JP5006627B2 - Optical system and optical apparatus having the same - Google Patents
Optical system and optical apparatus having the same Download PDFInfo
- Publication number
- JP5006627B2 JP5006627B2 JP2006326867A JP2006326867A JP5006627B2 JP 5006627 B2 JP5006627 B2 JP 5006627B2 JP 2006326867 A JP2006326867 A JP 2006326867A JP 2006326867 A JP2006326867 A JP 2006326867A JP 5006627 B2 JP5006627 B2 JP 5006627B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- optical system
- refractive power
- optical
- curvature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lenses (AREA)
Description
本発明は光学系及びそれを有する光学機器に関し、特にレンズ全長が短く、コンパクトでありながらバックフォーカスが比較的長く、かつ製造がし易い、例えばビデオカメラやデジタルカメラ等の光学機器に好適なものである。 The present invention relates to an optical system and an optical apparatus having the optical system, and in particular, is suitable for an optical apparatus such as a video camera or a digital camera. It is.
近年、撮像素子を用いた小型のビデオカメラやデジタルカメラ等の撮像装置(光学機器)が種々と開発されている。このビデオカメラやデジタルカメラ等に搭載される光学系(レンズ系)として、例えば物体側(被写体側)から像側へ順に負、正、負、正レンズの4枚構成の光学系が知られている(特許文献1〜4参照)。 In recent years, various imaging devices (optical devices) such as small video cameras and digital cameras using an imaging element have been developed. As an optical system (lens system) mounted on this video camera, digital camera, etc., for example, there is known an optical system having four lenses of negative, positive, negative, and positive lenses in order from the object side (subject side) to the image side. (See Patent Documents 1 to 4).
特許文献1の光学系は物体側が凸面でメニスカス形状の負の屈折力の第1レンズと、両レンズ面が凸面の正の屈折力の第2レンズと、両レンズ面が凹面の第3レンズと、像側の面が非球面形状の正の屈折力の第4レンズの4枚のレンズより成っている。 The optical system of Patent Document 1 includes a first lens having a negative refractive power having a convex surface on the object side and a meniscus shape, a second lens having a positive refractive power having both lens surfaces convex, and a third lens having both surfaces concave. The image-side surface is made up of four lenses that are aspherical and have a fourth lens having a positive refractive power.
特許文献2の光学系は物体側から像側に順に、像側が凹面で負の屈折力の第1レンズと、絞りと、物体側が凸面で正の屈折力の第2レンズと、物体側が凹面で負の屈折力の第3レンズとを備えている。さらに像側が、近軸領域(中心領域)において像側に凸で、かつ、レンズ周辺に行くほど正の屈折力が弱くなるような非球面形状の第4レンズより成っている。 In the optical system of Patent Document 2, from the object side to the image side, the first lens having a negative refractive power and a concave surface on the image side, a second lens having a positive refractive power and a convex surface on the object side, and a concave surface on the object side. A third lens having a negative refractive power. Further, the image side is composed of an aspherical fourth lens that is convex on the image side in the paraxial region (center region) and whose positive refractive power decreases toward the periphery of the lens.
特許文献3の光学系は被写体側より像側に順に、被写体側が凸面でメニスカス形状の負の屈折力の第1レンズと、物体側が凸面の正の屈折力の第2レンズと、物体側が凹面の負の屈折力の第3レンズと、像側が凸面の正の屈折力の第4レンズより成っている。 In the optical system of Patent Document 3, in order from the subject side to the image side, a first lens having a negative refractive power having a convex surface on the subject side and a meniscus shape, a second lens having a positive refractive power having a convex surface on the object side, and a concave surface on the object side. The third lens having a negative refractive power and the fourth lens having a positive refractive power having a convex surface on the image side.
特許文献4の光学系は物体側より像側に順に、像側が凹面の負の屈折力の第1レンズ群と、開口絞りと、正の屈折力の第2レンズと、両レンズ面が凹面の負の屈折力の第3レンズと、像側が凸面の正の屈折力の第4レンズより成っている。
特許文献1の実施例では全系の焦点距離に比べて両レンズ面が凸面の第2レンズの厚みが大きく、レンズ系全体が大型化する傾向がある。 In the embodiment of Patent Document 1, the thickness of the second lens having convex surfaces on both lens surfaces is larger than the focal length of the entire system, and the entire lens system tends to be large.
特許文献2の実施例1−1、1−2では全系の焦点距離に比べて、第1レンズと第2レンズの間隔が大きくレンズ全長が長くなり、さらに第1レンズの外径も大きくなるため、レンズ系全体の小型化が難しい。 In Examples 1-1 and 1-2 of Patent Document 2, compared to the focal length of the entire system, the distance between the first lens and the second lens is large, the entire lens length is increased, and the outer diameter of the first lens is also increased. Therefore, it is difficult to reduce the size of the entire lens system.
また実施例2−1、2−2ではレンズ全長を短くする為に全系の焦点距離に比べ、第1レンズと第2レンズの間隔を近づけすぎている為、諸収差の補正が困難になり、諸収差を補正するために非球面を3面使用している。このため製造に対する敏感度が高くなっている。 In Examples 2-1 and 2-2, since the distance between the first lens and the second lens is too close compared to the focal length of the entire system in order to shorten the total lens length, it becomes difficult to correct various aberrations. Three aspherical surfaces are used to correct various aberrations. This increases the sensitivity to manufacturing.
特許文献3の実施例では諸収差を補正するために、非球面を5〜8面使用しており、製造に対する敏感度が高くなるため、製造が難しい。 In the example of Patent Document 3, 5 to 8 aspherical surfaces are used to correct various aberrations, and the sensitivity to manufacturing increases, so that manufacturing is difficult.
特許文献4の実施例では最終レンズの両面を非球面形状にしている。このため製造に対する敏感度が高くなる場合がある。 In the example of Patent Document 4, both surfaces of the final lens are aspherical. For this reason, the sensitivity with respect to manufacture may become high.
本発明はバックフォーカスが比較的長く、製造に対する敏感度が小さく、また組立が容易で、かつ画面中心から画面周辺に至るまで収差が良好に補正された小型の光学系及びそれを有する光学機器の提供を目的とする。 The present invention provides a compact optical system having a relatively long back focus, low sensitivity to manufacturing, easy assembly, and excellent aberration correction from the center of the screen to the periphery of the screen, and an optical apparatus having the same. For the purpose of provision.
本発明の光学系は、物体側から像側へ順に、像側が凹面でメニスカス形状の負の屈折力の第1レンズ、両レンズ面が凸面の正の屈折力の第2レンズ、両レンズ面が凹面の負の屈折力の第3レンズ、正の屈折力の第4レンズより構成される光学系であって、前記第1レンズと前記第2レンズの間隔をD2、全系の焦点距離をf、前記第1レンズの焦点距離をf1、前記第2レンズの焦点距離をf2、前記第1レンズの像側のレンズ面の曲率半径をR2、前記第2レンズの物体側のレンズ面の曲率半径をR3とするとき、
0.3<D2/f<0.4
1.4<|f1/f2|≦2.1599
0.4<R2/R3<1.0
なる条件を満足することを特徴としている。
The optical system of the present invention includes, in order from the object side to the image side, a first lens having a negative refractive power having a concave surface on the image side and a meniscus shape, a second lens having a positive refractive power having both lens surfaces convex, and both lens surfaces An optical system composed of a concave third lens having negative refractive power and a fourth lens having positive refractive power, wherein the distance between the first lens and the second lens is D2, and the focal length of the entire system is f The focal length of the first lens is f1, the focal length of the second lens is f2 , the radius of curvature of the lens surface on the image side of the first lens is R2, and the radius of curvature of the lens surface on the object side of the second lens. Is R3 ,
0.3 <D2 / f <0.4
1.4 <| f1 / f2 | ≦ 2.1599
0.4 <R2 / R3 <1.0
It is characterized by satisfying the following conditions.
本発明の光学機器は、
上記の光学系と、該光学系によって形成される像を受光する撮像素子を有することを特徴としている。
The optical instrument of the present invention is
It has the above-mentioned optical system and an image sensor for receiving an image formed by the optical system.
本発明によれば4枚のレンズ構成で簡易に組立可能で、沈胴長が短く、また前玉レンズ
が小さく、かつ画面中心から画面周辺に至るまで収差が良好に補正された小型の光学系及
びそれを有する光学機器を達成することができる。
According to the present invention, a compact optical system that can be easily assembled with a four-lens configuration, has a short retractable length, a small front lens, and a well-corrected aberration from the center of the screen to the periphery of the screen, and An optical instrument having it can be achieved.
以下、図面を用いて本発明の実施例を説明する。
[実施例]
Embodiments of the present invention will be described below with reference to the drawings.
[Example]
図1は本発明の参考例1のレンズ断面図、図2は本発明の参考例1の縦収差図である。図3は本発明の実施例1のレンズ断面図、図4は本発明の実施例1の縦収差図である。図5は本発明の参考例2のレンズ断面図、図6は本発明の参考例2の縦収差図である。図7は本発明の実施例2のレンズ断面図、図8は本発明の実施例2の縦収差図である。図9は本発明の実施例3のレンズ断面図、図10は本発明の実施例3の縦収差図である。 Figure 1 is a lens sectional view of Example 1 of the present invention, FIG. 2 is a longitudinal aberration diagram of Example 1 of the present invention. FIG. 3 is a lens cross-sectional view of Example 1 of the present invention, and FIG. 4 is a longitudinal aberration diagram of Example 1 of the present invention. Figure 5 is a lens sectional view of a reference example 2 of the present invention, FIG. 6 is a longitudinal aberration diagram of Example 2 of the present invention. 7 is a lens cross-sectional view of Example 2 of the present invention, and FIG. 8 is a longitudinal aberration diagram of Example 2 of the present invention. FIG. 9 is a lens cross-sectional view of Example 3 of the present invention, and FIG. 10 is a longitudinal aberration diagram of Example 3 of the present invention.
