしつつ、真空脱気塔1内を単に真空にしただけの従来の方法よりも、より高率で処理原液20中の溶存酸素等のガスを5ppb以下に脱気することが可能となる。
【0013】
被処理水20の温度は、大気飽和の通常25℃前後の常温であり、真空脱気塔1内を例えば25Torr程度の真空度に保たれている。
凝縮器10aを冷却する冷却水は冷凍機で冷却され、具体的には凝縮器10aでの目標とする凝縮率に応じて選定されるが、例えば、冷却水供給管13の入口では10℃以下である。
真空脱気塔1の上部から抽気され、液滴を脱落除去させるデミスター11及びノズル12を経て凝縮器10aに入った溶存酸素等の脱ガスに混入した被処理原液20の蒸気は、例えば80乃至90%以上が、冷却水供給管13及び冷却水排出管14に連通する冷却器10bにより冷却され凝縮する。
このため、凝縮器10aの後に設けられた真空ポンプ16は、被処理原液20の未凝縮の残留蒸気例えば20乃至10%以下を含んだ脱気酸素などのガス分を排出することになるため排気容量を小型化することができる。
凝縮器10aにおける前記蒸気の凝縮液は、直接真空脱気塔1の内部に流下させるように構成されている。このため、図3に示すような、従来凝縮器の下方部に真空を保持するため水柱10.33m以上の高さを有するように設置されていた凝縮水排出管117及び凝縮水貯層118は不要となり、これらの設備を省略するとともに、前記凝縮液も廃棄することなく有効に処理液として利用することが可能となる。
このようにして得られた処理水貯留部2内の脱酸素水などの処理液21は、処理液貯留部2の下部に設けられた処理液移送管7を経てポンプ8により図示しない後段に送り出される。
【0014】
次に、本発明に係る他の実施の形態について、添付図面を参照し説明する。
図2は、本発明に係る他の実施の形態による真空脱気装置の概念図である。
本発明に係る他の実施の形態による真空脱気装置100は、真空脱気塔1の上部に設けられた真空排気手段10の構成を除き、他は前記本発明の一実施の形態(図1)と同様の構成である。
すなわち、真空排気手段10は、真空脱気塔1内の散液装置6の上部に真空脱気塔1と一体型に配設された凝縮器10aと、凝縮器10aの上部に連通し先端部がデミスター11と連結した脱気用配管15及び真空ポンプ16とから構成されている。凝縮器10aの内部には、冷却水供給管13及び冷却水排出管14に連通する冷却器10bが設けられている。
このように構成された真空脱気装置100の作用を含む詳細な説明は省略するが、被処理原液20の蒸気が冷却器10bによって冷却されて凝縮した凝縮液は、直接真空脱気塔1内の下方部に流下するような構成となっている。
【0015】
【発明の効果】
以上、詳細に説明した本発明による真空脱気装置は、凝縮器における被処理原液の蒸気の凝縮液を、直接真空脱気塔内の下方部に流下させるように構成したので、従来凝縮器の下方部に真空を保持するため水柱10.33m以上の高さを有するように設置されていた凝縮水排出管117や凝縮水貯層118、並びに真空脱気塔と凝縮器との間の比較的大口径の脱気用配管115aとも不要となり、これらの設備を省略することによる設置スペース及びコストの削減が可能となる。
さらに、従来発生していた凝縮水貯層からの外気逆流による逆流汚染もなくなる。
また、凝縮器における被処理原液の蒸気の凝縮液も廃棄することなく有効に処理液として利用することが可能となる。
さらに、充填層と処理液貯留部との間の空間部に設けた不活性ガス供給管から処理原液の供給体積流量に対し0.001乃至0.5体積流量比の割合の窒素ガスやアルゴンガスなどの不活性ガスを連続的に流入させることによって、真空脱気塔の上部から真空引きしつつ、真空脱気塔内を単に真空にしただけの従来の方法よりも、より高率で処理原液中の溶存酸素等のガスを5ppb以下に脱気することが可能となるなど従来にない優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る一実施の形態による真空脱気装置の概念図である。
【図2】本発明に係る他の実施の形態による真空脱気装置の概念図である。
【図3】従来の真空脱気装置の概念図である。
【符号の説明】
1、101 真空脱気塔
2、102 処理液(水)貯留部
2a、102a 空間部
3、103 充填層
4 仕切り版
5、105 被処理原液(水)供給手段
5a 給液(水)管
6 散液(水)装置
7、107 処理液(水)移送管
8、108 ポンプ
9 不活性ガス供給管
10 真空排気手段
10a、110凝縮器
10b、110a 冷却器
11 デミスター
12、112 ノズル
13、113 冷却水供給管
14、114 冷却水排出管
15、115、115a 脱気(抽気)用配管
16、116 真空ポンプ
20、120 (被処理)原液(水)
21、121 処理液(脱酸素水)
100、200 真空脱気装置
117 凝縮液(水)排出管
118 凝縮液(水)貯糟
122 凝縮液(水)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum deaerator for removing gas such as dissolved oxygen in a raw solution to be treated such as water in a pure water or ultrapure water production plant.
[0002]
[Prior art]
In a pure water or ultrapure water production plant, removing dissolved oxygen from water from which impurities have been removed through a prescribed treatment to reduce its content is to prevent corrosion of piping materials, heat exchangers, boilers, ions This is very important from the viewpoint of preventing oxidative degradation of the exchange resin.
In recent years, in the field of electronics industry that produces LSIs and VLSIs, it is required that the dissolved oxygen in water be 10 ppb or less, preferably 5 ppb or less, in order to prevent the formation of oxide films on semiconductor wafers.
[0003]
For this reason, many methods such as a vacuum degassing method, a nitrogen gas aeration method, a membrane degassing method, and a catalyst degassing method have been proposed as methods for reducing dissolved oxygen.
Among these methods, the vacuum deaeration method is performed from above the packing material packed in the vacuum deaeration tower while keeping the pressure in the vacuum deaeration tower at a vacuum level equal to or lower than the saturated vapor pressure at a predetermined water temperature. This is a method of removing dissolved gas by spraying and dropping water to be treated, and has an advantage that it is economical and has little risk of contamination.
[0004]
On the other hand, this vacuum degassing method has a problem that the reach limit of the dissolved oxygen concentration is somewhat high, such as several tens of ppb, in terms of degassing ability.
Therefore, when the degree of decompression in the apparatus is increased in order to improve the deaeration capability, there has been a problem that the amount of extraction increases and the exhaust capacity of the vacuum deaeration apparatus becomes remarkably large. In particular, when the concentration of dissolved oxygen is reduced to a low concentration of 50 ppb or less as well as the low concentration of 5 ppb or less required in the manufacturing process of ultrapure water required in the state-of-the-art semiconductor industry, Increased significantly, and the vacuum deaerator was virtually unable to accommodate this.
[0005]
In order to solve this problem, for example, in Japanese Patent Laid-Open No. 5-228305, the dissolved oxygen concentration is lowered to a low concentration of 50 ppb to 10 ppb or less by using a relatively small capacity vacuum pump according to a conceptual diagram as shown in FIG. A vacuum degassing method has been proposed.
That is, the vacuum deaeration device 200 includes a treated water supply device 105 for supplying the treated water 120 above the sandwiched bed 103 provided inside the vacuum degassing tower 101, and a treated water ( (Deoxygenated water) 121 is condensed in the middle of the extraction pipes 115a and 115 for connecting the vacuum pump 116 with the treated water storage part 102 for storing the 121 and the space part 102a between the packed bed 103 and the treated water storage part 102. A container 110 is included.
The temperature of the water to be treated 120 is a normal temperature of about 25 ° C., which is normally saturated with air, but the cooling water for cooling the condenser 110 is cooled by a refrigerator and is 10 ° C. or less at the inlet of the cooling water supply pipe 113.
70% or more of the steam of the treated water 120 extracted from the space 102a of the vacuum deaeration tower 101 and mixed in the deaeration that has entered the condenser 110 communicates with the cooling water supply pipe 113 and the cooling water discharge pipe 114. The condensed water 122 is cooled and condensed by the cooling device 110a, and the condensed water 122 is stored in the condensed water storage 118 through the condensed water discharge pipe 117 communicating with the lower portion of the condenser 110. For this reason, the vacuum pump 116 provided after the condenser 110 discharges a gas component such as degassed oxygen containing 30% or less of uncondensed residual steam of the water 120 to be treated, so that the exhaust capacity is reduced. Can be
The treated water (deoxygenated water) 121 in the treated water storage unit 102 obtained in this way is sent to a subsequent stage (not shown) through the treated water transfer pipe 107 provided at the lower part of the treated water storage unit 102.
[0006]
[Problems to be solved by the invention]
However, such conventional techniques have the following problems.
When the water surface level of the condensed water 122 in the condensed water reservoir 118 falls and the lower end of the condensed water discharge pipe 117 is exposed to the atmosphere, the outside air flows backward and enters the vacuum deaeration tower via the condenser to be treated water (deoxygenated oxygen). Water) 121 is contaminated, so-called back-flow contamination occurs.
Further, the condensed water 122 is normally discarded due to contamination and is wasted.
Further, the condensate reservoir 118 is usually installed at a lower position having a height of 10.33 m or more in order to maintain a vacuum with respect to atmospheric pressure. For this reason, it is disadvantageous in terms of cost, for example, an installation space for the condensate reservoir 118 including the condensate discharge pipe 117 and the amount of the condensate reservoir 118 are required.
[0007]
In order to solve these problems, the object of the present invention is to provide a high-performance and high-performance (for example, reduced to a dissolved oxygen concentration of ultrapure water of 5 ppb or less), space-saving, and cost-effective without backflow contamination. It is another object of the present invention to provide a vacuum degassing device that is also advantageous.
[0008]
[Means for Solving the Problems]
In order to solve such a problem, the vacuum degassing apparatus of the present invention has a packed bed inside, a vacuum degassing tower for removing dissolved gas in the raw solution to be treated by vacuum degassing, and vacuum degassing It consists degassing pipe and a vacuum pump for the extraction communicating with the tower, and evacuating means for the vacuum degassing tower to a vacuum, treated stock solution supplying spraying the treated stock solution from the top of the fill layer A vacuum degassing apparatus having a supply means and a processing liquid storage section that is provided at a lower portion of the vacuum degassing tower and stores a processing liquid that has been degassed ,
Further, it is provided between the vacuum degassing tower and the degassing pipe and communicated with the inside of the upper part of the vacuum degassing tower or the upper part of the vacuum degassing tower to It was configured to have a condenser that condensed and allowed the condensate to flow directly down into the vacuum degassing tower.
[0009]
In addition, an inert gas supply pipe for continuously flowing an inert gas in an appropriate ratio with respect to the supply volume flow rate of the stock solution into the space between the packed bed and the treatment liquid storage unit is provided.
[0010]
In addition, the inflow ratio of the inert gas is 0.001 to 0.5 volume flow ratio with respect to the supply volume flow of the stock solution.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a conceptual diagram of a vacuum degassing apparatus according to an embodiment of the present invention.
The vacuum degassing apparatus 100 according to an embodiment of the present invention has already been applied to the applicant of the present invention except for the vacuum evacuation means 10 provided in the upper part of the vacuum degassing tower 1 in order to evacuate the vacuum degassing tower 1. This is the same as the configuration disclosed in Japanese Patent Publication No. 6-73603 of Japanese Patent Application No. 2-321854 entitled “Method for Removing Dissolved Oxygen in Pure Water or Ultrapure Water”.
Therefore, although detailed description including the effect | action in the vacuum deaeration tower 1 is abbreviate | omitted, the main structures of the vacuum deaeration apparatus 100 of this invention are as follows.
Vacuum degassing for removing gas such as dissolved oxygen in the raw solution 20 to be treated, such as water, which has a packed layer 3 on the inner partition plate 4 and has been subjected to a predetermined treatment by vacuum degassing. A degassing unit that is provided in close communication with the upper part of the air tower 1 and the vacuum deaeration tower 1 through a nozzle 12 and that condenses the vapor of the raw solution 20 to be treated and bleeds in connection with the condenser 10a. Raw material supply means 5 to be processed comprising a vacuum exhaust means 10 comprising a piping 15 and a vacuum pump 16 and a spraying device 6 for supplying and dispersing the raw material 20 to be treated from the upper part of the packed bed 3 via a liquid supply pipe 5a. And a treatment liquid storage section 2 for storing a treatment liquid 21 such as deoxygenated water provided at the lower part of the vacuum deaeration tower 1.
[0012]
The vacuum deaeration tower 1 is not described in detail so as to achieve gas-liquid equilibrium, but is designed on the basis of a general gas absorption theory, and the packed bed 3 is provided with a filler such as Raschig ring. Filled to height.
Further, inert gas such as nitrogen gas or argon gas in a ratio of 0.001 to 0.5 volume flow rate with respect to the supply volume flow rate of the processing stock solution 20 in the space 2a between the packed bed 3 and the processing solution storage unit 2 An inert gas supply pipe 9 through which gas continuously flows is provided.
The inert gas injection is described in detail in the above Japanese Patent Publication No. 6-73603, and detailed description thereof is omitted here. However, by such a method, a vacuum is formed from the upper portion of the vacuum deaeration tower 1. It is possible to degas the gas such as dissolved oxygen in the processing stock solution 20 to 5 ppb or less at a higher rate than in the conventional method in which the vacuum deaeration tower 1 is simply evacuated while being pulled.
[0013]
The temperature of the water to be treated 20 is a normal temperature of about 25 ° C., which is normally saturated with air, and the vacuum deaeration tower 1 is maintained at a degree of vacuum of about 25 Torr, for example.
The cooling water for cooling the condenser 10a is cooled by a refrigerator, and specifically selected according to the target condensation rate in the condenser 10a. For example, at the inlet of the cooling water supply pipe 13, the cooling water is 10 ° C. or lower. It is.
The vapor of the unprocessed stock solution 20 extracted from the upper part of the vacuum degassing tower 1 and mixed into the degass such as dissolved oxygen that has entered the condenser 10a through the demister 11 and the nozzle 12 that drop and remove the droplets is, for example, 80 to 90% or more is cooled and condensed by the cooler 10 b communicating with the cooling water supply pipe 13 and the cooling water discharge pipe 14.
For this reason, the vacuum pump 16 provided after the condenser 10a exhausts a gas component such as degassed oxygen containing 20 to 10% or less of uncondensed residual vapor of the raw solution 20 to be treated. The capacity can be reduced.
The vapor condensate in the condenser 10 a is configured to flow down directly into the vacuum deaeration tower 1. For this reason, as shown in FIG. 3, the condensate drain pipe 117 and the condensate reservoir 118, which have been installed so as to have a height of 10.33 m or more in order to maintain a vacuum in the lower part of the conventional condenser, This eliminates the need for these facilities and allows the condensate to be effectively used as a treatment liquid without being discarded.
The treatment liquid 21 such as deoxygenated water in the treated water storage unit 2 obtained in this way is sent to a later stage (not shown) by the pump 8 through the treatment liquid transfer pipe 7 provided at the lower part of the treatment liquid storage unit 2. It is.
[0014]
Next, another embodiment according to the present invention will be described with reference to the accompanying drawings.
FIG. 2 is a conceptual diagram of a vacuum degassing apparatus according to another embodiment of the present invention.
The vacuum degassing apparatus 100 according to another embodiment of the present invention is the same as the embodiment of the present invention except for the configuration of the vacuum exhaust means 10 provided at the top of the vacuum degassing tower 1 (FIG. 1). ).
That is, the vacuum evacuation means 10 includes a condenser 10a disposed integrally with the vacuum degassing tower 1 on the upper part of the spraying device 6 in the vacuum degassing tower 1, and a tip portion communicating with the upper part of the condenser 10a. Is composed of a deaeration pipe 15 and a vacuum pump 16 connected to the demister 11. Inside the condenser 10a, a cooler 10b communicating with the cooling water supply pipe 13 and the cooling water discharge pipe 14 is provided.
Although detailed description including the operation of the vacuum degassing apparatus 100 configured as described above is omitted, the condensed liquid obtained by cooling and condensing the vapor of the raw solution to be treated 20 by the cooler 10b is directly in the vacuum degassing tower 1. It is the structure which flows down to the lower part of.
[0015]
【Effect of the invention】
The vacuum degassing apparatus according to the present invention described in detail above is configured so that the condensate of the raw liquid to be processed in the condenser flows down directly into the lower part of the vacuum degassing tower. The condensate discharge pipe 117 and the condensate reservoir 118 installed so as to have a height of water column of 10.33 m or more in order to maintain the vacuum in the lower part, and the relative distance between the vacuum deaeration tower and the condenser. The large-diameter deaeration pipe 115a is unnecessary, and the installation space and cost can be reduced by omitting these facilities.
Furthermore, the backflow contamination caused by the backflow of the outside air from the condensate reservoir, which has conventionally occurred, is eliminated.
Further, the vapor condensate of the raw solution to be treated in the condenser can be effectively used as the treatment liquid without being discarded.
Further, nitrogen gas or argon gas in a ratio of 0.001 to 0.5 volume flow rate with respect to the supply volume flow rate of the processing stock solution from an inert gas supply pipe provided in the space between the packed bed and the processing solution storage portion The process stock solution at a higher rate than the conventional method in which the inside of the vacuum degassing tower is simply evacuated while evacuating from the upper part of the vacuum degassing tower by continuously flowing an inert gas such as There is an excellent effect that has not been achieved so far, such as the ability to degas the gas such as dissolved oxygen therein to 5 ppb or less.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a vacuum degassing apparatus according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram of a vacuum degassing apparatus according to another embodiment of the present invention.
FIG. 3 is a conceptual diagram of a conventional vacuum degassing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,101 Vacuum deaeration tower 2,102 Process liquid (water) storage part 2a, 102a Space part 3,103 Packing layer 4 Partition plate 5,105 Processed raw liquid (water) supply means 5a Supply liquid (water) pipe 6 Liquid (water) device 7, 107 Treatment liquid (water) transfer pipe 8, 108 Pump 9 Inert gas supply pipe 10 Vacuum exhaust means 10a, 110 condenser 10b, 110a Cooler 11 Demister 12, 112 Nozzle 13, 113 Cooling water Supply pipes 14, 114 Cooling water discharge pipes 15, 115, 115a Deaeration (bleeding) pipes 16, 116 Vacuum pumps 20, 120 (To be treated) Stock solution (water)
21, 121 Treatment liquid (deoxygenated water)
100, 200 Vacuum deaerator 117 Condensate (water) discharge pipe 118 Condensate (water) storage 122 Condensate (water)

Claims (3)

内部に充填層を有し、真空脱気により被処理原液中の溶存ガスを除去するための真空脱気塔と、
前記真空脱気塔に連して抽気するための脱気用配管及び真空ポンプからなり、前記真空脱気塔内を真空にするための真空排気手段と、
前記被処理原液を前記充填層の上部から供給散布する被処理原液供給手段と、
前記真空脱気塔の下部に設けられ、脱気処理された処理液を貯留する処理液貯留部と、を有する真空脱気装置であって、
更に、前記真空脱気塔と前記脱気用配管との間に介在して、前記真空脱気塔の上部の内部、又は前記真空脱気塔の上部の外部に連通して設けられ、前記被処理原液の蒸気を凝縮し、凝縮液を直接前記真空脱気塔の内部に流下させる凝縮器を有することを特徴とする真空脱気装置。
A vacuum degassing tower having a packed bed inside for removing dissolved gas in the raw solution to be treated by vacuum degassing;
Consists degassing pipe and a vacuum pump for the extraction and communicating with the vacuum degassing tower, a vacuum exhaust means for evacuating the vacuum degassing tower,
And the object to be processed solution feed means for feeding spraying the treated stock solution from the top of the packed bed,
A vacuum degassing apparatus having a processing liquid storage section that is provided at a lower portion of the vacuum degassing tower and stores a processing liquid that has been degassed,
Further, interposed between the vacuum degassing tower and the degassing pipe, and provided in communication with the inside of the upper part of the vacuum degassing tower or the outside of the upper part of the vacuum degassing tower, A vacuum degassing apparatus comprising a condenser for condensing the vapor of the processing raw solution and causing the condensate to flow directly into the vacuum degassing tower.
前記充填層と処理液貯留部との間の空間部に前記原液の供給体積流量に対し適宜の割合の不活性ガスを連続的に流入させる不活性ガス供給管を備えたことを特徴とする請求項1に記載の真空脱気装置。An inert gas supply pipe for continuously flowing an inert gas in an appropriate ratio with respect to a supply volume flow rate of the stock solution into a space between the packed bed and a processing liquid storage unit. Item 2. A vacuum degassing apparatus according to Item 1. 前記不活性ガスの流入割合は、原液の供給体積流量に対し0.001乃至0.5体積流量比であることを特徴とする請求項2に記載の真空脱気装置。The vacuum degassing apparatus according to claim 2, wherein the inflow ratio of the inert gas is 0.001 to 0.5 volume flow rate ratio with respect to the supply volume flow rate of the stock solution.
JP2001120224A 2001-04-18 2001-04-18 Vacuum deaerator Expired - Lifetime JP5024693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001120224A JP5024693B2 (en) 2001-04-18 2001-04-18 Vacuum deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001120224A JP5024693B2 (en) 2001-04-18 2001-04-18 Vacuum deaerator

Publications (2)

Publication Number Publication Date
JP2002316145A JP2002316145A (en) 2002-10-29
JP5024693B2 true JP5024693B2 (en) 2012-09-12

Family

ID=18970305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001120224A Expired - Lifetime JP5024693B2 (en) 2001-04-18 2001-04-18 Vacuum deaerator

Country Status (1)

Country Link
JP (1) JP5024693B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5803777B2 (en) 2012-03-29 2015-11-04 三浦工業株式会社 Closed drain recovery system
CN108190989B (en) * 2017-12-28 2020-12-08 华中科技大学 Ammonia nitrogen removal method and device suitable for high ammonia nitrogen wastewater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386505U (en) * 1986-11-25 1988-06-06
JP3348469B2 (en) * 1993-07-06 2002-11-20 日本錬水株式会社 Operating method of vacuum degassing tower
JP3315319B2 (en) * 1996-08-13 2002-08-19 オルガノ株式会社 Vacuum deaerator

Also Published As

Publication number Publication date
JP2002316145A (en) 2002-10-29

Similar Documents

Publication Publication Date Title
JPH0673603B2 (en) Method for removing dissolved oxygen in pure water or ultrapure water
JP3507317B2 (en) Distillation apparatus and distillation method
CN102119050B (en) The purification of air-flow
TWI745833B (en) System and method for recovering and purifying gas sterilant
JP5024693B2 (en) Vacuum deaerator
JP3224037B2 (en) Deoxygenation device
JPH0510964B2 (en)
JP3326075B2 (en) Vacuum deaerator
JPH08175810A (en) Purification apparatus for waste sulfuric acid
JP2002320959A (en) Method for removing dissolved oxygen in water and device therefor
JP4967594B2 (en) Cryopump and vacuum apparatus using the same
JP3348469B2 (en) Operating method of vacuum degassing tower
JP3444725B2 (en) Vacuum deaerator
JP3225571B2 (en) Vacuum degassing of dissolved oxygen in water
JPH06134446A (en) Method for manufacturing deaerated water and module for manufacture of deaerated water
JPH0263592A (en) Distillation device
JP3315319B2 (en) Vacuum deaerator
JPH07155744A (en) Production of ultrapure water
JPH06114229A (en) Exhaust gas treatment for towers and vessels
JP2004113949A (en) Vacuum evaporation type distillation apparatus
JP4021368B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JPS63267492A (en) Distillation apparatus
JP4543587B2 (en) Deaerator
JP3925778B2 (en) Method for separating volatile organic compounds in wastewater
JP2001120903A (en) Vacuum degassing tower

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5024693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term