JP5089038B2 - A pickling method for hot-rolled steel strip of stainless steel plate, Fe-Ni base alloy or Ni base high alloy. - Google Patents
A pickling method for hot-rolled steel strip of stainless steel plate, Fe-Ni base alloy or Ni base high alloy. Download PDFInfo
- Publication number
- JP5089038B2 JP5089038B2 JP2005351502A JP2005351502A JP5089038B2 JP 5089038 B2 JP5089038 B2 JP 5089038B2 JP 2005351502 A JP2005351502 A JP 2005351502A JP 2005351502 A JP2005351502 A JP 2005351502A JP 5089038 B2 JP5089038 B2 JP 5089038B2
- Authority
- JP
- Japan
- Prior art keywords
- pickling
- hot
- alloy
- mol
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Description
本発明は、硝酸や弗酸を使用することなく、表面品質に優れるステンレス鋼、Fe-Ni基合金およびNi基高合金の酸洗方法に係る。 The present invention relates to a pickling method for stainless steel, Fe—Ni base alloy and Ni base high alloy having excellent surface quality without using nitric acid or hydrofluoric acid.
ステンレス鋼板、Fe-Ni基合金およびNi基高合金板で通常、熱間圧延鋼帯と称するものは、まず、鋳造スラブ素材を熱間圧延してできた熱延板を大気雰囲気内で焼鈍し、この際に生成した表面スケールおよび内部酸化層を、スケール面に亀裂を発生させるスケールブレーカーおよびショットブラストの内、一種または2種の工程を経たのち、さらに2段階の酸洗処理工程で除去して得られるものである。
この酸洗処理で前段の処理は、主に表面にある強固な酸化スケールの除去と内部酸化層の除去を目的とし、後段の処理は、一般的に仕上酸洗と言われ、外観表面性状の不動態化被膜の均質化を主な目的としている。
酸洗処理で前段の処理は、硫酸を使用することが一般的に多く、さらに、仕上酸洗の処理ではフッ酸及び硝酸の混酸を使用しているのが現状である。
Stainless steel plates, Fe-Ni base alloys and Ni base high alloy plates, usually called hot rolled steel strips, are first annealed in an air atmosphere in a hot rolled plate made by hot rolling a cast slab material. The surface scale and internal oxide layer generated at this time are removed through a two-stage pickling process after one or two of the scale breaker and shot blasting that cause cracks on the scale surface. Is obtained.
In this pickling treatment, the former treatment is mainly aimed at removing strong oxide scale on the surface and removing the internal oxide layer, and the latter treatment is generally referred to as finish pickling, and the appearance surface texture The main purpose is to homogenize the passivation film.
In the pickling treatment, sulfuric acid is generally used in the first stage treatment. Furthermore, in the final pickling treatment, a mixed acid of hydrofluoric acid and nitric acid is used.
しかし、この前段の処理で硫酸を使用する方法は、例えば、特許文献1にあるように、特にNi基合金のような表面に極めて強固な酸化スケール層が形成された場合、その厚みの不均一さが大きくなるので、前段の酸洗処理でスケール層が残存し、仕上げ酸洗でもそのスケール残が除去しきれず、光沢度や白色度のムラ、延いては、外観不良の品質欠陥として、製品価値を大きく損ねてしまう。 However, the method of using sulfuric acid in the previous treatment is, for example, as disclosed in Patent Document 1, particularly when a very strong oxide scale layer is formed on a surface such as a Ni-based alloy, and the thickness thereof is uneven. As a result, the scale layer remains in the previous pickling treatment, and the scale residue cannot be removed even in the final pickling, resulting in uneven glossiness and whiteness, and as a quality defect with poor appearance. The value is greatly impaired.
また、冷間圧延前の材料に、このような品質欠陥があった場合、すなわち、熱間圧延鋼帯で発生した酸化スケールの残存あるいは溶解ムラは、冷間圧延後の再び焼鈍−2段階の酸洗処理工程を経た最終仕上げ後にも外観不良の品質欠陥と成り得る。
このような欠陥を有する薄板の素材すなわち、厚板帯材は、そのまま屋根および外装材などの意匠性の厳しい要求がある用途には適用できない。
そのような場合、特許文献2にあるように、冷間圧延前後の工程で板表面をベルトグラインダーなどの機械的研削方法でスケール層を除去する工程を附加し最終仕上げを行わなければならなく、効率を極端に低下させてしまう。
Moreover, when there is such a quality defect in the material before cold rolling, that is, the remaining oxide scale or unevenness in the hot-rolled steel strip is re-annealed after the cold rolling-2 stage. Even after the final finishing after the pickling process, it may become a quality defect with poor appearance.
A thin plate material having such a defect, that is, a thick strip material, cannot be applied to an application having severe design requirements such as a roof and an exterior material.
In such a case, as in Patent Document 2, a final finishing must be performed by adding a step of removing the scale layer by a mechanical grinding method such as a belt grinder in the step before and after cold rolling, The efficiency is drastically reduced.
また、酸洗処理中のステンレス鋼板、Fe-Ni基合金およびNi基高合金板表面にスマットと呼ばれる、主として溶解度が低い金属の水酸化物で構成されるゾル状滞留物が付着し表面全体を被服することによって、酸洗後の表面が黒変して外観不良となることがある。
このスマットに対しては、通常、特許文献3にあるように、スマット除去槽を設けて対応することが多い。しかしこの方法では、スマット除去専用の酸洗槽が別途必要になり、より大掛かりな設備となってしまう。その上、酸洗処理中の鋼板表面を被服したゾル状のスマットには、酸の浸透性は全くない。したがって、この前段の酸洗でスケールの溶解がされなかった鋼板表面は、次の工程でスマットを除去し、仕上酸洗を経ても、この仕上酸洗で強力な酸洗を施さない限り、溶解ムラ起因の外観不良は避けられないことになる。
しかし、仕上酸洗で強力な酸洗を行うことは、効率および操業の安定度を損ねるだけでなく、ここでは硝酸を含む混酸を使用するのが一般的であるので、環境的に問題があるNOXガスの発生を助長することにもなり得る。
In general, this smut is often dealt with by providing a smut removing tank as disclosed in Patent Document 3. However, this method requires a separate pickling tank dedicated to smut removal, which results in a larger facility. In addition, the sol-like smut coated on the surface of the steel plate during the pickling treatment has no acid permeability. Therefore, the steel sheet surface where scale did not dissolve in the previous pickling was dissolved in the next step, unless smut was removed and subjected to finish pickling, unless it was subjected to strong pickling in this finish pickling. An appearance defect due to unevenness is unavoidable.
However, performing strong pickling in finish pickling not only impairs efficiency and stability of operation, but here it is common to use a mixed acid containing nitric acid, so there is an environmental problem It can also promote the generation of NO X gas.
以上のように、酸洗工程における脱スケール能力には限りがあり、特に熱間圧延後の表層スケールとスケール残を防止する為、その基層部(=内部酸化層)を含め片面あたり10〜20μm以上の剥離性能が要求される。そのため、酸洗工程のみでは処理しきれず、機械的研削方法でスケール層を除去する工程を附加し最終仕上げを行わなければならなく、効率を極端に低下させてしまうという問題があった。
また、酸洗中に発生するスマット除去に関して、スマット除去槽を別途設けることは、効率を損ねるだけでなく、新たに溶解ムラ起因の外観不良を発生させるという問題もあった。
As described above, the descaling ability in the pickling process is limited. In particular, in order to prevent the surface layer scale and scale residue after hot rolling, 10 to 20 μm per side including the base layer portion (= internal oxide layer). The above peeling performance is required. For this reason, the pickling process alone cannot complete the treatment, and a final finishing process must be performed by adding a process of removing the scale layer by a mechanical grinding method, resulting in a problem that the efficiency is extremely reduced.
In addition, regarding the removal of smut generated during pickling, separately providing a smut removal tank not only impairs efficiency, but also causes a new appearance defect due to dissolution unevenness.
さらに、従来より使用されている酸洗液には環境に深刻な影響を及ぼす硝酸、弗酸が使用されていることが多く、また、取り扱い上、危険な塩酸の使用も問題となっている。
これらの品質や環境に深刻な影響をあたえる酸の使用量の削減もしくは低減するための、ステンレス鋼、Fe-Ni基合金およびNi基高合金の熱間圧延−焼鈍酸洗の工程における、最適な前段の酸洗処理方法を提供することを課題とする。
In addition, nitric acid and hydrofluoric acid, which have a serious impact on the environment, are often used in pickling solutions that have been used in the past, and the use of dangerous hydrochloric acid in handling is also a problem.
Optimum in the hot rolling-anneal pickling process of stainless steel, Fe-Ni base alloy and Ni base high alloy to reduce or reduce the amount of acid used that has a serious impact on quality and environment It is an object of the present invention to provide a first-stage pickling method.
これらの問題を解決するため、発明者らは鋭意研究の末、熱間圧延後の焼鈍酸洗工程での2段の酸洗の内、前段の酸洗で硫酸−塩化物塩−Fe3+−過酸化水素を主成分とする温度70〜85℃の酸洗液にてデスケーリングを行うことにより、酸洗能力の向上および表面品質の優れたステンレス鋼板、Fe-Ni基合金およびNi基高合金板を得る知見を見出した。 In order to solve these problems, the inventors have intensively studied and, among the two-stage pickling in the annealing pickling process after hot rolling, the sulfuric acid-chloride salt-Fe 3+ in the preceding pickling. -By performing descaling with a pickling solution containing hydrogen peroxide as a main component at a temperature of 70 to 85 ° C, the steel plate, Fe-Ni base alloy and Ni base height are improved in pickling ability and surface quality. The knowledge which obtained the alloy plate was found.
本発明は、オーステナイト系ステンレス鋼の焼鈍後の酸洗工程における前段の酸洗で、環境に深刻な影響を及ぼす酸性ガスの発生を無くすとともに、脱スケール性を向上させ、表面品質の優れたステンレス鋼板およびFe-Ni基合金板を得ることができる。 The present invention eliminates the generation of acid gas that has a serious impact on the environment in the previous pickling step in the pickling step after annealing of austenitic stainless steel, improves the descaling property, and has excellent surface quality. Steel plates and Fe—Ni based alloy plates can be obtained.
本発明の好ましい実施形態について詳細に説明する。
酸洗液を構成する硫酸は、ステンレス鋼、Fe-Ni基合金およびNi基高合金の脱スケール性および表面の不動態化にとって重要な酸であり、硫酸の濃度管理は極めて重要である。その量が2.0mol/L未満の場合は、スケール残りが見られ、ステンレス鋼、Fe-Ni基合金およびNi基高合金の耐食性の劣化をまねく。また、3.5mol/Lを超える場合は、表面の肌荒れが顕著になると共に、酸の原単位を著しく上げてしまう。よって、硫酸の濃度管理は、好ましくは2.0〜3.5mol/L、より好ましくは、2.5〜3.5mol/Lである。
A preferred embodiment of the present invention will be described in detail.
Sulfuric acid constituting the pickling solution is an important acid for descaling and surface passivation of stainless steel, Fe—Ni-based alloys and Ni-based high alloys, and the concentration control of sulfuric acid is extremely important. When the amount is less than 2.0 mol / L, scale residue is observed, leading to deterioration of the corrosion resistance of stainless steel, Fe—Ni base alloy and Ni base high alloy. On the other hand, when it exceeds 3.5 mol / L, the surface roughness becomes remarkable and the basic unit of acid is remarkably increased. Therefore, the concentration control of sulfuric acid is preferably 2.0 to 3.5 mol / L, more preferably 2.5 to 3.5 mol / L.
塩化ナトリウムおよび塩化マグネシウムは、後述する過酸化水素やFe3+ と同様な酸化剤としての機能を若干果たす。したがって、この塩化ナトリウムおよび塩化マグネシウムを1種または2種を含む塩化物塩の量が0.2mol/L未満では脱スケール性を低下させ、0.1mol/L未満になると、スケール残りが見られ、0.8mol/Lを超える場合は、鋼材表面を過剰に溶解し、表面の肌荒れが顕著になり歩留りの低下をまねく。よって、塩化物の濃度管理は、好ましくは0.3〜0.8mol/L、より好ましくは、0.3〜0.7mol/Lである。 Sodium chloride and magnesium chloride perform some functions as oxidizing agents similar to hydrogen peroxide and Fe 3+ described later. Therefore, when the amount of the chloride salt containing one or two kinds of sodium chloride and magnesium chloride is less than 0.2 mol / L, the descaling property is lowered, and when it is less than 0.1 mol / L, a scale residue is observed. If it exceeds 0.8 mol / L, the surface of the steel material is excessively dissolved, and the surface becomes rough, resulting in a decrease in yield. Therefore, the concentration control of chloride is preferably 0.3 to 0.8 mol / L, and more preferably 0.3 to 0.7 mol / L.
過酸化水素は、次式で表される反応が起き、酸化剤としての効果を成すとともに、H2O2+2H++2Fe2+→2Fe3++2H2O ・・・(2)、Fe3+の増加を促し、酸洗槽内に0.30mol/L以下添加すると反応が促進される。よって、過酸化水素の添加は、0.003以上0.30mol/L以下、より好ましくは、0.005以上0.20mol/L以下である。 Hydrogen peroxide undergoes a reaction represented by the following formula to form an effect as an oxidizing agent, and H 2 O 2 + 2H + + 2Fe 2+ → 2Fe 3+ + 2H 2 O (2), Fe When the increase of 3+ is promoted and 0.30 mol / L or less is added to the pickling tank, the reaction is promoted. Therefore, the addition of hydrogen peroxide is 0.003 or more and 0.30 mol / L or less, more preferably 0.005 or more and 0.20 mol / L or less.
Fe3+は、硫酸中に過酸化水素を添加することにより生成され、カソード反応を増加及びアノード反応を促進させることにより約2倍の溶削量となる。すなわち、活性領域中で電流が急激に増加し自然電位差が300mV以上になり、その結果、溶削量が増加するしくみである。
したがって、Fe3+量の好ましいい範囲は10〜50g/Lで、金属イオン(Fe3+)の増加により、酸が喪失することを防止するために上限値を50g/Lとする必要がある。また、Fe3+自体が持つ酸化剤の効果が得られなくなるため、下限値を10g/Lと設定する。実際的には酸洗液のサンプル採取により、トータル鉄濃度が求められ、この値に応じて、硫酸及び塩化ナトリウムを投入し、Fe3+の濃度は、50g/Lを超えないよう制御する。
Fe 3+ is generated by adding hydrogen peroxide in sulfuric acid, and increases the cathode reaction and promotes the anodic reaction, resulting in an amount of cutting that is approximately doubled. That is, the current rapidly increases in the active region and the natural potential difference becomes 300 mV or more, and as a result, the amount of cutting is increased.
Therefore, the preferable range of the amount of Fe 3+ is 10 to 50 g / L, and it is necessary to set the upper limit to 50 g / L in order to prevent the acid from being lost due to the increase of metal ions (Fe 3+ ). is there. Moreover, since the effect of the oxidizing agent of Fe 3+ itself cannot be obtained, the lower limit is set to 10 g / L. Actually, the total iron concentration is obtained by collecting a sample of the pickling solution. In accordance with this value, sulfuric acid and sodium chloride are added, and the Fe 3+ concentration is controlled not to exceed 50 g / L.
本発明において、硫酸濃度[H2SO4](mol/L)、過酸化水素濃度[H2O2](mol/L)、過酸化水素δ重量%{=[H2O2]/(34/10)}および塩化物塩/硫酸濃度比X{=([NaCl]+[MgCl2])/[H2SO4]}を組み合わせ、酸洗時の安定化条件式(1)として表し(図1)、この式から得た値を過酸化水素及び塩化物塩の投入の制御指標値CIH2SO4(mol/L)として制御し、この制御偏差ΔH2SO4が0.06以下になるとき、最適制御が可能な範囲内となり、特に優れた効果を発揮することができ、好ましい。
(上記式中、2.0≦[H2SO4]≦3.5、0.003≦[H2O2]≦0.30、0.005≦X≦0.4、10≦[Fe3+]≦50である。)
In the present invention, sulfuric acid concentration [H 2 SO 4 ] (mol / L), hydrogen peroxide concentration [H 2 O 2 ] (mol / L), hydrogen peroxide δ wt% {= [H 2 O 2 ] / ( 34/10)} and chloride salt / sulfuric acid concentration ratio X {= ([NaCl] + [MgCl 2 ]) / [H 2 SO 4 ]}, and expressed as a stabilization conditional expression (1) during pickling (FIG. 1), the value obtained from this equation is controlled as the control index value CI H2SO4 (mol / L) for the input of hydrogen peroxide and chloride salt, and this control deviation ΔH 2 SO 4 becomes 0.06 or less. In this case, it is preferable that optimum control can be performed and a particularly excellent effect can be exhibited.
(In the above formula, 2.0 ≦ [H 2 SO 4 ] ≦ 3.5, 0.003 ≦ [H 2 O 2 ] ≦ 0.30, 0.005 ≦ X ≦ 0.4, 10 ≦ [Fe 3 + ] ≦ 50.)
酸洗処理液中の塩化ナトリウムおよび塩化マグネシウムは、スマットの被覆力を弱める作用がある。Fe3+の濃度が増加することにより自然電位差は上昇し、これに伴い、塩化ナトリウムおよび/または塩化マグネシウムの活性化が進み、基底状態から励起状態となり、スマットの主に水酸化結合による鋼板表面との被覆力を弱める働きをする。
上記のスマットと鋼板表面との被覆力を弱める化学的作用と、槽内での酸洗液流と鋼板の相対速度を上げることによる物理的なスマット除去作用を組み合わせることにより、スケール残および溶解むらの発生を抑制することができる。この槽内での酸洗液流と鋼板の相対速度は、35m/min以上が好ましく、より好ましくは40m/min以上である。
Sodium chloride and magnesium chloride in the pickling solution have an action of weakening the covering power of the smut. As the Fe 3+ concentration increases, the natural potential difference rises, and as a result, the activation of sodium chloride and / or magnesium chloride progresses to the excited state from the ground state, and the surface of the steel sheet mainly due to hydroxyl bonding of the smut. It works to weaken the covering power.
By combining the chemical action that weakens the covering power between the smut and the steel sheet surface with the pickling solution flow in the tank and the physical smut removal action by increasing the relative speed of the steel sheet, the residual scale and uneven dissolution Can be suppressed. The relative speed of the pickling liquid flow and the steel plate in this tank is preferably 35 m / min or more, more preferably 40 m / min or more.
また、酸洗処理液中のFe3+の酸化力は、スマット除去作用に大きく影響を与え、自然電位差はこのFe3+の濃度が増加するほど高くなる。すなわち、酸洗処理液中の自然電位差は、Fe3+が還元されFe2+が増加し、これに伴い電位が低下する。自然電位差が低下するとスマットの付着力が増加するので、硫酸や過酸化水素を投入し、Fe3+を増やし、自然電位差を安定的に保つ必要がある。
よって、好ましい自然電位差は300〜500mVで、より好ましくは、350〜450mVである。
さらに、酸洗処理液中の自然電位差と、槽内での酸洗液流と鋼板との相対速度には、次式のような関係があることが、より好ましい。
In addition, the oxidizing power of Fe 3+ in the pickling solution greatly affects the smut removing action, and the natural potential difference increases as the concentration of Fe 3+ increases. That is, the natural potential difference in the pickling solution is that Fe 3+ is reduced and Fe 2+ is increased, and the potential is lowered accordingly. As the natural potential difference decreases, the adhesion of the smut increases, so it is necessary to add sulfuric acid or hydrogen peroxide to increase Fe 3+ to keep the natural potential difference stable.
Therefore, a preferable natural potential difference is 300 to 500 mV, and more preferably 350 to 450 mV.
Further, it is more preferable that the natural potential difference in the pickling treatment liquid and the relative speed between the pickling liquid flow in the tank and the steel plate have a relationship as shown in the following formula.
本発明の酸洗方法の対象であるFe-Ni基合金板、ステンレス鋼板およびNi基高合金の内、脱スケールがしにくいSUS304オーステナイト系ステンレス鋼の板厚=3.0mmの熱間圧延材を使用した。焼鈍炉によって80秒間×1100℃(板温)で連続焼鈍後のスケール付鋼帯を用いて、まず前段の酸洗処理を行いスケール残の有無を確認し、引き続き常法の酸洗条件で仕上げ酸洗処理を行い、光沢度や筋状ムラ等の外観不良の有無で評価した。その結果を[表1]に示す。実施例1〜7では、スケール残および光沢度不良もなく、優れた結果を示している。
また、酸洗液の制御値については、逐次演算された結果を示すもので、H2O2の添加量を表すΔH2O2,塩化物の添加量を表すΔClrの2つの制御出力値を加算すると、安定した酸洗液組成になる。言い換えれば、実施例1〜7に示した酸洗液組成と安定した酸洗液組成には、制御出力値の量だけ隔たりがある。実施例1〜7に関しては、最適制御が可能な範囲内で制御出力が出ているが、比較例2,4は硫酸濃度が、最適制御が可能な範囲を外れているため制御出力は無い。
Of the Fe-Ni base alloy plate, stainless steel plate and Ni base high alloy which are the objects of the pickling method of the present invention, a hot rolled material with a thickness of 3.0 mm of SUS304 austenitic stainless steel which is difficult to descal. used. Using a steel strip with scale after continuous annealing at 1100 ° C (plate temperature) for 80 seconds in an annealing furnace, first the previous pickling treatment is performed to check whether there is any remaining scale, and then finish under normal pickling conditions The pickling treatment was performed, and the presence or absence of appearance defects such as glossiness and streaky unevenness was evaluated. The results are shown in [Table 1]. In Examples 1-7, there is no scale residue and glossiness failure, and excellent results are shown.
In addition, the control value of the pickling solution shows the result of the sequential calculation. Two control output values of ΔH 2 O 2 representing the amount of H 2 O 2 added and ΔClr representing the amount of chloride added are shown. When added, a stable pickling solution composition is obtained. In other words, there is a difference between the pickling solution composition shown in Examples 1 to 7 and the stable pickling solution composition by the amount of the control output value. Regarding Examples 1 to 7, the control output is within the range in which the optimum control is possible, but in Comparative Examples 2 and 4, the sulfuric acid concentration is outside the range in which the optimum control is possible, so there is no control output.
Claims (4)
ように制御することを特徴とする請求項1に記載の熱間圧延鋼帯の酸洗方法。
CIH2SO4(mol/L)=−2.7・ln(X)+10.0δ3−21.7δ2+19.5δ−7.4 (1)
ΔH2SO4=[H2SO4]−CIH2SO4、|ΔH2SO4|≦0.06
(上記式中、2.0≦[H2SO4]≦3.5、0.003≦[H2O2]≦0.30、0.005≦X≦0.4、10≦[Fe3+]≦50である。) The sulfuric acid concentration [H 2 SO 4 ] (mol / L), hydrogen peroxide concentration [H 2 O 2 ] (mol / L), hydrogen peroxide δ wt% {= [H 2 O 2 ] × (34/10)} and chloride salt / sulfuric acid concentration ratio X {= ([NaCl] + [MgCl 2 ]) / [H 2 SO 4 ]} The control index value CI H2SO4 (mol / L) for introducing hydrogen peroxide and chloride salt is a value obtained from this equation, and the control deviation | ΔH 2 SO 4 | calculated from the control index value is 0. It controls so that it may become 06 or less, The pickling method of the hot-rolled steel strip of Claim 1 characterized by the above-mentioned.
CI H2SO4 (mol / L) =-2.7 · ln (X) + 10.0δ 3 -21.7δ 2 + 19.5δ-7.4 (1)
ΔH 2 SO 4 = [H 2 SO 4] -CI H2SO4, | ΔH 2 SO 4 | ≦ 0.06
(In the above formula, 2.0 ≦ [H 2 SO 4 ] ≦ 3.5, 0.003 ≦ [H 2 O 2 ] ≦ 0.30, 0.005 ≦ X ≦ 0.4, 10 ≦ [Fe 3 + ] ≦ 50.)
υ[m/min]≧515×e(-2×ln(E)+9)+0.05×E−5 (2)
υ[m/min]:酸洗液の槽内流速と鋼板との相対速度
E[mV]:自然電位差(300≦E≦500mV) Relative speed between hot rolled steel strip of stainless steel plate, Fe-Ni base alloy or Ni base high alloy and pickling liquid in tank: υ ≧ 35 m / min, stainless steel plate, Fe—Ni base alloy or Ni base The hot-rolled steel according to claim 3, wherein the relationship of the natural potential difference between the hot-rolled steel strip of high alloy and the pickling solution: 300≤E≤500mV satisfies the following formula (2). Pickling method of the belt.
υ [m / min] ≧ 515 × e (−2 × ln (E) +9) + 0.05 × E−5 (2)
υ [m / min]: Relative speed of pickling solution in tank and steel plate E [mV]: Natural potential difference (300 ≦ E ≦ 500 mV)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005351502A JP5089038B2 (en) | 2005-12-06 | 2005-12-06 | A pickling method for hot-rolled steel strip of stainless steel plate, Fe-Ni base alloy or Ni base high alloy. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005351502A JP5089038B2 (en) | 2005-12-06 | 2005-12-06 | A pickling method for hot-rolled steel strip of stainless steel plate, Fe-Ni base alloy or Ni base high alloy. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007154263A JP2007154263A (en) | 2007-06-21 |
JP5089038B2 true JP5089038B2 (en) | 2012-12-05 |
Family
ID=38239000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005351502A Expired - Fee Related JP5089038B2 (en) | 2005-12-06 | 2005-12-06 | A pickling method for hot-rolled steel strip of stainless steel plate, Fe-Ni base alloy or Ni base high alloy. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5089038B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2922996B2 (en) * | 1990-07-18 | 1999-07-26 | 三菱重工業株式会社 | Scale dissolving removal composition |
JPH11172499A (en) * | 1997-12-09 | 1999-06-29 | Daido Steel Co Ltd | Surface treatment of stainless steel |
JP2000073192A (en) * | 1998-08-26 | 2000-03-07 | Kawasaki Steel Corp | Production of ferritic stainless steel sheet |
JP2005029828A (en) * | 2003-07-10 | 2005-02-03 | Parker Corp | Pickling agent for stainless steel |
JP2005036288A (en) * | 2003-07-16 | 2005-02-10 | Asahi Denka Kogyo Kk | Pickling bath composition for metal surface |
-
2005
- 2005-12-06 JP JP2005351502A patent/JP5089038B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007154263A (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100392123B1 (en) | Manufacturing method of austenitic stainless steel with excellent surface properties | |
JP5089038B2 (en) | A pickling method for hot-rolled steel strip of stainless steel plate, Fe-Ni base alloy or Ni base high alloy. | |
JP2008303445A (en) | Ferritic stainless steel sheet having excellent grindability and corrosion resistance, and method for producing the same | |
JP2842787B2 (en) | Annealing and descaling of cold rolled stainless steel strip | |
JP2002275666A (en) | Descaling method for stainless steel strip and apparatus therefor | |
JP3506127B2 (en) | Pickling method for hot rolled steel strip with excellent surface properties after pickling | |
JPS61117291A (en) | Manufacture of cr stainless steel plate | |
JPH11279781A (en) | Production of austenitic stailness steel plate not having pattern on surface | |
JP4322726B2 (en) | Manufacturing method of stainless steel sheet with excellent surface gloss | |
JP4819468B2 (en) | Pickling method for stainless steel sheet and method for suppressing nitrogen oxide | |
JP4028014B2 (en) | Pickling accelerator, pickling composition containing pickling accelerator, and metal pickling method using the same | |
JP2001047121A (en) | Production of austenitic stainless steel sheet excellent in buffability | |
JP3059376B2 (en) | Austenitic stainless steel sheet excellent in gloss and corrosion resistance and method for producing the same | |
JP3257492B2 (en) | Method for producing stainless steel with excellent resistance to ozone-containing water | |
JP3457464B2 (en) | Method for smooth pickling of hot-rolled austenitic stainless steel strip | |
JP3039630B2 (en) | Low corrosion rate steel plate with low local corrosion | |
JP3484892B2 (en) | Method for descaling hot rolled steel strip of Fe-Ni alloy | |
JP3216533B2 (en) | Method for descaling hot rolled steel strip of Fe-Ni alloy | |
JP5040182B2 (en) | Pickling method and manufacturing method of stainless steel | |
JP2000045086A (en) | Pickling method of stainless steel and pickling liquor | |
JPH09296257A (en) | Austenitic stainless steel excellent in corrosion resistance and glossiness | |
JP2001158982A (en) | Pickling method for hot rolled and annealed stainless steel sheet | |
JPH10324985A (en) | Chromium-containing hot-rolled steel strip and production thereof | |
JP4835215B2 (en) | Pickling method and manufacturing method of stainless steel | |
JPH11131271A (en) | Production of austenitic stainless steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081006 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120614 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120703 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120815 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120911 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5089038 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |