Nothing Special   »   [go: up one dir, main page]

JP5005227B2 - Photodetection element and method for manufacturing photodetection element - Google Patents

Photodetection element and method for manufacturing photodetection element Download PDF

Info

Publication number
JP5005227B2
JP5005227B2 JP2006024822A JP2006024822A JP5005227B2 JP 5005227 B2 JP5005227 B2 JP 5005227B2 JP 2006024822 A JP2006024822 A JP 2006024822A JP 2006024822 A JP2006024822 A JP 2006024822A JP 5005227 B2 JP5005227 B2 JP 5005227B2
Authority
JP
Japan
Prior art keywords
impurity region
region
type
impurity
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006024822A
Other languages
Japanese (ja)
Other versions
JP2007207990A (en
Inventor
義磨郎 藤井
浩二 岡本
坂本  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2006024822A priority Critical patent/JP5005227B2/en
Publication of JP2007207990A publication Critical patent/JP2007207990A/en
Application granted granted Critical
Publication of JP5005227B2 publication Critical patent/JP5005227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Description

本発明は、光検出素子と、光検出素子の製造方法とに関する。   The present invention relates to a light detection element and a method for manufacturing the light detection element.

近年、ホトダイオード等の光検出素子のうち、アノード電極及びカソード電極の両極を同一面に設けた光検出素子が、例えば特許文献1等に開示されている。このような光検出素子の一例(断面図)を、図6に示す。図6に示す光検出素子100は、支持基板90上に、絶縁層91、n型埋込み層92及びn型層93が順に積層されている。n型層93の表層にはp型層94が設けられており、p型層94は、n型層93上に設けられた絶縁膜95の開口を通してアノード電極96と接続されている。また、カソード電極97とn型埋込み層92とを電気的に接続するために、n型層93の表面からn型埋込み層92まで達するn型接続層98が形成されている。このn型接続層98は、n型層93の表面からイオン注入により(すなわちn型を示す不純物を打ち込むことにより)形成される。
特開2002−176190号公報
In recent years, among photodetecting elements such as photodiodes, a photodetecting element in which both electrodes of an anode electrode and a cathode electrode are provided on the same surface has been disclosed in, for example, Patent Document 1. An example (cross-sectional view) of such a light detection element is shown in FIG. In the photodetector 100 shown in FIG. 6, an insulating layer 91, an n + type buried layer 92, and an n type layer 93 are sequentially stacked on a support substrate 90. A p + type layer 94 is provided on the surface layer of the n type layer 93, and the p + type layer 94 is connected to the anode electrode 96 through an opening of the insulating film 95 provided on the n type layer 93. Yes. Further, in order to electrically connect the cathode electrode 97 and the n + type buried layer 92, an n + type connection layer 98 extending from the surface of the n type layer 93 to the n + type buried layer 92 is formed. The n + type connection layer 98 is formed from the surface of the n type layer 93 by ion implantation (that is, by implanting an impurity indicating n type).
JP 2002-176190 A

上記構成の光検出素子100は、シリコン(Si)を素材としているため、化合物半導体を用いた素子に比較して低コストで作製可能である一方、応答速度を向上させるという市場要求を満たすためには、厚い空乏層が形成可能でなければならない。厚い空乏層の形成には、n型層93を厚くする必要がある。すなわち、n型埋込み層92を、n型層93の表面(p型層94)から十分離隔した位置に設ける必要がある。これに伴い、n型接続層98を、n型層93の表面からn型埋込み層92に至るよう深く設けなければならない。しかし、このような深いn型接続層98をイオン注入により設けるのは困難である。このため、上記のようなシリコンを素材とする光検出素子100に厚い空乏層を設けるのは困難であり、ゆえに応答速度の向上を図ることも困難となる。 The photodetection element 100 having the above-described configuration is made of silicon (Si), and thus can be manufactured at a lower cost than an element using a compound semiconductor. Must be capable of forming a thick depletion layer. In order to form a thick depletion layer, the n type layer 93 needs to be thickened. That is, the n + type buried layer 92 needs to be provided at a position sufficiently separated from the surface of the n type layer 93 (p + type layer 94). Along with this, the n + type connection layer 98 must be provided deeply from the surface of the n type layer 93 to the n + type buried layer 92. However, it is difficult to provide such a deep n + -type connection layer 98 by ion implantation. For this reason, it is difficult to provide a thick depletion layer in the photodetecting element 100 made of silicon as described above, and it is therefore difficult to improve the response speed.

そこで本発明は、アノード電極及びカソード電極の両電極が同一面に設けられた光検出素子に対し応答速度の向上を図ることを目的とする。   Accordingly, an object of the present invention is to improve the response speed with respect to a photodetecting element in which both an anode electrode and a cathode electrode are provided on the same surface.

本発明の光検出素子は、1)半導体基板と、2)上記半導体基板上に設けられた絶縁層と、3)上記絶縁層上に設けられておりこの絶縁層との接合面の反対側に形成された主面を有する半導体メサ部と、4)上記半導体メサ部の上記主面上に設けられた第1及び第2の電極とを備え、上記半導体メサ部は、上記絶縁層との接合面に設けられた第1導電型を示す第1の不純物領域と、上記第1の不純物領域上に設けられており第1導電型を示す不純物を上記第1の不純物領域よりも低濃度に含む低濃度不純物領域と、上記低濃度不純物領域内に設けられており第2導電型を示す不純物領域を含む光検出領域と、上記低濃度不純物領域内において上記光検出領域を囲むように上記主面に設けられており第1導電型を示す不純物を上記低濃度不純物領域よりも高濃度に含む第2の不純物領域と、上記低濃度不純物領域内において上記光検出領域を囲むようにこの半導体メサ部の側面に設けられており第1導電型を示す不純物を上記低濃度不純物領域よりも高濃度に含む第3の不純物領域とを有し、上記半導体基板には、この半導体基板を貫通し上記絶縁層に至る貫通孔が上記光検出領域と対応する位置に設けられ、上記第3の不純物領域は、上記第1の不純物領域及び上記第2の不純物領域と電気的に接続され、上記第1の電極は、上記光検出領域の第2導電型を示す上記不純物領域と電気的に接続され、上記第2の電極は、上記第2の不純物領域と電気的に接続されている。   The photodetecting element of the present invention includes 1) a semiconductor substrate, 2) an insulating layer provided on the semiconductor substrate, and 3) an insulating layer provided on the insulating layer on the opposite side of the bonding surface with the insulating layer. A semiconductor mesa portion having a formed main surface; and 4) first and second electrodes provided on the main surface of the semiconductor mesa portion, wherein the semiconductor mesa portion is bonded to the insulating layer. A first impurity region having a first conductivity type provided on the surface and an impurity having a first conductivity type provided on the first impurity region and having a lower concentration than the first impurity region. A light detection region including a low concentration impurity region; an impurity region provided in the low concentration impurity region and having a second conductivity type; and the main surface so as to surround the light detection region in the low concentration impurity region. The low-concentration impurity is provided as an impurity having the first conductivity type. A second impurity region having a concentration higher than that of the region, and a side surface of the semiconductor mesa portion so as to surround the photodetection region in the low concentration impurity region, and the impurity indicating the first conductivity type is reduced to the low concentration region. A third impurity region having a higher concentration than the concentration impurity region, and the semiconductor substrate is provided with a through hole penetrating the semiconductor substrate and reaching the insulating layer at a position corresponding to the light detection region. The third impurity region is electrically connected to the first impurity region and the second impurity region, and the first electrode is the impurity region indicating the second conductivity type of the photodetection region. The second electrode is electrically connected to the second impurity region.

本発明の光検出素子によれば、第1及び第2の電極が半導体メサ部の同一の表面(主面)上に設けられている。そして、第2の電極は、第2及び第3の不純物領域を介して第1の不純物領域と電気的に接続されている。第3の不純物領域は、半導体メサ部の側面に設けられているため、半導体メサ部が厚くても、第3の不純物領域を半導体メサ部の側面に容易に形成できる。このため、厚い半導体メサ部、すなわち、半導体メサ部の表面から第1の不純物領域までの距離(光検出領域の厚み)が大きな半導体メサ部が形成可能となる。よって、半導体メサ部内に厚い空乏層が形成できるため、応答速度の向上が図られることとなる。また、光検出領域に対応する位置の半導体基板には貫通孔が設けられている。このため、貫通孔から入射する光は、半導体基板を通過することなく、絶縁層及び第1の不純物領域を通過して低濃度不純物領域内(光検出領域内)に至る。よって、入射光の強度は半導体基板を通過する場合に比較して大きいため、光感度の向上が図られる。   According to the photodetecting element of the present invention, the first and second electrodes are provided on the same surface (main surface) of the semiconductor mesa portion. The second electrode is electrically connected to the first impurity region via the second and third impurity regions. Since the third impurity region is provided on the side surface of the semiconductor mesa portion, the third impurity region can be easily formed on the side surface of the semiconductor mesa portion even if the semiconductor mesa portion is thick. Therefore, a thick semiconductor mesa portion, that is, a semiconductor mesa portion having a large distance from the surface of the semiconductor mesa portion to the first impurity region (thickness of the light detection region) can be formed. Therefore, since a thick depletion layer can be formed in the semiconductor mesa portion, the response speed can be improved. In addition, a through hole is provided in the semiconductor substrate at a position corresponding to the light detection region. For this reason, the light incident from the through hole passes through the insulating layer and the first impurity region without passing through the semiconductor substrate, and reaches the low concentration impurity region (in the light detection region). Therefore, since the intensity of the incident light is larger than that when passing through the semiconductor substrate, the photosensitivity can be improved.

本発明の光検出素子では、上記第2の電極は、上記半導体メサ部の側面を覆っている。第2の電極は、半導体メサ部の側面を覆っているため、半導体メサ部の側面からの光の入射を遮断できる。このため、ノイズの低減が図られる。   In the photodetecting element of the present invention, the second electrode covers a side surface of the semiconductor mesa portion. Since the second electrode covers the side surface of the semiconductor mesa portion, it can block the incidence of light from the side surface of the semiconductor mesa portion. For this reason, noise is reduced.

本発明の光検出素子の製造方法は、1)半導体基板と、上記半導体基板上に設けられた絶縁層と、上記絶縁層上に設けられた第1導電型を示す第1の不純物領域と、上記第1の不純物領域上に設けられており第1導電型を示す不純物を上記第1の不純物領域よりも低濃度に含む低濃度不純物領域とを有する基板を用意する工程と、2)上記低濃度不純物領域内において第2導電型を示す不純物領域を含む光検出領域を形成する工程と、3)上記第1の不純物領域及び上記低濃度不純物領域をメサ状に整形することにより上記光検出領域を含む半導体メサ部を形成する工程と、4)上記半導体メサ部の表面において上記光検出領域を囲むように第1導電型を示す不純物を上記低濃度不純物領域よりも高濃度に拡散するかまたはイオン注入することにより第2の不純物領域を形成するとともに上記半導体メサ部の側面において上記光検出領域を囲むように第1導電型を示す不純物を上記低濃度不純物領域よりも高濃度に拡散するかまたはイオン注入することにより第3の不純物領域を形成し、上記第1の不純物領域、上記第2の不純物領域及び上記第3の不純物領域を電気的に接続させる工程と、5)上記光検出領域の第2導電型を示す上記不純物領域と電気的に接続するように上記半導体メサ部上に第1の電極を形成するとともに上記第2の不純物領域と電気的に接続するように半導体メサ部上に第2の電極を形成する工程と、6)上記半導体基板を貫通し上記絶縁層に至る貫通孔を上記光検出領域に対応する位置に形成する工程とを含む。   The method for manufacturing a photodetecting element of the present invention includes: 1) a semiconductor substrate, an insulating layer provided on the semiconductor substrate, a first impurity region having a first conductivity type provided on the insulating layer, Providing a substrate having a low-concentration impurity region provided on the first impurity region and including an impurity having a first conductivity type at a lower concentration than the first impurity region; Forming a photodetection region including an impurity region exhibiting a second conductivity type in the concentration impurity region; and 3) shaping the first impurity region and the low concentration impurity region into a mesa shape to form the photodetection region. A step of forming a semiconductor mesa part containing 4), or 4) diffusing an impurity indicating the first conductivity type at a higher concentration than the low-concentration impurity region so as to surround the photodetection region on the surface of the semiconductor mesa part, or Ion implantation As a result, a second impurity region is formed and an impurity indicating the first conductivity type is diffused or ion-implanted in a higher concentration than the low-concentration impurity region so as to surround the photodetection region on the side surface of the semiconductor mesa portion Forming a third impurity region and electrically connecting the first impurity region, the second impurity region, and the third impurity region; and 5) second conductivity of the photodetection region. A first electrode is formed on the semiconductor mesa portion so as to be electrically connected to the impurity region having a type, and a second electrode is formed on the semiconductor mesa portion so as to be electrically connected to the second impurity region. And 6) forming a through hole that penetrates the semiconductor substrate and reaches the insulating layer at a position corresponding to the light detection region.

本発明の光検出素子の製造方法によれば、第1の不純物領域及び低濃度不純物領域をエッチングする等して半導体メサ部を形成する場合には、絶縁層がエッチングストッパの機能を果たすこととなる。このため、半導体メサ部の形成が容易となる。更に、第3の不純物領域は、半導体メサ部の側面に設けられる。このため、半導体メサ部が厚くても、第3の不純物領域を半導体メサ部の側面に容易に形成できる。よって、厚い半導体メサ部、すなわち、半導体メサ部の表面から第1の不純物領域までの距離(光検出領域の厚み)が大きな半導体メサ部が形成可能となる。このように、半導体メサ部内に厚い空乏層が形成できるため、応答速度の向上が図られることとなる。また、半導体基板をエッチングする等して光検出領域に対応する位置に貫通孔を形成する場合には、絶縁層がエッチングストッパの機能を果たすこととなる。このため、貫通孔の形成が容易となる。   According to the method for manufacturing a photodetector element of the present invention, when the semiconductor mesa portion is formed by etching the first impurity region and the low-concentration impurity region, the insulating layer functions as an etching stopper. Become. This facilitates the formation of the semiconductor mesa portion. Furthermore, the third impurity region is provided on the side surface of the semiconductor mesa portion. For this reason, even if the semiconductor mesa portion is thick, the third impurity region can be easily formed on the side surface of the semiconductor mesa portion. Accordingly, a thick semiconductor mesa portion, that is, a semiconductor mesa portion having a large distance from the surface of the semiconductor mesa portion to the first impurity region (thickness of the light detection region) can be formed. Thus, since a thick depletion layer can be formed in the semiconductor mesa portion, the response speed is improved. In addition, when the through hole is formed at a position corresponding to the light detection region by etching the semiconductor substrate, the insulating layer serves as an etching stopper. For this reason, formation of a through-hole becomes easy.

本発明によれば、アノード電極及びカソード電極の両電極が同一面に設けられた光検出素子に対し応答速度の向上が図られる。   According to the present invention, the response speed can be improved with respect to the photodetecting element in which both the anode electrode and the cathode electrode are provided on the same surface.

以下、図面を参照して、本発明に係る好適な実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する場合がある。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same reference numerals are assigned to the same elements, and duplicate descriptions may be omitted.

図1及び図2を参照して、実施形態に係るホトダイオード1(光検出素子)の構成を説明する。ホトダイオード1は、被検出光の入射によりキャリアを生成し、生成したキャリアを検出信号の形で出力する。図1(a)は、実施形態に係るホトダイオード1の平面図であり、図1(b)は、図1(a)ホトダイオード1の底面図である。なお、図1(a)及び図1(b)には、複数のホトダイオード1が並列に設けられたホトダイオードアレイが示されている。図1(a)に示すように、ホトダイオード1は、半導体基板2と、半導体基板2上に設けられた半導体メサ部5とを有する。半導体基板2は、半導体基板2上に設けられた半導体メサ部5等を支持する例えばシリコン基板等であり、半導体メサ部5は、メサ状のn型層8(低濃度不純物領域)を含む半導体層である。 With reference to FIG.1 and FIG.2, the structure of the photodiode 1 (photodetection element) which concerns on embodiment is demonstrated. The photodiode 1 generates a carrier by incidence of light to be detected, and outputs the generated carrier in the form of a detection signal. FIG. 1A is a plan view of the photodiode 1 according to the embodiment, and FIG. 1B is a bottom view of the photodiode 1 in FIG. 1A and 1B show a photodiode array in which a plurality of photodiodes 1 are provided in parallel. As shown in FIG. 1A, the photodiode 1 includes a semiconductor substrate 2 and a semiconductor mesa portion 5 provided on the semiconductor substrate 2. The semiconductor substrate 2 is, for example, a silicon substrate or the like that supports the semiconductor mesa unit 5 provided on the semiconductor substrate 2, and the semiconductor mesa unit 5 includes a mesa-like n type layer 8 (low concentration impurity region). It is a semiconductor layer.

型層8は、n型(第1導電型)を示す不純物(例えば、砒素やリン等)を含む半導体層である。ホトダイオード1は、n型領域14(第2の不純物領域)及びp型領域16(第2導電型を示す不純物領域)と、入射光を検出する光検出領域S1とを更に有している。n型領域14及びp型領域16は、n型層8内において半導体メサ部5の主面(図2(a)等に示す表面M5)に設けられている。n型領域14は、p型領域16を表面M5上で囲むように(後述する光検出領域S1を囲むように)設けられている。n型領域14は、n型を示す不純物をn型層8よりも高濃度に含む半導体領域であり、p型領域16は、比較的高濃度(例えばn型層8よりも高濃度)のp型(第2導電型)を示す不純物(例えば、ボロン等)を含む半導体領域である。光検出領域S1は、n型層8内に設けられており、p型領域16と、p型領域16及びn型層8の境界に形成されたpn接合部とを含む領域である。 The n type layer 8 is a semiconductor layer containing an n-type (first conductivity type) impurity (for example, arsenic or phosphorus). The photodiode 1 further includes an n + type region 14 (second impurity region) and a p + type region 16 (impurity region showing the second conductivity type), and a light detection region S1 that detects incident light. . The n + -type region 14 and the p + -type region 16 are provided on the main surface (surface M5 shown in FIG. 2A, etc.) of the semiconductor mesa portion 5 in the n -type layer 8. The n + type region 14 is provided so as to surround the p + type region 16 on the surface M5 (so as to surround a photodetection region S1 described later). The n + -type region 14 is a semiconductor region containing an n-type impurity at a higher concentration than the n -type layer 8, and the p + -type region 16 is relatively high in concentration (for example, higher than the n -type layer 8). This is a semiconductor region containing an impurity (for example, boron) having a p-type (second conductivity type) concentration. Photodetection region S1 is, n - is provided in the mold layer 8, p + -type region 16, p + -type region 16 and the n - in the region including the pn formed in the boundary of the mold layer 8 junction is there.

また、ホトダイオード1は、半導体メサ部5の主面(表面M5)上に設けられたカソード電極12(第2の電極)及びアノード電極20(第1の電極)を更に有する。すなわち、カソード電極12及びアノード電極20は同一の面(表面M5)上に設けられている。カソード電極12及びアノード電極20は、例えばアルミニウム等の導電性の金属から成る。カソード電極12は、n型領域14を覆うように設けられている。カソード電極12とn型領域14とは電気的に接続されている。アノード電極20は、表面M5において長手方向の端部寄りに設けられている。p型領域16は、表面M5の中央付近に設けられており、アノード電極20の下部に至るまで延在している。p型領域16(光検出領域S1の一部)とアノード電極20とは電気的に接続されている。また、図1(b)に示すように、表面M5の反対側の表面M1には、被検出光の入射する光入射孔H1(貫通孔)の開口が設けられている。光入射孔H1は、p型領域16(光検出領域S1の一部)に対応する位置に設けられており、半導体基板2を貫通し絶縁層4に至る孔部である(図1(a)参照)。光入射孔H1は、100μm程度の径(直径)の円形の断面を有する略円筒状を成す。 The photodiode 1 further includes a cathode electrode 12 (second electrode) and an anode electrode 20 (first electrode) provided on the main surface (surface M5) of the semiconductor mesa unit 5. That is, the cathode electrode 12 and the anode electrode 20 are provided on the same surface (surface M5). The cathode electrode 12 and the anode electrode 20 are made of a conductive metal such as aluminum. The cathode electrode 12 is provided so as to cover the n + type region 14. The cathode electrode 12 and the n + type region 14 are electrically connected. The anode electrode 20 is provided near the end in the longitudinal direction on the surface M5. The p + type region 16 is provided near the center of the surface M5 and extends to the lower part of the anode electrode 20. The p + type region 16 (a part of the light detection region S1) and the anode electrode 20 are electrically connected. Further, as shown in FIG. 1B, the surface M1 opposite to the surface M5 is provided with an opening of a light incident hole H1 (through hole) through which the detected light enters. The light incident hole H1 is provided at a position corresponding to the p + type region 16 (a part of the light detection region S1), and is a hole that penetrates the semiconductor substrate 2 and reaches the insulating layer 4 (FIG. 1A )reference). The light incident hole H1 has a substantially cylindrical shape having a circular cross section with a diameter (diameter) of about 100 μm.

図2(a)は、図1(a)に示すI−I線に沿ってとられた断面から見たホトダイオード1を示す図であり、図2(b)は、図1(a)に示すII−II線に沿ってとられた断面から見たホトダイオード1を示す図である。図2(a)に示すように、光検出領域S1に対応する位置に設けられた光入射孔H1は、半導体基板2の表面M1から、半導体基板2のもう一方の表面M2に至る。また、ホトダイオード1は、絶縁層4、n型埋込み層6(第1の不純物領域)及び絶縁膜18を更に有する。絶縁層4上には半導体メサ部5が設けられており、半導体メサ部5は、n型埋込み層6とn型層8とを有する。半導体メサ部5の主面(表面M5)は、絶縁層4との接合面の反対側に形成されている。絶縁層4は、半導体基板2の表面M2上に設けられており、n型埋込み層6は、絶縁層4の表面M3上に設けられている(換言すれば、n型埋込み層6は、半導体メサ部5の上記絶縁層4との接合面に設けられている)。絶縁層4は、例えば酸化シリコン等から成り、被検出光が半導体基板2に入射した時に発生するキャリアがn型埋込み層6及びn型層8に流入するのを防ぐ。n型埋込み層6の表面M4上にはn型層8が設けられている。n型埋込み層6は、n型を示す不純物をn型層8よりも高濃度に含む半導体層である。 2A is a diagram showing the photodiode 1 viewed from a cross section taken along the line II shown in FIG. 1A, and FIG. 2B is a diagram shown in FIG. It is a figure which shows the photodiode 1 seen from the cross section taken along the II-II line. As shown in FIG. 2A, the light incident hole H1 provided at a position corresponding to the light detection region S1 extends from the surface M1 of the semiconductor substrate 2 to the other surface M2 of the semiconductor substrate 2. The photodiode 1 further includes an insulating layer 4, an n + -type buried layer 6 (first impurity region), and an insulating film 18. A semiconductor mesa portion 5 is provided on the insulating layer 4, and the semiconductor mesa portion 5 has an n + type buried layer 6 and an n type layer 8. The main surface (surface M <b> 5) of the semiconductor mesa unit 5 is formed on the side opposite to the bonding surface with the insulating layer 4. The insulating layer 4 is provided on the surface M2 of the semiconductor substrate 2, and the n + type buried layer 6 is provided on the surface M3 of the insulating layer 4 (in other words, the n + type buried layer 6 is The semiconductor mesa portion 5 is provided on the joint surface with the insulating layer 4). The insulating layer 4 is made of, for example, silicon oxide or the like, and prevents carriers generated when light to be detected is incident on the semiconductor substrate 2 from flowing into the n + -type buried layer 6 and the n -type layer 8. An n type layer 8 is provided on the surface M 4 of the n + type buried layer 6. The n + -type buried layer 6 is a semiconductor layer that contains an n-type impurity at a higher concentration than the n -type layer 8.

ホトダイオード1は、n型接続領域10(第3の不純物領域)を更に有しており、n型接続領域10は、n型層8内において光検出領域S1を囲むようにn型層8の側面M6に設けられている。n型接続領域10は、n型埋込み層6やn型領域14と同様に、n型を示す不純物をn型層8よりも高濃度に含む半導体領域である。n型接続領域10は、n型埋込み層6とn型領域14とに電気的に接続されている。 Photodiode 1, n + -type connection region 10 has further a (third impurity region), n + -type connection region 10, n - n so as to surround the light detection regions S1 in the mold layer 8 - -type It is provided on the side surface M6 of the layer 8. Similar to the n + type buried layer 6 and the n + type region 14, the n + type connection region 10 is a semiconductor region containing an impurity indicating n type at a higher concentration than the n type layer 8. The n + type connection region 10 is electrically connected to the n + type buried layer 6 and the n + type region 14.

ホトダイオード1は、絶縁膜18を更に有しており、絶縁膜18は、半導体メサ部5の表面M5及び側面M6上に設けられている。絶縁膜18は、例えば酸化シリコン等から成る。絶縁膜18は、コンタクトホールH2を有しており、コンタクトホールH2は、n型領域14上に設けられている。カソード電極12は、絶縁層4の表面M3のうち半導体メサ部5を除いた領域からコンタクトホールH2に至るまで、表面M5及び側面M6上の絶縁膜18に沿って延在している。カソード電極12は、コンタクトホールH2を介してn型領域14と電気的に接続されている。また、図2(b)に示すように、絶縁膜18は、コンタクトホールH3を有しており、コンタクトホールH3は、p型領域16上に設けられている。アノード電極20は、コンタクトホールH3を介してp型領域16と電気的に接続されている。なお、カソード電極12及びアノード電極20は、光入射孔H1上には設けられていない。すなわち、カソード電極12及びアノード電極20は半導体基板2上に設けられている。従って、カソード電極12及びアノード電極20を介してホトダイオード1にかかる応力の負荷が半導体基板2により支えられるため、ホトダイオード1の構造強度の向上が図られる。なお、複数のホトダイオード1が並列に設けられたホトダイオードアレイでは、0.25mm程度のピッチで各ホトダイオード1が並列配置されている。すなわち、隣接する二つのホトダイオード1の各光入射孔H1の中心同士を結ぶ距離は、0.25mm程度である。 The photodiode 1 further includes an insulating film 18, and the insulating film 18 is provided on the surface M <b> 5 and the side surface M <b> 6 of the semiconductor mesa unit 5. The insulating film 18 is made of, for example, silicon oxide. The insulating film 18 has a contact hole H 2, and the contact hole H 2 is provided on the n + -type region 14. The cathode electrode 12 extends along the insulating film 18 on the surface M5 and the side surface M6 from the region of the surface M3 of the insulating layer 4 excluding the semiconductor mesa portion 5 to the contact hole H2. The cathode electrode 12 is electrically connected to the n + type region 14 through the contact hole H2. As shown in FIG. 2B, the insulating film 18 has a contact hole H 3, and the contact hole H 3 is provided on the p + -type region 16. The anode electrode 20 is electrically connected to the p + type region 16 through the contact hole H3. The cathode electrode 12 and the anode electrode 20 are not provided on the light incident hole H1. That is, the cathode electrode 12 and the anode electrode 20 are provided on the semiconductor substrate 2. Accordingly, since the stress load applied to the photodiode 1 is supported by the semiconductor substrate 2 via the cathode electrode 12 and the anode electrode 20, the structural strength of the photodiode 1 can be improved. In the photodiode array in which a plurality of photodiodes 1 are provided in parallel, the photodiodes 1 are arranged in parallel at a pitch of about 0.25 mm. That is, the distance connecting the centers of the light incident holes H1 of two adjacent photodiodes 1 is about 0.25 mm.

上記構成のホトダイオード1では、光入射孔H1から絶縁層4及びn型埋込み層6を介してn型層8に被検出光が入射する。この被検出光の入射により、n型層8内でキャリアが発生する。所定電荷(例えば負電荷)のキャリアは、光検出領域S1に移動し、アノード電極20を介して電気信号の形で抽出される。 In the photodiode 1 configured as described above, light to be detected is incident on the n type layer 8 from the light incident hole H 1 through the insulating layer 4 and the n + type buried layer 6. Carriers are generated in the n type layer 8 by the incidence of the light to be detected. Carriers of a predetermined charge (for example, negative charges) move to the light detection region S1 and are extracted in the form of an electric signal through the anode electrode 20.

次に、図3〜図5を参照して、実施形態に係るホトダイオード1の製造工程を説明する。まず、Si結晶からなるn型半導体基板8aを準備する。n型半導体基板8aの厚さは300μm程度、比抵抗は1kΩ・cm程度である(図3(a))。n型半導体基板8aに対して、その表面から砒素(As)イオンを打ち込む。打ち込むAsイオンのエネルギーは80keV程度であり、ドーズ量は2×1015cm−2程度である。これにより、n型半導体基板8aの表層にn+型半導体層6aが形成される(図3(b))。さらに、このn+型半導体層6aの表面を酸化させることにより、n+型半導体層6a上に酸化シリコン(SiO2)からなる絶縁層4aを形成する。絶縁層4aの厚さは0.5μmである(図3(c))。 Next, a manufacturing process of the photodiode 1 according to the embodiment will be described with reference to FIGS. First, an n type semiconductor substrate 8a made of Si crystal is prepared. The n type semiconductor substrate 8a has a thickness of about 300 μm and a specific resistance of about 1 kΩ · cm (FIG. 3A). Arsenic (As) ions are implanted into the n type semiconductor substrate 8a from its surface. The energy of As ions to be implanted is about 80 keV, and the dose is about 2 × 10 15 cm −2 . As a result, an n + type semiconductor layer 6a is formed on the surface layer of the n type semiconductor substrate 8a (FIG. 3B). Moreover, by oxidizing the surface of the n + -type semiconductor layer 6a, an insulating layer 4a made of n + -type semiconductor layer 6a on the silicon oxide (SiO 2). The thickness of the insulating layer 4a is 0.5 μm (FIG. 3C).

次に、絶縁層4a、n+型半導体層6a及びn型半導体基板8aから成る構造体を、別に準備したSi結晶からなる厚さ300μm程度の支持基板2aに摂氏1000度程度で加熱しながら貼り合わせる。このとき、絶縁層4aの表面を支持基板2aとの貼合わせ面とする(図3(d))。さらに、n型半導体基板8aの表面を研磨することにより平坦化する。また、この研磨により、n型半導体基板8aとn+型半導体層6aとの厚みの和を所望の厚さ、例えば、11μm程度に調整する。これにより、半導体基板2(支持基板2aに対応)の表面M2上に絶縁層4(絶縁層4aに対応)があり、第1導電型を示すn型埋込み層6(n型半導体層6aに対応)が絶縁層4の表面M3上にあり、n型を示す不純物をn型埋込み層6よりも低濃度に含むn型層8(n型半導体基板8aに対応)がn型埋込み層6の表面M4上にある図4(a)に示す構造の基板を得る。 Next, while heating the structure composed of the insulating layer 4a, the n + type semiconductor layer 6a, and the n type semiconductor substrate 8a to the supporting substrate 2a made of Si crystal prepared separately and having a thickness of about 300 μm at about 1000 degrees Celsius. to paste together. At this time, the surface of the insulating layer 4a is used as a bonding surface with the support substrate 2a (FIG. 3D). Further, the surface of the n type semiconductor substrate 8a is planarized by polishing. Further, by this polishing, the sum of the thicknesses of the n type semiconductor substrate 8a and the n + type semiconductor layer 6a is adjusted to a desired thickness, for example, about 11 μm. Thus, the insulating layer 4 (corresponding to the insulating layer 4a) is provided on the surface M2 of the semiconductor substrate 2 (corresponding to the support substrate 2a), and the n + type buried layer 6 (n + type semiconductor layer 6a) indicating the first conductivity type is present. There corresponds) is on surface M3 of the insulating layer 4 on, n containing an impurity imparting n-type low concentration than n + -type buried layer 6 - -type layer 8 (n - corresponds to the type semiconductor substrate 8a) is n + A substrate having the structure shown in FIG. 4A on the surface M4 of the mold buried layer 6 is obtained.

次いで、図4(b)に示すように、n型層8内において表面M5にp型不純物を比較的高濃度に拡散させることによりp型領域16を形成し、p型領域16を含む光検出領域S1を形成する。次いで、図4(c)に示すように、絶縁層4が露出するまで、n型埋込み層6及びn型層8を、p型領域16とその周囲(すなわち光検出領域S1と電極領域)を残してドライエッチングすることによりメサ状に整形する。これにより、光検出領域S1を含む半導体メサ部5が形成される。この場合、絶縁層4はエッチングストッパとしての機能を果たす。次いで、図4(d)に示すように、半導体メサ部5の表面M5に光検出領域S1を囲むようにn型を示す不純物をn型層8よりも高濃度に拡散させることによりn型領域14を形成する。また、半導体メサ部5の側面M6に光検出領域S1を囲むようにn型を示す不純物をn型層8よりも高濃度に拡散させることによりn型接続領域10を形成する。これにより、n型埋込み層6、n型領域14及びn型接続領域10は電気的に接続される。 Then, as shown in FIG. 4 (b), n - p + -type region 16 is formed by diffusing p-type impurities relatively high concentration on the surface M5 in type layer 8, a p + -type region 16 A light detection region S1 is formed. Next, as shown in FIG. 4C, until the insulating layer 4 is exposed, the n + type buried layer 6 and the n type layer 8 are separated from the p + type region 16 and its surroundings (that is, the light detection region S1 and the electrode). It is shaped into a mesa shape by dry etching while leaving the region. Thereby, the semiconductor mesa portion 5 including the light detection region S1 is formed. In this case, the insulating layer 4 functions as an etching stopper. Next, as shown in FIG. 4D, n + -type impurity is diffused at a higher concentration than the n -type layer 8 so as to surround the light detection region S 1 on the surface M 5 of the semiconductor mesa portion 5. A mold region 14 is formed. Further, the n + -type connection region 10 is formed by diffusing an n-type impurity at a higher concentration than the n -type layer 8 on the side surface M6 of the semiconductor mesa portion 5 so as to surround the light detection region S1. As a result, the n + type buried layer 6, the n + type region 14 and the n + type connection region 10 are electrically connected.

次いで、図5(a)に示すように、表面M5及び側面M6に絶縁膜18を形成する。そして、n型領域14上の絶縁膜18にコンタクトホールH2を形成し、p型領域16上の絶縁膜18にコンタクトホールH3を形成する。次いで、図5(b)に示すように、カソード電極12を、絶縁層4の表面M3のうち半導体メサ部5を除いた領域からコンタクトホールH2に至るまで、表面M5及び側面M6上の絶縁膜18に沿って形成し、コンタクトホールH2を介してn型領域14と電気的に接続させる。すなわち、n型領域14と電気的に接続するように半導体メサ部5上にカソード電極12を形成する。そして、同時にアノード電極20を、コンタクトホールH3を含むp型領域16上に設け、コンタクトホールH3を介してp型領域16と電気的に接続させる。すなわち、光検出領域S1と電気的に接続するように半導体メサ部5上にアノード電極20を形成する。次いで、図5(c)に示すように、半導体基板2を絶縁層4が露出するまでドライエッチング等することにより、半導体基板2を貫通して絶縁層4に至る光入射孔H1を光検出領域S1に対応する位置に形成する。この場合、絶縁層4はエッチングストッパとしての機能を果たす。 Next, as shown in FIG. 5A, an insulating film 18 is formed on the surface M5 and the side surface M6. Then, a contact hole H 2 is formed in the insulating film 18 on the n + type region 14, and a contact hole H 3 is formed in the insulating film 18 on the p + type region 16. Next, as shown in FIG. 5B, the cathode electrode 12 is formed on the insulating film on the surface M5 and the side surface M6 from the region of the surface M3 of the insulating layer 4 excluding the semiconductor mesa portion 5 to the contact hole H2. 18 and is electrically connected to the n + -type region 14 through the contact hole H2. That is, the cathode electrode 12 is formed on the semiconductor mesa portion 5 so as to be electrically connected to the n + -type region 14. At the same time, the anode electrode 20 is provided on the p + type region 16 including the contact hole H3, and is electrically connected to the p + type region 16 through the contact hole H3. That is, the anode electrode 20 is formed on the semiconductor mesa portion 5 so as to be electrically connected to the light detection region S1. Next, as shown in FIG. 5C, the light incident hole H1 that penetrates the semiconductor substrate 2 and reaches the insulating layer 4 is formed in the light detection region by dry etching or the like until the insulating layer 4 is exposed. It is formed at a position corresponding to S1. In this case, the insulating layer 4 functions as an etching stopper.

以上説明したように、ホトダイオード1では、カソード電極12及びアノード電極20の両電極が半導体メサ部5の同一の表面M5上に設けられている。そして、カソード電極12は、n型領域14及びn型接続領域10を介してn型埋込み層6と電気的に接続されている。このn型接続領域10は、半導体メサ部5の側面M6に設けられているため、半導体メサ部5が厚くても、n型接続領域10を半導体メサ部5の側面M6に容易に形成できる。このため、厚い半導体メサ部5、すなわち、表面M5からn型埋込み層6までの距離(光検出領域S1の厚み)が大きな半導体メサ部5が形成可能となる。よって、半導体メサ部5内に厚い空乏層が形成できるため、応答速度の向上が図られることとなる。また、光検出領域S1上には光入射孔H1が設けられている。このため、光入射孔H1から入射する光は、半導体基板2を通過することなく、絶縁層4及びn型埋込み層6を通過してn型層8内(光検出領域S1内)に至る。よって、入射光の強度は半導体基板2を通過する場合に比較して大きいため、光感度の向上が図られる。また、カソード電極12は、半導体メサ部5の側面M6を覆っているため、側面M6からの光の入射を遮断できる。このため、ノイズの低減が図られる。また、カソード電極12は、絶縁層4の表面M3上にも延存している。このため、絶縁層4及び半導体基板2の強度がカソード電極12によって補強されることとなる。また、カソード電極12及びアノード電極20は、光入射孔H1上には設けられていない。よって、カソード電極12及びアノード電極20を介してホトダイオード1にかかる応力の負荷を半導体基板2が支えられるため、ホトダイオード1の構造強度の向上が図られる。 As described above, in the photodiode 1, both the cathode electrode 12 and the anode electrode 20 are provided on the same surface M <b> 5 of the semiconductor mesa unit 5. The cathode electrode 12 is electrically connected to the n + type buried layer 6 via the n + type region 14 and the n + type connection region 10. Since the n + type connection region 10 is provided on the side surface M6 of the semiconductor mesa unit 5, the n + type connection region 10 is easily formed on the side surface M6 of the semiconductor mesa unit 5 even if the semiconductor mesa unit 5 is thick. it can. For this reason, it is possible to form a thick semiconductor mesa portion 5, that is, a semiconductor mesa portion 5 having a large distance from the surface M5 to the n + -type buried layer 6 (thickness of the light detection region S1). Therefore, since a thick depletion layer can be formed in the semiconductor mesa portion 5, the response speed can be improved. A light incident hole H1 is provided on the light detection region S1. For this reason, the light incident from the light incident hole H1 passes through the insulating layer 4 and the n + type buried layer 6 and does not pass through the semiconductor substrate 2 and enters the n type layer 8 (in the light detection region S1). It reaches. Therefore, since the intensity of incident light is larger than that when passing through the semiconductor substrate 2, the photosensitivity can be improved. Further, since the cathode electrode 12 covers the side surface M6 of the semiconductor mesa unit 5, the incidence of light from the side surface M6 can be blocked. For this reason, noise is reduced. The cathode electrode 12 also extends on the surface M3 of the insulating layer 4. For this reason, the strength of the insulating layer 4 and the semiconductor substrate 2 is reinforced by the cathode electrode 12. Further, the cathode electrode 12 and the anode electrode 20 are not provided on the light incident hole H1. Therefore, since the semiconductor substrate 2 supports the stress load applied to the photodiode 1 via the cathode electrode 12 and the anode electrode 20, the structural strength of the photodiode 1 can be improved.

なお、本発明は、上述の実施形態に限るものではない。例えば、カソード電極12が半導体メサ部5の側面M6及び絶縁層4の表面M3を覆う構成としたが、これに限らず、カソード電極12が表面M3を覆わずに側面M6を覆う構成であってもよいし、表面M3及び表面M6をともに覆わない構成であってもよい。また、実施形態に係るホトダイオード1のp型及びn型の各導電型を上述したものとは逆になるよう入れ替えてもよい。すなわち、n型を示すn型埋込み層6を、p型を示すp型の埋込み層とし、n型を示すn型層8を、p型を示すp型層とし、n型を示すn型接続領域10を、p型を示すp型接続領域とし、n型を示すn型領域14を、p型を示すp型領域とし、p型を示すp型領域16を、n型を示すn型領域としてもよい。また、実施形態として示した図1〜図5においては、半導体メサ部5の側面M6は表面M3に対して垂直に近い形となっているが、表面M3に対し斜めになるように側面M6が設けられていてもよい。また、n型領域14及びn型接続領域10と、p型領域16とは、拡散によらずイオン注入によって形成されてもよい。更に、半導体メサ部5が厚いということにより、Siにおける吸収が比較的小さい波長の光に対しても感度が向上する。また、上記実施形態には設けられていないが光入射孔H1に対応する表面M5上の位置に電極の金属等を設け、この電極によって光を反射するようにすれば、感度が更に向上する。 The present invention is not limited to the above-described embodiment. For example, the cathode electrode 12 is configured to cover the side surface M6 of the semiconductor mesa unit 5 and the surface M3 of the insulating layer 4. However, the present invention is not limited thereto, and the cathode electrode 12 covers the side surface M6 without covering the surface M3. Alternatively, a configuration in which neither the surface M3 nor the surface M6 is covered may be employed. Further, the p-type and n-type conductivity types of the photodiode 1 according to the embodiment may be interchanged so as to be opposite to those described above. That is, the n + -type buried layer 6 indicating the n-type is a p + -type buried layer indicating the p-type, the n -type layer 8 indicating the n-type is the p -type layer indicating the p - type, and the n-type is The n + type connection region 10 shown is a p + type connection region showing p type, the n + type region 14 showing n type is a p + type region showing p type, and a p + type region 16 showing p type. May be an n + -type region indicating n-type. In FIGS. 1 to 5 shown as the embodiment, the side surface M6 of the semiconductor mesa portion 5 is nearly perpendicular to the surface M3, but the side surface M6 is inclined to the surface M3. It may be provided. Further, the n + type region 14 and the n + type connection region 10 and the p + type region 16 may be formed by ion implantation regardless of diffusion. Further, since the semiconductor mesa portion 5 is thick, the sensitivity is improved even for light having a relatively small absorption in Si. Although not provided in the above embodiment, if a metal or the like of an electrode is provided at a position on the surface M5 corresponding to the light incident hole H1, and the light is reflected by this electrode, the sensitivity is further improved.

実施形態に係るホトダイオードの表面を示す図である。It is a figure which shows the surface of the photodiode which concerns on embodiment. 実施形態に係るホトダイオードを断面から見た図である。It is the figure which looked at the photodiode which concerns on embodiment from the cross section. 実施形態に係るホトダイオードの製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the photodiode which concerns on embodiment. 実施形態に係るホトダイオードの製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the photodiode which concerns on embodiment. 実施形態に係るホトダイオードの製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the photodiode which concerns on embodiment. 従来のホトダイオードの断面構造を示す図である。It is a figure which shows the cross-section of the conventional photodiode.

符号の説明Explanation of symbols

1…ホトダイオード、2…半導体基板、2a…支持基板、4,4a…絶縁層、5…半導体メサ部、6…n型埋込み層、6a…n+型半導体層、8…n型層、8a…n型半導体基板、10…n型接続領域、12…カソード電極、14…n型領域、16…p型領域、18…絶縁膜、20…アノード電極。 1 ... photodiode, 2 ... semiconductor substrate, 2a ... supporting substrate, 4, 4a ... insulating layer, 5 ... semiconductor mesa portion, 6 ... n + -type buried layer, 6a ... n + -type semiconductor layer, 8 ... n - -type layer, 8a ... n - type semiconductor substrate, 10 ... n + type connection region, 12 ... cathode electrode, 14 ... n + type region, 16 ... p + type region, 18 ... insulating film, 20 ... anode electrode.

Claims (5)

半導体基板と、
前記半導体基板上に設けられた絶縁層と、
前記絶縁層上に設けられており該絶縁層との接合面の反対側に形成された主面を有する半導体メサ部と、
前記半導体メサ部の前記主面上に設けられた第1及び第2の電極と
を備え、
前記半導体メサ部は、
前記絶縁層との接合面に設けられた第1導電型を示す第1の不純物領域と、
前記第1の不純物領域上に設けられており第1導電型を示す不純物を前記第1の不純物領域よりも低濃度に含む低濃度不純物領域と、
前記低濃度不純物領域内に設けられており第2導電型を示す不純物領域を含む光検出領域と、
前記低濃度不純物領域内において前記光検出領域を囲むように前記主面に設けられており第1導電型を示す不純物を前記低濃度不純物領域よりも高濃度に含む第2の不純物領域と、
前記低濃度不純物領域内において前記光検出領域を囲むように当該半導体メサ部の側面に設けられており第1導電型を示す不純物を前記低濃度不純物領域よりも高濃度に含む第3の不純物領域とを有し、
前記半導体基板には、当該半導体基板を貫通し前記絶縁層に至る貫通孔が前記光検出領域と対応する位置に前記主面に垂直な方向から見て前記第1の電極及び前記第2の電極と重ならないように設けられ、
前記第3の不純物領域は、前記第1の不純物領域及び前記第2の不純物領域と電気的に接続され、
前記第1の電極は、前記光検出領域の第2導電型を示す前記不純物領域と電気的に接続され、
前記第2の電極は、前記第2の不純物領域と電気的に接続されている光検出素子。
A semiconductor substrate;
An insulating layer provided on the semiconductor substrate;
A semiconductor mesa portion provided on the insulating layer and having a main surface formed on the opposite side of the bonding surface with the insulating layer;
First and second electrodes provided on the main surface of the semiconductor mesa unit,
The semiconductor mesa unit is
A first impurity region having a first conductivity type provided on a joint surface with the insulating layer;
A low-concentration impurity region provided on the first impurity region and including an impurity exhibiting a first conductivity type at a lower concentration than the first impurity region;
A light detection region provided in the low-concentration impurity region and including an impurity region having a second conductivity type;
A second impurity region that is provided on the main surface so as to surround the photodetection region in the low concentration impurity region and includes an impurity having a first conductivity type at a higher concentration than the low concentration impurity region;
A third impurity region that is provided on a side surface of the semiconductor mesa portion so as to surround the photodetection region in the low concentration impurity region and contains an impurity having a first conductivity type at a higher concentration than the low concentration impurity region. And
In the semiconductor substrate, the first electrode and the second electrode viewed from a direction perpendicular to the main surface at a position where a through-hole penetrating the semiconductor substrate and reaching the insulating layer corresponds to the photodetection region. It is provided not to overlap with
The third impurity region is electrically connected to the first impurity region and the second impurity region;
The first electrode is electrically connected to the impurity region indicating the second conductivity type of the light detection region,
The light detection element, wherein the second electrode is electrically connected to the second impurity region.
前記第2の電極は、前記半導体メサ部の側面を覆っている、ことを特徴とする請求項1に記載の光検出素子。   The photodetecting element according to claim 1, wherein the second electrode covers a side surface of the semiconductor mesa unit. 前記主面に直交する断面において、前記主面と前記断面の交線に沿った交線方向における前記第3の不純物領域の厚さは、前記交線方向における前記第2の不純物領域の厚さよりも薄い、請求項1又は2に記載の光検出素子。In the cross section orthogonal to the main surface, the thickness of the third impurity region in the direction of the intersection along the cross line of the main surface and the cross section is greater than the thickness of the second impurity region in the direction of the cross line. The light detection element according to claim 1, wherein the light detection element is thin. 半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた第1導電型を示す第1の不純物領域と、前記第1の不純物領域上に設けられており第1導電型を示す不純物を前記第1の不純物領域よりも低濃度に含む低濃度不純物領域とを有する基板を用意する工程と、
前記低濃度不純物領域内において第2導電型を示す不純物領域を含む光検出領域を形成する工程と、
前記第1の不純物領域及び前記低濃度不純物領域をメサ状に整形することにより前記光検出領域を含む半導体メサ部を形成する工程と、
前記半導体メサ部の表面において前記光検出領域を囲むように第1導電型を示す不純物を前記低濃度不純物領域よりも高濃度に拡散するかまたはイオン注入することにより第2の不純物領域を形成するとともに前記半導体メサ部の側面において前記光検出領域を囲むように第1導電型を示す不純物を前記低濃度不純物領域よりも高濃度に拡散するかまたはイオン注入することにより第3の不純物領域を形成し、前記第1の不純物領域、前記第2の不純物領域及び前記第3の不純物領域を電気的に接続させる工程と、
前記光検出領域の第2導電型を示す前記不純物領域と電気的に接続するように前記半導体メサ部上に第1の電極を形成するとともに前記第2の不純物領域と電気的に接続するように前記半導体メサ部上に第2の電極を形成する工程と、
前記半導体基板を貫通し前記絶縁層に至る貫通孔を前記光検出領域に対応する位置に形成する工程と
を含み、
前記メサ部は、前記絶縁層上に設けられており該絶縁層との接合面の反対側に形成された主面を有し、
前記貫通孔は、前記主面に垂直な方向から見て前記第1の電極及び前記第2の電極と重ならないように形成される、
光検出素子の製造方法。
A semiconductor substrate; an insulating layer provided on the semiconductor substrate; a first impurity region having a first conductivity type provided on the insulating layer; and a first impurity region provided on the first impurity region. Providing a substrate having a low-concentration impurity region containing an impurity exhibiting one conductivity type at a lower concentration than the first impurity region;
Forming a light detection region including an impurity region having a second conductivity type in the low concentration impurity region;
Forming a semiconductor mesa portion including the photodetection region by shaping the first impurity region and the low-concentration impurity region into a mesa shape;
A second impurity region is formed by diffusing or ion-implanting an impurity having the first conductivity type at a higher concentration than the low-concentration impurity region so as to surround the photodetection region on the surface of the semiconductor mesa portion. At the same time, a third impurity region is formed by diffusing or ion-implanting an impurity indicating the first conductivity type at a higher concentration than the low concentration impurity region so as to surround the photodetection region on the side surface of the semiconductor mesa portion. Electrically connecting the first impurity region, the second impurity region, and the third impurity region;
A first electrode is formed on the semiconductor mesa portion so as to be electrically connected to the impurity region having the second conductivity type of the light detection region, and is electrically connected to the second impurity region. Forming a second electrode on the semiconductor mesa portion;
Look including a step of forming a through-hole extending in the insulating layer to penetrate the semiconductor substrate at a position corresponding to the light detection region,
The mesa portion is provided on the insulating layer and has a main surface formed on the opposite side of the bonding surface with the insulating layer,
The through hole is formed so as not to overlap the first electrode and the second electrode when viewed from a direction perpendicular to the main surface.
A method for manufacturing a photodetecting element.
前記主面に直交する断面において、前記主面と前記断面の交線に沿った交線方向における前記第3の不純物領域の厚さを、前記交線方向における前記第2の不純物領域の厚さよりも薄く形成する、請求項4に記載の光検出素子の製造方法。In a cross section orthogonal to the main surface, the thickness of the third impurity region in the direction of the intersection along the cross line of the main surface and the cross section is set to be greater than the thickness of the second impurity region in the direction of the cross line. The method for manufacturing a photodetecting element according to claim 4, wherein the photodetecting element is formed thin.
JP2006024822A 2006-02-01 2006-02-01 Photodetection element and method for manufacturing photodetection element Active JP5005227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006024822A JP5005227B2 (en) 2006-02-01 2006-02-01 Photodetection element and method for manufacturing photodetection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006024822A JP5005227B2 (en) 2006-02-01 2006-02-01 Photodetection element and method for manufacturing photodetection element

Publications (2)

Publication Number Publication Date
JP2007207990A JP2007207990A (en) 2007-08-16
JP5005227B2 true JP5005227B2 (en) 2012-08-22

Family

ID=38487185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024822A Active JP5005227B2 (en) 2006-02-01 2006-02-01 Photodetection element and method for manufacturing photodetection element

Country Status (1)

Country Link
JP (1) JP5005227B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5185157B2 (en) * 2009-02-25 2013-04-17 浜松ホトニクス株式会社 Photodiode manufacturing method and photodiode
JP6084401B2 (en) 2012-08-30 2017-02-22 浜松ホトニクス株式会社 Method for manufacturing side-incident photodiodes
JP5829223B2 (en) * 2013-01-17 2015-12-09 浜松ホトニクス株式会社 Photodiode manufacturing method and photodiode
JP6397460B2 (en) * 2016-11-04 2018-09-26 浜松ホトニクス株式会社 Semiconductor wafer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163514A (en) * 1996-11-29 1998-06-19 Matsushita Electric Works Ltd Semiconductor device
JP3675223B2 (en) * 1999-05-12 2005-07-27 日本電気株式会社 Avalanche photodiode and manufacturing method thereof
JP2005167090A (en) * 2003-12-04 2005-06-23 Hamamatsu Photonics Kk Semiconductor light receiving element and manufacturing method therefor

Also Published As

Publication number Publication date
JP2007207990A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP5185157B2 (en) Photodiode manufacturing method and photodiode
JP5791461B2 (en) Photodetector
EP3399558B1 (en) Semiconductor light-detecting element
TWI614882B (en) Light detecting device
US7112465B2 (en) Fabrication methods for ultra thin back-illuminated photodiode array
JP4727422B2 (en) Semiconductor light detection element and radiation detection apparatus
US20090166684A1 (en) Photogate cmos pixel for 3d cameras having reduced intra-pixel cross talk
JP6577601B2 (en) Coplanar electrode photodiode array and manufacturing method thereof
JP5005227B2 (en) Photodetection element and method for manufacturing photodetection element
US20110042773A1 (en) High fill-factor laser-treated semiconductor device on bulk material with single side contact scheme
JP5663918B2 (en) Optical sensor and spectroscopic sensor
JP5600690B2 (en) Avalanche photodiode and manufacturing method thereof
CN114300494A (en) Photodiode, photodiode detector and manufacturing method thereof
JP2005045125A (en) Manufacturing method of photodetector
JP2008117952A (en) Semiconductor device
JP5829223B2 (en) Photodiode manufacturing method and photodiode
JP3681190B2 (en) High voltage planar light receiving element
JP2011211070A (en) Avalanche photodiode array
KR20210137454A (en) Avalanche-type photodetector (modified) and manufacturing method thereof (modified)
JP4824948B2 (en) Energy beam detector
JP2712246B2 (en) Semiconductor device and manufacturing method thereof
JPH10190041A (en) Photodiode
JP2006093442A (en) Photodiode, photodiode array, method for manufacturing the same and spectroscope
JP6116728B2 (en) Semiconductor photo detector
KR20210137455A (en) Avalanche-type photodetector (variant) and its manufacturing method (variant)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5005227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250