Nothing Special   »   [go: up one dir, main page]

JP5093833B2 - Single cell for fuel cell - Google Patents

Single cell for fuel cell Download PDF

Info

Publication number
JP5093833B2
JP5093833B2 JP2006016120A JP2006016120A JP5093833B2 JP 5093833 B2 JP5093833 B2 JP 5093833B2 JP 2006016120 A JP2006016120 A JP 2006016120A JP 2006016120 A JP2006016120 A JP 2006016120A JP 5093833 B2 JP5093833 B2 JP 5093833B2
Authority
JP
Japan
Prior art keywords
cell
fuel
electrode layer
cell stack
interconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006016120A
Other languages
Japanese (ja)
Other versions
JP2006236989A (en
Inventor
寛 折島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2006016120A priority Critical patent/JP5093833B2/en
Publication of JP2006236989A publication Critical patent/JP2006236989A/en
Application granted granted Critical
Publication of JP5093833B2 publication Critical patent/JP5093833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池に使用される単電池セルに関する。   The present invention relates to a unit cell used for a fuel cell.

代表的な燃料電池の一つとして、固体酸化物型燃料電池〔SOFC(Solid Oxide Fuel Cells)〕がある。この燃料電池では、イットリア安定化ジルコニア(YSZ)などの焼結体からなる薄く脆い固体電解質層の一方の表面に燃料電極層を形成し、他方の表面に空気電極層を形成した3層構造の積層体が、単電池セルとして使用される。燃料電極としてはNiとYSZのサーメット、空気電極としてはランタンストロンチウムマンガナイト(LSM)などが使用される。いずれも多孔質の焼結体である。   One typical fuel cell is a solid oxide fuel cell (SOFC). This fuel cell has a three-layer structure in which a fuel electrode layer is formed on one surface of a thin and brittle solid electrolyte layer made of a sintered body such as yttria stabilized zirconia (YSZ) and an air electrode layer is formed on the other surface. A laminated body is used as a single battery cell. Ni and YSZ cermet are used as the fuel electrode, and lanthanum strontium manganite (LSM) is used as the air electrode. Both are porous sintered bodies.

この単電池セルは、起電力が1V以下と低いために、通常は複数枚を厚み方向へ積層し、直列に接続して使用される。より具体的には、単電池セルの両面側に反応空間が形成されるように、単電池セルを間に挟みながらインターコネクタを板厚方向へ積層することにより、セルスタックが構成される。インターコネクタは、ステンレス鋼等の金属板からなり、隣接する単電池セルとの間に反応空間を形成するためのガス分配溝をセル対向面に有している。セルスタックの形状としては角柱タイプや円柱タイプがあり、燃料ガス及び酸化ガスの供給孔の位置によってこれらが単電池セルの電池反応領域外にある外部マニホールド型、これらが単電池セルの中心部に設けられた内部マニホールド型、更には内外部に設けられた内外部マニホールド型などに分かれる。   Since this single battery cell has an electromotive force as low as 1 V or less, it is usually used by stacking a plurality of sheets in the thickness direction and connecting them in series. More specifically, the cell stack is configured by stacking interconnectors in the thickness direction while sandwiching the unit cells so that reaction spaces are formed on both sides of the unit cells. The interconnector is made of a metal plate such as stainless steel, and has a gas distribution groove on the cell facing surface for forming a reaction space between adjacent battery cells. There are two types of cell stack shapes: prismatic type and cylindrical type. Depending on the location of the fuel gas and oxidant gas supply holes, these are external manifold types that are outside the battery reaction area of the unit cell, and these are located at the center of the unit cell. It is divided into an internal manifold type provided, and an internal / external manifold type provided inside and outside.

運転では、セルスタックの中心部に水素リッチの燃料ガスと空気などの酸化ガスを供給する。セルスタック内に供給された燃料ガスは、単電池セルの一面側に形成された燃料電極側の反応空間を内周部から外周部へ流通する。また酸化ガスは、単電池セルの他面側に形成された空気電極側の反応空間を内周部から外周部へ流通する。こうして固体電解質層を挟んで両ガスが内周部から外周部へ流通することにより、各単電池セルで発電が行なわれる。   In operation, hydrogen-rich fuel gas and oxidizing gas such as air are supplied to the center of the cell stack. The fuel gas supplied into the cell stack flows from the inner peripheral portion to the outer peripheral portion in the reaction space on the fuel electrode side formed on one surface side of the unit cell. Further, the oxidizing gas flows from the inner peripheral portion to the outer peripheral portion in the reaction space on the air electrode side formed on the other surface side of the single battery cell. In this way, both the gas flows from the inner peripheral portion to the outer peripheral portion with the solid electrolyte layer interposed therebetween, whereby electric power is generated in each single battery cell.

このような燃料電池用の単電池セルは、機械構成上の主体となる部材の違いによって電極支持型と電解質支持型とに大別され、前者の電極支持型は更に燃料電極支持型と空気電極支持型の2種類に分かれる。燃料電極支持型では、基本構成部材である薄板状の燃料電極層の一方の表面に固体電解質層が成膜により薄く形成され、更にその上に空気電極層が成膜により薄く形成される。また、空気電極支持型では、基本構成部材である薄板状の空気電極層の一方の表面に固体電解質層が成膜により薄く形成され、更にその上に燃料電極層が成膜により薄く形成される。一方、電解質支持型では、基本構成部材である薄板状の固体電解質層の一方の表面に燃料電極層が成膜により薄く形成され、他方の表面に空気電極層が成膜により薄く形成される。   Such unit cells for a fuel cell are roughly classified into an electrode support type and an electrolyte support type according to the difference in the main components in the mechanical structure. The former electrode support type is further divided into a fuel electrode support type and an air electrode. It is divided into two types: support type. In the fuel electrode support type, a solid electrolyte layer is thinly formed on one surface of a thin plate-like fuel electrode layer which is a basic constituent member, and an air electrode layer is further formed thinly on the solid electrolyte layer. In the air electrode support type, a solid electrolyte layer is formed thinly on one surface of a thin plate-like air electrode layer, which is a basic constituent member, and a fuel electrode layer is further formed thinly thereon. . On the other hand, in the electrolyte support type, the fuel electrode layer is thinly formed on one surface of the thin plate-like solid electrolyte layer which is a basic constituent member, and the air electrode layer is thinly formed on the other surface by film formation.

実際の燃料電池では、耐熱性が高く熱膨張係数が比較的小さいフェライト系ステンレス鋼がインターコネクタに多用されており、そのような燃料電池では、インターコネクタとの熱膨張係数を合わせるために、燃料電極支持型が比較的多く採用されている。この形式の単電池セル及びこれを使用したセルスタックは例えば特許文献1に記載されている。   In an actual fuel cell, ferritic stainless steel, which has high heat resistance and a relatively small thermal expansion coefficient, is often used for an interconnector. In such a fuel cell, in order to match the thermal expansion coefficient with the interconnector, A relatively large number of electrode support types are used. A single battery cell of this type and a cell stack using the same are described in Patent Document 1, for example.

特開2002−343376号公報JP 2002-343376 A

このような単電池セルを積層して使用する従来の燃料電池では、その単電池セルの構造に起因して次のような問題がある。   A conventional fuel cell using such unit cells stacked has the following problems due to the structure of the unit cells.

セルスタックの組立においては、単電池セルとインターコネクタを交互に積層していく。この過程で両者の電気的接触を確保するが、単電池セル及びインターコネクタには厚みの分布にばらつきがあり、このばらつきのために、単電池セルとインターコネクタの間に部分的な隙間が発生する。この隙間は燃料ガス、酸化ガスの流れに影響しないほど微小でも電気的には絶縁された部分となる。この結果、単電池セルの電極全面からロスなく電気を取り出すことができなくなり、単電池セルの発電性能を十分に引き出せなくなる。そればかりか、電気的な接触が確保されている部分に電流が集中し、局部的に大電流が流れることにより、単電池セルの性能劣化が急速に進むおそれがある。   In assembling the cell stack, the unit cells and the interconnector are alternately stacked. In this process, electrical contact between the two cells is ensured, but there is a variation in the thickness distribution of the unit cells and the interconnector, and this variation causes a partial gap between the unit cell and the interconnector. To do. This gap is an electrically insulated portion that is so small that it does not affect the flow of fuel gas and oxidant gas. As a result, electricity cannot be taken out from the entire surface of the electrode of the single battery cell without loss, and the power generation performance of the single battery cell cannot be sufficiently extracted. In addition, the current concentrates on the portion where the electrical contact is ensured, and the large current flows locally, so that there is a possibility that the performance deterioration of the single battery cell may proceed rapidly.

単電池セルには、厚みのばらつきだけでなく、構成材料の熱膨張係数の違いによる僅かな反りがあり、これも両者の間に隙間をつくる原因になっている。ちなみに、熱膨張係数が大きいのは燃料電極層であり、フェライト系ステンレス鋼並の熱膨張係数を示す。   The unit cell has not only variations in thickness but also slight warpage due to the difference in thermal expansion coefficient of the constituent materials, which also causes a gap between the two. Incidentally, it is the fuel electrode layer that has a large thermal expansion coefficient, and exhibits a thermal expansion coefficient comparable to that of ferritic stainless steel.

単電池セルとインターコネクタの間の局部的な隙間による諸問題を解決するために、従来は単電池セルとインターコネクタの間に機械的接合材を兼ねる電気的コンタクト材を介在させていた。このコンタクト材としては、燃料電極とインターコネクタの間ではNi粉などの金属粉末をバインダーと混合してペースト状にしたものが使用されており、空気電極とインターコネクタの間では銀粉末や銀合金粉末、電気伝導性の良い酸化物粉末(例えばLSMなどのペロブスカイト型の酸化物粉末)をバインダーと混合してペースト状にしたものが使用されている。ただし、銀粉末、銀合金粉末などは焼結しやすく緻密な焼結体となるため、空気電極の多孔層を閉塞する危険がある。このため前述の酸化物と混合して使用され場合もあり、この場合は金属単体粉末時より焼結温度が高くなる傾向がある。   In order to solve various problems due to local gaps between the single battery cell and the interconnector, conventionally, an electrical contact material that also serves as a mechanical bonding material is interposed between the single battery cell and the interconnector. As the contact material, a paste made by mixing a metal powder such as Ni powder with a binder is used between the fuel electrode and the interconnector, and a silver powder or a silver alloy is used between the air electrode and the interconnector. Powders and oxide powders having good electrical conductivity (for example, perovskite type oxide powders such as LSM) mixed with a binder are used. However, since silver powder, silver alloy powder, etc. are easily sintered and become a dense sintered body, there is a risk of clogging the porous layer of the air electrode. For this reason, it may be used by mixing with the above-mentioned oxide, and in this case, the sintering temperature tends to be higher than that when the powder is a single metal powder.

そして、セルスタックの組立作業において、これらのペーストを単電池セルの両面、或いはインターコネクタの表面にスクリーン印刷により塗布し、未乾燥の状態(流動状態)で単電池セルとインターコネクタを所定枚数交互に高く積み重ねていく。これにより、両者の各隙間がコンタクト材で充填され排除される。しかし、ペーストが流動状態であり、しかも積み重ね枚数が多いため、積層時に滑りが発生し位置ずれなどが生じやすい。また、ペーストが乾燥するより前に素早く積層作業を終える必要がある。これらのために、積層作業性が非常に悪い。これが第1の問題である。   In the cell stack assembly work, these pastes are applied to both sides of the unit cell or the surface of the interconnector by screen printing, and a predetermined number of unit cells and interconnectors are alternately placed in an undried state (flow state). Will be stacked high. Thereby, each clearance gap between both is filled with the contact material and eliminated. However, since the paste is in a fluid state and the number of stacked sheets is large, slippage occurs during stacking, and misalignment is likely to occur. Also, it is necessary to finish the laminating work quickly before the paste dries. For these reasons, the laminating workability is very poor. This is the first problem.

積層作業後は、機械的接合材を兼ねる電気的コンタクト材であるペーストの機械的、電気的接合をより確実にするために高温下でペーストの焼結化を進める必要があるが、焼結化のための温度は燃料電池運転温度より高い。しかるに通常は、積層体を積層方向に締め付け固定し、そのまま燃料電池の装置内に組み込まれるため、積層作業後の温度は高々燃料電池運転温度までとなり、ペーストの焼結化温度としては不十分なものになっている。ペーストの焼結化を図るために、積層作業後にペーストの焼結化工程を設ける方法もあるが、締め付け治具に耐熱性を付与する必要がある上に、セルスタック全体を加熱するための大型炉が必要になる。これらのため、セルスタック製造のための加熱コストが嵩む。これが第2の問題である。   After the laminating work, it is necessary to proceed with sintering of the paste at a high temperature in order to ensure the mechanical and electrical bonding of the paste, which is an electrical contact material that also serves as a mechanical bonding material. The temperature for is higher than the fuel cell operating temperature. However, normally, the laminate is clamped and fixed in the laminating direction and incorporated into the fuel cell apparatus as it is, so that the temperature after the laminating operation is at most the fuel cell operating temperature, which is insufficient as the paste sintering temperature. It is a thing. In order to sinter the paste, there is a method of providing a paste sinter process after the laminating operation, but it is necessary to provide heat resistance to the fastening jig and a large size for heating the entire cell stack. A furnace is required. For these reasons, the heating cost for manufacturing the cell stack increases. This is the second problem.

第3の問題は、電池性能検査での歩留りの悪さである。すなわち、従来の単電池セルは、セル単位では電池として機能せず、セルスタックに組み上げて始めて電池として完成する。したがって、セルスタックにならないと、電池性能検査を行うことができない。換言すれば、単電池セルの段階で電池性能検査を行うことができないのである。この制約のため、セルスタック中の1枚の単電池セルが不良でもセルスタック全体が不良となり、性能検査での歩留りが非常に悪くなる。   The third problem is poor yield in battery performance inspection. That is, the conventional single battery cell does not function as a battery in cell units, and is completed as a battery only after being assembled in a cell stack. Therefore, the battery performance inspection cannot be performed unless the cell stack is formed. In other words, the battery performance inspection cannot be performed at the unit cell stage. Due to this restriction, even if one single battery cell in the cell stack is defective, the entire cell stack becomes defective, and the yield in the performance inspection becomes very poor.

本発明の目的は、セルスタックへの積層作業が容易で、しかも局部的な電流集中を回避できる燃料電池用単電池セルを提供することにある。   An object of the present invention is to provide a unit cell for a fuel cell that can be easily stacked on a cell stack and can avoid local current concentration.

本発明の別の目的は、セルスタック製造のための加熱コストを節減できる燃料電池用単電池セルを提供することにある。   Another object of the present invention is to provide a unit cell for a fuel cell that can reduce the heating cost for manufacturing the cell stack.

本発明の更に別の目的は、電池性能試験での歩留りを改善できる燃料電池用単電池セルを提供することにある。   Still another object of the present invention is to provide a unit cell for a fuel cell that can improve the yield in a battery performance test.

上記目的を達成するために、本発明の燃料電池用単電池セルは、セルスタックに積層される前の単電池セルであって、固体電解質層と、電解質層の一方の表面に形成された燃料電極層と、電解質層の他方の表面に形成された空気電極層と、両方の電極層の各表面に密着接合されており、且つ板厚方向の通ガス性を有することにより発電のためのガス流通を阻害しない厚みが0.02mm以上1mm以下の一組の金属からなる支持基板とを具備しており、更に積層された所定枚数のインターコネクタの各間に挟まれてセルスタックを構成する。 In order to achieve the above object, a unit cell for a fuel cell according to the present invention is a unit cell before being stacked in a cell stack, and is a fuel formed on one surface of a solid electrolyte layer and an electrolyte layer. Gas for power generation by being closely bonded to each surface of the electrode layer, the air electrode layer formed on the other surface of the electrolyte layer, and both electrode layers, and having gas permeability in the plate thickness direction And a support substrate made of a set of metal plates having a thickness of 0.02 mm or more and 1 mm or less that does not impede distribution, and further sandwiched between each of a predetermined number of stacked interconnectors to constitute a cell stack. .

本発明の燃料電池用単電池セルにおいては、形態的には一方の支持基板、燃料電極層、固体電解質層、空気電極層及び他方の支持基板が順番に積層された5層構造が採用され、機械構造的には固体電解質層の両面側に燃料電極層及び空気電極層を積層した3層構造の積層焼結体が、両面側から金属支持基板で挟まれ固定された、両面金属支持型構造が採用される。この両面金属支持型の単電池セルは、例えば3層構造の積層焼結体の両面側に、接合材を兼ねるペースト状の電気的コンタクト材を介して支持基板を重ね合わせ、積層方向に加圧した状態で、ペースト焼結化のための加熱を行うことにより製造される。或いは一方の支持基板の上に、燃料電極層、固体電解質層及び空気電極層を順番に積層した後、その上に接合材を兼ねるペースト状の電気的コンタクト材を介して他方の支持基板を重ね合わせ、積層方向に加圧した状態で、ペースト焼結化のための加熱を行うことにより製造される。   In the fuel cell unit cell of the present invention, in terms of form, a five-layer structure in which one support substrate, a fuel electrode layer, a solid electrolyte layer, an air electrode layer and the other support substrate are sequentially laminated is adopted. In terms of mechanical structure, a double-sided metal support structure in which a laminated sintered body having a three-layer structure in which a fuel electrode layer and an air electrode layer are stacked on both sides of a solid electrolyte layer is sandwiched and fixed by a metal support substrate from both sides. Is adopted. In this double-sided metal-supported unit cell, for example, a support substrate is stacked on both sides of a laminated sintered body having a three-layer structure via a paste-like electrical contact material that also serves as a bonding material, and pressure is applied in the stacking direction. In this state, it is manufactured by heating for paste sintering. Alternatively, a fuel electrode layer, a solid electrolyte layer, and an air electrode layer are sequentially stacked on one support substrate, and then the other support substrate is stacked on the support substrate via a paste-like electrical contact material that also serves as a bonding material. In addition, it is manufactured by heating for paste sintering in a state of being pressed in the stacking direction.

これらの加熱は、通常は大気雰囲気で行われるが、燃料電極側にのみ水素などの還元ガスを通して還元雰囲気で行うこともできる。そして、ここにおける単電池セルの加熱は、重ね合わせ枚数が少なく、厚さも薄いため、小さな締め付け治具を用いて小さな加熱炉やベルト搬送型などの連続炉で簡単かつ確実に行うことができる。すなわち、単電池セル製造のために基板接合作業が必要になるものの、その作業は簡単で低コストである。   These heating operations are usually performed in an air atmosphere, but can also be performed in a reducing atmosphere through a reducing gas such as hydrogen only on the fuel electrode side. In addition, since the single battery cell is heated in a small number and has a small thickness, it can be easily and reliably performed in a continuous furnace such as a small heating furnace or a belt conveyance type using a small fastening jig. That is, although a substrate bonding operation is required for manufacturing the single battery cell, the operation is simple and low cost.

セルスタックへの組立では、インターコネクタと交互に積層し接合一体化するが、接合部が金属同士の接合となるため、その接合を低温・低荷重のろう付けなどで簡単かつ確実に行うことができる。また、金属は表面に平行な方向の通電が可能であるため、仮に部分的に接合不良の箇所ができても、接合部分に電流が集中するおそれはない。したがって、セルスタックの組立作業が簡単で低コストとなり、単電池セル製造のための基板接合作業を考慮しても、経済性及び品質が向上する。   When assembling into a cell stack, the interconnector is alternately stacked and joined and integrated, but the joint is a metal-to-metal joint, so the joining can be done easily and reliably by brazing at low temperature and low load. it can. Further, since the metal can be energized in a direction parallel to the surface, even if a part of the bonding failure is partially formed, there is no possibility that the current concentrates on the bonding part. Therefore, the assembly work of the cell stack is simple and low-cost, and the economy and quality are improved even when the substrate joining work for manufacturing the single battery cell is taken into consideration.

両面側の金属支持基板が極板として機能するために、単電池セルの段階で電池として完成し、電池性能試験を行うことができ、不良セルをセルスタックに混入させる危険がない。このため、性能試験での歩留りが飛躍的に向上する。   Since the metal support substrate on both sides functions as an electrode plate, it can be completed as a battery at the stage of a single battery cell and a battery performance test can be performed, and there is no danger of mixing defective cells into the cell stack. For this reason, the yield in the performance test is dramatically improved.

これに加えて、両面金属支持型の単電池セルは、金属という同種材質の機械的な主要構成部材が両面側に対称的に配置され、両面側の主要構成部材の熱膨張係数が揃うため、反りが発生しにくい。更に、金属支持基板の熱膨張係数が燃料電極の熱膨張係数に近いことも、反りの発生を抑えるのに有利に働く。ちなみに、燃料電極支持型の単電池セルの場合は、燃料電極の熱膨張係数が固体電解質や空気電極の側よりも相当に大きく、両面側の熱膨張係数が不揃いとなるため、焼結後に常温へ戻したときに反りが発生する。   In addition to this, the double-sided metal-supported single battery cell has the same mechanical material of the same type of metal, which is symmetrically arranged on both sides, and the thermal expansion coefficients of the main components on both sides are aligned. Less likely to warp. Furthermore, the fact that the thermal expansion coefficient of the metal support substrate is close to the thermal expansion coefficient of the fuel electrode is also advantageous for suppressing the occurrence of warpage. By the way, in the case of a fuel cell-supported unit cell, the thermal expansion coefficient of the fuel electrode is considerably larger than that of the solid electrolyte or air electrode, and the thermal expansion coefficients of both sides are uneven. Warpage occurs when returning to.

単電池セルの反りが少ないことは、積層時の密着性が上がり、作業性及び接合品質が向上する。また仮に接合が不十分であっても、これが製品品質に直接影響しないことは前述したとおりである。すなわち、本発明の燃料電池用単電池セルは、多種多様な方面から積層作業性及び積層品質を改善する。   When the warpage of the single battery cell is small, the adhesion at the time of stacking is increased, and workability and bonding quality are improved. As described above, even if the bonding is insufficient, this does not directly affect the product quality. That is, the unit cell for a fuel cell according to the present invention improves the stacking workability and the stacking quality from a wide variety of directions.

本発明の燃料電池用単電池セルにおける支持基板は、前述したとおり板厚方向の通ガス性を有する金属板からなる。具体的には、多数の貫通孔をエッチングやプレス加工などで設けた多孔板であり、或いは金属粒を焼結した多孔質の板体である。 Supporting the substrate in a fuel cell single cell of the present invention is made of a metal plate having a flow-through gas of the sheet thickness direction as described above. Specifically, it is a porous plate in which a large number of through holes are provided by etching or pressing, or a porous plate body in which metal particles are sintered.

また、本発明の範疇ではないが、この支持基板は、金属であることにより、インターコネクタを兼ねる構成とすることができる。具体的には、一方の表面にインターコネクタ用のガス分配溝が形成されており、その溝形成面が電極層の表面に密着接合されると共に、反対側の表面同士が背中合わせに接合されてインターコネクタを構成するインターコネクタ兼用の金属板である。この支持基板を使用する場合は、従来から使用されているインターコネクタは不要になり、前述した板厚方向の通ガス性を有する金属板を省略することもできる。 Further , although not within the scope of the present invention, the support substrate can be configured to serve as an interconnector by being made of metal. Specifically, a gas distribution groove for an interconnector is formed on one surface, and the groove forming surface is closely bonded to the surface of the electrode layer, and the opposite surfaces are bonded back to back. This is a metal plate also serving as an interconnector constituting the connector. When this support substrate is used, the conventionally used interconnector is unnecessary, and the above-described metal plate having gas permeability in the plate thickness direction can be omitted.

支持基板の材質としては、燃料電池の運転温度に耐えることは勿論、基板接合のための高温加熱に耐える必要から、Fe−Cr合金やNi系、Cr系などの耐熱金属が好ましい。   The material of the support substrate is preferably a heat-resistant metal such as Fe—Cr alloy, Ni-based, or Cr-based because it needs to withstand the high temperature heating for substrate bonding as well as withstand the operating temperature of the fuel cell.

支持基板の厚みは1mm以下とし、0.5mm以下が特に好ましい。なぜなら厚くなるとセルスタックの積層高さが大きくなり、また重量も増加するためである。支持基板の厚みの下限については機械的強度、特に剛性の確保の点から0.02mm以上とし、0.1mm以上が特に好ましい。 The thickness of the support substrate is 1 mm or less, and 0.5 mm or less is particularly preferable. This is because as the thickness increases, the stack height of the cell stack increases and the weight also increases. The lower limit of the thickness of the support substrate is set to 0.02 mm or more and particularly preferably 0.1 mm or more from the viewpoint of securing mechanical strength, particularly rigidity.

また、両側の支持基板は同じ厚さであることが望ましく、厚さが異なる場合も5倍程度までが好ましい。両側の支持基板の厚さが異なることにより剛性差が生じ、加圧して焼結するときに同じだけ変形せず、これが歪みとして残る可能性があるからである。   Moreover, it is desirable that the supporting substrates on both sides have the same thickness, and even when the thicknesses are different, it is preferable that the thickness is about 5 times. This is because a difference in rigidity occurs due to the difference between the thicknesses of the support substrates on both sides, and the same deformation does not occur when pressing and sintering, and this may remain as a strain.

本発明の燃料電池用単電池セルは、固体電解質層の両面側に燃料電極層及び空気電極層を積層した3層構造の積層焼結体が、両面側から金属支持基板で挟まれ固定された、両面金属支持型構造を採用するため、セルスタックへの積層接合作業が容易で経済的である。しかも接合部での局部的な電流集中を回避でき、燃料電池寿命を延長することができる。また、セルスタック製造のための加熱コストを節減でき、この点からも経済性に優れる。更に、単電池セルの段階で電池性能試験を実施できるため、電池性能試験での歩留りを改善することもできる。 In the unit cell for a fuel cell of the present invention, a laminated sintered body having a three-layer structure in which a fuel electrode layer and an air electrode layer are laminated on both sides of a solid electrolyte layer is sandwiched and fixed by a metal support substrate from both sides. In addition, since the double-sided metal support structure is adopted, the lamination joining work to the cell stack is easy and economical. In addition, local current concentration at the junction can be avoided, and the life of the fuel cell can be extended. In addition, the heating cost for manufacturing the cell stack can be reduced, and this is also economical. Furthermore, since it is possible to implement the cell performance tests in the single cells stage, it is also possible to improve the yield in the cell performance tests.

以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示す燃料電池用単電池セルの縦断面図、図2は同単電池セルの構造を分解して示す縦断面図、図3は同単電池セルを使用したセルスタックの縦断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a unit cell for a fuel cell showing an embodiment of the present invention, FIG. 2 is an exploded longitudinal sectional view showing the structure of the unit cell, and FIG. 3 uses the unit cell. It is a longitudinal cross-sectional view of a cell stack.

図1に示すように、本実施形態の単電池セル10は、一方(図では下側)の円板状の支持基板12の上に、円板状の燃料電極層11a、円板状の固体電解質層11b、円板状の空気電極層11cを順番に積層し、更にその上に他方(図では上側)の円板状の支持基板12を積層した5層構造を採用しており、特に本実施形態では、図2に示すように、固体電解質層11bの両面側に燃料電極層11a及び空気電極層11cをそれぞれ積層した3層構造のセル本体11と、セル本体11の両面側にそれぞれ接合固定された組の金属からなる支持基板12,12とを組合せたサンドイッチ型の5層構造を採用している。 As shown in FIG. 1, the single battery cell 10 of this embodiment includes a disk-shaped fuel electrode layer 11 a and a disk-shaped solid on a disk-shaped support substrate 12 on one side (the lower side in the figure). An electrolyte layer 11b and a disk-shaped air electrode layer 11c are sequentially stacked, and the other (upper side in the figure) disk-shaped support substrate 12 is stacked thereon. In the embodiment, as shown in FIG. 2, the cell body 11 having a three-layer structure in which the fuel electrode layer 11 a and the air electrode layer 11 c are respectively laminated on the both surface sides of the solid electrolyte layer 11 b and the both surfaces of the cell body 11 are joined to each other. A sandwich-type five-layer structure is adopted in which the support substrates 12 and 12 made of a fixed set of metal plates are combined.

セル本体11は、従来の燃料電極支持型単電池セルに相当するものであり、基板となる薄い円板状の燃料電極層11aの一方の表面に薄い固体電解質層11bを積層し、更にその上に薄い空気電極層11cを積層した円板形状の焼結体である。   The cell body 11 corresponds to a conventional fuel electrode-supported unit cell, and a thin solid electrolyte layer 11b is laminated on one surface of a thin disk-shaped fuel electrode layer 11a serving as a substrate. It is a disk-shaped sintered body in which a thin air electrode layer 11c is laminated.

燃料電極層11aは、例えばNiとYSZのサーメットからなり、その厚みは0.5〜2mmである。前記サーメットの熱膨張係数はフェライト系ステンレス鋼と同じ約12×10-6-1である。固体電解質層11bは例えばYSZからなり、その厚みは5〜30μmである。YSZの熱膨張係数は前記サーメットより小さい約10×10-6-1である。通常、燃料電極支持型の単電池セルでは燃料電極と固体電解質を同時に焼結する共焼結法が採用され、その焼結温度は1300℃前後である。空気電極層11cは、例えばLSMからなり、その厚みは20〜50μmである。LSMの焼成温度は900℃程度、熱膨張係数は前記YSZと同等の約10×10-6-1である。 The fuel electrode layer 11a is made of, for example, cermet of Ni and YSZ and has a thickness of 0.5 to 2 mm. The thermal expansion coefficient of the cermet is about 12 × 10 −6 K −1 which is the same as that of ferritic stainless steel. The solid electrolyte layer 11b is made of, for example, YSZ and has a thickness of 5 to 30 μm. The thermal expansion coefficient of YSZ is about 10 × 10 −6 K −1 smaller than the cermet. Usually, a fuel electrode-supported unit cell employs a co-sintering method in which a fuel electrode and a solid electrolyte are simultaneously sintered, and the sintering temperature is around 1300 ° C. The air electrode layer 11c is made of, for example, LSM and has a thickness of 20 to 50 μm. The firing temperature of LSM is about 900 ° C., and the thermal expansion coefficient is about 10 × 10 −6 K −1 equivalent to YSZ.

このようなセル本体11は、燃料電極層11aと固体電解質層11bが同時に焼結され、その後に空気電極層11cがスクリーン印刷等で固体電解質層11bの表面に塗布され、燃料電極層11aと固体電解質層11bの共焼結温度よりも低い温度で焼結されることにより製造される。特に、燃料電極層11aと固体電解質層11bを焼結した後、熱膨張差により常温に戻したときに反りが発生することは前述したとおりである。反りの方向は熱膨張係数が大きい燃料電極層11cが厚く伸縮に支配的となるため、この燃料電極層11aが冷却過程で大きく縮み、空気電極層11cの方向へ凸となる。   In such a cell body 11, the fuel electrode layer 11a and the solid electrolyte layer 11b are sintered at the same time, and then the air electrode layer 11c is applied to the surface of the solid electrolyte layer 11b by screen printing or the like. It is manufactured by sintering at a temperature lower than the co-sintering temperature of the electrolyte layer 11b. In particular, as described above, warping occurs when the fuel electrode layer 11a and the solid electrolyte layer 11b are sintered and then returned to room temperature due to a difference in thermal expansion. Since the fuel electrode layer 11c having a large coefficient of thermal expansion is thick and dominant in expansion and contraction, the warp direction is greatly contracted during the cooling process and becomes convex toward the air electrode layer 11c.

セル本体11の中心部には、燃料ガス及び酸化ガスをそれぞれ通過させるために2種類の貫通孔が設けられており、同様の貫通孔は、後述する支持基板12,12にも設けられている。   Two types of through holes are provided in the center of the cell main body 11 to allow the fuel gas and the oxidizing gas to pass therethrough, and similar through holes are also provided in support substrates 12 and 12 described later. .

支持基板12,12は、セル本体11より大径の円形金属板からなり、板厚方向のガス流通機能を付与するために電池反応領域に板厚方向の貫通孔を多数有した多孔板とされている。電池反応領域以外の領域においては、前記貫通孔の部分を除き、板厚方向の貫通孔は設けられていない。支持基板12,12の材質はセル本体11との接合温度に耐える必要からFe−Crなどの耐熱合金とされている。板厚は0.1〜0.5mmであり、貫通孔の孔径は0.02〜1.0mmで開口率は30〜60%である。貫通孔の形状は対向する2つの内面間の距離が0.02〜1.0mmで開口率が30〜60%の六角孔でもよく、その形状を限定するものではない。熱膨張係数はFe−Crの場合で12〜13×10-5-1である。 The support substrates 12 and 12 are made of a circular metal plate having a diameter larger than that of the cell body 11 and are perforated plates having a number of through holes in the plate thickness direction in the battery reaction region in order to provide a gas flow function in the plate thickness direction. ing. In the region other than the battery reaction region, the through-hole in the plate thickness direction is not provided except for the through-hole portion. The material of the support substrates 12 and 12 is a heat-resistant alloy such as Fe—Cr because it needs to withstand the bonding temperature with the cell body 11. The plate thickness is 0.1 to 0.5 mm, the hole diameter of the through hole is 0.02 to 1.0 mm, and the aperture ratio is 30 to 60%. The shape of the through hole may be a hexagonal hole having a distance between two opposing inner surfaces of 0.02 to 1.0 mm and an aperture ratio of 30 to 60%, and the shape is not limited. The thermal expansion coefficient is 12 to 13 × 10 −5 K −1 in the case of Fe—Cr.

両側の支持基板12,12は同じ厚みであり、機械的接合材を兼ねる電気的コンタクト材13,13を介してセル本体11の両表面にそれぞれ密着接合されている。電気的コンタクト材13,13としては、燃料電極層11aと同側の支持基板12との間ではNi粉などの金属粉末をバインダーと混合したペーストが使用され、空気電極層11cと同側の支持基板12との間では銀粉末や銀合金粉末、電気伝導性の良い酸化ニオブなどの酸化物粉末、LSMなどのペロブスカイト型の酸化物粉末をバインダーと混合したペーストが使用され、金属粉の場合は酸化物と混合使用される。   The support substrates 12 and 12 on both sides have the same thickness, and are tightly bonded to both surfaces of the cell body 11 via electrical contact materials 13 and 13 that also serve as mechanical bonding materials. As the electrical contact members 13, 13, a paste in which a metal powder such as Ni powder is mixed with a binder is used between the fuel electrode layer 11a and the support substrate 12 on the same side, and the support on the same side as the air electrode layer 11c is used. Between the substrate 12, silver powder, silver alloy powder, oxide powder such as niobium oxide having good electrical conductivity, and paste in which perovskite type oxide powder such as LSM is mixed with a binder are used. Used in combination with oxides.

そして、これらのペーストを支持基板12,12の各接合面、或いはセル本体11の両表面、若しくはそれらの両方に塗布し、そのペーストが乾燥しない流動状態の間に支持基板12、セル本体11及び支持基板12を積層し、締め付け治具のエンドプレート間に挟んで積層方向に加圧し仮固定する。この加圧固定により、ペーストが隙間に充填される。加圧後は積層体を加熱炉に入れ、ペーストを焼結化するための高温加熱を行う。このようにして、両側の支持基板12,12はセル本体11の両表面に電気的コンタクト材13,13を介して密着接合される。なお、大気中の加熱では、燃料電極層11aに含まれるNiは通常、酸化ニッケルとなっているが、電気的コンタクト材13により接合可能である。   Then, these pastes are applied to each joint surface of the support substrates 12 and 12 or both surfaces of the cell body 11 or both, and the support substrate 12, the cell body 11 and The support substrate 12 is laminated, sandwiched between the end plates of the fastening jig, pressed in the lamination direction and temporarily fixed. By this pressure fixing, the paste is filled in the gap. After pressurization, the laminate is placed in a heating furnace and heated at a high temperature to sinter the paste. In this manner, the support substrates 12 and 12 on both sides are tightly bonded to both surfaces of the cell body 11 via the electrical contact materials 13 and 13. In heating in the atmosphere, Ni contained in the fuel electrode layer 11 a is usually nickel oxide, but can be joined by the electrical contact material 13.

ペーストの焼結温度は、燃料電極層11aと同側の支持基板12との間に塗布されるNi粉型の電気的コンタクト材13、及び空気電極層11cと同側の支持基板12との間に塗布されるLSM型のペロブスカイト型の電気的コンタクト材13の焼結が促進される温度であり、具体的には電池運転温度よりも50〜200℃高い850〜950℃程度である。支持基板12,12はこの焼結温度に耐える材質で構成される。ちなみに、当該燃料電池の運転温度は700〜800℃程度である。   The sintering temperature of the paste is between the Ni electrode-type electrical contact material 13 applied between the fuel electrode layer 11a and the support substrate 12 on the same side, and the air electrode layer 11c and the support substrate 12 on the same side. Is a temperature at which sintering of the LSM-type perovskite-type electrical contact material 13 applied to the substrate is promoted, specifically, about 850 to 950 ° C., which is 50 to 200 ° C. higher than the battery operating temperature. The support substrates 12 and 12 are made of a material that can withstand this sintering temperature. Incidentally, the operating temperature of the fuel cell is about 700 to 800 ° C.

セル本体11の両面への支持基板12,12の密着接合により、両面金属支持型の単電池セル10が完成する。支持基板12,12を接合する手順としては、燃料電極側の支持基板12の上にセル本体11を形成して先ず片面金属支持型の単電池セルを作製し、その空気電極層11cの表面に空気電極側の支持基板12を接合する順序でもよく、セル本体11を焼成する段階で両側の支持基板12,12を同時に接合する順序でもよい。これらの場合は、基板接合温度より高いセル本体11の焼成温度に耐える材質が支持基板12,12に必要となる。   The single-sided battery cell 10 of the double-sided metal support type is completed by the close bonding of the support substrates 12 and 12 to both sides of the cell body 11. As a procedure for joining the support substrates 12, 12, the cell body 11 is formed on the fuel electrode-side support substrate 12, and a single-sided metal support type single battery cell is first manufactured, and the surface of the air electrode layer 11 c is formed. The order in which the support substrates 12 on the air electrode side are joined may be used, or the order in which the support substrates 12 and 12 on both sides are joined at the same time when the cell body 11 is baked. In these cases, a material that can withstand the firing temperature of the cell body 11 higher than the substrate bonding temperature is required for the support substrates 12 and 12.

なお、セル本体11の外周側にはシールリング14が設けられている。シールリング14は酸化マグネシウム系スピネルなどの電気的絶縁材からなり、シリカ系の結晶化ガラスなどからなるシール材15,15により支持基板12,12の外周部対向面に接合されている。このシールリング14はペーストの焼結前に組み込まれ、ペーストの焼結化と同時にシール材15,15の焼結化も行うことにより接合固定され、燃料電池の運転中にセル本体11の特に燃料電極層11aが外周部から酸化するのを防止する。   A seal ring 14 is provided on the outer peripheral side of the cell body 11. The seal ring 14 is made of an electrical insulating material such as magnesium oxide spinel, and is bonded to the outer peripheral surface of the support substrates 12 and 12 by seal materials 15 and 15 made of silica crystallized glass. The seal ring 14 is incorporated before the paste is sintered, and is bonded and fixed by sintering the seal materials 15 and 15 at the same time as the paste is sintered, and particularly the fuel of the cell body 11 during the operation of the fuel cell. The electrode layer 11a is prevented from being oxidized from the outer periphery.

完成した両面金属支持型の単電池セル10は、図3に示すセルスタックに組み立てられる。このセルスタックでは、金属からなる所定枚数のインターコネクタ20,20・・を、各間に単電池セル10を挟みながら積み重ね、燃料電池運転温度でも緻密な焼結化を期待できる銀、銀合金、ニッケル合金などの金属粉ペーストやろう材、更には溶接などで接合固定することにより構成されている。   The completed double-sided metal-supported single battery cell 10 is assembled into a cell stack shown in FIG. In this cell stack, a predetermined number of interconnectors 20, 20,... Made of metal are stacked while sandwiching the unit cells 10 between them, and silver, a silver alloy that can be expected to be densely sintered at the fuel cell operating temperature, It is constituted by joining and fixing metal powder paste such as nickel alloy, brazing material, and further welding.

インターコネクタ20,20・・は、単電池セル10と同じ外径の金属円板であり、単電池セル10の貫通孔に対応する燃料ガス用及び酸化ガス用の各貫通孔を中心部に有している。インターコネクタ20,20・・の材質は例えばフェライト系ステンレス鋼であり、その厚みは0.5〜1.5mmである。   The interconnectors 20, 20... Are metal discs having the same outer diameter as the unit cell 10, and each has a through hole for fuel gas and an oxidizing gas corresponding to the through hole of the unit cell 10 at the center. is doing. The material of the interconnectors 20, 20,... Is, for example, ferritic stainless steel, and the thickness thereof is 0.5 to 1.5 mm.

インターコネクタ20,20・・は、単電池セル10の両面側に反応空間を形成するためのもので、所定枚数の単電池セル10,10・・を直列接続するための導電性連結板を兼ねており、エンドプレートを兼ねる両端のものを除き同じ構造である。すなわち、2枚のインターコネクタ20,20間に挟まれるものは全て同じ構造であり、単電池セル10の燃料電極側の表面に対向する表面には、燃料ガスを中心部の貫通孔から外周部へ拡散させながら流通させる燃料ガス用のガス分配溝21が設けられている。また、単電池セル10の空気電極側の表面に対向する表面には、空気等の酸化ガスを中心部の貫通孔から外周部へ拡散させながら流通させる酸化ガス用のガス分配溝22が設けられている。   The interconnectors 20, 20... Are for forming reaction spaces on both sides of the unit cell 10, and also serve as conductive connection plates for connecting a predetermined number of unit cells 10, 10. The structure is the same except for both ends that also serve as end plates. That is, all of the ones sandwiched between the two interconnectors 20 and 20 have the same structure, and on the surface facing the surface on the fuel electrode side of the unit cell 10, the fuel gas is passed from the through hole in the central portion to the outer peripheral portion. A gas distribution groove 21 for fuel gas to be distributed while being diffused is provided. Further, a gas distribution groove 22 for oxidizing gas is provided on the surface of the unit cell 10 opposite to the surface on the air electrode side for allowing an oxidizing gas such as air to flow while diffusing from the through hole in the central portion to the outer peripheral portion. ing.

両端のインターコネクタ20,20の一方は、単電池セル10の燃料電極側の支持基板12に接合されており、その接合面には、燃料ガスを中心部の貫通孔から外周部へ拡散させながら流通させる燃料ガス用のガス分配溝21が設けられている。他方は単電池セル10の空気電極側の支持基板12に接合されており、その接合面には、酸化ガスを中心部の貫通孔から外周部へ拡散させながら流通させる酸化ガス用のガス分配溝22が設けられている。   One of the interconnectors 20 and 20 at both ends is joined to the support substrate 12 on the fuel electrode side of the unit cell 10, and the fuel gas is diffused from the through hole in the central portion to the outer peripheral portion on the joining surface. A gas distribution groove 21 for fuel gas to be circulated is provided. The other is joined to the support substrate 12 on the air electrode side of the unit cell 10, and a gas distribution groove for oxidizing gas that circulates while diffusing the oxidizing gas from the through hole in the central portion to the outer peripheral portion on the joint surface. 22 is provided.

セルスタックを組み立てるための単電池セル10とインターコネクタ20の接合は、金属同士の接合(例えばFe−Cr合金とフェライト系ステンレス鋼の接合)となるため、前述したように、燃料電池運転温度でも緻密な焼結が可能な銀ペーストなどの汎用材料、及びろう付けや溶接などの汎用技術を利用できる。   Since the unit cell 10 and the interconnector 20 for assembling the cell stack are joined to each other (for example, a Fe—Cr alloy and a ferritic stainless steel), as described above, even at the fuel cell operating temperature. General-purpose materials such as silver paste that can be densely sintered and general-purpose technologies such as brazing and welding can be used.

このような構成の単電池セル10及びこれを用いたセルスタックの特徴は以下のとおりである。   The characteristics of the unit cell 10 having such a configuration and the cell stack using the same are as follows.

単電池セル10は両面側に機械的な主要構成部材である金属製の支持基板12,12を対称的に配置した両面金属支持構造を採用しているため、製造過程での反りが少ない。支持基板12,12を接合する作業が必要なものの、セル単位の作業となるため、確実にかつ経済的に行うことができる。 Since the single battery cell 10 employs a double-sided metal support structure in which metal plate support substrates 12 and 12 that are mechanical main constituent members are symmetrically arranged on both sides, there is little warpage in the manufacturing process. Although an operation of joining the support substrates 12 and 12 is required, the operation is performed in units of cells, so that the operation can be reliably and economically performed.

単電池セル10をセルスタックに組み立てる場合、単電池セル10とインターコネクタ20と接合が金属同士の接合となるため、その接合が簡単かつ確実であり、単電池セル10における基板接合作業を考慮しても経済性が高い。具体的には、接合面に焼結しやすい金属粉ペーストやろう材をコーティングしておき、単電池セル10とインターコネクタ20を重ねて、燃料電池運転温度で焼結を進めるか、或いは比較的低温で加熱しろう付けすればよく、溶接でもよい。   When assembling the unit cell 10 into a cell stack, the unit cell 20 and the interconnector 20 are joined to each other, so that the junction is simple and reliable, considering the substrate joining operation in the unit cell 10. Even economical. Specifically, a metal powder paste or brazing material that is easy to sinter is coated on the joint surface, and the single battery cell 10 and the interconnector 20 are stacked, and the sintering is advanced at the fuel cell operating temperature, or relatively What is necessary is just to heat and braze at low temperature, and welding may be sufficient.

また、単電池セル10とインターコネクタ20との間の接合が確実となるため、この間に不良箇所が生じ難い。しかも、支持基板及びインターコネクタを構成する金属は単電池セル10におけるセル本体11と異なり表面に平行な方向に電気が通じるため、接合不良箇所が生じても、これが電気的導通の支障になることはなく、ために部分的な溶接接合も可能になる。したがって、接合品質の高いセルスタックが製造される。   Moreover, since the joining between the single battery cell 10 and the interconnector 20 is ensured, it is difficult for defective portions to occur between them. Moreover, since the metal constituting the support substrate and the interconnector conducts electricity in a direction parallel to the surface, unlike the cell body 11 in the single battery cell 10, even if a poorly joined portion occurs, this may hinder electrical conduction. Therefore, a partial weld joint is also possible. Therefore, a cell stack with high bonding quality is manufactured.

単電池セル10は両側に極板として機能する支持基板12,12を有しているので、セルスタックに組み立てる前のセル単独状態で電池性能試験を実施することができ、この段階で不良品を排除することができる。このため、セルスタックには良品のみを使用することが可能となり、単電池セル10の不良に起因するセルスタックの不良が生じなくなり、セルスタックの製造における歩留りが飛躍的に向上する。   Since the unit cell 10 has support substrates 12 and 12 that function as electrode plates on both sides, the battery performance test can be performed in a single cell state before assembling into the cell stack. Can be eliminated. For this reason, it is possible to use only non-defective products for the cell stack, no cell stack failure due to the failure of the unit cell 10 occurs, and the yield in manufacturing the cell stack is dramatically improved.

図4は本発明を発展させた別種の実施形態を示す単電池セル及びこれを用いたセルスタックの縦断面図である。 FIG. 4 is a longitudinal sectional view of a unit cell and a cell stack using the same, showing another embodiment in which the present invention is developed .

本実施形態は、図1〜図3に示した実施形態と比べて次の点が相違する。単電池セル10における支持基板12,12の構造が相違し、インターコネクタ20を兼ねるものになっている。このため、セルスタックにおいては、インターコネクタ20は省略されている。   This embodiment is different from the embodiment shown in FIGS. 1 to 3 in the following points. The structure of the support substrates 12 and 12 in the single battery cell 10 is different and also serves as the interconnector 20. For this reason, the interconnector 20 is omitted in the cell stack.

インターコネクタ20を兼ねる支持基板12,12について説明すると、支持基板12,12はセル本体11の両面に密着接合されている。支持基板12,12の中心部には、前述した単電池セル10の支持基板12,12と同様に、燃料ガス及び酸化ガスをそれぞれ通過させるために2種類の貫通孔が設けられている。   The support substrates 12 and 12 that also serve as the interconnector 20 will be described. The support substrates 12 and 12 are tightly bonded to both surfaces of the cell body 11. Similar to the support substrates 12 and 12 of the single battery cell 10 described above, two types of through holes are provided in the center of the support substrates 12 and 12 in order to allow the fuel gas and the oxidizing gas to pass therethrough.

燃料電極層11aに接合される支持基板12の接合面には、燃料ガスを中心部の貫通孔から外周部へ拡散させながら流通させる燃料ガス用のガス分配溝12aが設けられている。反対側の表面は平坦面である。空気電極層11cに接合される支持基板12の接合面には、空気等の酸化ガスを中心部の貫通孔から外周部へ拡散させながら流通させる酸化ガス用のガス分配溝12bが設けられている。反対側の表面は平坦面である。   A gas distribution groove 12a for fuel gas is provided on the joint surface of the support substrate 12 joined to the fuel electrode layer 11a to allow the fuel gas to flow while diffusing from the through hole in the central portion to the outer peripheral portion. The opposite surface is a flat surface. A gas distribution groove 12b for oxidizing gas is provided on the bonding surface of the support substrate 12 to be bonded to the air electrode layer 11c to allow an oxidizing gas such as air to flow while diffusing from the through hole in the central portion to the outer peripheral portion. . The opposite surface is a flat surface.

セルスタックの組立においては、インターコネクタ20を使用せずに、単電池セル10のみを同じ向きに所定枚数積層し接合する。隣接する単電池セル10,10の間では、燃料電池側の支持基板12と空気電極側の支持基板12の平坦面同士が接合され、インターコネクタ20が形成される。ここにおける接合は支持基板12,12同士の接合、すなわち同種金属同士の接合(例えばステンレス鋼板同士の接合)となり、前述した単電池セル10とインターコネクタ20との接合(例えばばFe−Cr合金とフェライト系ステンレス鋼の接合)よりも更に簡単かつ確実となる。   In assembling the cell stack, a predetermined number of unit cells 10 are stacked in the same direction and joined without using the interconnector 20. Between the adjacent unit cells 10, 10, the flat surfaces of the support substrate 12 on the fuel cell side and the support substrate 12 on the air electrode side are joined to form an interconnector 20. The joining here is joining of the support substrates 12 and 12, that is, joining of the same kind of metals (for example, joining of stainless steel plates), and joining of the single battery cell 10 and the interconnector 20 (for example, Fe—Cr alloy). It is simpler and more reliable than the joining of ferritic stainless steel.

更にインターコネクタ20としての独立した部材が不要となり、図2に示したセルスタックと比べて、部品点数の低減及びこれによる接合工数の低減、経済性の向上が可能になる。   Furthermore, an independent member as the interconnector 20 is not required, and the number of parts, the number of joining steps can be reduced, and the cost can be improved as compared with the cell stack shown in FIG.

他の利点については図1〜図3に示した単電池セル及びセルスタックと同じである。   Other advantages are the same as those of the single battery cell and the cell stack shown in FIGS.

本発明の一実施形態を示す燃料電池用単電池セルの縦断面図である。It is a longitudinal cross-sectional view of the unit cell for fuel cells which shows one Embodiment of this invention. 同単電池セルの構造を分解して示す縦断面図である。It is a longitudinal cross-sectional view which decomposes | disassembles and shows the structure of the single battery cell. 同単電池セルを使用したセルスタックの縦断面図である。It is a longitudinal cross-sectional view of the cell stack using the said single battery cell. 本発明を発展させた別種の実施形態を示す単電池セル及びこれを用いたセルスタックの縦断面図である。It is a longitudinal cross-sectional view of the single battery cell which shows another kind of embodiment which developed this invention , and a cell stack using the same.

符号の説明Explanation of symbols

10 単電池セル
11 セル本体
11a 燃料電極層
11b 固体電解質層
11c 空気電極層
12 支持基板
12a,12b ガス分配溝
13 電気的コンタクト材
14 シールリング
15 シール材
20 インターコネクタ
21,22 ガス分配溝
DESCRIPTION OF SYMBOLS 10 Unit cell 11 Cell main body 11a Fuel electrode layer 11b Solid electrolyte layer 11c Air electrode layer 12 Support substrate 12a, 12b Gas distribution groove 13 Electrical contact material 14 Seal ring 15 Seal material 20 Interconnector 21, 22 Gas distribution groove

Claims (2)

セルスタックに積層される前の単電池セルであって、
固体電解質層と、電解質層の一方の表面に形成された燃料電極層と、電解質層の他方の表面に形成された空気電極層と、両方の電極層の各表面に密着接合されており、且つ板厚方向の通ガス性を有することにより発電のためのガス流通を阻害しない厚みが0.02mm以上1mm以下の一組の金属からなる支持基板とを具備しており、
更に積層された所定枚数のインターコネクタの各間に挟まれてセルスタックを構成する燃料電池用単電池セル。
A single battery cell before being stacked in a cell stack,
A solid electrolyte layer, a fuel electrode layer formed on one surface of the electrolyte layer, an air electrode layer formed on the other surface of the electrolyte layer, and tightly bonded to each surface of both electrode layers; and A thickness of 0.02 mm or more and 1 mm or less of a set of metal plates that does not impede gas flow for power generation by having gas permeability in the plate thickness direction ;
Further, a unit cell for a fuel cell that is sandwiched between a predetermined number of stacked interconnectors to form a cell stack .
前記支持基板は、多数の貫通孔を有する多孔金属板である請求項1に記載の燃料電池用単電池セル。 The single cell for a fuel cell according to claim 1, wherein the support substrate is a porous metal plate having a large number of through holes .
JP2006016120A 2005-01-25 2006-01-25 Single cell for fuel cell Active JP5093833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016120A JP5093833B2 (en) 2005-01-25 2006-01-25 Single cell for fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005016280 2005-01-25
JP2005016280 2005-01-25
JP2006016120A JP5093833B2 (en) 2005-01-25 2006-01-25 Single cell for fuel cell

Publications (2)

Publication Number Publication Date
JP2006236989A JP2006236989A (en) 2006-09-07
JP5093833B2 true JP5093833B2 (en) 2012-12-12

Family

ID=37044368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016120A Active JP5093833B2 (en) 2005-01-25 2006-01-25 Single cell for fuel cell

Country Status (1)

Country Link
JP (1) JP5093833B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2043187B1 (en) * 2007-09-28 2014-08-06 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell and manufacturing method thereof
JP2011192460A (en) * 2010-03-12 2011-09-29 Mitsubishi Materials Corp Power generation cell unit of solid oxide fuel cell and its manufacturing method
KR101768775B1 (en) * 2014-11-18 2017-08-17 주식회사 엘지화학 Method for manufacturing solid oxide fuel cell
KR101872085B1 (en) * 2016-06-07 2018-06-28 한국과학기술원 Method for fabricating metal-supported solid oxide fuel cell using in-situ bonding and metal-supported solid oxide fuel cell fabricated by the same
EP3493307B1 (en) * 2016-07-29 2020-05-20 Nissan Motor Co., Ltd. Fuel cell
CN113544889B (en) * 2019-04-24 2024-07-19 京瓷株式会社 Single battery, battery stack device, module and module accommodating device
EP4325606A1 (en) * 2021-04-15 2024-02-21 Nissan Motor Co., Ltd. Fuel cell, and method for manufacturing fuel cell
CN117425994A (en) 2021-06-08 2024-01-19 日产自动车株式会社 Solid oxide fuel cell and method for manufacturing solid oxide fuel cell
JPWO2023119602A1 (en) 2021-12-23 2023-06-29
JPWO2024101163A1 (en) * 2022-11-08 2024-05-16

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113347B2 (en) * 1991-11-26 2000-11-27 三洋電機株式会社 Solid oxide fuel cell
JP3705485B2 (en) * 2001-10-03 2005-10-12 日産自動車株式会社 Single cell for fuel cell and solid oxide fuel cell
JP4307066B2 (en) * 2002-12-26 2009-08-05 日本特殊陶業株式会社 Metal junction structure and solid oxide fuel cell
JP2005129281A (en) * 2003-10-22 2005-05-19 Nissan Motor Co Ltd Solid electrolyte fuel battery cell

Also Published As

Publication number Publication date
JP2006236989A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP5093833B2 (en) Single cell for fuel cell
JP6595581B2 (en) Electrochemical reaction unit and fuel cell stack
JP5198797B2 (en) Solid electrolyte fuel cell
JP2002503381A (en) Fuel cell assembly
JP5679893B2 (en) Solid oxide fuel cell and method for producing the same
JP6336382B2 (en) Single cell with separator, fuel cell stack, and manufacturing method of single cell with separator
JP4438295B2 (en) Fuel cell
JP5198799B2 (en) Solid electrolyte fuel cell
JP6147606B2 (en) Solid oxide fuel cell stack
JP5023429B2 (en) Flat plate fuel cell
JP5727428B2 (en) Fuel cell with separator and fuel cell
JP4666279B2 (en) Solid oxide fuel cell stack and solid oxide fuel cell
JP2006202727A (en) Solid electrolyte fuel cell
JP4900364B2 (en) Fuel cell
JP2004273213A (en) Unit cell for fuel cells, its manufacturing method, and solid oxide fuel cell
JP4306304B2 (en) Fuel cell separator
JP6514772B2 (en) Electrochemical reaction cell stack
JP5727431B2 (en) Fuel cell with separator and fuel cell
JP6756549B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP5727432B2 (en) Fuel cell with separator, method for manufacturing the same, and fuel cell stack
WO2016140111A1 (en) Fuel cell unit
JP2015032557A (en) Solid oxide fuel cell stack and interconnector with separator
JP7023898B2 (en) Electrochemical reaction cell stack
JP6867852B2 (en) Current collector-electrochemical reaction single cell complex and battery chemical reaction cell stack
JP5727429B2 (en) Fuel cell with separator and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

R150 Certificate of patent or registration of utility model

Ref document number: 5093833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250