尚、レンズ断面図において左方が物体側(被写体側)で、右方が像側である。 In the lens cross-sectional view, the left side is the object side (subject side) and the right side is the image side.
各レンズ断面図においてGBは光学系(レンズ系)である。光学系GBは物体側から像側へ順に、像側が凹面でメニスカス形状の負の屈折力の第1レンズG1、両レンズ面が凸面の正の屈折力の第2レンズG2、両レンズ面が凹面の負の屈折力の第3レンズG3、正の屈折力の第4レンズG4を有している。各実施例と各参考例においては、上述のように4枚のレンズから構成される光学系のみを開示している。本発明の光学系は、光学的にパワーを持った部材(屈折レンズ、回折光学素子、凹面ミラー、凸面ミラー)としては、上述の4枚のレンズのみから構成されることが望ましい。勿論、絞りやフィルターや折り返しミラー(平面ミラー)等のように、光学的なパワーを持たない部材は含んでいても構わない。 In each lens sectional view, GB denotes an optical system (lens system) . In order optical science system GB from the object side to the image side, a first lens G1 having a negative refractive power and a meniscus shape image side concave, a second lens having a positive refractive power of both lens surfaces is convex G2, both lens surfaces A concave third lens G3 having negative refractive power and a fourth lens G4 having positive refractive power are provided. In each example and each reference example , only an optical system composed of four lenses as described above is disclosed. The optical system of the present invention is preferably composed of only the above-described four lenses as a member having optical power (refractive lens, diffractive optical element, concave mirror, convex mirror). Of course, a member having no optical power, such as a diaphragm, a filter, a folding mirror (plane mirror), or the like, may be included.
SはFナンバーを決定する絞り部材(開口絞り)であり、第1レンズG1と第2レンズG2の間または第2レンズG2と第3レンズG3の間に配置されている。 S is a diaphragm member (aperture diaphragm) that determines the F number, and is disposed between the first lens G1 and the second lens G2 or between the second lens G2 and the third lens G3.
GLは光学フィルター、フェースプレート、水晶ローパスフィルター、赤外カットフィルター等に相当する光学ブロックである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に相当する感光面が置かれる。 GL is an optical block corresponding to an optical filter, a face plate, a crystal low-pass filter, an infrared cut filter, or the like. IP is an image plane, and when used as a photographing optical system of a video camera or a digital still camera, a photosensitive surface corresponding to an imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is placed.
尚、縦収差図においてFnoはFナンバー、yは像高、dはd線、gはg線、CはC線、FはF線の収差を示す。Mはメリディオナル断面、Sはサジタル断面の収差である。またS.A.は球面収差、ASは非点収差、DISTは歪曲収差である。 In the longitudinal aberration diagrams, Fno is the F number, y is the image height, d is the d-line, g is the g-line, C is the C-line, and F is the F-line aberration. M is the aberration of the meridional section, and S is the aberration of the sagittal section. S. A. Is spherical aberration, AS is astigmatism, and DIST is distortion.
各実施例においては、第1レンズG1と第2レンズG2の間隔をD2、全系の焦点距離をf、該第1レンズG1の焦点距離をf1、該第2レンズG2の焦点距離をf2とする。このとき、
0.3<D2/f<0.4 ‥‥‥(1)
1.4<|f1/f2|≦2.1599‥‥‥(2)
なる条件を満足している。
In each embodiment, the distance between the first lens G1 and the second lens G2 is D2, the focal length of the entire system is f, the focal length of the first lens G1 is f1, and the focal length of the second lens G2 is f2. To do. At this time,
0.3 <D2 / f <0.4 (1)
1.4 <| f1 / f2 | ≦ 2.1599 (2)
Is satisfied.
次に上記の各条件式(1)〜(2)の技術的意味について説明する。 Next, the technical meaning of each of the conditional expressions (1) to (2) will be described.
条件式(1)、(2)は各々第1、第2レンズG1、G2の平行偏芯と傾き偏芯に対する敏感度の低減及びレンズの小型化に関する条件である。 Conditional expressions (1) and (2) are conditions relating to reduction in sensitivity to parallel and tilt decentering of the first and second lenses G1 and G2, and to miniaturization of the lens, respectively.
条件式(1)の下限値を越えると第1レンズG1と第2レンズG2のレンズ間隔が狭まり、主に像面湾曲、歪曲収差、倍率色収差などの補正が困難になる。さらに画面中心から画面周辺に至るまで良好なる光学性能を保つことが難しくなる。また製造及び組立て等に対する敏感度が高くなり、製造及び組立て等が困難になってくる。 When the lower limit of conditional expression (1) is exceeded, the distance between the first lens G1 and the second lens G2 becomes narrow, and it becomes difficult to mainly correct curvature of field, distortion, lateral chromatic aberration, and the like. Furthermore, it becomes difficult to maintain good optical performance from the center of the screen to the periphery of the screen. In addition, the sensitivity to manufacturing and assembly becomes high, and manufacturing and assembly become difficult.
条件式(1)の上限値を超えると全系の焦点距離に対してレンズ全長が長くなり、レンズ系全体の小型化の妨げになる。また沈胴を考慮した場合、沈胴する際のストローク長が長くなるため、沈胴した際の平行及び傾きのずれ量が大きくなり、光学性能の劣化につながる。 If the upper limit value of conditional expression (1) is exceeded, the total lens length becomes longer with respect to the focal length of the entire system, which hinders downsizing of the entire lens system. Also, when retracting is taken into account, the stroke length when retracting becomes long, so that the amount of deviation in parallel and tilt when retracting increases, leading to deterioration of optical performance.
条件式(2)の下限値を越えると第1レンズG1のパワー(屈折力)が強まり、敏感度が高くなり、製造及び組立て等が困難になる。また像面湾曲、非点収差等が多く生じてくる。また第1、第2レンズG1、G2をモールド成型する場合、曲率が大きくなり、製造が困難となる。また第1レンズG1または全体フォーカスをする際に至近のフォーカス性能が劣化する。 When the lower limit value of conditional expression (2) is exceeded, the power (refractive power) of the first lens G1 becomes strong, the sensitivity becomes high, and manufacturing and assembly become difficult. Further, a lot of curvature of field, astigmatism, etc. occur. In addition, when the first and second lenses G1 and G2 are molded, the curvature becomes large and the manufacture becomes difficult. Further, when performing the first lens G1 or the entire focus, the close focus performance is deteriorated.
条件式(2)の上限値を超えると第2レンズG2のパワーが強まり、主に球面・コマ・非点収差の補正が困難になる。 If the upper limit value of conditional expression (2) is exceeded, the power of the second lens G2 will increase, and it will be difficult to correct mainly spherical, coma, and astigmatism.
尚、望ましくは上述の各条件式(1)〜(2)の数値範囲を次の如く設定するのが良い。 Desirably, the numerical ranges of the conditional expressions (1) to (2) described above are preferably set as follows.
0.32<D2/f<0.397 ‥‥‥(1a)
1.5<|f1/f2|≦2.1599 ‥‥‥(2a)
また本実施例において、さらに望ましくは次の条件式(3)〜(8)のうち1以上を満足するのが良い。
0.32 <D2 / f <0.397 (1a)
1.5 <| f1 / f2 | ≦ 2.1599 (2a)
In the present embodiment, more preferably, one or more of the following conditional expressions (3) to (8) should be satisfied.
即ち、第3レンズG3の焦点距離をf3、第4レンズG4の焦点距離をf4、第1レンズの像側の面の曲率半径をR2、第2レンズの物体側の面の曲率半径をR3、像側の面の曲率半径をR4、第3レンズの像側の面の曲率半径をR6、第2レンズG2の中心肉厚をL2とする。このとき、
0.5<|f3/f4|<0.85 ‥‥‥(3)
0.4<R2/R3<1.0 ‥‥‥(4)
0.2<|R3/R4|<0.8 ‥‥‥(5)
0.35<R2/R6<0.65 ‥‥‥(6)
−0.9<f4/f1<−0.3 ‥‥‥(7)
0.1<L2/f<0.4 ‥‥‥(8)
なる条件を満足することである。
That is, the focal length of the third lens G3 is f3, the focal length of the fourth lens G4 is f4, the radius of curvature of the image side surface of the first lens is R2, the radius of curvature of the object side surface of the second lens is R3, The radius of curvature of the image side surface is R4, the radius of curvature of the image side surface of the third lens is R6, and the center thickness of the second lens G2 is L2. At this time,
0.5 <| f3 / f4 | <0.85 (3)
0.4 <R2 / R3 <1.0 (4)
0.2 <| R3 / R4 | <0.8 (5)
0.35 <R2 / R6 <0.65 (6)
−0.9 <f4 / f1 <−0.3 (7)
0.1 <L2 / f <0.4 (8)
To satisfy the following conditions.
次に上記の各条件式(3)〜(8)の技術的意味について説明する。 Next, the technical meaning of each of the conditional expressions (3) to (8) will be described.
条件式(3)は最終レンズ(第4レンズG4)からの光線の射出角を緩和するための条件である。 Conditional expression (3) is a condition for relaxing the emission angle of the light beam from the final lens (fourth lens G4).
レンズ系全体を小型化していくと最終レンズから射出する光線の射出角が大きくなり、撮像素子に入射する角度が大きくなる。これにより周辺光量落ちや色シェーディングの問題が生じる。 As the entire lens system is reduced in size, the emission angle of light emitted from the final lens increases, and the angle incident on the image sensor increases. This causes problems such as a decrease in peripheral light amount and color shading.
条件式(3)の下限値を越えると第4レンズG4の正のパワーが強くなり、バックフォーカスが短くなりすぎ、撮像素子に入射する光線の角度がきつくなるので良くない。 If the lower limit value of conditional expression (3) is exceeded, the positive power of the fourth lens G4 becomes strong, the back focus becomes too short, and the angle of the light ray incident on the image sensor is not good.
条件式(3)の上限値を越えると第3レンズG3の負のパワーが強くなり、バックフォーカスが長くなりすぎ、レンズ系全体の小型化を図るのが困難になる。 If the upper limit value of conditional expression (3) is exceeded, the negative power of the third lens G3 becomes strong, the back focus becomes too long, and it becomes difficult to reduce the size of the entire lens system.
条件式(4)は第1、第2レンズG1、G2の平行偏芯と傾き偏芯に対する敏感度の低減及びレンズの小型化に関する条件である。 Conditional expression (4) is a condition relating to a reduction in sensitivity to parallel eccentricity and inclination eccentricity of the first and second lenses G1 and G2 and a reduction in size of the lens.
条件式(4)の下限値を越えると第1、第2レンズG1、G2のパワー(屈折力)が強まり、敏感度が高くなり、製造及び組立て等が困難になる。また像面湾曲、非点収差等が多く生じてくる。また第1、第2レンズG1、G2をモールド成型する場合、曲率が大きくなり、製造が困難となる。また第1レンズG1または全体フォーカスをする際に至近のフォーカス性能が劣化する。 If the lower limit value of conditional expression (4) is exceeded, the power (refractive power) of the first and second lenses G1 and G2 will become stronger, the sensitivity will become higher, and manufacturing and assembly will become difficult. Further, a lot of curvature of field, astigmatism, etc. occur. In addition, when the first and second lenses G1 and G2 are molded, the curvature becomes large and the manufacture becomes difficult. Further, when performing the first lens G1 or the entire focus, the close focus performance is deteriorated.
条件式(4)の上限値を超えるとレンズ全長及び前玉レンズ径が大きくなり、レンズ系全体が大型化してしまう。 If the upper limit value of conditional expression (4) is exceeded, the total lens length and the front lens diameter become large, and the entire lens system becomes large.
条件式(5)は第2レンズG2の偏芯・傾き敏感度の低減、およびコマ収差を効果的に補正する条件式である。 Conditional expression (5) is a conditional expression for effectively reducing the decentration / inclination sensitivity of the second lens G2 and correcting coma.
条件式(5)の下限値を越えると第2レンズG2の物体側の面の曲率半径が小さくなり、相対的にG1レンズとの偏芯・傾きに対する敏感度が高くなるため、製造・組立が困難になる。 If the lower limit of conditional expression (5) is exceeded, the radius of curvature of the object-side surface of the second lens G2 becomes small, and the sensitivity to the eccentricity / tilt with the G1 lens becomes relatively high. It becomes difficult.
条件式(5)の上限値を越えると第2レンズG2の像面側の面の曲率半径が小さくなり、相対的に第3、第4レンズG3・G4との偏芯・傾きに対する敏感度が高くなるため、製造・組立が困難になる。 If the upper limit value of conditional expression (5) is exceeded, the radius of curvature of the image plane side surface of the second lens G2 becomes small, and the sensitivity to the eccentricity and inclination of the third and fourth lenses G3 and G4 is relatively high. Since it becomes high, manufacture and assembly become difficult.
さらに、条件式(5)の範囲にすることで、第2レンズG2の物体側の面で発生するコマ収差を第2レンズG2のR4面で打ち消すことができる。 Further, by setting the conditional expression (5) in the range, coma generated on the object side surface of the second lens G2 can be canceled out on the R4 surface of the second lens G2.
条件式(6)は第1、第3レンズG1、G3の製造及び組立て等に対する敏感度に関する条件である。 Conditional expression (6) is a condition regarding the sensitivity to the manufacture and assembly of the first and third lenses G1 and G3.
条件式(6)の下限値を越えると第3レンズG3の製造及び組立て等に対する敏感度が高くなり、製造や組み立て等が困難になる。条件式(6)の上限値を超えると第1レンズG1の製造及び組立て等に対する敏感度が高くなり、該第1レンズG1の沈胴などを考慮すると製造及び組立て等が困難になる。 If the lower limit value of conditional expression (6) is exceeded, the sensitivity of the third lens G3 to manufacture and assembly becomes high, making manufacture and assembly difficult. When the upper limit value of conditional expression (6) is exceeded, the sensitivity to the manufacture and assembly of the first lens G1 increases, and the manufacture and assembly of the first lens G1 becomes difficult when the collapse of the first lens G1 is taken into consideration.
条件式(7)は光線のレンズの小型化、射出角の緩和及び、歪曲・倍率色収差の補正に関する条件式である。 Conditional expression (7) is a conditional expression regarding miniaturization of the lens of the light beam, relaxation of the exit angle, and correction of distortion / magnification chromatic aberration.
歪曲は主に第1レンズG1及び、第4レンズG4で補正を行っているが、条件式(7)の下限値を越えると第1レンズG1のパワーに比べて、第4レンズG4のパワーが強まり、歪曲・倍率色収差が大きくなる。さらに、光線の射出角も大きくなるため、色シェーディングの問題も生じる。条件式(7)の上限値を越えると第4レンズG4のパワーに比べて第1レンズG1のパワーが強まり、バックフォーカスが長くなるため、小型化の妨げになる。 The distortion is mainly corrected by the first lens G1 and the fourth lens G4. However, if the lower limit of the conditional expression (7) is exceeded, the power of the fourth lens G4 is higher than the power of the first lens G1. Strengthening, distortion and lateral chromatic aberration increase. Further, since the light emission angle is increased, there is a problem of color shading. If the upper limit of conditional expression (7) is exceeded, the power of the first lens G1 becomes stronger than the power of the fourth lens G4, and the back focus becomes longer, which hinders downsizing.
条件式(8)は第2レンズG2の厚み(中心肉厚)に関する条件である。 Conditional expression (8) is a condition regarding the thickness (center thickness) of the second lens G2.
条件式(8)の下限値を越えるとレンズの厚みが薄くなるため、コバ厚の確保が困難になるので良くない。また非点収差の補正が困難になる。 If the lower limit value of conditional expression (8) is exceeded, the thickness of the lens becomes thin, so it is difficult to secure the edge thickness, which is not good. In addition, it becomes difficult to correct astigmatism.
条件式(8)の上限値を超えるとレンズの厚みが厚くなり、レンズ系全体の小型化を図るのが困難になる。 If the upper limit of conditional expression (8) is exceeded, the thickness of the lens will increase, making it difficult to reduce the size of the entire lens system.
また条件式(8)を満足すると条件式(1)との組み合わせにより、開口効率があがり、周辺光量を確保しやすくなるので良い。 Further, if the conditional expression (8) is satisfied, the combination with the conditional expression (1) may increase the aperture efficiency and easily secure the peripheral light amount.
尚、さらに望ましくは上述の各条件式(3)〜(8)の数値範囲を次の如く設定するのが良い。 More preferably, the numerical ranges of the conditional expressions (3) to (8) described above are set as follows.
0.5<|f3/f4|<0.83 ‥‥‥(3a)
0.4<R2/R3<0.9 ‥‥‥(4a)
0.2<|R3/R4|<0.77 ‥‥‥(5a)
0.38<R2/R6<0.65 ‥‥‥(6a)
−0.85<f4/f1<−0.35 ‥‥‥(7a)
0.1<L2/f<0.38 ‥‥‥(8a)
絞り部材Sは参考例1、実施例1、3では第2レンズG2と第3レンズG3の間に配置されている。これにより第1レンズG1を沈胴する場合、絞り部材Sを第2レンズG2の像側に配置できるため、カメラの沈胴長が短くなり、カメラのさらなる小型化を可能としている。
0.5 <| f3 / f4 | <0.83 (3a)
0.4 <R2 / R3 <0.9 (4a)
0.2 <| R3 / R4 | <0.77 (5a)
0.38 <R2 / R6 <0.65 (6a)
−0.85 <f4 / f1 <−0.35 (7a)
0.1 <L2 / f <0.38 (8a)
The diaphragm member S is disposed between the second lens G2 and the third lens G3 in Reference Example 1, Examples 1 and 3. Accordingly, when the first lens G1 is retracted, the diaphragm member S can be disposed on the image side of the second lens G2, so that the retracted length of the camera is shortened, and the camera can be further downsized.
参考例2、実施例2では絞り部材Sが第1レンズG1と第2レンズG2の間に配置されている。これにより射出角の緩和及び周辺光量の確保を容易としている。 In Reference Example 2 and Example 2 , the diaphragm member S is disposed between the first lens G1 and the second lens G2. This facilitates relaxation of the emission angle and securing of the peripheral light amount.
上述のように、レンズ面の曲率やパワー(屈折力)を適切に設定することにより、負、正、負、正レンズの4枚構成で、小型で収差の小さい光学系を得ることができる。また、本実施例によれば、簡易に組立が可能で、かつ沈胴長が短く、また前玉レンズが小さく、さらに画面周辺まで収差が良好に補正された小型の光学系を得ることができる。更に、光学系の開口効率が上がり、レンズ系の周辺光量を十分に多く確保できるため、比較的広画角な明るい光学系を得ることができる。 As described above, by appropriately setting the curvature and power (refractive power) of the lens surface, it is possible to obtain a small and small aberration optical system with a four-lens configuration of negative, positive, negative, and positive lenses. In addition, according to the present embodiment, it is possible to obtain a small optical system that can be easily assembled, has a short retractable length, has a small front lens, and has excellent aberrations corrected to the periphery of the screen. Furthermore, since the aperture efficiency of the optical system is increased and a sufficient amount of peripheral light can be secured in the lens system, a bright optical system having a relatively wide field angle can be obtained.
さらに各実施例では第1レンズG1と第2レンズG2の間隔を適切にすることにより、その間に反射面を持ったプリズム部材などを配置でき、光路を屈曲させれば、カメラの厚み方向(前後方向)のさらなる薄型化を図ることができる。 Furthermore, in each embodiment, by appropriately arranging the distance between the first lens G1 and the second lens G2, a prism member or the like having a reflecting surface can be arranged between them. If the optical path is bent, the thickness direction of the camera (front and rear) Direction) can be further reduced.
次に本発明の光学系を撮影光学系として用いたデジタルカメラ(光学機器)に適用した実施例を図11を用いて説明する。 Next, an embodiment in which the optical system of the present invention is applied to a digital camera (optical apparatus) using the photographing optical system will be described with reference to FIG.
図11において、20はカメラ本体、21は本発明の光学系によって構成された撮影光学系、22はカメラ本体に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光学変換素子)である。23は固体撮像素子22によって光電変換された被写体像に対応する情報を記録するメモリである。24は液晶ディスプレイパネル等によって構成され、固体撮像素子22上に形成された被写体像を観察するためのファインダである。 In FIG. 11, reference numeral 20 denotes a camera body, 21 denotes a photographing optical system constituted by the optical system of the present invention, 22 denotes a CCD sensor or CMOS sensor incorporated in the camera body and receiving a subject image formed by the photographing optical system 21. A solid-state imaging device (optical conversion device). A memory 23 records information corresponding to a subject image photoelectrically converted by the solid-state imaging device 22. Reference numeral 24 denotes a finder for observing a subject image formed on the solid-state image sensor 22, which includes a liquid crystal display panel or the like.
このように本発明の光学系をデジタルスチルカメラの撮影光学系に使用すれば、小型で高性能な撮像装置が実現できる。 As described above, when the optical system of the present invention is used in a photographing optical system of a digital still camera, a small and high-performance imaging device can be realized.
次に本発明の参考例1、実施例1、参考例2、実施例2、3に対応する数値実施例1〜5を示す。各数値実施例においてfは全系の焦点距離、fnoはFナンバー、si(i=1〜10)はi番目の面、Rは曲率半径、Dは空気間隔、Ndは各レンズのd線における材料の屈折率、νdは各レンズの材料のアッベ数である。 Next, Numerical Examples 1 to 5 corresponding to Reference Example 1, Example 1, Reference Example 2, Example 2, and 3 of the present invention are shown. In each numerical example, f is the focal length of the entire system, fno is the F number, si (i = 1 to 10) is the i-th surface, R is the radius of curvature, D is the air spacing, and Nd is the d-line of each lens. The refractive index of the material, νd, is the Abbe number of the material of each lens.
数値実施例2、3、4における間隔の値が一部、負の値となっているが、これは物体側から順に各部材の位置を示したためである。 The interval values in the numerical examples 2, 3, and 4 are partially negative values because the positions of the members are shown in order from the object side.
非球面形状は光軸方向にX軸、光軸と垂直な方向にH軸、光の進行方向を正としRを近軸曲率半径、kをコーニック係数(円錐定数)、非球面係数をA、B、C、Dとしたとき次の式で表される。またEーxは10ーxを示す。 The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, k is the conic coefficient (conical constant), and the aspheric coefficient is A, When B, C, and D are expressed by the following formula. E-x represents 10 -x .
また、前述の各条件式と数値実施例における諸数値との関係を表1に示す。
(数値実施例1)
Table 1 shows the relationship between the conditional expressions described above and the numerical values in the numerical examples.
(Numerical example 1)
非球面係数
*8
k -8.27514
A -0.01202
B -0.002158
C -0.00043
D 5.28E-05
(数値実施例2)
Aspheric coefficient
* 8
k -8.27514
A -0.01202
B -0.002158
C -0.00043
D 5.28E-05
(Numerical example 2)
非球面係数
*8
k -8.12166
A -0.01146
B 0.001554
C -0.00016
D 6.57E-06
(数値実施例3)
Aspheric coefficient
* 8
k -8.12166
A -0.01146
B 0.001554
C -0.00016
D 6.57E-06
(Numerical Example 3)
非球面係数
*8
k -7.5115
A -0.01032
B 0.001397
C -0.00012
D 5.61E-06
(数値実施例4)
Aspheric coefficient
* 8
k -7.5115
A -0.01032
B 0.001397
C -0.00012
D 5.61E-06
(Numerical example 4)
非球面係数
*8
k -4.30921
A -7.5115
B -0.01032
C 0.001397
D -0.00012
(数値実施例5)
Aspheric coefficient
* 8
k -4.30921
A -7.5115
B -0.01032
C 0.001397
D -0.00012
(Numerical example 5)
非球面係数
*8
k -4.54564
A -6.77419
B -0.00854
C 0.001004
D -0.00013
Aspheric coefficient
* 8
k -4.54564
A -6.77419
B -0.00854
C 0.001004
D -0.00013
GB 光学系
G1 第1レンズ
G2 第2レンズ
G3 第3レンズ
G4 第4レンズ
S 絞り
GL 光学ブロック
IP 像面
S.A. 球面収差
AS 非点収差
DIST 歪曲収差
d d線
g g線
M メリディオナル像面
S サジタル像面
Y 撮像面の半対角長
Fno Fナンバー
GB optical system G1 first lens G2 second lens G3 third lens G4 fourth lens S stop GL optical block IP image surface A. Spherical aberration AS Astigmatism DIST Distortion aberration d d-line g g-line M Meridional image plane S Sagittal image plane
Y Half-diagonal length of imaging surface Fno F number
Claims (5)
0.3<D2/f<0.4
1.4<|f1/f2|≦2.1599
0.4<R2/R3<1.0
なる条件を満足することを特徴とする光学系。 In order from the object side to the image side, the first lens having a negative refractive power having a concave surface on the image side and a meniscus shape, the second lens having a positive refractive power having both lens surfaces convex, and the negative refractive power having both surfaces concave and convex. An optical system comprising a third lens and a fourth lens having a positive refractive power, wherein the distance between the first lens and the second lens is D2, the focal length of the entire system is f, and the focal point of the first lens When the distance is f1, the focal length of the second lens is f2 , the radius of curvature of the image side lens surface of the first lens is R2, and the radius of curvature of the object side lens surface of the second lens is R3 ,
0.3 <D2 / f <0.4
1.4 <| f1 / f2 | ≦ 2.1599
0.4 <R2 / R3 <1.0
An optical system characterized by satisfying the following conditions.
0.5<|f3/f4|<0.85
なる条件を満足することを特徴とする請求項1に記載の光学系。 When the focal length of the third lens is f3 and the focal length of the fourth lens is f4,
0.5 <| f3 / f4 | <0.85
The optical system according to claim 1, wherein the following condition is satisfied.
0.2<|R3/R4|<0.8
なる条件を満足することを特徴とする請求項1または2に記載の光学系。 When the radius of curvature of the lens surface on the image side of the second lens is R4 ,
0.2 <| R3 / R4 | <0.8
Optical system according to claim 1 or 2, characterized by satisfying the following condition.
0.35<R2/R6<0.65
なる条件を満足することを特徴とする請求項1から3のいずれか1項に記載の光学系。 When the radius of curvature of the lens surface on the image side of the front Symbol third lens is R6,
0.35 <R2 / R6 <0.65
Optical system according to any one of claims 1 to 3, characterized by satisfying the following condition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006326867A JP5006627B2 (en) | 2006-12-04 | 2006-12-04 | Optical system and optical apparatus having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006326867A JP5006627B2 (en) | 2006-12-04 | 2006-12-04 | Optical system and optical apparatus having the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008139644A JP2008139644A (en) | 2008-06-19 |
JP2008139644A5 JP2008139644A5 (en) | 2010-01-07 |
JP5006627B2 true JP5006627B2 (en) | 2012-08-22 |
Family
ID=39601170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006326867A Expired - Fee Related JP5006627B2 (en) | 2006-12-04 | 2006-12-04 | Optical system and optical apparatus having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5006627B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8872953B2 (en) | 2009-10-30 | 2014-10-28 | Sony Corporation | Solid-state imaging device, manufacturing method thereof, camera, and electronic device |
JP5370109B2 (en) | 2009-12-02 | 2013-12-18 | 株式会社リコー | Imaging lens and imaging apparatus |
CN105137573B (en) * | 2015-09-11 | 2017-07-25 | 舜宇光学(中山)有限公司 | A kind of day and night wide-angle focuses overall plastic monitoring camera |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05210047A (en) * | 1992-01-07 | 1993-08-20 | Olympus Optical Co Ltd | Wide angle lens |
JP4694014B2 (en) * | 2001-03-16 | 2011-06-01 | Hoya株式会社 | Endoscope imaging device |
-
2006
- 2006-12-04 JP JP2006326867A patent/JP5006627B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008139644A (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3709148B2 (en) | Zoom lens system | |
US7715121B2 (en) | Optical system and optical apparatus including optical system | |
JP5252842B2 (en) | Imaging lens | |
US7738183B2 (en) | Zoom lens and image pickup apparatus having the same | |
JP4030743B2 (en) | Zoom lens system | |
JP2019144430A (en) | Image capturing lens | |
JP4173977B2 (en) | Zoom lens system | |
JP2004177435A (en) | Wide angle lens, camera and projection display device | |
CN111913274A (en) | Imaging optical system and imaging device | |
JP2005321426A (en) | Zoom lens | |
JP4981466B2 (en) | Optical system and imaging apparatus having the same | |
JP2008158413A (en) | Imaging lens and imaging apparatus having same | |
JP5000577B2 (en) | Camera head optical system | |
JP2003131126A (en) | Wide angle lens | |
JP4890870B2 (en) | Imaging lens and imaging apparatus having the same | |
JP5395495B2 (en) | Variable magnification optical system | |
JPH09230232A (en) | Retrofocus lens | |
JP2003149548A (en) | Simply constituted single focal point lens | |
JP5305831B2 (en) | Imaging optics | |
JP4794915B2 (en) | Zoom lens and imaging apparatus having the same | |
KR101880633B1 (en) | Zoom lens and photographing device having the same | |
JP3295027B2 (en) | Retrofocus type large aperture ratio wide-angle lens | |
JP4827454B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5037960B2 (en) | Optical system and imaging apparatus having the same | |
JP5006627B2 (en) | Optical system and optical apparatus having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091116 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120522 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120525 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150601 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5006627 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150601 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |