Nothing Special   »   [go: up one dir, main page]

JP5098293B2 - Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof - Google Patents

Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof Download PDF

Info

Publication number
JP5098293B2
JP5098293B2 JP2006293516A JP2006293516A JP5098293B2 JP 5098293 B2 JP5098293 B2 JP 5098293B2 JP 2006293516 A JP2006293516 A JP 2006293516A JP 2006293516 A JP2006293516 A JP 2006293516A JP 5098293 B2 JP5098293 B2 JP 5098293B2
Authority
JP
Japan
Prior art keywords
conductivity type
impurity concentration
layer
semiconductor
high impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006293516A
Other languages
Japanese (ja)
Other versions
JP2008112774A (en
Inventor
勝典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006293516A priority Critical patent/JP5098293B2/en
Publication of JP2008112774A publication Critical patent/JP2008112774A/en
Application granted granted Critical
Publication of JP5098293B2 publication Critical patent/JP5098293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

この発明は、MOSFET、IGBTなどの絶縁ゲート型半導体装置、特にはインバータ等の電力変換装置や種々の産業用機械等の電源装置や自動車のイグナイタなどに用いられるパワーデバイスとしての絶縁ゲート型半導体装置およびその製造方法に係る。さらに詳しくは、シリコンカーバイド(以下SiCと記す)や窒化ガリウム(以下GaNと記す)などのように、バンドギャップが1.08eVのシリコン半導体より大きい3eV程度のワイドバンドギャップ半導体を主たる半導体材料とする絶縁ゲート型半導体装置に関する。   The present invention relates to an insulated gate semiconductor device such as a MOSFET or an IGBT, and more particularly, an insulated gate semiconductor device as a power device used in a power converter such as an inverter, a power supply device such as various industrial machines, or an automobile igniter. And a manufacturing method thereof. More specifically, the main semiconductor material is a wide band gap semiconductor of about 3 eV larger than a silicon semiconductor having a band gap of 1.08 eV, such as silicon carbide (hereinafter referred to as SiC) and gallium nitride (hereinafter referred to as GaN). The present invention relates to an insulated gate semiconductor device.

従来、大きな電力を扱う、いわゆるパワーデバイスは、主としてシリコン半導体を用いて製造されてきている。パワーデバイスは大きい電流容量を可能にするため、チップの両主面間の縦方向(厚さ方向)へ電流を流す構造にされることが多い。図5、6は、そのような従来のパワーデバイスとしての絶縁ゲート型半導体装置のうち、代表的な縦型MOSFETの断面図である。図5に示す縦型MOSFETはプレーナゲート構造と呼ばれ、ゲート電極23およびその直下のゲート絶縁膜24が主面に平行に形成される構造を有している。この縦型MOSFETはゲート電極23に閾値電圧以上のオン信号が入力されてオン状態になると、ゲート絶縁膜24直下のpウエル領域25表面に形成される図示しないnチャネルを通って、ドレイン側のn半導体基板20、ドリフト層22からソース領域28へ主電流が流れる。また、このMOSFETはゲート電極への入力信号をオフすることにより主電流が遮断され、n型のドリフト層22とpウエル領域25間のpn接合によってオフ電圧が維持される構造を有するので、スイッチングに利用することができる。なお、n型高不純物濃度バッファ層21は、オフの高電圧印加時にpn接合からの空乏層の延びを抑えて高抵抗領域であるn型のドリフト層22の厚さを減じることができるようにしてオン電圧を小さくする作用効果を有する。符号20は高不純物濃度半導体基板であり、この半導体基板20の裏面にはドレイン電極29がオーミック接触により形成されている。表面側には、前記ゲート電極23との絶縁性を確保するための層間絶縁膜30を介して覆われ、且つ、nソース領域28表面とは直接に、pウエル領域25表面とは高不純物濃度p領域26を介して、共通に接触するソース電極27が形成される。以上説明した縦型MOSFETに形成されているプレーナゲート構造は平面構造であることから、製造しやすいという利点がある。 Conventionally, so-called power devices that handle large electric power have been manufactured mainly using silicon semiconductors. In order to enable a large current capacity, a power device is often configured to allow current to flow in the longitudinal direction (thickness direction) between both main surfaces of a chip. 5 and 6 are sectional views of typical vertical MOSFETs in such an insulated gate semiconductor device as a conventional power device. The vertical MOSFET shown in FIG. 5 is called a planar gate structure, and has a structure in which a gate electrode 23 and a gate insulating film 24 immediately below the gate electrode 23 are formed in parallel to the main surface. When an ON signal equal to or higher than the threshold voltage is input to the gate electrode 23, the vertical MOSFET is turned on, passes through an n channel (not shown) formed on the surface of the p-well region 25 immediately below the gate insulating film 24, and reaches the drain side. The main current flows from the n + semiconductor substrate 20 and the drift layer 22 to the source region 28. Further, this MOSFET has a structure in which the main current is cut off by turning off the input signal to the gate electrode, and the off voltage is maintained by the pn junction between the n type drift layer 22 and the p well region 25. It can be used for switching. It should be noted that the n-type high impurity concentration buffer layer 21 can reduce the thickness of the n -type drift layer 22 that is a high-resistance region by suppressing the extension of the depletion layer from the pn junction when a high voltage is applied. Thus, there is an effect of reducing the ON voltage. Reference numeral 20 denotes a high impurity concentration semiconductor substrate, and a drain electrode 29 is formed on the back surface of the semiconductor substrate 20 by ohmic contact. The surface side is covered with an interlayer insulating film 30 for ensuring insulation from the gate electrode 23, and is directly in contact with the surface of the n + source region 28 and highly doped with the surface of the p well region 25. A source electrode 27 in common contact is formed via the concentration p + region 26. Since the planar gate structure formed in the vertical MOSFET described above is a planar structure, there is an advantage that it is easy to manufacture.

一方、図6の断面図に示すMOSFETでは、凹部状のトレンチ35内部にゲートが形成される、所謂トレンチゲート構造を備えるので、トレンチ型MOSFETと呼ばれている。このトレンチゲート構造は前記プレーナゲート構造に比べると複雑であり、その分、工程数が増加する。しかし、トレンチゲート構造は、基板表面の活性部に形成されるデバイスユニットのパターンを微細化することにより、集積密度を大幅に高めることができるため、オン抵抗の小さい優れたデバイス特性が得られ易く、近年多く採用されるようになってきた。このMOSFETのトレンチゲート構造以外の、以下に記載した構成要素については、前記図5のプレーナゲート構造の縦型MOSFETのそれと、それぞれ同様の機能を有するので、ここでは、これ以上の説明を省く。すなわち、高不純物濃度n型半導体基板20、n型高不純物濃度バッファ層21、n型のドレイン領域22、pウエル領域25、nソース領域28、高不純物濃度p領域26、層間絶縁膜30、ゲート電極23、ソース電極27、ドレイン電極29などの構成要素については詳細な説明を省く。 On the other hand, the MOSFET shown in the cross-sectional view of FIG. 6 is called a trench MOSFET because it has a so-called trench gate structure in which a gate is formed inside a concave trench 35. This trench gate structure is more complicated than the planar gate structure, and the number of processes increases accordingly. However, the trench gate structure can greatly increase the integration density by miniaturizing the pattern of the device unit formed in the active part of the substrate surface, so that excellent device characteristics with low on-resistance can be easily obtained. In recent years, many have been adopted. The constituent elements described below other than the MOSFET trench gate structure have the same functions as those of the planar gate structure vertical MOSFET shown in FIG. 5, and therefore, further description thereof is omitted here. That is, the high impurity concentration n-type semiconductor substrate 20, the n-type high impurity concentration buffer layer 21, the n -type drain region 22, the p-well region 25, the n + source region 28, the high impurity concentration p + region 26, the interlayer insulating film The detailed description of components such as 30, the gate electrode 23, the source electrode 27, and the drain electrode 29 will be omitted.

しかしながら、シリコンデバイスでは、基板表面のデバイスユニットパターンが、トレンチ型MOSFETなどの場合でも、LSIの微細加工技術などを駆使することにより極限近くまで微細化されるようになった結果、デバイス特性の向上もほぼ材料限界に近づきつつある。そこでSiCやGaNなどのようにシリコンよりバンドギャップの広い半導体材料によってこの材料限界をブレークスルーしようという試みがなされている。これらの半導体材料は最大破壊電界がシリコンと比較して一桁近く大きいことから、パワーデバイスにこれを利用すると、素子の抵抗が100分の1以下になることが期待される。シリコンよりバンドギャップの広い半導体材料を用いて、シリコンと同様の工程により、図5のプレーナゲート構造や図6のトレンチゲート構造のMOSFETを試作することが行われている。   However, in the case of silicon devices, the device unit pattern on the substrate surface, even in the case of trench MOSFETs, has been miniaturized to the limit by making full use of LSI microfabrication technology, resulting in improved device characteristics Is almost approaching the material limit. Therefore, an attempt has been made to break through this material limit with a semiconductor material having a wider band gap than silicon, such as SiC and GaN. Since these semiconductor materials have a maximum breakdown electric field that is almost an order of magnitude higher than that of silicon, it is expected that the resistance of the element will be 1/100 or less when this is used for a power device. Using a semiconductor material having a wider band gap than silicon, MOSFETs having the planar gate structure of FIG. 5 and the trench gate structure of FIG.

公知文献などでは、シリコンよりバンドギャップの広い半導体材料を用いたデバイスとして、たとえば、絶縁ゲート型バイポーラトランジスタ(IGBT)の製造のため、シリコン半導体基板上に、窒化ガリウム系化合物半導体のp型およびn型半導体層が順に積層され、このn型半導体層上に、n型半導体層よりも広いバンドギャップを有する窒化ガリウム系化合物半導体からなるp型不純物拡散領域およびn型不純物拡散領域が選択的に形成された構成のものが知られている。そして、ゲート電極を、前記窒化ガリウム系化合物半導体のn型半導体層の露出面からp型不純物拡散領域の露出面にかけて絶縁層を介して形成し、エミッタ電極およびコレクタ電極を、それぞれn型不純物拡散領域の上面およびp型半導体層の下面に形成する構成が発表されている(特許文献1)。   In known literatures and the like, as a device using a semiconductor material having a wider band gap than silicon, for example, for manufacturing an insulated gate bipolar transistor (IGBT), a p-type and n-type gallium nitride compound semiconductor is formed on a silicon semiconductor substrate. A p-type impurity diffusion region and an n-type impurity diffusion region made of a gallium nitride compound semiconductor having a wider band gap than the n-type semiconductor layer are selectively formed on the n-type semiconductor layer. An arrangement of the same structure is known. Then, a gate electrode is formed through an insulating layer from the exposed surface of the n-type semiconductor layer of the gallium nitride compound semiconductor to the exposed surface of the p-type impurity diffusion region, and the emitter electrode and the collector electrode are respectively diffused by n-type impurity. The structure formed in the upper surface of an area | region and the lower surface of a p-type semiconductor layer is announced (patent document 1).

またさらに、シリコンよりバンドギャップの広い半導体材料であるGaN半導体を用いたMOSFETの場合、そのnチャネル中の電子の移動度がSiC−MOSFETよりは相対的に大きい、100cm/Vsを超えたという報告例もある(非特許文献1)。
特開平11−354786号公報 K.Matocha, T.P.Chow, R.J.Gutmann, IEEE Trans.Electrton Devices, VOL.52, No.1, 2005, pp.6−10
Furthermore, in the case of a MOSFET using a GaN semiconductor, which is a semiconductor material having a wider band gap than silicon, the mobility of electrons in the n-channel exceeds 100 cm 2 / Vs, which is relatively larger than that of the SiC-MOSFET. There is also a report example (Non-patent Document 1).
JP-A-11-354786 K. Matocha, T .; P. Chow, R.W. J. et al. Gutmann, IEEE Trans. Electrton Devices, VOL. 52, no. 1, 2005, pp. 6-10

しかしながら、前記特許文献1に開示された窒化ガリウム系化合物半導体を用いたIGBTでは、チャネル領域の抵抗成分が通常のシリコンデバイスよりも大幅に大きくなるとされている。その理由は、通常のシリコンを用いたMOS(金属−酸化膜−半導体からなる絶縁ゲート)構造において得られる反転層(チャネル層)の電子移動度が数百cm/Vs程度(500cm/Vs程度との報告もある)であるのに対して、窒化ガリウム系化合物半導体を用いた場合の反転層の電子移動度は数十cm/Vs程度と低く、それに対応してチャネル領域の抵抗成分が大きくなるからである。これに対して、半導体材料として炭化ケイ素(SiC)を用いた場合の反転層はGaN半導体よりもさらに小さい移動度レベルにすぎず、さらに問題である。 However, in the IGBT using the gallium nitride compound semiconductor disclosed in Patent Document 1, the resistance component of the channel region is said to be significantly larger than that of a normal silicon device. The reason is that the electron mobility of the inversion layer (channel layer) obtained in a normal MOS (metal-oxide film-semiconductor insulating gate) structure using silicon is about several hundred cm 2 / Vs (500 cm 2 / Vs). In contrast, the electron mobility of the inversion layer in the case of using a gallium nitride compound semiconductor is as low as several tens of cm 2 / Vs, and the resistance component of the channel region is corresponding to this. This is because it becomes larger. On the other hand, the inversion layer in the case of using silicon carbide (SiC) as a semiconductor material is only a lower mobility level than the GaN semiconductor, which is a further problem.

また、シリコン半導体と比較すると、半導体材料としてSiCやGaNはデバイス製造上の制約が極めて大きい。SiCにおいては、MOS界面の特性がシリコンやGaNに比べても良くない。そのためにデバイス全体の優れた特性がなかなか得にくいという大きい問題がある。
製造プロセス上では、通常、シリコンデバイスではイオン注入によって、ドナー、アクセプタの不純物を導入し、その後、1000℃程度の熱処理によって活性化、およびその後につづく熱処理によって適当な深さの拡散層を形成することが可能で、デバイス構造におけるほとんどのpn接合の形成などはこの方法による。
In addition, as compared with silicon semiconductors, SiC and GaN as semiconductor materials have extremely large restrictions on device manufacturing. In SiC, the characteristics of the MOS interface are not as good as those of silicon or GaN. Therefore, there is a big problem that it is difficult to obtain excellent characteristics of the entire device.
In the manufacturing process, in a silicon device, impurities of a donor and an acceptor are usually introduced by ion implantation, then activated by a heat treatment at about 1000 ° C., and a diffusion layer having an appropriate depth is formed by a subsequent heat treatment. It is possible to form most pn junctions in the device structure.

ところが、SiCやGaNではイオン注入によってドナーやアクセプタを半導体基板に導入しても、それに引き続く熱処理で電気的に活性化させることに難点がある。GaNではいくつかの試みはあるが、イオン注入ではn型もp型も極めて導入が難しく、成功例はほとんど知られていないことなどから、量産性に乏しいことが問題である。一方の、SiCでは1500℃前後の高温での活性化熱処理が必要ではあるものの、イオン注入後の活性化は可能である。   However, in SiC and GaN, even if a donor or acceptor is introduced into a semiconductor substrate by ion implantation, there is a difficulty in electrically activating it by a subsequent heat treatment. Although there are some attempts in GaN, the introduction of both n-type and p-type is extremely difficult by ion implantation, and few successful examples are known. On the other hand, SiC requires activation heat treatment at a high temperature of about 1500 ° C., but can be activated after ion implantation.

しかしながら、SiCでは、前述のように、MOS界面に界面準位が非常に多く発生し、それによりチャネル中の電子の移動度が非常に低くなるため、基板結晶の優れた特性を充分に引き出せるだけのデバイスを製造することが簡単ではない。この点に関してはGaNはすでに報告(非特許文献1)がいくつか出ているように、MOSFETのチャネル中の電子移動度は100cm/Vsを超えており、MOS界面に関してはSiCよりも優れた特性が得られやすい。以上説明したように、SiCもGaNもそれぞれ、デバイスを製造する上での問題点を抱えており、これを克服することが非常に困難である。 However, in SiC, as described above, interface states are generated at the MOS interface so much that the mobility of electrons in the channel becomes very low, so that the excellent characteristics of the substrate crystal can be sufficiently extracted. Making a device is not easy. In this regard, as GaN has already reported (Non-Patent Document 1), the electron mobility in the channel of the MOSFET exceeds 100 cm 2 / Vs, and the MOS interface is superior to SiC. Characteristics are easy to obtain. As described above, both SiC and GaN have problems in manufacturing devices, and it is very difficult to overcome this.

また、窒化ガリウム系化合物半導体基板においては、シリコン半導体基板と比較して、熱膨張係数が50%ほど違い、また格子不整合が15%程度と、シリコン基板に比べて多いために、窒化ガリウム層をシリコン基板上に積層すると反ってしまうという問題もある。そのために、ウエハのハンドリングが困難であり、チップの場合でも、反りのためにハンダ付けが困難と言われている。また、窒化ガリウム半導体ではp型のドーパントにMgなどを用いているが、p型ドーパントの活性化率が非常に低いために、不純物濃度を正確に制御することが困難であり、公知のSiC半導体のような耐圧構造を設計することが困難という問題もある。   In addition, the gallium nitride compound semiconductor substrate has a thermal expansion coefficient different by about 50% and a lattice mismatch of about 15% compared to the silicon semiconductor substrate, and therefore has a larger gallium nitride layer than the silicon substrate. There is also a problem that when the film is laminated on a silicon substrate, the film is warped. Therefore, it is difficult to handle the wafer, and even in the case of a chip, it is said that soldering is difficult due to warpage. In addition, although gallium nitride semiconductor uses Mg or the like as a p-type dopant, since the activation rate of the p-type dopant is very low, it is difficult to accurately control the impurity concentration. There is also a problem that it is difficult to design such a withstand voltage structure.

本発明は、以上述べた点に鑑みてなされたものであり、本発明の目的は、炭化珪素半導体を主構成材料とする絶縁ゲート型半導体装置であっても、MOS界面特性を改善して、チャネル移動度を向上させることができるワイドバンドギャップ半導体を用いた絶縁ゲート型半導体装置およびその製造方法を提供することである。   The present invention has been made in view of the above points, and the object of the present invention is to improve MOS interface characteristics even in an insulated gate semiconductor device having a silicon carbide semiconductor as a main constituent material. An object of the present invention is to provide an insulated gate semiconductor device using a wide band gap semiconductor capable of improving channel mobility and a method for manufacturing the same.

特許請求の範囲の請求項1の発明によれば、炭化珪素半導体基板の一面に、一導電型ソース領域の表面と一導電型ドレイン領域の表面とに挟まれる他導電型領域の表面とが配置され、該他導電型領域表面を覆い、前記一導電型のソース領域表面から一導電型ドレイン領域表面にかけて共通に接する他導電型GaN半導体チャネル層と、該他導電型GaN半導体チャネル層を覆うゲート酸化膜と、該ゲート酸化膜を介して前記他導電型GaN半導体チャネル層を覆うゲート電極とを備えるワイドバンドギャップ半導体の絶縁ゲート型半導体装置とすることにより、前記本発明の目的は達成される。   According to the first aspect of the present invention, the surface of the one conductivity type source region and the surface of the other conductivity type region sandwiched between the surface of the one conductivity type drain region are arranged on one surface of the silicon carbide semiconductor substrate. The other conductivity type GaN semiconductor channel layer covering the other conductivity type region surface and in common contact from the one conductivity type source region surface to the one conductivity type drain region surface, and a gate covering the other conductivity type GaN semiconductor channel layer The object of the present invention is achieved by providing a wide band gap semiconductor insulated gate semiconductor device comprising an oxide film and a gate electrode covering the other-conductivity-type GaN semiconductor channel layer via the gate oxide film. .

特許請求の範囲の請求項2の発明によれば、前記一導電型ソース領域と一導電型ドレイン領域とが、それぞれ、前記炭化珪素半導体基板の一面に、オーミック性接触を示す不純物濃度以上の高不純物濃度にされた領域を備え、該高不純物濃度領域表面をそれぞれ被覆するソース電極またはドレイン電極を備える特許請求の範囲の請求項1記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置とするが好ましい。   According to the invention of claim 2, the one-conductivity type source region and the one-conductivity type drain region each have a high impurity concentration or more that exhibits ohmic contact with one surface of the silicon carbide semiconductor substrate. 2. The wide band gap semiconductor insulated gate type semiconductor device according to claim 1, further comprising a source electrode or a drain electrode each having a region with an impurity concentration and covering the surface of the high impurity concentration region. .

特許請求の範囲の請求項3の発明によれば、前記炭化珪素半導体基板が一導電型高不純物濃度基板と該基板上に形成される一導電型低不純物濃度層と該一導電型低不純物濃度層表面に選択的に形成される他導電型ウエル領域と該他導電型ウエル領域表面に形成される一導電型高不純物濃度ソース領域とを備え、前記炭化珪素半導体基板の一面には、前記一導電型高不純物濃度ソース領域の表面と前記一導電型低不純物濃度層の表面とに前記他導電型ウエル領域の表面とが挟まれるように配置され、前記一導電型高不純物濃度ソース領域の表面にはソース電極が被覆され、前記他面側の一導電型高不純物濃度基板の表面にはドレイン電極が被覆される特許請求の範囲の請求項1記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置とするがより好ましい。   According to a third aspect of the present invention, the silicon carbide semiconductor substrate includes a one-conductivity type high impurity concentration substrate, a one-conductivity type low impurity concentration layer formed on the substrate, and the one-conductivity type low impurity concentration. Another conductivity type well region selectively formed on the surface of the layer and a one conductivity type high impurity concentration source region formed on the surface of the other conductivity type well region. The surface of the one conductivity type high impurity concentration source region is disposed so that the surface of the other conductivity type well region is sandwiched between the surface of the conductivity type high impurity concentration source region and the surface of the one conductivity type low impurity concentration layer. 2. The wide band gap semiconductor insulated gate semiconductor device according to claim 1, wherein a source electrode is coated, and a drain electrode is coated on a surface of the one conductivity type high impurity concentration substrate on the other surface side. Toss It is more preferable.

特許請求の範囲の請求項4の発明によれば、前記炭化珪素半導体基板が一導電型高不純物濃度基板と該基板上に形成される一導電型低不純物濃度ドリフト層と該ドリフト層表面に選択的に形成される他導電型ウエル領域と該ウエル領域表面に形成される一導電型高不純物濃度ソース領域とを備え、前記炭化珪素半導体基板の一面側の一導電型高不純物濃度ソース領域表面から前記他導電型ウエル領域を貫通して前記一導電型低不純物濃度ドリフト層に達するトレンチと該トレンチの側壁に露出する前記他導電型ウエル領域表面を覆って前記一導電型高不純物濃度ソース領域の側壁表面からトレンチ底部に達する他導電型GaN半導体チャネル層と、該他導電型GaN半導体チャネル層を覆うようにトレンチ内に形成されるゲート絶縁膜を介して前記トレンチ内に埋め込まれるゲート電極とを含むトレンチゲート構造を有し、前記炭化珪素半導体基板の一面側には、前記一導電型高不純物濃度ソース領域表面と他導電型ウエル領域表面に共通に接触するソース電極を有し、前記炭化珪素半導体基板の他面側の一導電型高不純物濃度基板表面にはドレイン電極を備える特許請求の範囲の請求項1記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置とするがいっそう好ましい。   According to a fourth aspect of the present invention, the silicon carbide semiconductor substrate is selected as a one-conductivity type high impurity concentration substrate, a one-conductivity type low impurity concentration drift layer formed on the substrate, and a surface of the drift layer. From the surface of the one conductivity type high impurity concentration source region on the one surface side of the silicon carbide semiconductor substrate, and another conductivity type well region formed on the surface of the well region. Covering the trench reaching the one conductivity type low impurity concentration drift layer through the other conductivity type well region and the surface of the other conductivity type well region exposed on the sidewall of the trench, the one conductivity type high impurity concentration source region The other-conductivity-type GaN semiconductor channel layer reaching the trench bottom from the side wall surface, and a gate insulating film formed in the trench so as to cover the other-conductivity-type GaN semiconductor channel layer A trench gate structure including a gate electrode embedded in the trench, and one surface side of the silicon carbide semiconductor substrate is in common contact with the surface of the one conductivity type high impurity concentration source region and the surface of the other conductivity type well region 2. An insulated gate semiconductor of a wide band gap semiconductor according to claim 1, further comprising a drain electrode on the surface of the one conductivity type high impurity concentration substrate on the other surface side of the silicon carbide semiconductor substrate. An apparatus is preferred.

特許請求の範囲の請求項5の発明によれば、一導電型高不純物濃度炭化珪素基板の一面上に一導電型低不純物濃度ドリフト層と他導電型ウエル層と一導電型高不純物濃度ソース層からなる炭化珪素半導体基板をこの順に形成する第一工程、前記一導電型高不純物濃度ソース層表面から一導電型低不純物濃度ドリフト層に達するトレンチを形成する第二工程、該トレンチを含む炭化珪素半導体基板表面に他導電型GaN半導体チャネル層を堆積する第三工程、異方性エッチングにより、前記トレンチ側壁面の他導電型GaN半導体チャネル層を残して他の他導電型GaN半導体チャネル層を除去し、次に前記トレンチ内にゲート絶縁膜を介してゲート電極を形成する第四工程、前記一導電型高不純物濃度ソース層と前記他導電型ウエル層とに接するソース電極を形成する第五工程、前記一導電型高不純物濃度炭化珪素基板の他面上にドレイン電極を形成する第六工程を備えるワイドバンドギャップ半導体の絶縁ゲート型半導体装置の製造方法とすることにより、前記本発明の目的を達成することができる。   According to the invention of claim 5, the one conductivity type low impurity concentration drift layer, the other conductivity type well layer, and the one conductivity type high impurity concentration source layer are formed on one surface of the one conductivity type high impurity concentration silicon carbide substrate. A first step of forming a silicon carbide semiconductor substrate comprising: a second step of forming a trench reaching the one conductivity type low impurity concentration drift layer from the surface of the one conductivity type high impurity concentration source layer; and silicon carbide including the trench A third step of depositing another conductivity type GaN semiconductor channel layer on the surface of the semiconductor substrate, and removing the other conductivity type GaN semiconductor channel layer while leaving the other conductivity type GaN semiconductor channel layer on the trench side wall by anisotropic etching. Then, a fourth step of forming a gate electrode in the trench through a gate insulating film, contacting the one conductivity type high impurity concentration source layer and the other conductivity type well layer. And a fifth step of forming a drain electrode on the other surface of the one-conductivity-type high impurity concentration silicon carbide substrate. Thus, the object of the present invention can be achieved.

特許請求の範囲の請求項6の発明によれば、前記一導電型高不純物濃度ソース層または前記他導電型ウエル層の形成方法がSiCエピタキシャル成長である特許請求の範囲の請求項4記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置の製造方法とすることが好ましい。
特許請求の範囲の請求項7の発明によれば、前記一導電型高不純物濃度ソース層または前記他導電型ウエル層の形成方法がイオン注入法である特許請求の範囲の請求項4記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置の製造方法とすることもより好ましい。
According to a sixth aspect of the present invention, the method for forming the one conductivity type high impurity concentration source layer or the other conductivity type well layer is SiC epitaxial growth. A method for manufacturing an insulated gate semiconductor device of a gap semiconductor is preferable.
According to a seventh aspect of the present invention, the method for forming the one conductivity type high impurity concentration source layer or the other conductivity type well layer is an ion implantation method. It is more preferable to use a method for manufacturing an insulated gate semiconductor device of a band gap semiconductor.

特許請求の範囲の請求項8の発明によれば、前記他導電型GaN半導体チャネル層の形成方法がヘテロエピタキシャル成長である特許請求の範囲の請求項5記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置の製造方法とすることが望ましい。
特許請求の範囲の請求項9の発明によれば、前記他導電型GaN半導体チャネル層の形成方法がイオン注入法である特許請求の範囲の請求項5記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置の製造方法とすることがより望ましい。
6. The wide band gap semiconductor insulated gate semiconductor device according to claim 5, wherein the method of forming the other conductivity type GaN semiconductor channel layer is heteroepitaxial growth. It is desirable to use this manufacturing method.
According to a ninth aspect of the present invention, the method of forming the other-conductivity-type GaN semiconductor channel layer is an ion implantation method. The wide band gap semiconductor insulated gate semiconductor according to the fifth aspect It is more desirable to use a method for manufacturing an apparatus.

本発明によれば、炭化珪素半導体を主構成材料とする絶縁ゲート型半導体装置であっても、MOS界面特性を改善して、チャネル移動度を向上させることができるワイドバンドギャップ半導体を用いた絶縁ゲート型半導体装置を提供することができる。   According to the present invention, even in an insulated gate semiconductor device mainly composed of a silicon carbide semiconductor, insulation using a wide band gap semiconductor that can improve MOS interface characteristics and improve channel mobility. A gate type semiconductor device can be provided.

以下に添付図面を参照して、この発明にかかるワイドバンドギャップ半導体を用いた絶縁ゲート型半導体装置およびその製造方法の好適な実施の形態を詳細に説明する。なお、以下の実施例の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。n、nなどの+と−の記号は、それらの記号の無いn型の不純物濃度との比較で、相対的により高不純物濃度、より低不純物濃度をそれぞれ表す。一導電型をn型、他導電型をp型として記す。また、本発明は、以下説明する実施例の記載にのみ限定されるものではない。 Exemplary embodiments of an insulated gate semiconductor device using a wide bandgap semiconductor according to the present invention and a method for manufacturing the same will be described below in detail with reference to the accompanying drawings. In the following description of the embodiments and the accompanying drawings, the same reference numerals are given to the same components, and duplicate descriptions are omitted. Symbols + and such as n + and n represent a relatively higher impurity concentration and a lower impurity concentration, respectively, in comparison with an n-type impurity concentration without these symbols. One conductivity type is described as n-type, and the other conductivity type is described as p-type. Further, the present invention is not limited only to the description of the examples described below.

図1は、本発明にかかる最も原理的なMOSFETの断面図である。図2は、本発明にかかる図1のMOSFETにおけるソース側のSiC/GaNのヘテロ接合での電子の移動を説明するためのエネルギーバンド図である。図3は、本発明にかかる縦型MOSFETの要部断面図である。図4−1乃至図4−3は、本発明にかかるトレンチ型MOSFETの製造方法を示す製造工程毎のMOSFETの要部断面図である。   FIG. 1 is a cross-sectional view of the most fundamental MOSFET according to the present invention. FIG. 2 is an energy band diagram for explaining electron movement in the SiC / GaN heterojunction on the source side in the MOSFET of FIG. 1 according to the present invention. FIG. 3 is a cross-sectional view of a main part of the vertical MOSFET according to the present invention. FIGS. 4A to 4C are cross-sectional views of the main part of the MOSFET for each manufacturing process showing the method for manufacturing the trench MOSFET according to the present invention.

図1の断面図は、本発明にかかる原理的なMOSFETの構造を示したものである。p型のSiC半導体基板1と、該p−SiC半導体基板1表面に選択的にそれぞれ形成される高不純物濃度n型SiCの、ソース領域2およびドレイン領域3を備える。前記p−SiC基板1の露出表面領域と、この露出表面領域を挟むように配設される前記n型SiCソース領域2およびn型SiCドレイン領域3の各領域表面上に共通に接するように、p型のGaN半導体チャネル層4がヘテロエピタキシャル成長により形成される。SiC半導体は格子定数がGaN半導体とほとんど同じなので、ヘテロエピタキシャル成長がし易いという特徴がある。さらにそのp型のGaN半導体チャネル層4表面上を覆うゲート絶縁膜5を介して、ゲート電極6を前記p型のGaNチャネル層4を覆うように積層することにより、ゲート電極6への閾値電圧の印加の際に、p型のGaN半導体チャネル層4表面にn型の反転層が形成されてドレインーソース間に電流が流れるMOSFET構成となる。 The cross-sectional view of FIG. 1 shows the structure of a basic MOSFET according to the present invention. A p-type SiC semiconductor substrate 1 and a source region 2 and a drain region 3 of high impurity concentration n-type SiC selectively formed on the surface of the p-SiC semiconductor substrate 1 are provided. The exposed surface region of the p-SiC substrate 1 and the surface of each of the n + -type SiC source region 2 and the n + -type SiC drain region 3 disposed so as to sandwich the exposed surface region are in common contact with each other. In addition, the p-type GaN semiconductor channel layer 4 is formed by heteroepitaxial growth. Since SiC semiconductors have almost the same lattice constant as GaN semiconductors, they are characterized by easy heteroepitaxial growth. Further, by stacking the gate electrode 6 so as to cover the p-type GaN channel layer 4 via the gate insulating film 5 covering the surface of the p-type GaN semiconductor channel layer 4, the threshold voltage to the gate electrode 6 is increased. Is applied, a n-type inversion layer is formed on the surface of the p-type GaN semiconductor channel layer 4 so that a current flows between the drain and the source.

このMOSFETの特徴は、p−SiC半導体基板1表面に堆積形成されるp−GaN半導体チャネル層4表面にMOS構造が形成され、該層4の表面に形成されることになる反転層により、このp−GaN半導体チャネル層4の両端にオーバラップするように接するn型SiCのソース領域2とn型ドレイン領域3とが電気的に繋がるので、界面特性の良くないSiCに起因するSiCチャネル領域の使用を回避できることである。GaN半導体とSiC半導体との格子定数はほとんど同じであることから、良好なヘテロ接合を形成することができることも特徴である。p−GaN半導体チャネル層4の不純物濃度は5×1016〜5×1017cm−3であり、厚さは0.2〜1μm程度である。MOS構造がこのような配置構成とされることにより、主電流の流れる経路は、ドレインのSiC領域3から、p−GaN半導体チャネル層4とゲート絶縁膜5の界面に形成されるMOS反転層へ運ばれ、さらにソース側のSiC領域2へと向かう、低抵抗な電流経路となる。 This MOSFET is characterized in that a MOS structure is formed on the surface of the p-GaN semiconductor channel layer 4 deposited on the surface of the p-SiC semiconductor substrate 1 and the inversion layer to be formed on the surface of the layer 4 The n + -type SiC source region 2 and the n + -type drain region 3 that are in contact with each other so as to overlap both ends of the p-GaN semiconductor channel layer 4 are electrically connected, so that the SiC channel caused by SiC having poor interface characteristics The use of the area can be avoided. Since the lattice constants of the GaN semiconductor and the SiC semiconductor are almost the same, it is also a feature that a good heterojunction can be formed. The impurity concentration of the p-GaN semiconductor channel layer 4 is 5 × 10 16 to 5 × 10 17 cm −3 and the thickness is about 0.2 to 1 μm. By adopting such a configuration of the MOS structure, the path through which the main current flows is from the drain SiC region 3 to the MOS inversion layer formed at the interface between the p-GaN semiconductor channel layer 4 and the gate insulating film 5. This is a low-resistance current path that is carried and further toward the SiC region 2 on the source side.

このとき、SiC/GaNのヘテロ接合がソース2側とドレイン3側とで2箇所存在することになる。このときの様子を図2によって説明する。図2はソース2側のGaN/SiCヘテロ接合部分を想定して描かれているが、ドレイン3側もバイアス条件が異なるだけで、基本構造は同じである。GaN/SiCのヘテロ接合では図2に(a)に示されるように異種材料の接合によってエネルギー障壁ΔcとΔvがそれぞれ伝導帯側と荷電子帯側に生じる。GaN/4H−SiCの場合には
Δc=0.4eV、Δv=0.25eV
程度である。ドレイン3側がプラスバイアス状態のとき、ドレイン3側のGaN/SiCのヘテロ接合では、電子からみると障壁は無い。一方で、ソース2側のGaN/SiC接合では0.4eVの障壁が存在するため、このままでは電流が流れない。そこで、ゲート電極6に正の電圧を印加していくと、(b)のようにゲート絶縁膜5側のGaNの表面ポテンシャルが低下し、p−GaN半導体チャネル層4中が空乏化していく。さらに大きなゲート電圧を印加すると(c)のように障壁は非常に薄くなり、ソース2側に多量にある多数キャリアの電子10は障壁をトンネル効果によりGaN半導体チャネル層4へと流れ出し、ゲート絶縁膜5との界面にある電子蓄積層へ供給されることになる。この電子は蓄積層にそってドレイン側へ流れていき、結果としてソース、ドレイン間で電流が流れることになる。
At this time, two heterojunctions of SiC / GaN exist on the source 2 side and the drain 3 side. The situation at this time will be described with reference to FIG. Although FIG. 2 is drawn assuming a GaN / SiC heterojunction portion on the source 2 side, the basic structure is the same on the drain 3 side only with different bias conditions. In the heterojunction of GaN / SiC, energy barriers Δc and Δv are generated on the conduction band side and the valence band side, respectively, as shown in FIG. In the case of GaN / 4H-SiC, Δc = 0.4 eV, Δv = 0.25 eV
Degree. When the drain 3 side is in a positive bias state, the GaN / SiC heterojunction on the drain 3 side has no barrier from the viewpoint of electrons. On the other hand, since a 0.4 eV barrier exists at the GaN / SiC junction on the source 2 side, no current flows as it is. Therefore, when a positive voltage is applied to the gate electrode 6, the surface potential of GaN on the gate insulating film 5 side is lowered as shown in (b), and the p-GaN semiconductor channel layer 4 is depleted. When a higher gate voltage is applied, the barrier becomes very thin as shown in (c), and a large amount of majority carrier electrons 10 on the source 2 side flow out to the GaN semiconductor channel layer 4 by the tunnel effect, and the gate insulating film 5 is supplied to the electron storage layer at the interface with the first electrode 5. The electrons flow along the accumulation layer to the drain side, and as a result, a current flows between the source and the drain.

このようにして、MOSゲート構造の界面特性の良くないSiC―MOSFETにおいて、GaNの表面の優れた界面特性をMOSゲート構造として利用することで、GaNとSiCのそれぞれの優れた特性を引き出すことが可能となる。
図3は本発明を縦型MOSFETへ応用した場合の実施例を示す。前述のようにSiC半導体やGaN半導体はSi半導体よりもバンドギャップが広いので、パワーデバイスとしてSi半導体より優れた特性が期待できる。図3は前記図5の従来のプレーナゲート構造のMOSFETに本発明を適用したものである。半導体基板のほとんどはSiCであり、特に4H−SiCが電子移動度が大きく望ましい。基本構造は図5と同じであるが、SiC−n半導体基板12にSiCエピタキシャル形成される高抵抗のnドリフト層13とこのnドリフト層13の表面に形成されているpウエル領域14およびnソース領域15を備えるSiC半導体基板の表面に、p−GaN半導体チャネル層16が前記SiCのnソース領域15とSiCのpウエル領域14とSiC半導体基板の表面とに共通に接するようにヘテロエピタキシャル成長によって形成される。このp−GaN半導体チャネル層16の表面を覆うようにゲート酸化膜17とゲート電極18が形成され、前記SiCnソース領域15にはソース電極19が、SiC−n半導体基板12の裏面にはドレイン電極11がそれぞれ形成されることにより、縦型MOSFETが構成される。基本動作原理は先に図2の説明と同様であり、この基本動作原理によって低抵抗のGaN−MOS構造を通して縦方向に大きな電流を、SiC−MOS構造よりは低抵抗で流すことが可能となる。この図3に示す縦型MOSFETでも、前記図1で説明したMOSFETの場合と同様に、p−GaN半導体チャネル層16の表面にゲート酸化膜17を介して形成されるゲート電極18は、ゲート電極18への信号により形成される反転層が前記SiC−nソース領域15とnドリフト層13の間を電気的に低抵抗に接続するように、p−GaN半導体チャネル層16の表面を覆うように形成することが必要である。図3におけるSiCpウエル領域14にはチャネルが形成されず、オフ電圧を維持する機能を有することになる。
In this way, in the SiC-MOSFET having the poor interface characteristics of the MOS gate structure, the excellent interface characteristics of the GaN surface can be used as the MOS gate structure to extract the excellent characteristics of GaN and SiC. It becomes possible.
FIG. 3 shows an embodiment in which the present invention is applied to a vertical MOSFET. As described above, the SiC semiconductor and the GaN semiconductor have a wider band gap than the Si semiconductor, so that it is possible to expect characteristics superior to the Si semiconductor as a power device. FIG. 3 shows the application of the present invention to the conventional planar gate MOSFET shown in FIG. Most of the semiconductor substrates are SiC, and 4H—SiC is particularly desirable because of its high electron mobility. Although the basic structure is the same as that of FIG. 5, a high resistance n drift layer 13 formed epitaxially on the SiC−n + semiconductor substrate 12 and a p well region 14 formed on the surface of the n drift layer 13. and n + on the surface of the SiC semiconductor substrate having a source region 15, so that the p-GaN semiconductor channel layer 16 is in contact with the common and the n + source region 15 and the SiC of the p-well region 14 and the SiC semiconductor substrate of the surface of the SiC Formed by heteroepitaxial growth. A gate oxide film 17 and a gate electrode 18 are formed so as to cover the surface of the p-GaN semiconductor channel layer 16, a source electrode 19 is formed in the SiCn + source region 15, and a back surface of the SiC-n + semiconductor substrate 12 is formed. Each drain electrode 11 is formed to constitute a vertical MOSFET. The basic operation principle is the same as that described with reference to FIG. 2, and this basic operation principle allows a large current to flow in the vertical direction through the low-resistance GaN-MOS structure with a lower resistance than the SiC-MOS structure. . In the vertical MOSFET shown in FIG. 3 as well, the gate electrode 18 formed on the surface of the p-GaN semiconductor channel layer 16 via the gate oxide film 17 is the same as in the MOSFET described in FIG. The inversion layer formed by the signal to 18 covers the surface of the p-GaN semiconductor channel layer 16 so that the SiC-n + source region 15 and the n drift layer 13 are electrically connected with low resistance. It is necessary to form as follows. A channel is not formed in the SiCp well region 14 in FIG. 3, and it has a function of maintaining the off voltage.

図4−1乃至図4−3は本発明をトレンチゲート構造のパワーMOSFETへ適用した場合の製造方法を、製造工程毎に示すMOSFETの要部断面図である。最終の製造工程でのMOSFETのデバイス構造を図4−3(g)の断面図に示す。この図4−3(g)の断面図によれば、トレンチ50側壁面にp−GaN半導体チャネル層45が設けられており、このp−GaN半導体チャネル層45にMOS反転層が形成される。図4−1乃至図4−3では(g)に示す最終工程のMOSFETまでの製造工程を(a)〜(g)により示す。   FIGS. 4-1 to 4-3 are cross-sectional views of the main part of the MOSFET showing, for each manufacturing process, a manufacturing method when the present invention is applied to a power MOSFET having a trench gate structure. The device structure of the MOSFET in the final manufacturing process is shown in the sectional view of FIG. 4-3 (g). According to the sectional view of FIG. 4C, the p-GaN semiconductor channel layer 45 is provided on the side wall surface of the trench 50, and a MOS inversion layer is formed in the p-GaN semiconductor channel layer 45. In FIGS. 4A to 4C, the manufacturing steps up to the final step MOSFET shown in FIG. 4G are shown by FIGS.

まず図4−1(a)において、高不純物濃度n型SiC基板41上に、それぞれSiC半導体からなるnドリフト層42、pウエル層43、およびnソース層44が形成される。このとき、pウエル層43やnソース層44は、それぞれ対応する不純物元素を含むSiCエピタキシャル成長層によるか、もしくは不純物元素を含まないSiC半導体エピタキシャル成長層にイオン注入とその後のアニールによって形成することも可能である。このSiC積層基板のnソース層44表面からnドリフト層42に達するトレンチ50を形成する(図4−1(b))。さらにそのトレンチ50を含む側のSiC積層基板表面に不純物濃度は5×1016〜5×1017cm−3で、厚さ0.2μm〜1μmのp−GaN半導体チャネル層45をエピタキシャル成長する(図4−2(c))。p−GaN半導体チャネル層45についても、対応する不純物元素を含むSiCエピタキシャル成長層によるか、もしくは不純物元素を含まないSiC半導体エピタキシャル成長層にイオン注入とその後のアニールによって形成することも可能である。その後、p−GaN半導体チャネル層45の異方性エッチングを行うと、前記積層基板の主面に平行な部分のp−GaN半導体チャネル層45のみが除去され、トレンチ50側壁のp−GaN半導体チャネル層45を残すことができる(図4−2(d))。次に前記トレンチ側壁面のp−GaN半導体チャネル層45表面にゲート絶縁膜46を形成するために全面に絶縁膜を形成する(図4−3(e))。この絶縁膜を介して前記トレンチ50内に、導電性のポリシリコンなどからなるゲート電極47を埋め込むように形成する。前記ポリシリコン膜をパターニングしてゲート電極47とする(図4−3(f))。次に前記積層基板の表面側に前記pウエル層43と前記nソース層44とに共通に接触するソース電極49、裏面にドレイン電極48を形成すると、本発明にかかるトレンチ型縦型MOSFETができる(図4−3(g))。 First, in FIG. 4A, an n drift layer 42, a p well layer 43, and an n + source layer 44 made of a SiC semiconductor are formed on a high impurity concentration n + type SiC substrate 41, respectively. At this time, the p-well layer 43 and the n + source layer 44 may be formed by an SiC epitaxial growth layer containing a corresponding impurity element or by ion implantation and subsequent annealing in an SiC semiconductor epitaxial growth layer containing no impurity element. Is possible. A trench 50 reaching the n drift layer 42 from the surface of the n + source layer 44 of the SiC laminated substrate is formed (FIG. 4B). Further, the p-GaN semiconductor channel layer 45 having an impurity concentration of 5 × 10 16 to 5 × 10 17 cm −3 and a thickness of 0.2 μm to 1 μm is epitaxially grown on the surface of the SiC laminated substrate including the trench 50 (FIG. 4-2 (c)). The p-GaN semiconductor channel layer 45 can also be formed by a SiC epitaxial growth layer containing a corresponding impurity element or by ion implantation and subsequent annealing in a SiC semiconductor epitaxial growth layer containing no impurity element. Thereafter, when anisotropic etching of the p-GaN semiconductor channel layer 45 is performed, only the p-GaN semiconductor channel layer 45 in a portion parallel to the main surface of the multilayer substrate is removed, and the p-GaN semiconductor channel on the sidewall of the trench 50 is removed. The layer 45 can be left (FIG. 4-2 (d)). Next, an insulating film is formed on the entire surface in order to form the gate insulating film 46 on the surface of the p-GaN semiconductor channel layer 45 on the sidewall of the trench (FIG. 4-3 (e)). A gate electrode 47 made of conductive polysilicon or the like is buried in the trench 50 through this insulating film. The polysilicon film is patterned to form a gate electrode 47 (FIG. 4-3 (f)). Next, when a source electrode 49 in common contact with the p-well layer 43 and the n + source layer 44 is formed on the surface side of the multilayer substrate, and a drain electrode 48 is formed on the back surface, the trench type vertical MOSFET according to the present invention is obtained. (Fig. 4-3 (g)).

この場合にも、図3と同様に表面側のMOSゲート構造における主電流が流れる反転層部分はSiC層ではなく、p−GaN半導体チャネル層45に形成されているので、SiC半導体層に生起される反転層に比べて、GaNによる良好な電子移動度を利用することができ、低抵抗の電流通路とすることができ、低オン抵抗のMOSFETが得られる。
また、この本発明にかかるトレンチMOSFETでは、図6の従来のトレンチMOSFETと比較すると、トレンチ側壁のp−GaN半導体チャネル層45がトレンチ50底部まで達していることから、従来、トレンチ50底面コーナー部で問題となり易いゲート絶縁膜への電界集中による耐圧劣化を防止する効果もある。
Also in this case, the inversion layer portion in which the main current flows in the MOS gate structure on the surface side is formed not in the SiC layer but in the p-GaN semiconductor channel layer 45 as in FIG. 3, and thus is generated in the SiC semiconductor layer. Compared with the inversion layer, it is possible to use a good electron mobility due to GaN, to make a current path with a low resistance, and to obtain a MOSFET with a low on-resistance.
Further, in the trench MOSFET according to the present invention, the p-GaN semiconductor channel layer 45 on the side wall of the trench reaches the bottom of the trench 50 as compared with the conventional trench MOSFET of FIG. This also has the effect of preventing breakdown voltage degradation due to electric field concentration on the gate insulating film, which is likely to be a problem.

本発明にかかるワイドバンドギャップ半導体MOSFETの基本構造を示す断面図である。It is sectional drawing which shows the basic structure of the wide band gap semiconductor MOSFET concerning this invention. 本発明にかかる動作を説明するためのエネルギーバンド図である。It is an energy band figure for demonstrating the operation | movement concerning this invention. 本発明にかかるプレーナ型縦型MOSFETの断面構造図である。1 is a cross-sectional structure diagram of a planar type vertical MOSFET according to the present invention. 本発明にかかるトレンチ型縦型MOSFETの構造とその製造方法を示す製造工程毎の断面図である(その1)。It is sectional drawing for every manufacturing process which shows the structure of the trench type vertical MOSFET concerning this invention, and its manufacturing method (the 1). 本発明にかかるトレンチ型縦型MOSFETの構造とその製造方法を示す製造工程毎の断面図である(その2)。It is sectional drawing for every manufacturing process which shows the structure of the trench type vertical MOSFET concerning this invention, and its manufacturing method (the 2). 本発明にかかるトレンチ型縦型MOSFETの構造とその製造方法を示す製造工程毎の断面図である(その3)。It is sectional drawing for every manufacturing process which shows the structure of the trench type vertical MOSFET concerning this invention, and its manufacturing method (the 3). 従来のプレーナゲート縦型MOSFETの要部断面図である。It is principal part sectional drawing of the conventional planar gate vertical MOSFET. 従来のトレンチ縦型MOSFETの要部断面図である。It is principal part sectional drawing of the conventional trench vertical MOSFET.

符号の説明Explanation of symbols

1 p−SiC基板
2、15、44 nソース領域
3 nドレイン領域
4、16、45 p−GaN半導体チャネル層
5、17、46 ゲート絶縁膜
6、18、47 ゲート電極
7、19、49 ソース電極
8、11、48 ドレイン電極
12、41 高不純物濃度nSiC半導体基板
13、42 nドリフト層
14、43 pウエル層
50 トレンチ。
1 p-SiC substrate 2, 15, 44 n + source region 3 n + drain region 4, 16, 45 p-GaN semiconductor channel layer 5, 17, 46 Gate insulating film 6, 18, 47 Gate electrode 7, 19, 49 Source electrode 8, 11, 48 Drain electrode 12, 41 High impurity concentration n + SiC semiconductor substrate 13, 42 n drift layer 14, 43 p well layer 50 trench.

Claims (9)

炭化珪素半導体基板の一面に、一導電型ソース領域の表面と一導電型ドレイン領域の表面とに挟まれる他導電型領域の表面とが配置され、該他導電型領域表面を覆い、前記一導電型のソース領域表面から一導電型ドレイン領域表面にかけて共通に接する他導電型GaN半導体チャネル層と、該他導電型GaN半導体チャネル層を覆うゲート酸化膜と、該ゲート酸化膜を介して前記他導電型GaN半導体チャネル層を覆うゲート電極とを備えることを特徴とするワイドバンドギャップ半導体の絶縁ゲート型半導体装置。 A surface of one conductivity type source region and a surface of another conductivity type region sandwiched between surfaces of the one conductivity type drain region are disposed on one surface of the silicon carbide semiconductor substrate, covering the surface of the other conductivity type region, and Other-conductivity-type GaN semiconductor channel layer in common contact from the source region surface of the mold to the surface of the one-conductivity-type drain region, a gate oxide film covering the other-conductivity-type GaN semiconductor channel layer, and the other conductivity A wide bandgap semiconductor insulated gate semiconductor device comprising: a gate electrode covering the type GaN semiconductor channel layer. 前記一導電型ソース領域と一導電型ドレイン領域とが、それぞれ、前記炭化珪素半導体基板の一面に、オーミック性接触を示す不純物濃度以上の高不純物濃度にされた領域を備え、該高不純物濃度領域表面をそれぞれ被覆するソース電極またはドレイン電極を備えることを特徴とする請求項1記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置。 The one conductivity type source region and the one conductivity type drain region each include a region having a high impurity concentration equal to or higher than an impurity concentration exhibiting ohmic contact on one surface of the silicon carbide semiconductor substrate, and the high impurity concentration region 2. The wide band gap semiconductor insulated gate semiconductor device according to claim 1, further comprising a source electrode or a drain electrode covering the surface. 前記炭化珪素半導体基板が一導電型高不純物濃度基板と該基板上に形成される一導電型低不純物濃度層と該一導電型低不純物濃度層表面に選択的に形成される他導電型ウエル領域と該他導電型ウエル領域表面に形成される一導電型高不純物濃度ソース領域とを備え、前記炭化珪素半導体基板の一面には、前記一導電型高不純物濃度ソース領域の表面と前記一導電型低不純物濃度層の表面とに前記他導電型ウエル領域の表面とが挟まれるように配置され、前記一導電型高不純物濃度ソース領域の表面にはソース電極が被覆され、前記他面側の一導電型高不純物濃度基板の表面にはドレイン電極が被覆されることを特徴とする請求項1記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置。 The silicon carbide semiconductor substrate is a one conductivity type high impurity concentration substrate, a one conductivity type low impurity concentration layer formed on the substrate, and another conductivity type well region selectively formed on the surface of the one conductivity type low impurity concentration layer. And one conductivity type high impurity concentration source region formed on the surface of the other conductivity type well region, and on one surface of the silicon carbide semiconductor substrate, the surface of the one conductivity type high impurity concentration source region and the one conductivity type The surface of the other conductivity type well region is disposed between the surface of the low impurity concentration layer and the surface of the one conductivity type high impurity concentration source region is covered with a source electrode, 2. The wide band gap semiconductor insulated gate semiconductor device according to claim 1, wherein the surface of the conductive high impurity concentration substrate is covered with a drain electrode. 前記炭化珪素半導体基板が一導電型高不純物濃度基板と該基板上に形成される一導電型低不純物濃度ドリフト層と該ドリフト層表面に選択的に形成される他導電型ウエル領域と該ウエル領域表面に形成される一導電型高不純物濃度ソース領域とを備え、前記炭化珪素半導体基板の一面側の一導電型高不純物濃度ソース領域表面から前記他導電型ウエル領域を貫通して前記一導電型低不純物濃度ドリフト層に達するトレンチと該トレンチの側壁に露出する前記他導電型ウエル領域表面を覆って前記一導電型高不純物濃度ソース領域の側壁表面からトレンチ底部に達する他導電型GaN半導体チャネル層と、該他導電型GaN半導体チャネル層を覆うようにトレンチ内に形成されるゲート絶縁膜を介して前記トレンチ内に埋め込まれるゲート電極とを含むトレンチゲート構造を有し、前記炭化珪素半導体基板の一面側には、前記一導電型高不純物濃度ソース領域表面と他導電型ウエル領域表面に共通に接触するソース電極を有し、前記炭化珪素半導体基板の他面側の一導電型高不純物濃度基板表面にはドレイン電極を備えることを特徴とする請求項1記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置。 The silicon carbide semiconductor substrate is a one conductivity type high impurity concentration substrate, a one conductivity type low impurity concentration drift layer formed on the substrate, another conductivity type well region selectively formed on the surface of the drift layer, and the well region One conductivity type high impurity concentration source region formed on the surface, and penetrates the other conductivity type well region from the surface of the one conductivity type high impurity concentration source region on the one surface side of the silicon carbide semiconductor substrate. A trench reaching the low impurity concentration drift layer and the other conductivity type GaN semiconductor channel layer covering the surface of the other conductivity type well region exposed on the side wall of the trench and reaching the bottom of the trench from the side wall surface of the one conductivity type high impurity concentration source region And a gate electrode embedded in the trench through a gate insulating film formed in the trench so as to cover the other conductivity type GaN semiconductor channel layer And having a source electrode in common contact with the surface of the one conductivity type high impurity concentration source region and the surface of the other conductivity type well region on one surface side of the silicon carbide semiconductor substrate, 2. The wide band gap semiconductor insulated gate semiconductor device according to claim 1, wherein a drain electrode is provided on the surface of the one conductivity type high impurity concentration substrate on the other side of the silicon semiconductor substrate. 一導電型高不純物濃度炭化珪素基板の一面上に一導電型低不純物濃度ドリフト層と他導電型ウエル層と一導電型高不純物濃度ソース層からなる炭化珪素半導体基板をこの順に形成する第一工程、前記一導電型高不純物濃度ソース層表面から一導電型低不純物濃度ドリフト層に達するトレンチを形成する第二工程、該トレンチを含む炭化珪素半導体基板表面に他導電型GaN半導体チャネル層を堆積する第三工程、異方性エッチングにより、前記トレンチ側壁面の他導電型GaN半導体チャネル層を残して他の他導電型GaN半導体チャネル層を除去し、次に前記トレンチ内にゲート絶縁膜を介してゲート電極を形成する第四工程、前記一導電型高不純物濃度ソース層と前記他導電型ウエル層とに接するソース電極を形成する第五工程、前記一導電型高不純物濃度炭化珪素基板の他面上にドレイン電極を形成する第六工程を備えることを特徴とするワイドバンドギャップ半導体の絶縁ゲート型半導体装置の製造方法。 A first step of forming, in this order, a silicon carbide semiconductor substrate comprising a one conductivity type low impurity concentration drift layer, another conductivity type well layer, and a one conductivity type high impurity concentration source layer on one surface of a one conductivity type high impurity concentration silicon carbide substrate. A second step of forming a trench reaching the one conductivity type low impurity concentration drift layer from the surface of the one conductivity type high impurity concentration source layer, and depositing another conductivity type GaN semiconductor channel layer on the surface of the silicon carbide semiconductor substrate including the trench A third step, anisotropic etching, removes the other conductivity type GaN semiconductor channel layer while leaving the other conductivity type GaN semiconductor channel layer on the side wall of the trench, and then passes through the gate insulating film in the trench. A fourth step of forming a gate electrode; a fifth step of forming a source electrode in contact with the one conductivity type high impurity concentration source layer and the other conductivity type well layer; Method for producing a wide band gap semiconductor insulated gate semiconductor device, characterized in that it comprises a sixth step of forming a drain electrode on the conductive type high impurity concentration silicon carbide on the other surface of the substrate. 前記一導電型高不純物濃度ソース層または前記他導電型ウエル層の形成方法がSiCエピタキシャル成長であることを特徴とする請求項5記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置の製造方法。 6. The method of manufacturing an insulated gate semiconductor device of a wide band gap semiconductor according to claim 5, wherein the formation method of the one conductivity type high impurity concentration source layer or the other conductivity type well layer is SiC epitaxial growth. 前記一導電型高不純物濃度ソース層または前記他導電型ウエル層の形成方法がイオン注入法であることを特徴とする請求項5記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置の製造方法。 6. The method of manufacturing an insulated gate semiconductor device of a wide band gap semiconductor according to claim 5, wherein the formation method of the one conductivity type high impurity concentration source layer or the other conductivity type well layer is an ion implantation method. 前記他導電型GaN半導体チャネル層の形成方法がヘテロエピタキシャル成長であることを特徴とする請求項5記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置の製造方法。 6. The method of manufacturing an insulated gate semiconductor device of wide band gap semiconductor according to claim 5, wherein the formation method of the other conductivity type GaN semiconductor channel layer is heteroepitaxial growth. 前記他導電型GaN半導体チャネル層の形成方法がイオン注入法であることを特徴とする請求項5記載のワイドバンドギャップ半導体の絶縁ゲート型半導体装置の製造方法。 6. The method of manufacturing an insulated gate semiconductor device of a wide band gap semiconductor according to claim 5, wherein the formation method of the other conductivity type GaN semiconductor channel layer is an ion implantation method.
JP2006293516A 2006-10-30 2006-10-30 Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof Active JP5098293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006293516A JP5098293B2 (en) 2006-10-30 2006-10-30 Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006293516A JP5098293B2 (en) 2006-10-30 2006-10-30 Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008112774A JP2008112774A (en) 2008-05-15
JP5098293B2 true JP5098293B2 (en) 2012-12-12

Family

ID=39445146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006293516A Active JP5098293B2 (en) 2006-10-30 2006-10-30 Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5098293B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US8680587B2 (en) 2011-09-11 2014-03-25 Cree, Inc. Schottky diode
US9754971B2 (en) * 2013-05-18 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE112013007510B4 (en) 2013-10-17 2020-03-26 Mitsubishi Electric Corporation Silicon carbide semiconductor device
JP6905395B2 (en) 2017-06-16 2021-07-21 株式会社東芝 Semiconductor device
US11393806B2 (en) 2019-09-23 2022-07-19 Analog Devices, Inc. Gallium nitride and silicon carbide hybrid power device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252478A (en) * 1987-04-09 1988-10-19 Seiko Instr & Electronics Ltd Insulated-gate semiconductor device
JP4934903B2 (en) * 2001-04-26 2012-05-23 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof
JP4477296B2 (en) * 2002-11-14 2010-06-09 古河電気工業株式会社 Field effect transistor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008112774A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
US8658503B2 (en) Semiconductor device and method of fabricating the same
JP3620513B2 (en) Silicon carbide semiconductor device
US8039346B2 (en) Insulated gate silicon carbide semiconductor device and method for manufacturing the same
JP5202308B2 (en) High voltage silicon carbide MOS bipolar device having bidirectional blocking capability and method of manufacturing the same
JP5145694B2 (en) Manufacturing method of SiC semiconductor vertical MOSFET.
JP3573149B2 (en) Silicon carbide semiconductor device
JP6641488B2 (en) Semiconductor device
JP6802454B2 (en) Semiconductor devices and their manufacturing methods
CN110021661B (en) Semiconductor device and method for manufacturing the same
US20150279983A1 (en) Semiconductor device
JPWO2011007387A1 (en) Power semiconductor device and manufacturing method thereof
JP6183087B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP2018026562A (en) Semiconductor device and method of manufacturing the same
JP5098293B2 (en) Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof
JP4948784B2 (en) Semiconductor device and manufacturing method thereof
JP5556863B2 (en) Wide bandgap semiconductor vertical MOSFET
JP5636752B2 (en) Semiconductor device and manufacturing method thereof
JP6550869B2 (en) Semiconductor device
JP2010027833A (en) Silicon carbide semiconductor device and its manufacturing method
WO2015111177A1 (en) Semiconductor device, power module, power conversion device, and railway vehicle
JP2011171421A (en) Semiconductor device and method for manufacturing the same
JP2010258387A (en) Manufacturing method of silicon carbide semiconductor device, and silicon carbide semiconductor device
US6150671A (en) Semiconductor device having high channel mobility and a high breakdown voltage for high power applications
JP5059989B1 (en) Semiconductor device and manufacturing method thereof
JP2007019095A (en) Manufacturing method for semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250