Nothing Special   »   [go: up one dir, main page]

JP5018593B2 - Foam plastic container - Google Patents

Foam plastic container Download PDF

Info

Publication number
JP5018593B2
JP5018593B2 JP2008083608A JP2008083608A JP5018593B2 JP 5018593 B2 JP5018593 B2 JP 5018593B2 JP 2008083608 A JP2008083608 A JP 2008083608A JP 2008083608 A JP2008083608 A JP 2008083608A JP 5018593 B2 JP5018593 B2 JP 5018593B2
Authority
JP
Japan
Prior art keywords
container
cell
foamed
foam
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008083608A
Other languages
Japanese (ja)
Other versions
JP2009234627A (en
Inventor
健太郎 市川
宣久 小磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008083608A priority Critical patent/JP5018593B2/en
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to US12/919,560 priority patent/US8714401B2/en
Priority to PCT/JP2009/055759 priority patent/WO2009119549A1/en
Priority to CN201210175107.0A priority patent/CN102700111B/en
Priority to CN2009801110491A priority patent/CN101980921B/en
Priority to EP09724417.2A priority patent/EP2258624B1/en
Publication of JP2009234627A publication Critical patent/JP2009234627A/en
Application granted granted Critical
Publication of JP5018593B2 publication Critical patent/JP5018593B2/en
Priority to US14/142,174 priority patent/US9321198B2/en
Priority to US14/142,270 priority patent/US9283697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/26Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

本発明は、気泡が分布している容器壁を有する発泡プラスチック容器に関するものである。   The present invention relates to a foamed plastic container having a container wall in which bubbles are distributed.

現在、ポリエチレンテレフタレート(PET)に代表されるポリエステル容器は、透明性、耐熱性、ガス遮断性等の特性に優れており、種々の用途に広く使用されている。   Currently, polyester containers represented by polyethylene terephthalate (PET) are excellent in properties such as transparency, heat resistance and gas barrier properties, and are widely used in various applications.

一方、近年では、資源の再利用が強く求められ、上記のようなポリエステル容器に関しても、使用済みの容器を回収し、リサイクル樹脂として種々の用途への再利用が図られている。ところで、包装容器内に収容される内容物については、光により変質しやすいもの、例えばある種の飲料、医薬品、化粧品などは、顔料等の着色剤を樹脂に配合した樹脂組成物を用いて成形された不透明容器に収容されて提供される。しかるに、資源の再利用の点からは、着色剤の配合は望ましくなく(リサイクル樹脂に透明性を確保することが困難となってしまう)、このため、透明容器の使用が要求されているのが現状であり、従って、光変質性の内容物の収容に適した不透明性容器についてもリサイクル適性の改善が必要である。   On the other hand, in recent years, the reuse of resources has been strongly demanded, and with respect to the polyester container as described above, a used container is collected and reused for various purposes as a recycled resin. By the way, as for the contents stored in the packaging container, those that are easily altered by light, for example, certain beverages, pharmaceuticals, cosmetics, etc., are molded using a resin composition in which a colorant such as a pigment is blended in a resin. Provided in a sealed opaque container. However, from the viewpoint of resource reuse, it is not desirable to add a colorant (it would be difficult to ensure transparency in the recycled resin). For this reason, the use of a transparent container is required. Therefore, it is necessary to improve recyclability of opaque containers suitable for accommodating photo-altered contents.

着色剤を配合せずに遮光性(不透明性)を付与するためには、容器壁に気泡を存在させて発泡容器とすることが考えられ、このような発泡プラスチック容器に関しても種々提案されており、例えば、特許文献1には、発泡セルの平均径が勾配を有しており、表面側に存在する発泡セルの平均径が内部に存在する発泡セルの平均径よりも微小となっている発泡成形品が開示されている。
特開2005−246822号
In order to impart light-shielding properties (opacity) without blending colorants, it is conceivable to make bubbles in the container wall by making bubbles, and various proposals have been made regarding such foamed plastic containers. For example, in Patent Document 1, the average diameter of the foam cell has a gradient, and the average diameter of the foam cell existing on the surface side is smaller than the average diameter of the foam cell existing inside A molded article is disclosed.
JP-A-2005-246822

しかしながら、特許文献1で提案されているような発泡セルのセル径に傾斜勾配を有する成形体では、これをブローボトルなどの延伸により器壁が薄肉化された容器に適用した場合には、器壁の内部に大きな径の発泡セルが多数分布しているため、酸素等に対するバリア性が低くなり、内容物保護性が低下することが予想される。即ち、内容物に近い側に大きな発泡セルが分布していると、このセル中に含まれる酸素などのガスが容易に内容物に移行し、内容物の劣化を生じせしめることが考えられる。このような特性低下を回避するためには、器壁の中心に発泡セルの存在していない層を形成することが必要となってしまい、必要以上に器壁の厚みが増大してしまうこととなる。   However, in a molded body having a gradient in the cell diameter of the foamed cell as proposed in Patent Document 1, when this is applied to a container whose wall has been thinned by stretching such as a blow bottle, Since a large number of foam cells having a large diameter are distributed inside the wall, the barrier property against oxygen and the like is lowered, and the content protection property is expected to be lowered. That is, if large foam cells are distributed on the side close to the contents, it is considered that a gas such as oxygen contained in the cells easily moves to the contents and causes deterioration of the contents. In order to avoid such characteristic deterioration, it is necessary to form a layer in which the foam cell does not exist at the center of the vessel wall, and the thickness of the vessel wall increases more than necessary. Become.

従って、本発明は、従来公知の発泡容器にみられる発泡セルとは全く異なり、内容物保護性能の低下を生じせしめないようなセル径の傾斜勾配を有している発泡プラスチック容器を提供することにある。   Accordingly, the present invention provides a foamed plastic container having a gradient of cell diameter that is completely different from foamed cells found in conventionally known foamed containers and does not cause deterioration in the content protection performance. It is in.

本発明者等は、発泡剤を含有する発泡性樹脂を用いて射出成形によりプリフォームを成形し、このプリフォームを発泡させ、次いでブロー成形により発泡プラスチック容器を製造するとき、射出成形を特定の条件で行うときには、セル径が従来公知の発泡容器とは全く異なる傾斜勾配を有する発泡セルが生成するという新規な知見を見出し、本発明を完成させるに至った。   When the present inventors form a preform by injection molding using a foamable resin containing a foaming agent, foam the preform, and then manufacture a foamed plastic container by blow molding, the injection molding is specified. When carried out under the conditions, the inventors have found a new finding that a foam cell having a gradient of a completely different gradient from that of a conventionally known foam container is produced, and the present invention has been completed.

即ち、本発明によれば、発泡セルが分布したプラスチックにより形成された容器壁を有しており、該容器壁の面方向の発泡セルの長さが、容器外面から内面に向かって小さくなっていることを特徴とする発泡プラスチック容器が提供される。   That is, according to the present invention, it has a container wall formed of plastic in which foam cells are distributed, and the length of the foam cell in the surface direction of the container wall decreases from the outer surface of the container toward the inner surface. A foamed plastic container is provided.

本発明においては、
(1)容器の最内面側に位置する発泡セルの面方向長さが、容器の最外面側に位置する発泡セルの面方向長さの0.5倍以下であること、
(2)容器の最外面側に位置する発泡セルの面方向長さが250μm以下であること、
(3)ブロー成形容器であること、
が好適である。
In the present invention,
(1) The surface direction length of the foam cell located on the innermost surface side of the container is 0.5 times or less of the surface direction length of the foam cell located on the outermost surface side of the container,
(2) The surface direction length of the foamed cell located on the outermost surface side of the container is 250 μm or less,
(3) being a blow molded container,
Is preferred.

本発明の発泡プラスチック容器は、容器壁中に分布している発泡セルのセル径が傾斜勾配を有しており、特に、面方向の発泡セルの長さが、容器外面から内面に向かって小さくなっている。即ち、この発泡セルは、容器の最外面側において最大のセル径を有しており、最内面側において、最小のセル径を有している。
このような厚み方向についての傾斜勾配から理解されるように、本発明では、容器内容物に近い側に分布している発泡セルのセル径が最小となっているため、セル中に存在する酸素等のガスの内容物への移行が効果的に抑制されることが予想され、発泡セルの存在による内容物保護機能の低下を有効に回避することができる。
In the foamed plastic container of the present invention, the cell diameters of the foamed cells distributed in the container wall have a slope, and in particular, the length of the foamed cell in the surface direction decreases from the container outer surface toward the inner surface. It has become. That is, this foam cell has the largest cell diameter on the outermost surface side of the container and has the smallest cell diameter on the innermost surface side.
As can be understood from such a gradient in the thickness direction, in the present invention, since the cell diameter of the foamed cell distributed on the side closer to the container contents is the smallest, oxygen present in the cell It is expected that the transition of the gas to the content is effectively suppressed, and the deterioration of the content protection function due to the presence of the foam cell can be effectively avoided.

また、上記のようなセル径の傾斜勾配を有している本発明の発泡プラスチック容器は、不活性ガスが含浸されている樹脂溶融物を、実質上発泡が生じないように保圧をかけながら成形金型内に射出してプリフォームを成形し、このプリフォームを加熱して発泡を行なって容器成形用発泡プリフォームを成形し、かかるプリフォームをブロー成形することにより製造される。このように製造方法によって得られる発泡容器において、発泡セルのセル径に上記のような傾斜勾配が形成される理由は正確に解明されていないが、本発明者等は、次のように推定している。   In addition, the foamed plastic container of the present invention having the above-described cell diameter gradient is applied to the resin melt impregnated with the inert gas while holding the pressure so that foaming does not substantially occur. The preform is molded by injection into a molding die, the preform is heated and foamed to form a foam preform for container molding, and the preform is blow molded. In the foamed container obtained by the manufacturing method as described above, the reason why the above-described slope gradient is formed in the cell diameter of the foamed cell has not been clarified accurately, but the present inventors presume as follows. ing.

即ち、上記のよう保圧しながら射出成形を行うと、この段階での発泡が効果的に抑制されるため、次の段階で加熱発泡を行ったときに得られる発泡プリフォームでは、発泡セルが著しく微細で且つ均一な球形状のものとなっている。このような発泡プリフォームをブロー成形に供すると、発泡セルは器壁と共に面方向に引き伸ばされるが、器壁外面は、金型と接触して冷却固化されるため、面方向に引き伸ばされたセルは、そのままの形状で固定され、従って、面方向のセル径は大きなものとなる。一方、器壁の内面側では、温度の高い樹脂中に分布しているセルにブロー圧が加わるため、このブロー圧によってセルが押し潰されてしまう。この結果、内面側に分布している発泡セルのセル径は、外面側に分布している発泡セルに比して小さくなり、上述した傾斜勾配が形成されるものと考えられる。この場合において、発泡プリフォームでの発泡セルが大きいときには、このような傾斜勾配は形成されない。即ち、ブロー成形に際して、内面側に存在する発泡セルが大きいため、ブロー圧によっても容易に押し潰されず、ブロー圧がセル径にほとんど影響を及ぼさないものと思われる。   That is, if injection molding is performed while maintaining the pressure as described above, foaming at this stage is effectively suppressed. Therefore, in the foamed preform obtained when heat foaming is performed at the next stage, the foam cell is remarkably increased. It has a fine and uniform spherical shape. When such a foam preform is subjected to blow molding, the foam cell is stretched in the surface direction together with the vessel wall, but the outer surface of the vessel wall is cooled and solidified in contact with the mold, so the cell stretched in the surface direction. Is fixed as it is, and therefore the cell diameter in the surface direction becomes large. On the other hand, on the inner surface side of the vessel wall, a blow pressure is applied to the cells distributed in the resin having a high temperature, so that the cells are crushed by the blow pressure. As a result, it is considered that the cell diameter of the foam cells distributed on the inner surface side is smaller than that of the foam cells distributed on the outer surface side, and the above-described inclination gradient is formed. In this case, when the foam cell in the foam preform is large, such a gradient is not formed. That is, during the blow molding, the foam cells present on the inner surface side are large, so that they are not easily crushed by the blow pressure, and the blow pressure seems to have little effect on the cell diameter.

このように、本発明の発泡容器が有するセル径の傾斜勾配は、保圧をかけながら射出成形が行われ、得られたプリフォームを加熱発泡した後にブロー成形して得られる発泡容器に特有のものである。   As described above, the gradient of the cell diameter of the foam container of the present invention is unique to the foam container obtained by injection molding while applying pressure, and then blow-molding the obtained preform. Is.

<発泡プラスチック容器>
本発明の発泡プラスチック容器の最大延伸方向に沿った断面での容器壁構造を概略して示す図1を参照して、全体として10で示されている容器壁には、発泡セル1が分布しており、この図から理解されるように、発泡セル1は、最大延伸方向を指向した偏平形状を有しており、厚み方向に多重に重なりあって分布している。
<Foamed plastic container>
Referring to FIG. 1 schematically showing a container wall structure in a cross section along the maximum extending direction of the foamed plastic container of the present invention, foam cells 1 are distributed on the container wall indicated by 10 as a whole. As can be seen from this figure, the foam cell 1 has a flat shape oriented in the maximum stretching direction, and is distributed in multiple layers in the thickness direction.

本発明の容器では、容器外面側から内面側にいくにしたがって発泡セル1の面方向の長さLは次第に小さくなっており、容器の最外面側に位置する発泡セルの面方向長さLは最も大きく、最内面側に位置する発泡セルの面方向長さLは最も小さいものとなっている。即ち、このようなセル径の傾斜勾配を有する本発明では、容器内容物に最も近い容器の最内面側の発泡セルが最も微細となっているため、かかる発泡セル中に存在する酸素等のガスの容器内容物への移行を有効に抑制できることが期待され、発泡セルの存在による容器内容物の保護特性の低下を有効に回避することができる。例えば、容器の内面側に発泡セルが存在していない非発泡層を形成しなくとも、十分な内容物保護特性を確保することができる。 In the container of the present invention, the length L in the surface direction of the foam cell 1 gradually decreases from the container outer surface side to the inner surface side, and the surface direction length L 1 of the foam cell located on the outermost surface side of the container. is the largest, the surface direction length L 2 of the foamed cells positioned on the innermost surface side has a smallest. That is, in the present invention having such a gradient of cell diameter, since the foam cell on the innermost surface side of the container closest to the container contents is the finest, a gas such as oxygen present in the foam cell. It is expected that the transition to the container contents can be effectively suppressed, and the deterioration of the protective properties of the container contents due to the presence of the foamed cells can be effectively avoided. For example, sufficient content protection properties can be ensured without forming a non-foamed layer in which no foamed cells are present on the inner surface side of the container.

また、上記のような微細な発泡セル1を容器内面側に多く分布せしめることは、ブリスターや破泡等の発泡欠陥により内容物が発泡セル内に浸み込む不良を防止する上でも有利であり、また、発泡による軽量化を確保しつつ、発泡による強度低下を防止する上でも好適である。   In addition, it is advantageous to distribute a large amount of the fine foam cells 1 on the inner surface side of the container in order to prevent defects in which the contents penetrate into the foam cells due to foam defects such as blisters and bubble breakage. Moreover, it is also suitable for preventing a decrease in strength due to foaming while ensuring weight reduction by foaming.

本発明において、上記のような発泡セル1のセル径(面方向長さ)の傾斜勾配の程度は、容器壁10の厚みによっても異なるが、通常のボトル(一般に胴部厚みが150乃至400μm程度である)を考えると、容器の最内面側に位置する発泡セル1の面方向長さLが、容器の最外面側に位置する発泡セルの面方向長さLの0.5倍以下、特に0.4倍以下の範囲にあることが好適である。即ち、この傾斜勾配があまり緩やかであると、傾斜勾配による内容物保護機能の低下防止効果が十分に発揮されなくなってしまう。また、この傾斜勾配が必要以上に急であったり、容器の最外面側に位置する発泡セルの面方向長さLがあまり大きいと、強度やガス遮断性が低下することが予想されるため、容器の最内面側のセル1の面方向長さLは、容器の最外面側の面方向長さLの0.5倍以下であることが好適であり、さらに、面方向長さLは、250μm以下であることが好適である。また、上記のような発泡セル1の厚みはtは、その厚み方向によって異なり、最外表面側で最も厚いが、通常、最外面側での発泡セル1の厚みは75μm以下である。 In the present invention, the degree of the gradient of the cell diameter (length in the surface direction) of the foamed cell 1 as described above varies depending on the thickness of the container wall 10, but a normal bottle (generally, the body thickness is about 150 to 400 μm). Given a is), the plane direction length L 2 of the foamed cells 1 positioned on the innermost surface side of the container, less than 0.5 times the surface direction length L 1 of the foamed cells positioned on the outermost surface side of the container In particular, it is preferable to be in the range of 0.4 times or less. That is, if the inclination gradient is too gentle, the effect of preventing the content protection function from being lowered due to the inclination gradient is not sufficiently exhibited. Also, or a steep on the inclined slope more than necessary, when the plane direction length L 1 of the foamed cells positioned on the outermost surface side of the container is too large, strength and since the gas barrier properties is expected to decrease , the plane direction length L 2 of the cell 1 of the innermost surface side of the container is suitably not more than 0.5 times the surface direction length L 1 of the outermost surface side of the container, and the plane direction length L 1 is preferably 250 μm or less. The thickness of the foam cell 1 as described above varies depending on the thickness direction and is the thickest on the outermost surface side, but the thickness of the foam cell 1 on the outermost surface side is usually 75 μm or less.

尚、上記のような発泡セル1のセル径の傾斜勾配は、容器壁の延伸方向に沿った断面を電子顕微鏡観察することにより確認することができ、また、当該電子顕微鏡写真から、容器の最外面側或いは最内面側に位置する発泡セルについて、その面方向長さLの平均値を算出し、上記の傾斜勾配を求めることができる。このような傾斜勾配等は、後述する製造過程において、発泡条件(ガスの含浸量、加熱温度、加熱時間等)や延伸条件(ブロー圧、延伸倍率)等によって調整することができる。   The gradient of the cell diameter of the foamed cell 1 as described above can be confirmed by observing a cross section along the extending direction of the container wall with an electron microscope. About the foam cell located in the outer surface side or innermost surface side, the average value of the surface direction length L can be calculated, and said inclination gradient can be calculated | required. Such an inclination gradient or the like can be adjusted according to foaming conditions (gas impregnation amount, heating temperature, heating time, etc.), stretching conditions (blowing pressure, stretching ratio) and the like in the manufacturing process described later.

また、本発明のプラスチック容器においては、器壁の厚み方向に重なり合って存在している発泡セル1の個数を17個以上、好ましくは30個以上、最も好適には50個以上に設定することが好適である。即ち、プラスチック容器の器壁に発泡セル(即ち気泡)が存在する場合、発泡セルが容器壁を構成しているプラスチックとは異なる屈折率を示すため、厚み方向にオーバーラップするようにして、このように多数の発泡セル1を分布させることにより、光の散乱・反射が多重に発生し、この結果として、光線透過率が抑制され、高い遮光性が付与されることとなる。例えば、上記のような数の発泡セル1が厚み方向に多重にオーバーラップしていると、波長500nmの可視光線に対しての光線透過率は15%以下、特に10%以下、最も好適には5%以下となり、牛乳用紙パックと同レベルの遮光性を示すようになる。   In the plastic container of the present invention, the number of the foam cells 1 existing in the thickness direction of the vessel wall may be set to 17 or more, preferably 30 or more, and most preferably 50 or more. Is preferred. In other words, when foam cells (that is, bubbles) are present in the container wall of the plastic container, the foam cells exhibit a refractive index different from that of the plastic constituting the container wall. By distributing a large number of foamed cells 1 in this way, light scattering and reflection occur in multiple, and as a result, the light transmittance is suppressed and high light blocking properties are imparted. For example, when the number of foam cells 1 as described above are overlapped in the thickness direction, the light transmittance for visible light having a wavelength of 500 nm is 15% or less, particularly 10% or less, most preferably 5% or less, showing the same level of light shielding as a milk paper pack.

上述した発泡セル1が容器壁10中に形成されている本発明のプラスチック容器は、後述する不活性ガスを含浸させての物理発泡により製造される。従って、容器壁10を構成する樹脂としては、不活性ガスの含浸が可能である限り特に制限されず、それ自体公知の熱可塑性樹脂を使用することができる。例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1−ブテン、ポリ4−メチル−1−ペンテンあるいはエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等のα−オレフィン同志のランダムあるいはブロック共重合体、環状オレフィン共重合体などのオレフィン系樹脂;エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチレン・塩化ビニル共重合体等のエチレン・ビニル系共重合体;ポリスチレン、アクリロニトリル・スチレン共重合体、ABS、α−メチルスチレン・スチレン共重合体等のスチレン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル・塩化ビニリデン共重合体、ポリアクリル酸メチル、ポリメタクリル酸メチル等のビニル系樹脂;ナイロン6、ナイロン6−6、ナイロン6−10、ナイロン11、ナイロン12等のポリアミド樹脂;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート、及びこれらの共重合ポリエステル等のポリエステル樹脂;ポリカーボネート樹脂;ポリフエニレンオキサイド樹脂;ポリ乳酸など生分解性樹脂;などにより、容器壁10を形成することができる。勿論、これらの熱可塑性樹脂のブレンド物により、容器壁10が形成されていてもよい。特に容器の分野に好適に使用されるオレフィン系樹脂やポリエステル樹脂が好適であり、中でもPET等のポリエステル樹脂は、本発明の利点を最大限に発揮させる上で最適である。   The plastic container of the present invention in which the foam cell 1 described above is formed in the container wall 10 is manufactured by physical foaming impregnated with an inert gas described later. Accordingly, the resin constituting the container wall 10 is not particularly limited as long as it can be impregnated with an inert gas, and a known thermoplastic resin can be used. For example, low density polyethylene, high density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene or random of α-olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene Olefin resins such as block copolymers and cyclic olefin copolymers; ethylene / vinyl acetate copolymers, ethylene / vinyl alcohol copolymers, ethylene / vinyl chloride copolymers and other ethylene / vinyl copolymers; polystyrene Styrene resins such as acrylonitrile / styrene copolymer, ABS, α-methylstyrene / styrene copolymer; polyvinyl chloride, polyvinylidene chloride, vinyl chloride / vinylidene chloride copolymer, polymethyl acrylate, polymethacrylic acid Vinyl resins such as methyl; nylon 6, nylon Polyamide resins such as Ron 6-6, Nylon 6-10, Nylon 11 and Nylon 12; Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate, and copolyesters thereof; Polycarbonate resin; Polyphenol The container wall 10 can be formed of a dilene oxide resin; a biodegradable resin such as polylactic acid; Of course, the container wall 10 may be formed of a blend of these thermoplastic resins. In particular, olefinic resins and polyester resins that are preferably used in the field of containers are suitable, and among them, polyester resins such as PET are most suitable for maximizing the advantages of the present invention.

<発泡プラスチック容器の製造>
また、上述した本発明の遮光性プラスチック容器は、不活性ガスが含浸されている樹脂溶融物を調製し(ガス含浸工程)、ガスが含浸した樹脂溶融物を実質上発泡が生じないように成形金型内に射出して容器用プリフォームを成形し(射出成形工程)、このプリフォームを加熱して発泡を行なって容器成形用発泡プリフォームを得(発泡工程)、かかるプリフォームをブロー成形すること(ブロー成形工程)によって製造される。
<Manufacture of foam plastic containers>
In addition, the above-described light-shielding plastic container of the present invention is prepared such that a resin melt impregnated with an inert gas is prepared (gas impregnation step), and the resin melt impregnated with the gas is substantially free from foaming. A container preform is molded by injection into a mold (injection molding process), the preform is heated and foamed to obtain a foam preform for container molding (foaming process), and the preform is blow molded. It is manufactured by doing (blow molding process).

ガス含浸工程では、射出成形機における樹脂混練部(或いは可塑化部)において、加熱溶融状態に保持されている前述した熱可塑性樹脂の溶融物に所定圧力で不活性ガスを供給することにより行われる。この場合、熱可塑性樹脂溶融物の温度やガス圧力は、所望の個数の偏平状の発泡セル1が形成されるに十分な量のガスが溶解するように設定される。例えば、この温度が高いほど、ガスの溶解量は少ないが含浸速度は速く、温度が低いほどガスの溶解量は多いが、含浸には時間がかかることとなり、また、ガス圧が高いほど、ガス溶解量は多くなり、従って、発泡セル1の個数も多くなる。   The gas impregnation step is performed by supplying an inert gas at a predetermined pressure to the above-described thermoplastic resin melt held in a heated and melted state in a resin kneading section (or plasticizing section) in an injection molding machine. . In this case, the temperature and gas pressure of the thermoplastic resin melt are set so that a sufficient amount of gas is dissolved to form a desired number of flat foam cells 1. For example, the higher the temperature, the smaller the amount of gas dissolved, but the faster the impregnation rate. The lower the temperature, the larger the amount of gas dissolved, but the longer the impregnation takes, and the higher the gas pressure, The amount of dissolution increases, and therefore the number of foam cells 1 also increases.

射出成形工程では、保圧をしながら、実質上発泡が生じないように成形金型内に射出することが重要であり、この段階での発泡を可及的に抑制することにより、後段の発泡工程により生成する発泡セル1を微細で且つ均一なものとすることができる。発泡が生じないように射出するには、保圧をしながら射出を行うのがよい。即ち、所定量の樹脂溶融物を成形型内に射出した後、さらに射出を継続し、型内の樹脂溶融物を加圧することにより、発泡を有効に抑制することができる。   In the injection molding process, it is important to inject into the molding die so that foaming does not occur substantially while maintaining pressure. By suppressing foaming at this stage as much as possible, The foam cell 1 produced | generated by a process can be made fine and uniform. In order to inject so that foaming does not occur, it is preferable to inject while maintaining pressure. That is, after injecting a predetermined amount of the resin melt into the molding die, the injection can be continued and the resin melt in the die can be pressurized to effectively suppress foaming.

保圧の程度(保圧圧力及び時間)は、発泡が効果的に抑制し得るように、不活性ガスの含浸量や樹脂温度等に応じて適宜設定されるが、一般的には、軽量化率が5%以下となるように設定すればよい。即ち、この軽量化率が小さいほど、発泡が抑制されていることを示し、軽量化率が0%で発泡が完全に抑制されていることを示す。このプリフォームの軽量化率は、下記式により実験的に求めることができる。
軽量化率=[(M−M)/M]×100
式中、Mは、不活性ガスを含浸させずにそり、ひけ、ひずみ等の成形不良がないよう
射出することにより得られたプリフォームの重量を示し、
は、不活性ガスを含浸させて得られたガス含浸プリフォームの重量を示す、
で表される。即ち、保圧圧力を大きくするほど軽量化率は低下し、また、保圧時間を長くするほど、軽量化率は低くなる。本発明において、最も好適には軽量化率が0%となるように、保圧条件を設定するのがよい。
The degree of holding pressure (holding pressure and time) is appropriately set according to the amount of impregnation of the inert gas, the resin temperature, etc., so that foaming can be effectively suppressed. What is necessary is just to set so that a rate may be 5% or less. That is, the smaller the weight reduction ratio, the more foaming is suppressed, and the weight reduction ratio is 0%, and the foaming is completely suppressed. The weight reduction ratio of this preform can be experimentally obtained by the following formula.
Weight reduction rate = [(M 0 −M 1 ) / M 0 ] × 100
In the formula, M 0 represents the weight of the preform obtained by injection without impregnation with an inert gas so that there is no molding defect such as warpage, sink, and strain,
M 1 represents the weight of a gas-impregnated preform obtained by impregnating with an inert gas,
It is represented by That is, the weight reduction rate decreases as the holding pressure increases, and the weight reduction rate decreases as the holding time increases. In the present invention, it is most preferable to set the pressure holding condition so that the weight reduction rate is 0%.

尚、発泡容器を製造する場合、本発明の上記方法のように、プリフォームを射出成形によって成形する際に保圧を行うことは行われていないか保圧の程度を小さくして射出金型内で発泡するように射出するのが常識である。非発泡のプラスチック容器を製造する場合、そのプリフォームを射出成形によって成形する際に保圧を行うことは常套手段であるが、発泡により膨張せしめるため、保圧に技術的な意味がないからである。   In the case of producing a foam container, as in the above-described method of the present invention, when the preform is molded by injection molding, pressure holding is not performed, or the pressure is reduced and the injection mold It is common sense to inject so as to foam inside. When manufacturing non-foamed plastic containers, it is a common practice to hold the pressure when the preform is molded by injection molding, but since it expands by foaming, holding pressure has no technical meaning. is there.

このようにして成形されるボトル容器用プリフォームは試験管形状を有しており、この段階では、このプリフォームは、実質上非発泡状態にあり、かかるプリフォームを発泡させることにより、器壁中に発泡セルが形成された容器用発泡プリフォームが得られる。またプリフォームはカップ容器用の場合には円盤形状や椀形状のものを用いることもできる。   The bottle container preform thus formed has a test tube shape, and at this stage, the preform is substantially in a non-foamed state. A foam preform for a container having foam cells formed therein is obtained. Further, when the preform is used for a cup container, a disk-shaped or bowl-shaped one can also be used.

この発泡工程では、上記で得られた非発泡プリフォームを、オイルバスや赤外線ヒータなどを用いて加熱することにより発泡が行われる。即ち、この加熱により、不活性ガスが残存している非発泡プリフォームの内部において発泡を生じ、多数の発泡セルが器壁中に分布している発泡プリフォームが得られる。   In this foaming step, foaming is performed by heating the non-foamed preform obtained above using an oil bath or an infrared heater. That is, by this heating, foaming occurs inside the non-foamed preform in which the inert gas remains, and a foamed preform in which a large number of foamed cells are distributed in the vessel wall is obtained.

発泡のための加熱の温度は、非発泡プリフォームを形成している樹脂のガラス転移点以上であり、このような加熱により、樹脂中に溶解している不活性ガスの内部エネルギー(自由エネルギー)の急激な変化がもたらされ、相分離が引き起こされ、気泡として樹脂体と分離するため発泡が生じることとなる。尚、この加熱温度は、当然、発泡プリフォームの変形を防止するために、融点以下、好ましくは200℃以下とするのがよい。この加熱温度が高すぎると、加熱後急激に発泡するためセル径の制御が難しくなり、外観も悪化し、さらには胴部の結晶化が進みブロー成形性が低下する問題が発生する。   The heating temperature for foaming is equal to or higher than the glass transition point of the resin forming the non-foamed preform. By such heating, the internal energy (free energy) of the inert gas dissolved in the resin A sudden change occurs, phase separation is caused, and foaming occurs due to separation from the resin body as bubbles. Of course, this heating temperature should be below the melting point, preferably below 200 ° C., in order to prevent deformation of the foamed preform. If the heating temperature is too high, the cell diameter is difficult to control because of the rapid foaming after the heating, the appearance is deteriorated, and further, the crystallization of the body portion proceeds and the blow moldability is deteriorated.

上記のようにして発泡プリフォームでは、その器壁の断面構造を示す図2から理解されるように、器壁中に形成される発泡セル1a(以下、球状発泡セルと呼ぶことがある)は実質的に球形状であり、等方に分布している。このため、この段階では、遮光性は発現しているが、発泡セル1aの厚み方向でのオーバーラップが所定の個数に至らない部分が生じていることもある。従って、容器壁の全体にわたって確実に一定の遮光性を生じせしめるためには後述するブロー成形による延伸によって、発泡セル同士を厚み方向で確実にオーバーラップさせることが必要である。   In the foamed preform as described above, as can be understood from FIG. 2 showing the sectional structure of the vessel wall, the foamed cell 1a formed in the vessel wall (hereinafter sometimes referred to as a spherical foamed cell) is It is substantially spherical and is distributed isotropically. For this reason, at this stage, although the light shielding property is expressed, there may be a portion where the overlap in the thickness direction of the foam cell 1a does not reach a predetermined number. Therefore, in order to ensure a certain light-shielding property over the entire container wall, it is necessary to ensure that the foamed cells overlap in the thickness direction by stretching by blow molding described later.

また、球状発泡セル1aのセル密度は、各種成形条件を調節することで制御できる。例えば、前述した不活性ガスの溶解量に依存し、この溶解量が多いほど、セル密度を高くし、また球状発泡セルの径を小さくすることができ、溶解量が少ないほど、セル密度は小さく、発泡セル1aの径は大きくなる。また、球状発泡セル1aの径は、上記の加熱時間により調整することができ、例えば、発泡のための加熱時間が長いほど、球状発泡セル1aの径は大きく、加熱時間が短いほど、球状発泡セル1aは小径となる。本発明においては、特に、保圧をかけながら射出を行うことで、射出成形工程での発泡が有効に抑制されているため、上記の条件設定により、極めて微細で且つ均一な粒度分布を有する発泡セルを分布させることができ、例えば、球状発泡セル1aのセル密度が10乃至1010cells/cm程度とし、平均径が5乃至50μm程度で且つ40μm以下の著しくシャープな粒度分布を有しているように球状発泡セル1aを分布させることができる。 Further, the cell density of the spherical foam cell 1a can be controlled by adjusting various molding conditions. For example, depending on the amount of dissolution of the inert gas described above, the greater the amount dissolved, the higher the cell density and the smaller the diameter of the spherical foamed cell. The smaller the amount dissolved, the smaller the cell density. The diameter of the foam cell 1a is increased. The diameter of the spherical foam cell 1a can be adjusted by the above heating time. For example, the longer the heating time for foaming, the larger the diameter of the spherical foam cell 1a and the shorter the heating time, the spherical foaming. The cell 1a has a small diameter. In the present invention, in particular, since the foaming in the injection molding process is effectively suppressed by performing the injection while applying pressure, the foaming having an extremely fine and uniform particle size distribution is achieved by the above-mentioned condition setting. The cells can be distributed, for example, the cell density of the spherical foam cell 1a is about 10 5 to 10 10 cells / cm 3 , the average diameter is about 5 to 50 μm, and it has a remarkably sharp particle size distribution of 40 μm or less. As shown, the spherical foamed cells 1a can be distributed.

上記のようにして得られる発泡プリフォームは、ブロー成形工程に付せられるが、このブロー成形工程では、樹脂のガラス転移温度以上、融点未満の温度に加熱された発泡プリフォームを所定のブロー金型内に配置し、延伸ロッドを伸張させて該プリフォームを延伸させながら、該プリフォーム内にエアーや窒素等の加圧ガスを吹き込んで膨張延伸させることにより、本発明の発泡プラスチック容器を得ることができる。   The foamed preform obtained as described above is subjected to a blow molding process. In this blow molding process, a foamed preform heated to a temperature not lower than the glass transition temperature of the resin and lower than the melting point is used as a predetermined blow metal. The foamed plastic container of the present invention is obtained by placing in a mold and expanding and stretching the preform by extending a stretching rod and blowing a pressurized gas such as air or nitrogen into the preform. be able to.

即ち、上記のようなブロー成形では、器壁と共に球状の発泡セル1aも引き伸ばされるため、図1に示されているように延伸方向にセル径の長い偏平形状の発泡セル1が形成されるが、既に述べたように、器壁外面ではブロー金型と接触して冷却固化され、面方向に引き伸ばされたセルは、そのままの形状で固定されるが、器壁の内面側では、温度の高い樹脂中に分布しているセルにブロー圧が加わるため、このブロー圧によって微細な球状の発泡セル1aが押し潰されてしまう。この結果、容器の最内面側の発泡セル1のセル径Lは、最外面側に分布している発泡セル1のセル径Lに比して小さくなり、上述した傾斜勾配が形成されることとなるのである。 That is, in the above blow molding, since the spherical foam cell 1a is stretched together with the vessel wall, a flat foam cell 1 having a long cell diameter in the stretching direction is formed as shown in FIG. As described above, the outer wall of the vessel wall is cooled and solidified by contacting with the blow mold, and the cell stretched in the surface direction is fixed in the same shape, but on the inner side of the vessel wall, the temperature is high. Since blow pressure is applied to the cells distributed in the resin, the fine spherical foamed cells 1a are crushed by the blow pressure. As a result, the cell diameter L 2 of the foamed cells 1 of the innermost surface side of the container is smaller than the cell diameter L 1 of the foamed cells 1 are distributed in the outermost surface side, the inclined slope is formed as described above It will be.

上記の説明から理解されるように、ブロー圧による容器内面側での球状の発泡セル1aの押し潰しは、球状の発泡セル1aが極めて微細に形成されているために生じる現象であり、この球状の発泡セル1aの径が大きい場合には、容器内面側でも、このような押し潰しは生じない。即ち、本発明におけるセル径の傾斜勾配は、前述した保圧しながらの射出成形によって発泡を抑えながら成形が行われ、この後に発泡が行われ、微細な球状発泡セル1aが均一に分布しており、このようなプリフォームをブロー成形することによって得られる特有の現象である。例えば、保圧をかけずに射出成形を行った場合には、射出成形時に発泡を生じてしまうために、球状発泡セル1aのセル径をコントロールすることができず、セル径のバラツキが大きく、しかも粗大な径のものが多く形成されることとなり、ブロー成形を行っても、容器内面側での球状発泡セル1aの押し潰れが生ぜず、従って、前述したセル径の傾斜勾配は発生しない。また、プラグアシスト成形のように、延伸は行われてもブローされない場合には、ブロー圧が加わらないため、やはり球状発泡セル1aの押し潰れが生ぜず、所定の傾斜勾配は発生しないのである。   As understood from the above description, the crushing of the spherical foam cell 1a on the inner surface side of the container by the blow pressure is a phenomenon that occurs because the spherical foam cell 1a is formed very finely. When the diameter of the foam cell 1a is large, such crushing does not occur even on the inner surface side of the container. That is, the gradient of the cell diameter in the present invention is performed while suppressing foaming by the above-described injection molding while holding pressure, and foaming is performed thereafter, and the fine spherical foamed cells 1a are uniformly distributed. This is a peculiar phenomenon obtained by blow molding such a preform. For example, when injection molding is performed without applying pressure, foaming occurs during injection molding, so the cell diameter of the spherical foam cell 1a cannot be controlled, and the variation in cell diameter is large. In addition, a large number of coarse diameters are formed, and even if blow molding is performed, the spherical foamed cells 1a are not crushed on the inner surface side of the container, and thus the aforementioned gradient of cell diameter does not occur. In addition, as in the plug assist molding, when the blow is not performed even if the drawing is performed, the blow pressure is not applied, so that the spherical foam cell 1a is not crushed and the predetermined gradient is not generated.

本発明において、ブロー成形は、それ自体公知の条件で行われ、例えば、軸方向(高さ方向)及び周方向の二軸方向での延伸倍率が2乃至4倍程度となるように延伸され、特に胴部壁の厚みが150乃至400μm程度の厚みとなるようにブロー成形が行われるが、セル径の傾斜勾配の程度の調整は、発泡プリフォーム中の球状発泡セル1aの径やセル密度などに応じて、延伸倍率やブロー圧を調整することにより容易に行うことができる。例えば、延伸倍率を大きくし且つブロー圧を高くすることにより、最外面側のセル径Lを大きくし且つ最内面側のセル径Lを小さくし、セル径の傾斜勾配を急なものとすることができ、この逆の場合には、セル径の傾斜勾配を緩やかなものとすることができる。また、延伸倍率を大きくするほど、全体的にセル径が大きくなるため、壁部の全体で厚み方向でのセル1のオーバーラップ数が安定して多くなり、安定した遮光性を確保する上で有利となる。 In the present invention, blow molding is performed under known conditions, for example, stretched so that the stretching ratio in the biaxial direction of the axial direction (height direction) and the circumferential direction is about 2 to 4 times, In particular, the blow molding is performed so that the thickness of the body wall is about 150 to 400 μm. The adjustment of the gradient of the cell diameter gradient, the diameter of the spherical foam cell 1a in the foam preform, the cell density, etc. Depending on the condition, the stretching ratio and the blow pressure can be adjusted easily. For example, by increasing the greatly and blow pressure the draw ratio, a smaller cell diameter L 2 of the greatly and innermost surface side cell diameter L 1 of the outermost surface side, and the inclination gradient of the cell diameter as steep In the reverse case, the gradient of the cell diameter can be made gentle. In addition, since the cell diameter increases as the stretching ratio increases, the number of overlaps of the cells 1 in the thickness direction in the entire wall portion increases stably, and in order to ensure stable light shielding properties. It will be advantageous.

尚、上述した方法によって本発明のプラスチック容器を製造するにあたっては、不活性ガスの溶解量が増大するにしたがい、樹脂のガラス転移点は直線的或いは指数関数的に減少する。また、ガスの溶解によって樹脂の粘弾性も変化し、例えばガス溶解量の増大によって樹脂の粘度が低下する。従って、このような不活性ガスの溶解量を考慮して、各種条件を設定すべきである。   When the plastic container of the present invention is manufactured by the above-described method, the glass transition point of the resin decreases linearly or exponentially as the dissolved amount of the inert gas increases. Further, the viscoelasticity of the resin also changes due to the dissolution of the gas. For example, the viscosity of the resin decreases due to an increase in the amount of dissolved gas. Therefore, various conditions should be set in consideration of the dissolved amount of the inert gas.

尚、上記のようにして製造される本発明のプラスチック容器では、前述した発泡セル1は、必ずしも容器の全体にわたって形成する必要はなく、例えば胴部及び底部の容器壁のみに発泡セル1が存在するようにすることもできる。例えば、容器口部となる部分(例えばボトルの首部やカップ容器のフランジ部分)には、発泡セル1を形成しないでおくこともできる。即ち、ボトルの首部には、螺子部が形成され、またカップ容器のフランジ部ではヒートシールが行われるため、これらの部分では、胴部や底部に比して高い強度や剛性が求められ、また、これらの部分では、あまり遮光性は要求されない。従って、これらの部分では、発泡セル1を形成させず、発泡による強度や剛性低下を抑えるようにしてもよい。尚、これらの部分に発泡セル1を形成させないようにするためには、例えば、前述した発泡工程において、非発泡プリフォームにおいて、容器の胴部及び底部に相当する部分のみを選択的に加熱して発泡セル1aを形成すればよい。   In the plastic container of the present invention manufactured as described above, the above-described foamed cell 1 does not necessarily have to be formed over the entire container. For example, the foamed cell 1 exists only on the container wall at the trunk and the bottom. You can also do it. For example, the foam cell 1 can be left unformed at a portion that becomes a container mouth (for example, a neck portion of a bottle or a flange portion of a cup container). That is, a screw part is formed in the neck part of the bottle, and heat sealing is performed in the flange part of the cup container. Therefore, these parts are required to have higher strength and rigidity than the body part and the bottom part. In these parts, light shielding properties are not so required. Therefore, in these portions, the foamed cells 1 may not be formed, and strength and rigidity reduction due to foaming may be suppressed. In order to prevent the foam cells 1 from being formed in these portions, for example, in the foaming process described above, in the non-foamed preform, only the portions corresponding to the body and bottom of the container are selectively heated. Thus, the foam cell 1a may be formed.

本発明においては、容器壁の内部に形成されている発泡セルのセル径が傾斜勾配を有しており、このセル径は、容器外面から内面に向かって小さくなっている。このため、容器内面側に位置する発泡セルが微細なものとなるため、容器内面側に存在する発泡セル1が抱き込んでいる酸素等のガスが容器内容物に移行することが有効に回避できるため、発泡によるガスバリア性の低下や内容物保護機能の低下を有効に防止することができるし、また、強度低下も有効に防止することができる。
さらに、厚み方向に一定の個数の発泡セルがオーバーラップするようにすることにより、優れた遮光性を確保することができ、光による変質を生じるような製品の容器として極めて有用であり、また着色剤を用いることなく、遮光性を発現させているため、リサイクル特性の点でも優れている。さらには、容器内面側に位置する発泡セルが微細なものとなるため、発泡による軽量化を有効に抑制することもでき、特に比重差による分別などの点からも有利である。
In the present invention, the cell diameter of the foam cell formed inside the container wall has an inclined gradient, and the cell diameter decreases from the container outer surface toward the inner surface. For this reason, since the foam cell located in the container inner surface side becomes fine, it is possible to effectively avoid the transfer of the gas such as oxygen contained in the foam cell 1 existing on the container inner surface side to the container contents. Therefore, it is possible to effectively prevent a decrease in gas barrier properties and a content protection function due to foaming, and it is also possible to effectively prevent a decrease in strength.
Furthermore, by making a certain number of foam cells overlap in the thickness direction, excellent light-shielding properties can be ensured, and it is extremely useful as a container for products that cause deterioration due to light. Since the light-shielding property is expressed without using an agent, the recycling property is also excellent. Furthermore, since the foamed cells located on the inner surface side of the container are fine, weight reduction due to foaming can be effectively suppressed, which is particularly advantageous from the standpoint of fractionation due to the difference in specific gravity.

本発明の優れた効果を次の実験例により説明する。
(実施例1)
ボトル用PET樹脂(固有粘度:0.84dl/g)を射出成形機に供給し、さらに射出成形機の加熱筒の途中から窒素ガスを0.15重量%供給しPET樹脂と混練して溶解させ、発泡しないよう保圧の程度を調整(保圧力60MPa、射出保圧時間22秒)して射出成形して冷却固化し、ガスは含浸しているが実質非発泡状態の試験管形状の容器用プリフォームを得た。得られたプリフォームにはまったく発泡セルは見られず、また発泡ガスを添加しない場合と比べると軽量化率は0%であった。
次いで、口部を除くプリフォーム胴部を赤外線ヒータにより加熱し発泡させた後、ただちにブロー成形し、内容量が約500mlの発泡ボトルを得た。ボトル胴部において容器上下方向に対して垂直方向断面を操作型電子顕微鏡(SEM)で観察したところ微細な扁平形状セルが多数形成されていた。
The excellent effect of the present invention will be described by the following experimental examples.
Example 1
PET resin for bottles (intrinsic viscosity: 0.84 dl / g) is supplied to the injection molding machine, and further, 0.15% by weight of nitrogen gas is supplied from the middle of the heating cylinder of the injection molding machine to knead and dissolve with PET resin. Adjusting the degree of holding pressure so as not to foam (holding pressure 60 MPa, injection holding time 22 seconds), injection-molded, cooled and solidified, for gas-impregnated test tube-shaped containers that are substantially non-foamed A preform was obtained. In the preform obtained, no foamed cells were found, and the weight reduction rate was 0% compared to the case where no foamed gas was added.
Next, the preform body excluding the mouth was heated and foamed by an infrared heater, and immediately blow-molded to obtain a foaming bottle having an internal volume of about 500 ml. When the cross section perpendicular to the vertical direction of the container in the bottle body was observed with an operation electron microscope (SEM), a large number of fine flat cells were formed.

さらにセル長さ分布について詳しく評価するために、断面写真上において容器の最内面および最外面側に形成されている薄いスキン層(非発泡層)を除いた発泡層について、容器壁厚み方向に10分割し、それぞれの領域を外面側から領域1、領域2・・・領域10(最内面側)として、それぞれに存在するセルについて容器面方向長さを測定して平均値をもとめた。その結果、表1のように面方向の発泡セルの長さが、容器外面から内面に向かって小さくなっていた。
また、発泡層の厚みに対して内面側、外面側それぞれ20%に相当する部分をそれぞれ外面層領域(領域1、領域2に相当)、内面層領域(領域9、領域10に相当)として区分し、その領域での平均セル長さの比を評価したところ、容器の内面側に位置する発泡セルの面方向長さは外面側に位置する発泡セルの面方向長さの0.07倍(=8.3÷118)となっており、明らかにセル長さに傾斜があることが示された。
Further, in order to evaluate the cell length distribution in detail, the foam layer excluding the thin skin layers (non-foamed layers) formed on the innermost surface and the outermost surface of the container on the cross-sectional photograph is 10 in the container wall thickness direction. By dividing each region from the outer surface side into region 1, region 2,... Region 10 (innermost surface side), the length in the container surface direction was measured for the cells existing in each region, and the average value was obtained. As a result, as shown in Table 1, the length of the foam cell in the surface direction was decreased from the outer surface of the container toward the inner surface.
Further, the portions corresponding to 20% of the inner layer side and the outer surface side with respect to the thickness of the foam layer are respectively classified as the outer surface layer region (corresponding to region 1 and region 2) and the inner surface layer region (corresponding to region 9 and region 10). Then, when the ratio of the average cell length in that region was evaluated, the length in the surface direction of the foamed cell located on the inner surface side of the container was 0.07 times the surface direction length of the foamed cell located on the outer surface side ( = 8.3 ÷ 118), clearly showing that the cell length has an inclination.

Figure 0005018593
Figure 0005018593

(実施例2)
窒素ガス添加量を0.10重量%とした以外は、実施例1と同様に発泡ボトルを成形し、セル長さについて評価を行った。結果、表2のとおり実施例1同様に面方向の発泡セルの長さが、容器外面から内面に向かって小さくなっていた。また、容器の内面側に位置する発泡セルの面方向長さは外面側に位置する発泡セルの面方向長さの0.35倍(=30.5÷88.0)であった。
(Example 2)
A foamed bottle was molded in the same manner as in Example 1 except that the amount of nitrogen gas added was 0.10% by weight, and the cell length was evaluated. As a result, as shown in Table 2, the length of the foam cell in the surface direction was reduced from the outer surface of the container toward the inner surface as in Example 1. Moreover, the surface direction length of the foam cell located in the inner surface side of the container was 0.35 times (= 30.5 ÷ 88.0) of the surface direction length of the foam cell located on the outer surface side.

Figure 0005018593
Figure 0005018593

(実施例3)
射出成形工程において、金型内をあらかじめ高圧ガスで充満しておき発泡特有のスワールマーク不良を抑制する手段(いわゆるカウンタープレッシャー法)を併用した以外は、実施例2とほぼ同様にして発泡ボトルを成形し、セル長さについて評価を行った。結果、表3のとおり実施例1、2同様に面方向の発泡セルの長さが、容器外面から内面に向かって小さくなっていた。また、容器の内面側に位置する発泡セルの面方向長さは外面側に位置する発泡セルの面方向長さの0.46倍(=46.0÷99.4)であった。
(Example 3)
In the injection molding process, the foam bottle was almost the same as in Example 2 except that the mold was prefilled with high-pressure gas and used together with a means for suppressing foam-specific swirl mark defects (so-called counter pressure method). Molded and evaluated for cell length. As a result, as shown in Table 3, the length of the foam cell in the surface direction was reduced from the outer surface of the container toward the inner surface as in Examples 1 and 2. Moreover, the surface direction length of the foam cell located in the inner surface side of the container was 0.46 times (= 46.0 ÷ 99.4) the surface direction length of the foam cell located on the outer surface side.

Figure 0005018593
Figure 0005018593

(比較例1)
射出成形工程において、プリフォームが発泡するよう充填量と保圧の程度を調整して(保圧力0.5MPa、射出保圧時間2秒、保圧をかけない状態で冷却時間20秒)射出した以外は実施例2と同様にプリフォームを成形した。得られたプリフォーム断面には発泡セルが見られ、またプリフォームの軽量化率は10.5%だった。次いで、実施例1と同様に発泡ボトルを成形し、セル長さについて評価を行った。結果、表4のとおり実施例1〜3のようにセル長さが外面から内面に向かって小さくなる顕著な傾向はみられず、また内面側のセルは実施例1〜3に比べて極めて大きなものであった。
(Comparative Example 1)
In the injection molding process, the filling amount and the holding pressure were adjusted so that the preform foamed (the holding pressure was 0.5 MPa, the injection holding time was 2 seconds, and the cooling time was 20 seconds without applying the holding pressure). A preform was molded in the same manner as in Example 2 except for the above. Foamed cells were found in the obtained preform cross section, and the weight reduction rate of the preform was 10.5%. Subsequently, the foaming bottle was shape | molded similarly to Example 1, and cell length was evaluated. As a result, as shown in Table 4, there is no significant tendency for the cell length to decrease from the outer surface toward the inner surface as in Examples 1 to 3, and the cells on the inner surface side are extremely large compared to Examples 1 to 3. It was a thing.

Figure 0005018593
Figure 0005018593

(比較例2)
ボトル成形後の発泡セルを小さくすることを狙いとして、ブロー工程前の加熱温度を約10℃低く設定した以外は比較例1と同様に発泡ボトルを成形し、セル長さについて評価を行った。結果、表5のとおり実施例1〜3のようにセル長さが外面から内面に向かって小さくなる顕著な傾向はみられず、また内面側のセルは実施例に比べて大きなものであった。
(Comparative Example 2)
With the aim of reducing the foam cell after bottle molding, a foam bottle was molded in the same manner as in Comparative Example 1 except that the heating temperature before the blowing process was set to be about 10 ° C., and the cell length was evaluated. As a result, as shown in Table 5, as in Examples 1 to 3, there was no significant tendency for the cell length to decrease from the outer surface toward the inner surface, and the cells on the inner surface side were larger than in the examples. .

Figure 0005018593
Figure 0005018593

(酸素バリア性能評価)
実施例、比較例とは別に発泡ガスを添加しないで射出成形したプリフォームをブローして得られた非発泡ボトルと実施例2および比較例2のボトルについて酸素バリア性能の評価を行った。結果、実施例2のボトルは非発泡ボトルと比べて酸素バリア性能が5%低下であるのに対して、比較例2のボトルは非発泡ボトルに比べて70%の大幅低下であった。
(Oxygen barrier performance evaluation)
The oxygen barrier performance of the non-foamed bottle obtained by blowing the injection-molded preform without adding the foaming gas separately from the Examples and Comparative Examples and the bottles of Example 2 and Comparative Example 2 were evaluated. As a result, the bottle of Example 2 had a 5% decrease in oxygen barrier performance compared to the non-foamed bottle, whereas the bottle of Comparative Example 2 had a significant decrease of 70% compared to the non-foamed bottle.

本発明の発泡プラスチック容器における容器壁の断面構造の一例を示す図。The figure which shows an example of the cross-section of the container wall in the foamed plastic container of this invention. 図1に示すプラスチック容器を製造するための発泡プリフォームの器壁断面構造の例を示す図。The figure which shows the example of the vessel wall cross-section of the foam preform for manufacturing the plastic container shown in FIG.

符号の説明Explanation of symbols

1:発泡セル
10容器壁
1: Foam cell 10 container wall

Claims (4)

発泡セルが分布したプラスチックにより形成された容器壁を有しており、該容器壁の面方向の発泡セルの長さが、容器外面から内面に向かって小さくなっていることを特徴とする発泡プラスチック容器。   A foamed plastic having a container wall formed of plastic in which foamed cells are distributed, and the length of the foamed cell in the surface direction of the container wall decreases from the outer surface of the container toward the inner surface. container. 容器の最内面側に位置する発泡セルの面方向長さが、容器の最外面側に位置する発泡セルの面方向長さの0.5倍以下である請求項1に記載の発泡プラスチック容器。   2. The foamed plastic container according to claim 1, wherein a length in a surface direction of the foamed cell located on the innermost surface side of the container is 0.5 times or less of a length in a surface direction of the foamed cell located on the outermost surface side of the container. 容器の最外面側に位置する発泡セルの面方向長さが250μm以下である請求項1または2に記載の発泡プラスチック容器。   The foamed plastic container according to claim 1 or 2, wherein the foamed cell located on the outermost surface side of the container has a surface length of 250 µm or less. ブロー成形容器である請求項1乃至3の何れかに記載の発泡プラスチック容器。   The foamed plastic container according to any one of claims 1 to 3, which is a blow molded container.
JP2008083608A 2008-03-27 2008-03-27 Foam plastic container Active JP5018593B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2008083608A JP5018593B2 (en) 2008-03-27 2008-03-27 Foam plastic container
PCT/JP2009/055759 WO2009119549A1 (en) 2008-03-27 2009-03-24 Stretched foam plastic container and process for producing the stretched foam plastic container
CN201210175107.0A CN102700111B (en) 2008-03-27 2009-03-24 Stretched and foamed plastic container and method of producing the same
CN2009801110491A CN101980921B (en) 2008-03-27 2009-03-24 Stretched foam plastic container and process for producing the stretched foam plastic container
US12/919,560 US8714401B2 (en) 2008-03-27 2009-03-24 Stretched and foamed plastic container and method of producing the same
EP09724417.2A EP2258624B1 (en) 2008-03-27 2009-03-24 Stretched foam plastic container and process for producing the stretched foam plastic container
US14/142,174 US9321198B2 (en) 2008-03-27 2013-12-27 Stretched and foamed plastic container and method of producing the same
US14/142,270 US9283697B2 (en) 2008-03-27 2013-12-27 Stretched and foamed plastic container and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083608A JP5018593B2 (en) 2008-03-27 2008-03-27 Foam plastic container

Publications (2)

Publication Number Publication Date
JP2009234627A JP2009234627A (en) 2009-10-15
JP5018593B2 true JP5018593B2 (en) 2012-09-05

Family

ID=41249098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083608A Active JP5018593B2 (en) 2008-03-27 2008-03-27 Foam plastic container

Country Status (1)

Country Link
JP (1) JP5018593B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584987B2 (en) * 2008-03-31 2014-09-10 東洋製罐株式会社 Non-foamed gas-impregnated molded body and foamed plastic container
EP2764978B1 (en) 2011-09-30 2019-01-02 Toyo Seikan Group Holdings, Ltd. Stretched foam plastic container and manufacturing method for same
JP5929082B2 (en) * 2011-09-30 2016-06-01 東洋製罐株式会社 Foamed stretched plastic container and manufacturing method thereof
JP5929085B2 (en) * 2011-10-07 2016-06-01 東洋製罐株式会社 Foam stretch container and method for producing the same
EP2842879B1 (en) 2012-04-23 2017-02-01 Toyo Seikan Group Holdings, Ltd. Foamed stretched plastic bottle
JP6167638B2 (en) * 2012-04-23 2017-07-26 東洋製罐株式会社 Foam stretched plastic bottle with excellent light shielding and specular gloss
JP6163850B2 (en) * 2012-04-23 2017-07-19 東洋製罐株式会社 Foam stretch plastic bottle
KR101731417B1 (en) 2012-10-22 2017-04-28 도요세이칸 그룹 홀딩스 가부시키가이샤 Olefin resin foam stretch molded body
JP6212932B2 (en) * 2013-05-02 2017-10-18 東洋製罐グループホールディングス株式会社 Composite foam container
KR102005292B1 (en) * 2017-07-27 2019-07-31 주식회사 휴비스 Foam sheet containing skin layer, preparation method thereof, and Food container comprising the same
JP7014788B2 (en) * 2018-12-28 2022-02-01 ヒューヴィス コーポレーション Effervescent sheet containing skin layer, its manufacturing method and food container containing it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839708B2 (en) * 2005-07-13 2011-12-21 東洋製罐株式会社 Plastic container with pearly appearance
JP2007154172A (en) * 2005-11-10 2007-06-21 Kaneka Corp Polypropylene-based resin foamed sheet, laminated foamed sheet, method of manufacturing polypropylene-based resin foamed sheet, and formed article therefrom

Also Published As

Publication number Publication date
JP2009234627A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5018593B2 (en) Foam plastic container
WO2009119549A1 (en) Stretched foam plastic container and process for producing the stretched foam plastic container
JP5584987B2 (en) Non-foamed gas-impregnated molded body and foamed plastic container
JP5414162B2 (en) Light-shielding plastic container
WO2013047262A1 (en) Stretched foam plastic container and manufacturing method for same
JP5533515B2 (en) Polyester expanded foam container
WO2013161813A1 (en) Foamed stretched plastic bottle
JP5929082B2 (en) Foamed stretched plastic container and manufacturing method thereof
JP5024166B2 (en) Foamed plastic molding and method for producing the same
JP4853110B2 (en) Manufacturing method of resin integrated molded body
JP5292593B2 (en) Method for producing stretched foam molded container and stretched foam container produced by the method
JP5239479B2 (en) Method for producing partially foamed co-injection molded body and partially foamed co-injection molded body
CN105164024B (en) composite foam container
JP5929101B2 (en) Foamed resin molded product
JP5954105B2 (en) Propylene-based resin foam stretch-molded body and method for producing the same
JP5929085B2 (en) Foam stretch container and method for producing the same
JP2006321887A (en) Resin foamed product and method for producing the same
JP6167638B2 (en) Foam stretched plastic bottle with excellent light shielding and specular gloss
JP6163850B2 (en) Foam stretch plastic bottle
JP5392425B2 (en) Preform for container and method for producing the same
JP5725124B2 (en) Manufacturing method of light-shielding plastic container
JP5970902B2 (en) Foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350