Nothing Special   »   [go: up one dir, main page]

JP5087265B2 - Long working distance objective lens - Google Patents

Long working distance objective lens Download PDF

Info

Publication number
JP5087265B2
JP5087265B2 JP2006333796A JP2006333796A JP5087265B2 JP 5087265 B2 JP5087265 B2 JP 5087265B2 JP 2006333796 A JP2006333796 A JP 2006333796A JP 2006333796 A JP2006333796 A JP 2006333796A JP 5087265 B2 JP5087265 B2 JP 5087265B2
Authority
JP
Japan
Prior art keywords
lens
lens group
working distance
group
long working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006333796A
Other languages
Japanese (ja)
Other versions
JP2008145787A (en
Inventor
啓文 山本
康弘 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006333796A priority Critical patent/JP5087265B2/en
Publication of JP2008145787A publication Critical patent/JP2008145787A/en
Application granted granted Critical
Publication of JP5087265B2 publication Critical patent/JP5087265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Description

本発明は、顕微鏡に用いられる長作動距離対物レンズに関し、倍率が50倍〜100倍程度で、焦点距離の4倍以上の作動距離を有した長作動距離対物レンズに関するものである。   The present invention relates to a long working distance objective lens used in a microscope, and relates to a long working distance objective lens having a working distance of about 50 to 100 times and a working distance of 4 times or more of a focal length.

近年、金属や半導体の加工に用いられる工業系の顕微鏡対物レンズでは、長作動距離が求められることが多くなっている。例えば、ICを観察する場合では、凹部の底面のパターンを観察するため、より長い作動距離が必要となる。また、凸凹のある基板上の観察では、基板保護のためにも長い作動距離が必要となる。さらに、レーザーリペアとして使用する場合には標本面から加工物が飛散することや、作動距離内部に薄いガラス板やリード線、固定治具による段差などが含まれることが多いため、より長い作動距離を有する対物レンズが求められている。   In recent years, a long working distance is often required for an industrial microscope objective lens used for processing metals and semiconductors. For example, when observing an IC, a longer working distance is required in order to observe the pattern of the bottom surface of the recess. Further, in the observation on a substrate with unevenness, a long working distance is required for protecting the substrate. In addition, when used as a laser repair, the work piece is scattered from the specimen surface, and the working distance often includes a thin glass plate, lead wire, steps due to a fixture, etc., so a longer working distance There is a need for an objective lens having

良好な収差補正をしつつ作動距離を延長する場合には、対物レンズの全長・全幅を拡大することが効果的である。しかし、作動距離の増加に伴う対物レンズの体積・重量の増加は、装置の省エネルギー化、位置決めの高精度化、また製造コストに対して大きな弊害となる。   In order to extend the working distance while performing good aberration correction, it is effective to enlarge the entire length and width of the objective lens. However, the increase in the volume and weight of the objective lens accompanying the increase in the working distance is a serious detriment to the energy saving of the apparatus, the high accuracy of positioning, and the manufacturing cost.

以上のことから、良好な光学性能を保ち、レンズを収める空間の体積を小さくし、全長に対する作動距離の比率を従来よりも高める技術が、対物レンズに強く望まれている。
高倍率で作動距離の長い対物レンズについては、下記に挙げる特許文献1から特許文献7に示されているものが知られているが、いずれも、対物レンズの全長・全幅を拡大しており、装置の省エネルギー化、位置決めの高精度化、製造コストに大きな障害となっている。
In view of the above, there is a strong demand for an objective lens that maintains good optical performance, reduces the volume of the space in which the lens is accommodated, and increases the ratio of the working distance to the total length as compared with the prior art.
As for the objective lens having a long working distance with a high magnification, those shown in Patent Document 1 to Patent Document 7 listed below are known, but both have expanded the overall length and width of the objective lens, This is a major obstacle to energy saving of devices, high accuracy of positioning, and manufacturing cost.

また、下記の特許文献8に示される対物レンズは全長・全幅を拡大はしていないが、技術の進歩により、十分な作動距離を持っているとはいえなくなっている。
特開平6−175034号公報 特開平10−288740号公報 特開2000−206414号公報 特開2003−167199号公報 特開2001−208976号公報 特開2005−258148号公報 特開平7−20385号公報 特開平9−90230号公報
Moreover, although the objective lens shown in the following Patent Document 8 is not enlarged in total length and width, it cannot be said that it has a sufficient working distance due to technological progress.
JP-A-6-1775034 JP-A-10-288740 JP 2000-206414 A JP 2003-167199 A JP 2001-208976 A JP 2005-258148 A Japanese Patent Laid-Open No. 7-20385 JP-A-9-90230

本発明は従来技術の上記問題に鑑みてなされたものであり、その目的は、優れた結像性能を有しながらも全長に対する作動距離の割合を従来よりも大きくすることができる、長作動距離対物レンズを提供することである。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to provide a long working distance that can increase the ratio of the working distance to the total length while having excellent imaging performance. It is to provide an objective lens.

上記目的を達成する本発明の長作動距離対物レンズは、2群構成と見做した場合、物体側より、正の単レンズおよび接合レンズを含み、正の屈折力を持つ物体からの光線を収斂光束に変換する第1レンズ群と、少なくとも1つの接合レンズを含み、負の屈折力を持つ第2レンズ群から構成され、以下の条件を満たすことを特徴とする。   The long working distance objective lens of the present invention that achieves the above object includes a positive single lens and a cemented lens from the object side, and converges light rays from an object having a positive refractive power from the object side. A first lens group that converts light into a light beam and a second lens group that includes at least one cemented lens and has negative refractive power satisfy the following condition.

0.3 ≦ Lh/L ≦ 0.65 …(1)
30 ≦ν2N2P ≦ 50 …(2)
2.995 ≦ |f1/f2| ≦ 5 …(3)
3.1 ≦ f 1 /F ≦ 6 …(4)
ただし、物体面〜像側の最終レンズ面までの距離をL、物体面〜レンズに入射および射出する光線が最も高くなる位置までの距離をLh、第2レンズ群中の最も像側の接合レンズの負レンズのアッベ数をν2N、第2レンズ群中の最も像側の接合レンズの正レンズのアッベ数をν2P、第1レンズ群の焦点距離をf1、第2レンズ群の焦点距離をf2 、全系の焦点距離をFとする。
0.3 ≦ L h / L ≦ 0.65 (1)
30 ≦ ν 2N2P ≦ 50 (2)
2.995 ≤ | f 1 / f 2 | ≤ 5 (3)
3.1 ≤ f 1 / F ≤ 6 (4)
However, L is the distance from the object surface to the final lens surface on the image side, L h is the distance from the object surface to the position where the light beam incident on and exits the lens is the highest, and the most image-side joint in the second lens group. The Abbe number of the negative lens of the lens is ν 2N , the Abbe number of the positive lens of the most image-side cemented lens in the second lens group is ν 2P , the focal length of the first lens group is f 1 , and the focal point of the second lens group The distance is f 2 and the focal length of the whole system is F.

上記目的を達成する本発明の長作動距離対物レンズは、3群構成と見做した場合、物体側より、正の単レンズおよび接合レンズを含み、正の屈折力を持ち物体からの光線を収斂光束に変換する第Iレンズ群と、少なくとも1つの接合レンズを含み、負の屈折を有する第IIレンズ群と、単体レンズと接合レンズまたは接合レンズのみからなり、負の屈折力を持つ第IIIレンズ群から構成され、以下の条件を満たすことを特徴とする。 The long working distance objective lens of the present invention that achieves the above object includes a positive single lens and a cemented lens from the object side when viewed as a three-group configuration, and has a positive refractive power and converges light rays from the object. A first lens group that converts light into a light beam, a second lens group that includes at least one cemented lens and has negative refractive power , and a single lens and a cemented lens or a cemented lens only, and third lens that has negative refractive power It is composed of lens groups and satisfies the following conditions.

0.3 ≦ Lh/L ≦ 0.65 …(1)
30 ≦ νIIINIIIP ≦ 50 …(5)
2.995 ≦ |fI/fII-III| ≦ 5 …(6)
3.1 ≦ f I /F ≦ 6 …(7)
ただし、物体面〜像側の最終レンズ面までの距離をL、物体面〜レンズに入射および射出する光線が最も高くなる位置までの距離をLh、第IIIレンズ群中の負レンズのアッベ数をνIIIN、第IIIレンズ群中の正レンズのアッベ数をνIIIP、第Iレンズ群の焦点距離をfI、第IIレンズ群と第IIIレンズ群の合成焦点距離をfII-III 、全系の焦点距離をFとする。
0.3 ≦ L h / L ≦ 0.65 (1)
30 ≦ ν IIINIIIP ≦ 50 (5)
2.995 ≤ | f I / f II-III | ≤ 5 (6)
3.1 ≦ f I / F ≦ 6 (7)
Where L is the distance from the object surface to the final lens surface on the image side, L h is the distance from the object surface to the position where the light beam incident on and exits the lens is the highest, and the Abbe number of the negative lens in the third lens group Ν IIIN , the Abbe number of the positive lens in the III lens group is ν IIIP , the focal length of the I lens group is f I , and the combined focal length of the II and III lens groups is f II-III , Let F be the focal length of the system .

また、2群構成と見做した場合も3群構成と見做した場合でも、以下の条件を満たすことが望ましい。
nf > 1.8 …(8)
ただし、最も物体側に近い正レンズの屈折率をnfとする。
Moreover, it is desirable to satisfy the following conditions, regardless of whether it is regarded as a two-group configuration or a three-group configuration.
n f > 1.8 (8)
However, the refractive index of the positive lens closest to the object side is n f .

また3群構成と見做した場合において、本発明を100倍程度の長作動距離対物レンズに適用するには、以下の条件を満たすことが望ましい。
95 < | FI / F | < 105 …(9)
nIIN > 1.7 …(10)
ただし、対物レンズの全系の焦点距離をF、前記長作動対物レンズと組み合わせる結像レンズの焦点距離をFI、第IIレンズ群の負レンズの屈折率をnIINとする。
In addition, in the case of a three-group configuration, in order to apply the present invention to a long working distance objective lens of about 100 times, it is desirable that the following conditions are satisfied.
95 <| F I / F | <105 ... (9)
n IIN > 1.7 (10)
However, the focal length of the entire objective lens system is F, the focal length of the imaging lens combined with the long-acting objective lens is F I , and the refractive index of the negative lens of the II lens group is n IIN .

さらに、長作動距離対物レンズにおいては、以下の条件を満たすことが望ましい。
WD/ L ≦0.25 …(11)
ただし、WDは対物レンズの作動距離とする。
Further, in the long working distance objective lens, it is desirable that the following conditions are satisfied.
WD / L ≦ 0.25 (11)
However, WD is the working distance of the objective lens.

また、本発明を50倍程度の長作動距離対物レンズに適用するには、以下の条件を満たすことが望ましい。
45 < | FI / F | < 55 …(12)
WD/ L ≦0.55 …(13)
また、本発明を50倍程度の長作動距離対物レンズに適用した場合に別の視点で2群構成と見做すと、物体側より、正の単レンズおよび接合レンズを含み、正の屈折力を持ち物体からの光線を収斂光束に変換する第A1レンズ群と、少なくとも1つの接合レンズを含み、負の屈折力を持つ第B2レンズ群から構成され、以下の条件を満たすことを特徴とする。
In order to apply the present invention to an objective lens having a long working distance of about 50 times, it is desirable to satisfy the following conditions.
45 <| F I / F | <55 (12)
WD / L ≦ 0.55 (13)
Further, when the present invention is applied to an objective lens having a long working distance of about 50 times, when viewed as a two-group configuration from another viewpoint, it includes a positive single lens and a cemented lens from the object side, and has a positive refractive power. The first A1 lens group that converts light from an object into a convergent light beam and the second B2 lens group that has at least one cemented lens and has negative refractive power, satisfy the following conditions: .

45 < | FI / F | < 55 …(12)
0.4 ≦ Lh/L ≦ 0.65 …(13)
4.8 ≦ fA1/F ≦ 5.3 …(14)
ただし、物体面〜像側の最終レンズ面までの距離をL、物体面〜レンズに入射および射出する光線が最も高くなる位置までの距離をLh、第1レンズ群の焦点距離をfA1、全系の焦点距離をF、前記対物レンズと組み合わせる結像レンズの焦点距離をFIとする。
45 <| F I / F | <55 (12)
0.4 ≦ L h / L ≦ 0.65 (13)
4.8 ≤ f A1 / F ≤ 5.3 (14)
Where L is the distance from the object plane to the final lens surface on the image side, L h is the distance from the object plane to the position where the light ray incident and exits the lens is the highest, and the focal length of the first lens group is f A1 . the focal length of the entire system F, the focal length of the imaging lens to be combined with the objective lens and F I.

また、本発明による50倍程度の長作動距離対物レンズを別の視点で3群構成と見做す
と、物体側より、正の単レンズおよび接合レンズを含み、正の屈折力を持ち物体からの光
線を収斂光束に変換する第AIレンズ群と、負の屈折を有する第BIIレンズ群と少なくとも1つの接合レンズを含み、負の屈折力を持つ第CIIIレンズ群から構成され、以下の条件を満たすことを特徴とするものである。
Further, when the objective lens having a long working distance of about 50 times according to the present invention is regarded as a three-group configuration from another viewpoint, it includes a positive single lens and a cemented lens from the object side and has a positive refractive power from the object. Comprising a first AI lens group that converts the light beam into a convergent light beam, a second BII lens group having negative refractive power , and at least one cemented lens, and a first CIII lens group having negative refractive power, under the following conditions: It is characterized by satisfying.

45 < | FI / F | < 55 …(12)
0.4 ≦ Lh/L ≦ 0.65 …(13)
4.8 ≦ fAI/F ≦ 5.3 …(15)
ただし、物体面〜像側の最終レンズ面までの距離をL、物体面〜レンズに入射および射出する光線が最も高くなる位置までの距離をLh、第Iレンズ群の焦点距離をfAI、全系の焦点距離をF、前記対物レンズと組み合わせる結像レンズの焦点距離をFIとする。
45 <| F I / F | <55 (12)
0.4 ≦ L h / L ≦ 0.65 (13)
4.8 ≤ f AI / F ≤ 5.3 (15)
However, L is the distance from the object surface to the final lens surface on the image side, L h is the distance from the object surface to the position where the light ray incident on and exits the lens is the highest, and the focal length of the first lens group is f AI , the focal length of the entire system F, the focal length of the imaging lens to be combined with the objective lens and F I.

以下に、本発明において上記構成をとる理由と作用について説明する。
同焦距離が一定である対物レンズの作動距離を長くするためには、物体側に正の屈折力を持つレンズ群を配置し、像側に強い負の屈折力を持つレンズ群を配置する必要がある。一般に、対物レンズの作動距離が長くなる程諸収差が急激に悪化する。このため、長作動距離の対物レンズは、この構成でなるべく作動距離を長くしたまま諸収差を補正することが必要となる。
Below, the reason and effect | action which take the said structure in this invention are demonstrated.
In order to increase the working distance of an objective lens with a constant focal distance, it is necessary to place a lens group with positive refractive power on the object side and a lens group with strong negative refractive power on the image side There is. In general, as the working distance of the objective lens becomes longer, various aberrations rapidly deteriorate. For this reason, an objective lens having a long working distance needs to correct various aberrations while keeping the working distance as long as possible with this configuration.

本発明の長作動距離対物レンズは、物体側から順に、正の屈折の1群と負の屈折を持つ2群で構成されている。第1レンズ群は、物体側に正の単レンズおよび接合レンズを含み、物体からの光線を緩やかに収斂光束に変換する役割をもつ。作動距離が長くなると光線高が高くなり、球面収差の補正が困難となる。このため、物体側には、光線高を抑えるため、(8)式を満たすような正レンズを配置することが必要である。また、作動距離が長くなると色収差の補正が困難となるため、第1レンズ群中には色収差補正のため、接合レンズを配置する必要がある。
The long working distance objective lens of the present invention is composed of one group having a positive refractive power and two groups having a negative refractive power in order from the object side. The first lens group includes a positive single lens and a cemented lens on the object side, and has a role of gently converting light rays from the object into a convergent light beam. When the working distance becomes long, the ray height becomes high and it becomes difficult to correct the spherical aberration. For this reason, it is necessary to dispose a positive lens that satisfies Equation (8) on the object side in order to suppress the height of light rays. Further, since it becomes difficult to correct chromatic aberration when the working distance becomes long, it is necessary to dispose a cemented lens in the first lens group in order to correct chromatic aberration.

第2レンズ群は強い負の屈折力を持ち、第1レンズ群通過後の収斂光線を強い負の屈折力によって大きな倍率を得る役割を果たしている。また、第2レンズ群の強い負の屈折力は対物レンズのペッツバール和を小さくし、像面湾曲を良好に補正する役割も果たしている。また、作動距離が長くなると倍率の色収差の補正が困難となるため、第2レンズ群中には倍率の色収差補正の為、接合レンズを配置する必要がある。   The second lens group has a strong negative refractive power, and plays a role of obtaining a large magnification of the convergent light beam after passing through the first lens group by the strong negative refractive power. In addition, the strong negative refractive power of the second lens group also serves to reduce the Petzval sum of the objective lens and to properly correct the field curvature. Further, since it becomes difficult to correct the chromatic aberration of magnification when the working distance becomes long, it is necessary to arrange a cemented lens in the second lens group in order to correct the chromatic aberration of magnification.

上記(1)および(13)式は、対物レンズの収斂光線の始まりの位置を規定したものである。(1)式の下限0.3を下回ると、物点から発生した発散した光束を強引に収斂光線としようとするため、第1群の物体側付近の各レンズ面に対する光線の入射角度が大きくなり、球面収差を著しく悪化させ、収斂していく後ろの群においても補正するのが困難となる。(1)式の上限0.65を超えると、後部で強引に光束を強引に収斂光線としようとするため、第2群の各レンズ面に対する光線の入射角度が大きくなり、コマ収差の補正が困難となる。また、50倍程度になると(13)式の値以内が各収差補正するためには、望ましい。   The above equations (1) and (13) define the starting position of the convergent light beam of the objective lens. If the lower limit of 0.3 in equation (1) is not reached, the divergent light flux generated from the object point is forcibly made into a convergent light beam, so that the incident angle of the light beam on each lens surface near the object side of the first group becomes large, Spherical aberrations are greatly exacerbated and difficult to correct even in the back group that converges. If the upper limit of 0.65 in equation (1) is exceeded, the light beam will be forcibly converged at the rear, so that the incident angle of the light beam on each lens surface of the second lens group will be large, and it will be difficult to correct coma. Become. On the other hand, when it is about 50 times, the value within the value of equation (13) is desirable for correcting each aberration.

上記(2)式は、第2レンズ群中に構成される接合レンズの各レンズのアッベ数に関係を定めたものである。(2)式の下限30を下回ると、倍率の色収差の補正が困難となる。(2)式の上限50を超えると、軸上色収差の補正が困難となる。   The above equation (2) defines the relationship with the Abbe number of each lens of the cemented lens configured in the second lens group. If the lower limit 30 of the expression (2) is not reached, it is difficult to correct the chromatic aberration of magnification. If the upper limit of 50 in equation (2) is exceeded, it will be difficult to correct longitudinal chromatic aberration.

通常、軸上色収差を補正するためには、アッベ数の大きな正レンズとアッベ数の小さな負レンズとの接合レンズを用いて、補正を行う。しかし、長作動距離の対物では、軸上色収差は補正できるが、倍率の色収差までの補正は困難である。   Usually, in order to correct axial chromatic aberration, correction is performed using a cemented lens of a positive lens having a large Abbe number and a negative lens having a small Abbe number. However, with a long working distance objective, axial chromatic aberration can be corrected, but correction up to magnification chromatic aberration is difficult.

今回、軸上と倍率の両方の色収差を補正するために、第1群で軸上色収差を過剰に補正し、(2)式に記載されるように、通常とは逆に、アッベ数の小さな正レンズとアッベ数の大きな負レンズとの接合より、過剰に補正された軸上色収差を適当な補正に戻すとともに、倍率色収差を補正する。   This time, in order to correct both axial and magnification chromatic aberration, the axial chromatic aberration was corrected excessively in the first lens group, and as shown in the equation (2), the Abbe number is small as opposed to normal. By joining the positive lens and the negative lens having a large Abbe number, the overcorrected axial chromatic aberration is returned to an appropriate correction, and the lateral chromatic aberration is corrected.

上記(3)式は、第1レンズ群と第2レンズ群の屈折力の関係を定めたものである。(3)式の下限の2.9を下回ると、第2レンズ群の屈折力が弱まり対物レンズのペッツバール和が大きくなり、像面湾曲の補正が困難になる。(3)式の上限の5を超えると、第2レンズ群の屈折力が強くなり、像面湾曲の補正について有利であるが、第1レンズ群の光線高が高くなる為、諸収差が発生し、補正が困難になる。また、レンズ外径も大きくなり、対物レンズの操作性が悪くなる。   The above expression (3) defines the relationship between the refractive powers of the first lens group and the second lens group. If the lower limit of 2.9 in the expression (3) is not reached, the refractive power of the second lens group becomes weak, the Petzval sum of the objective lens becomes large, and correction of field curvature becomes difficult. Exceeding the upper limit of 5 in equation (3) increases the refractive power of the second lens group, which is advantageous for correcting curvature of field, but increases the ray height of the first lens group, and various aberrations occur. Correction becomes difficult. In addition, the lens outer diameter is increased, and the operability of the objective lens is deteriorated.

上記(4)および(14)式は、正の第1レンズ群の焦点距離の関係を示したものである。上記式の3.1を下回ると、正の屈折力が大きすぎて、ペッツバール和が+方向に大きくなり、像面湾曲が補正できなくなる。上記式の6を超えると正の第1レンズ群が負担する正の屈折力が小さくなり、その分、他のレンズが負担することになり、短波長の球面収差、コマ収差を補正することが困難になる。上記式を満たすことで球面収差、コマ収差を良好に補正することが可能となる。また、50倍程度になると、各収差補正するためには(14)式の値以内が望ましい。   The above equations (4) and (14) show the relationship of the focal length of the positive first lens group. Below 3.1 in the above formula, the positive refractive power is too large, the Petzval sum increases in the + direction, and the field curvature cannot be corrected. If the above formula 6 is exceeded, the positive refractive power that the positive first lens group bears will be reduced, and other lenses will bear that much, and it will be possible to correct short wavelength spherical aberration and coma aberration. It becomes difficult. By satisfying the above formula, it is possible to satisfactorily correct spherical aberration and coma. On the other hand, when it is about 50 times, it is desirable that the value is within the value of the equation (14) in order to correct each aberration.

上記(8)式は第1レンズ群で最も物体側に近い正レンズの屈折率を規定したものである。球面収差を発生しにくくするためには、高い開口数の光線に対しても、レンズ面に対する光線の入射角度をできるだけ小さくする必要がある。このために、第1レンズ群中の先球の屈折力をできるだけ高いことが望ましい。上記式の1.8を下回ると、球面収差の補正が困難となる。   Equation (8) defines the refractive index of the positive lens closest to the object side in the first lens group. In order to make it difficult for spherical aberration to occur, it is necessary to make the incident angle of the light beam with respect to the lens surface as small as possible even for a high numerical aperture light beam. For this reason, it is desirable that the refractive power of the front sphere in the first lens group be as high as possible. Below 1.8 in the above formula, it becomes difficult to correct spherical aberration.

上記(9)式および(12)式は対物レンズと、前記対物レンズと組み合わせる結像レンズの焦点距離の関係を示したものであり、本発明を適用する倍率を示す。実用する際に100×程度として用いるためには、(9)式の値以内にする。また、50×程度として用いるためには、(12)式の値以内にする。   The above formulas (9) and (12) show the relationship between the focal length of the objective lens and the imaging lens combined with the objective lens, and indicate the magnification to which the present invention is applied. In order to use it as about 100 × in practical use, the value is within the value of equation (9). Moreover, in order to use as about 50 ×, the value is within the value of the expression (12).

上記(11)式は倍率が100×程度の対物レンズに関しての、物体面〜像側の最終レンズ面までの距離と作動距離の関係を示したものである。上記式の0.25を超えると第2レンズ群の屈折力が弱くなり、対物レンズのペッツバール和が大きくなり、像面湾曲を補正するのが困難となる。   The above expression (11) shows the relationship between the working distance and the distance from the object surface to the final lens surface on the image side for an objective lens with a magnification of about 100 ×. If 0.25 in the above formula is exceeded, the refractive power of the second lens group becomes weak, the Petzval sum of the objective lens becomes large, and it becomes difficult to correct curvature of field.

上記(13)式は倍率が50×程度の対物に関しての、物体面〜像側の最終レンズ面までの距離と作動距離の関係を示したものである。上記式の0.55を超えると第2レンズ群の屈折力が弱くなり、対物レンズのペッツバール和が大きくなり、像面湾曲を補正するのが困難となる。   The above expression (13) shows the relationship between the working distance and the distance from the object surface to the final lens surface on the image side with respect to an objective having a magnification of about 50 ×. If 0.55 in the above formula is exceeded, the refractive power of the second lens group becomes weak, the Petzval sum of the objective lens becomes large, and it becomes difficult to correct curvature of field.

本発明においては、レンズ系の群構成を3群構成とみなすこともできる。
第Iレンズ群は、物体側に正の単レンズおよび接合レンズを含み、物体からの光線を緩やかに収斂光束に変換する役割をもつ。作動距離が長くなると光線高が高くなり、球面収差の補正が困難となる。このため、物体側には、光線高を抑えるため、(8)式を満たすような正レンズを配置することが必要である。また、作動距離が長くなると色収差の補正が困難となるため、第Iレンズ群中には色収差補正のため、接合レンズを配置する必要がある。
In the present invention, the group configuration of the lens system can be regarded as a three-group configuration.
The I-th lens group includes a positive single lens and a cemented lens on the object side, and has a role of gently converting light rays from the object into a convergent light beam. When the working distance becomes long, the ray height becomes high and it becomes difficult to correct the spherical aberration. For this reason, it is necessary to dispose a positive lens that satisfies Equation (8) on the object side in order to suppress the height of light rays. Further, since it becomes difficult to correct chromatic aberration when the working distance becomes long, it is necessary to dispose a cemented lens in the first lens group in order to correct chromatic aberration.

第IIレンズ群は、第Iレンズ群で発生する色収差、コマ収差、球面収差を補正するために用いる。接合レンズを用いることで、色収差および球面収差を強力に補正する。なお、この接合の物体側の面が凸面であることで、第I群で収斂光束となった光線が入射する際に、諸収差の発生を抑えることができる。   The II lens group is used to correct chromatic aberration, coma aberration, and spherical aberration that occur in the I lens group. By using a cemented lens, chromatic aberration and spherical aberration are strongly corrected. In addition, since the object-side surface of the joint is a convex surface, it is possible to suppress the occurrence of various aberrations when a light beam that has become a convergent light beam in the group I is incident.

第IIIレンズ群は、強い負の屈折力を持ち、対物レンズのペッツバール和を小さくし、像面湾曲を良好に補正する役割も果たしている。また、作動距離が長くなると倍率の色収差の補正が困難となるため、第IIIレンズ群中には倍率の色収差補正の為、接合レンズを配置する必要がある。   The third lens group has a strong negative refracting power, reduces the Petzval sum of the objective lens, and also plays a role in favorably correcting field curvature. Further, since it becomes difficult to correct the chromatic aberration of magnification when the working distance becomes long, it is necessary to arrange a cemented lens in the third lens group for correcting the chromatic aberration of magnification.

上記(5)式は、第IIIレンズ群中に構成される接合レンズの各レンズのアッベ数に関係を定めたものである。(5)式の下限30を下回ると、倍率の色収差の補正が困難となる。(5)式の上限50を超えると、軸上色収差の補正が困難となる。   The above equation (5) defines the relationship with the Abbe number of each lens of the cemented lens configured in the III lens group. If the lower limit 30 of the formula (5) is not reached, it is difficult to correct the chromatic aberration of magnification. If the upper limit of 50 in equation (5) is exceeded, it will be difficult to correct longitudinal chromatic aberration.

通常、軸上色収差を補正するためには、アッベ数の大きな正レンズとアッベ数の小さな負レンズとの接合レンズを用いて、補正を行う。しかし、長作動距離の対物では、軸上色収差は補正できるが、倍率の色収差までの補正は困難である。   Usually, in order to correct axial chromatic aberration, correction is performed using a cemented lens of a positive lens having a large Abbe number and a negative lens having a small Abbe number. However, with a long working distance objective, axial chromatic aberration can be corrected, but correction up to magnification chromatic aberration is difficult.

上記(6)式は、第Iレンズ群と、第IIレンズ群と第IIIレンズ群の合成焦点距離との屈折力の関係を定めたものである。(6)式の下限の2.9を下回ると、第2レンズ群の屈折力が弱まり対物レンズのペッツバール和が大きくなり、像面湾曲の補正が困難になる。(6)式の上限の5を超えると、第2レンズ群の屈折力が強くなり、像面湾曲の補正について有利であるが、第1レンズ群の光線高が高くなる為、諸収差が発生し、補正が困難になる。また、レンズ外径も大きくなり、対物レンズの操作性が悪くなる。   The above formula (6) defines the refractive power relationship among the I lens group and the combined focal length of the II lens group and the III lens group. If the lower limit of 2.9 in equation (6) is not reached, the refractive power of the second lens group will be weakened, and the Petzval sum of the objective lens will increase, making it difficult to correct field curvature. If the upper limit of 5 in equation (6) is exceeded, the refracting power of the second lens group will increase, which is advantageous for correcting curvature of field, but the light height of the first lens group will increase, and various aberrations will occur. Correction becomes difficult. In addition, the lens outer diameter is increased, and the operability of the objective lens is deteriorated.

上記(7)および(15)式は、正の第1レンズ群の焦点距離の関係を示したものである。上記式の3.1を下回ると、正の屈折力が大きすぎて、ペッツバール和が+方向に大きくなり、コマ収差が補正できなくなる。上記式の6を超えると正の第1レンズ群が負担する正の屈折力が小さくなり、その分、他のレンズが負担することになり、短波長の球面収差、コマ収差を補正することが困難になる。上記式を満たすことで球面収差、コマ収差を良好に補正することが可能となる。また、50倍程度になると、各収差補正するためには(15)式の値以内が望ましい。   The above expressions (7) and (15) show the relationship between the focal lengths of the positive first lens group. Below 3.1 in the above formula, the positive refractive power is too large, the Petzval sum increases in the + direction, and coma aberration cannot be corrected. If the above formula 6 is exceeded, the positive refractive power that the positive first lens group bears will be reduced, and other lenses will bear that much, and it will be possible to correct short wavelength spherical aberration and coma aberration. It becomes difficult. By satisfying the above formula, it is possible to satisfactorily correct spherical aberration and coma. On the other hand, when it is about 50 times, it is desirable that the value is within the value of equation (15) in order to correct each aberration.

上記(10)式は、倍率が100×程度の対物に関しての、第IIレンズ群の負レンズの屈折率を規定したものである。上記式の1.7を下回ると、第IIレンズ群、第IIIレンズ群のレンズ面への光線の入射角度が大きくなり、コマ収差の補正が困難となる。   The above equation (10) defines the refractive index of the negative lens of the second lens group for an objective with a magnification of about 100 ×. Below 1.7 in the above formula, the incident angle of the light rays on the lens surfaces of the II lens group and the III lens group becomes large, and it becomes difficult to correct coma.

本発明によれば、優れた結像性能を有しながらも全長に対する作動距離の割合を従来よりも大きくすることができる、長作動距離対物レンズを提供することができる。   According to the present invention, it is possible to provide a long working distance objective lens that has an excellent imaging performance but can increase the ratio of the working distance to the total length as compared with the conventional art.

以下に、本発明の長作動距離顕微鏡対物レンズの実施例1〜6について説明する。各実施例のレンズデータは後記するが、図1〜図6はそれぞれ実施例1〜6のレンズ構成を示す断面図である。また、図13は本実施例に利用する表7記載の結像レンズの断面図である。   Examples 1 to 6 of the long working distance microscope objective lens of the present invention will be described below. Although lens data of each example will be described later, FIGS. 1 to 6 are cross-sectional views illustrating lens configurations of Examples 1 to 6, respectively. FIG. 13 is a cross-sectional view of the imaging lens described in Table 7 used in this embodiment.

実施例1は、100×対物レンズの設計例であり、図1の断面図に示すように、第1レンズ群(G1)は、物体側に凹面を向けた正メニスカスレンズ2枚と、両凸レンズの組み合わせの3枚接合レンズと、両凸単体正レンズにより構成される。第2レンズ群(G2)は、物体側に凸面を向けたメニスカスレンズと両凸レンズの接合レンズと、2組の両凸レンズと両凹レンズの接合レンズと、両凹単体負レンズと、物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズにより構成される。   Example 1 is a design example of a 100 × objective lens. As shown in the cross-sectional view of FIG. 1, the first lens group (G1) includes two positive meniscus lenses having a concave surface facing the object side, and a biconvex lens. And a biconvex simplex positive lens. The second lens group (G2) includes a cemented lens of a meniscus lens having a convex surface facing the object side and a biconvex lens, a cemented lens of two pairs of biconvex lenses and a biconcave lens, a biconcave single negative lens, and a concave surface on the object side. Is composed of a cemented lens of a meniscus lens and a biconcave lens.

実施例1を3群レンズとみなすこともできる。このとき、第Iレンズ群は第1レンズ群と同じである。第IIレンズ群は、第2レンズ群の物体側に凸面を向けたメニスカスレンズと両凸レンズの接合レンズと、2組の両凸レンズと両凹レンズの接合レンズから構成されており、第IIIレンズ群は、両凹単体負レンズと、物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズから構成される。   Example 1 can also be regarded as a three-group lens. At this time, the I lens group is the same as the first lens group. The second lens group is composed of a meniscus lens having a convex surface facing the object side of the second lens group, a cemented lens of a biconvex lens, and a cemented lens of two pairs of biconvex lenses and a biconcave lens. , A biconcave single negative lens, a meniscus lens having a concave surface facing the object side, and a cemented lens of a biconcave lens.

実施例2は、100×対物レンズの設計例であり、図2の断面図に示すように、第1レンズ群(G1)は、物体側に凹面を向けた正メニスカスレンズ2枚と、両凸レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズと両凸単体正レンズにより構成される。第2レンズ群(G2)は、物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、2枚の物体側に凸面を向けたメニスカスレンズの接合レンズと両凹単体負レンズと、両凸レンズと両凹レンズの接合レンズにより構成される。   Example 2 is a design example of a 100 × objective lens. As shown in the sectional view of FIG. 2, the first lens group (G1) includes two positive meniscus lenses having a concave surface facing the object side, and a biconvex lens. And a biconvex lens, a biconcave lens, and a biconvex single positive lens. The second lens group (G2) includes a cemented lens composed of a meniscus lens having a convex surface facing the object, a biconvex lens and a biconcave lens, and a meniscus lens having both convex surfaces facing the object side. It is composed of a concave single negative lens and a cemented lens of a biconvex lens and a biconcave lens.

実施例2を3群レンズとみなすこともできる。このとき、第Iレンズ群は第1レンズ群と同じである。第IIレンズ群は、第2レンズ群の物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、2枚の物体側に凸面を向けたメニスカスレンズの接合レンズから構成されており、第IIIレンズ群は、両凸レンズと両凹レンズの接合レンズから構成される。   Example 2 can also be regarded as a three-group lens. At this time, the I lens group is the same as the first lens group. The second lens group consists of a cemented lens composed of a combination of a meniscus lens having a convex surface facing the object side of the second lens group, a biconvex lens and a biconcave lens, and two meniscus lenses having a convex surface facing the object side. The third lens group includes a cemented lens of a biconvex lens and a biconcave lens.

実施例3は、100×対物レンズの設計例であり、図3の断面図に示すように、第1レンズ群(G1)は、物体側に凹面を向けた正メニスカスレンズ2枚と、両凸レンズの組み合わせの3枚接合レンズと、両凸単体正レンズにより構成される。第2レンズ群(G2)は、物体側に凸面を向けたメニスカスレンズと両凸レンズの接合レンズと、2組の両凸レンズと両凹レンズの接合レンズと、物体側に凸面を向けた負単体メニスカスレンズと、両凹レンズと像側に凹面を向けたメニスカスレンズの接合レンズにより構成される。   Example 3 is a design example of a 100 × objective lens. As shown in the cross-sectional view of FIG. 3, the first lens group (G1) includes two positive meniscus lenses having a concave surface facing the object side, and a biconvex lens. And a biconvex simplex positive lens. The second lens group (G2) includes a cemented lens of a meniscus lens having a convex surface facing the object side and a biconvex lens, a cemented lens having two pairs of biconvex lenses and a biconcave lens, and a negative single meniscus lens having a convex surface facing the object side. And a cemented lens of a meniscus lens having a concave surface facing the image side.

実施例3を3群レンズとみなすこともできる。このとき、第Iレンズ群は第1レンズ群と同じである。第IIレンズ群は、第2レンズ群の物体側に凸面を向けたメニスカスレンズと両凸レンズの接合レンズと、2組の両凸レンズと両凹レンズの接合レンズから構成されており、第IIIレンズ群は、物体側に凸面を向けた負単体メニスカスレンズと、両凹レンズと像側に凹面を向けたメニスカスレンズの接合レンズから構成される。   Example 3 can also be regarded as a three-group lens. At this time, the I lens group is the same as the first lens group. The second lens group is composed of a meniscus lens having a convex surface facing the object side of the second lens group, a cemented lens of a biconvex lens, and a cemented lens of two pairs of biconvex lenses and a biconcave lens. And a negative single meniscus lens having a convex surface facing the object side, and a cemented lens of a biconcave lens and a meniscus lens having a concave surface facing the image side.

実施例4は、50×対物レンズの設計例であり、図4の断面図に示すように、第1レンズ群(G1)は、両凸単体正レンズと、両凸レンズと像側に凸面を向けたメニスカスレンズの接合レンズと、両凸単体正レンズにより構成される。第2レンズ群(G2)は、物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズと、物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズにより構成される。   Example 4 is a design example of a 50 × objective lens. As shown in the sectional view of FIG. 4, the first lens group (G1) has a biconvex single positive lens, a biconvex lens, and a convex surface facing the image side. Further, it is composed of a cemented lens of a meniscus lens and a biconvex single positive lens. The second lens group (G2) has a meniscus lens having a convex surface facing the object side, a three-piece cemented lens of a combination of a biconvex lens and a biconcave lens, a cemented lens of a biconvex lens and a biconcave lens, and a concave surface facing the object side. It is composed of a cemented lens of a meniscus lens and a biconcave lens.

実施例4を異なる視点で2群レンズとみなすこともできる。このとき、第A1レンズ群は両凸単体正レンズと、両凸レンズと像側に凸面を向けたメニスカスレンズの接合レンズにより構成されている。第B2レンズ群は、両凸単体正レンズと、物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズと物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズにより構成される。   Example 4 can also be regarded as a two-group lens from different viewpoints. At this time, the A1 lens group includes a biconvex single positive lens, and a cemented lens of a biconvex lens and a meniscus lens having a convex surface facing the image side. The second B2 lens group consists of a biconvex single positive lens, a triplet cemented lens composed of a meniscus lens with a convex surface facing the object, a biconvex lens and a biconcave lens, a cemented lens of a biconvex lens and a biconcave lens, and a concave surface on the object side. Is composed of a cemented lens of a meniscus lens and a biconcave lens.

実施例4を3群レンズとみなすこともできる。このとき、第Iレンズ群は第1レンズ群と同じである。第IIレンズ群は、第2レンズ群の物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズから構成されており、第IIIレンズ群は、物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズから構成される。   Example 4 can also be regarded as a three-group lens. At this time, the I lens group is the same as the first lens group. The second lens group is composed of a meniscus lens having a convex surface facing the object side of the second lens group, a three-piece cemented lens of a combination of a biconvex lens and a biconcave lens, and a cemented lens of a biconvex lens and a biconcave lens. The III lens group includes a cemented lens of a meniscus lens having a concave surface facing the object side and a biconcave lens.

また、実施例4を異なる視点で3群レンズとみなすこともできる。このとき、第AIレンズ群は第A1レンズ群と同じである。第BIIレンズ群は、第B2レンズ群の両凸単体正レンズと、物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズから構成されており、第CIIIレンズ群は、物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズから構成される。   Further, the fourth embodiment can be regarded as a three-group lens from different viewpoints. At this time, the AI lens group is the same as the A1 lens group. The BII lens group consists of a biconvex single positive lens of the B2 lens group, a three-piece cemented lens composed of a meniscus lens having a convex surface facing the object side, a biconvex lens and a biconcave lens, and a cemented lens of a biconvex lens and a biconcave lens. The CIII lens group includes a cemented lens of a meniscus lens having a concave surface facing the object side and a biconcave lens.

実施例5は、50×対物レンズの設計例であり、図5の断面図に示すように、第1レンズ群(G1)は、両凸単体正レンズと、両凸レンズと像側に凸面を向けたメニスカスレンズの接合レンズと、両凸単体正レンズにより構成される。第2レンズ群(G2)は、物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズと、物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズにより構成される。   Example 5 is a design example of a 50 × objective lens. As shown in the sectional view of FIG. 5, the first lens group (G1) has a biconvex single positive lens, a biconvex lens, and a convex surface facing the image side. Further, it is composed of a cemented lens of a meniscus lens and a biconvex single positive lens. The second lens group (G2) has a meniscus lens having a convex surface facing the object side, a three-piece cemented lens of a combination of a biconvex lens and a biconcave lens, a cemented lens of a biconvex lens and a biconcave lens, and a concave surface facing the object side. It is composed of a cemented lens of a meniscus lens and a biconcave lens.

実施例5を異なる視点で2群レンズとみなすこともできる。このとき、第A1レンズ群は両凸単体正レンズと、両凸レンズと像側に凸面を向けたメニスカスレンズの接合レンズにより構成されている。第B2レンズ群は、両凸単体正レンズと、物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズと物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズにより構成される。   Example 5 can also be regarded as a two-group lens from different viewpoints. At this time, the A1 lens group includes a biconvex single positive lens, and a cemented lens of a biconvex lens and a meniscus lens having a convex surface facing the image side. The second B2 lens group consists of a biconvex single positive lens, a triplet cemented lens composed of a meniscus lens with a convex surface facing the object, a biconvex lens and a biconcave lens, a cemented lens of a biconvex lens and a biconcave lens, and a concave surface on the object side. Is composed of a cemented lens of a meniscus lens and a biconcave lens.

実施例5を3群レンズとみなすこともできる。このとき、第Iレンズ群は第1レンズ群と同じである。第IIレンズ群は、第2レンズ群の物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズから構成されており、第IIIレンズ群は、物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズから構成される。   Example 5 can also be regarded as a three-group lens. At this time, the I lens group is the same as the first lens group. The second lens group is composed of a meniscus lens having a convex surface facing the object side of the second lens group, a three-piece cemented lens of a combination of a biconvex lens and a biconcave lens, and a cemented lens of a biconvex lens and a biconcave lens. The III lens group includes a cemented lens of a meniscus lens having a concave surface facing the object side and a biconcave lens.

また、実施例5を異なる視点で3群レンズとみなすこともできる。このとき、第AIレンズ群は第A1レンズ群と同じである。第BIIレンズ群は、第B2レンズ群の両凸単体正レンズと、物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズから構成されており、第CIIIレンズ群は、物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズから構成される。   Further, Example 5 can be regarded as a three-group lens from different viewpoints. At this time, the AI lens group is the same as the A1 lens group. The BII lens group consists of a biconvex single positive lens of the B2 lens group, a three-piece cemented lens composed of a meniscus lens having a convex surface facing the object side, a biconvex lens and a biconcave lens, and a cemented lens of a biconvex lens and a biconcave lens. The CIII lens group includes a cemented lens of a meniscus lens having a concave surface facing the object side and a biconcave lens.

実施例6は、50×対物レンズの設計例であり、図6の断面図に示すように、第1レンズ群(G1)は、両凸単体正レンズと、両凸レンズと像側に凸面を向けたメニスカスレンズの接合レンズと、両凸単体正レンズにより構成される。第2レンズ群(G2)は、物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズと、物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズにより構成される。   Example 6 is a design example of a 50 × objective lens. As shown in the sectional view of FIG. 6, the first lens group (G1) has a biconvex single positive lens, a biconvex lens, and a convex surface facing the image side. Further, it is composed of a cemented lens of a meniscus lens and a biconvex single positive lens. The second lens group (G2) has a meniscus lens having a convex surface facing the object side, a three-piece cemented lens of a combination of a biconvex lens and a biconcave lens, a cemented lens of a biconvex lens and a biconcave lens, and a concave surface facing the object side. It is composed of a cemented lens of a meniscus lens and a biconcave lens.

実施例6を異なる視点で2群レンズとみなすこともできる。このとき、第A1レンズ群は両凸単体正レンズと、両凸レンズと像側に凸面を向けたメニスカスレンズの接合レンズにより構成されている。第B2レンズ群は、両凸単体正レンズと、物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズと物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズにより構成される。   Example 6 can also be regarded as a two-group lens from different viewpoints. At this time, the A1 lens group includes a biconvex single positive lens, and a cemented lens of a biconvex lens and a meniscus lens having a convex surface facing the image side. The second B2 lens group consists of a biconvex single positive lens, a triplet cemented lens composed of a meniscus lens with a convex surface facing the object, a biconvex lens and a biconcave lens, a cemented lens of a biconvex lens and a biconcave lens, and a concave surface on the object side. Is composed of a cemented lens of a meniscus lens and a biconcave lens.

実施例6を3群レンズとみなすこともできる。このとき、第Iレンズ群は第1レンズ群と同じである。第IIレンズ群は、第2レンズ群の物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズから構成されており、第IIIレンズ群は、物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズから構成される。   Example 6 can also be regarded as a three-group lens. At this time, the I lens group is the same as the first lens group. The second lens group is composed of a meniscus lens having a convex surface facing the object side of the second lens group, a three-piece cemented lens of a combination of a biconvex lens and a biconcave lens, and a cemented lens of a biconvex lens and a biconcave lens. The III lens group includes a cemented lens of a meniscus lens having a concave surface facing the object side and a biconcave lens.

また、実施例6を異なる視点で3群レンズとみなすことも出来る。このとき、第AIレンズ群は第A1レンズ群と同じである。第BIIレンズ群は、第B2レンズ群の両凸単体正レンズと、物体側に凸面を向けたメニスカスレンズと両凸レンズと両凹レンズの組み合わせの3枚接合レンズと、両凸レンズと両凹レンズの接合レンズから構成されており、第CIIIレンズ群は、物体側に凹面を向けたメニスカスレンズと両凹レンズの接合レンズから構成される。   Further, Example 6 can be regarded as a three-group lens from different viewpoints. At this time, the AI lens group is the same as the A1 lens group. The BII lens group consists of a biconvex single positive lens of the B2 lens group, a three-piece cemented lens composed of a meniscus lens having a convex surface facing the object side, a biconvex lens and a biconcave lens, and a cemented lens of a biconvex lens and a biconcave lens. The CIII lens group includes a cemented lens of a meniscus lens having a concave surface facing the object side and a biconcave lens.

以下に、各実施例のレンズデータを示す。記号は、上記の他、NAは開口数、WDは作動距離、βは倍率、fは焦点距離である。実施例1〜6は何れも対物レンズからの射出光が平行光束となる無限遠い補正型の対物レンズであり、これら単体では結合しない。そこで、例えば表7に示すレンズデータを有し、図13にレンズ断面図を示す結像レンズと組み合わせて使用される。なお、表1〜7において、r1、r2…は物体側から順に示した各レンズ面の曲率半径、d1、d2…は物体側から順に示した各レンズのd線の屈折率、νd1、νd2…は物体側から順に示した各レンズのアッベ数である。   The lens data for each example is shown below. In addition to the above, NA is the numerical aperture, WD is the working distance, β is the magnification, and f is the focal length. Each of Examples 1 to 6 is a correction type objective lens that is infinitely far away from which the light emitted from the objective lens becomes a parallel light beam, and these single lenses are not combined. Therefore, for example, the lens data shown in Table 7 is used and used in combination with an imaging lens whose lens cross-sectional view is shown in FIG. In Tables 1 to 7, r1, r2,... Are the curvature radii of the lens surfaces shown in order from the object side, d1, d2,... Are the refractive indices of the d-line of each lens, shown in order from the object side, νd1, νd2,. Is the Abbe number of each lens shown in order from the object side.

また、レンズデータの下に添えられる数値は上述の条件式(1)から(14)のそれぞれに対応し、レンズデータから計算されたものである。   Numerical values attached below the lens data correspond to the above-described conditional expressions (1) to (14) and are calculated from the lens data.

NA=0.6、WD=10.2、f=1.8、β=−100 NA = 0.6, WD = 10.2, f = 1.8, β = −100

(1) Lh/L = 0.356
(2),(5) ν2N2P =νIIINIIIP = 42.24
(3),(6) |f1/f2| =fI-fII-III = 4.222
(4),(7) f1/F =fI/F = 5.326
(8) nf = 1.883
(9) | FI / F | = 100
(10) nIIN = 1.738
(11) WD/L = 0.21
(1) L h / L = 0.356
(2), (5) ν 2N2P = ν IIINIIIP = 42.24
(3), (6) | f 1 / f 2 | = f I -f II-III = 4.222
(4), (7) f 1 / F = f I /F=5.326
(8) n f = 1.883
(9) | F I / F | = 100
(10) n IIN = 1.738
(11) WD / L = 0.21

NA=0.7、WD=7.9、f=1.8、β=−100 NA = 0.7, WD = 7.9, f = 1.8, β = -100

(1) Lh/L = 0.417
(2),(5) ν2N2P =νIIINIIIP = 33.6
(3),(6) |f1/f2| =fI-fII-III = 3.065
(4),(7) f1/F =fI/F = 5.398
(8) nf = 1.883
(9) | FI / F | = 100
(10) nIIN = 1.738
(11) WD/L = 0.162
(1) L h / L = 0.417
(2), (5) ν 2N2P = ν IIINIIIP = 33.6
(3), (6) | f 1 / f 2 | = f I -f II-III = 3.065
(4), (7) f 1 / F = f I / F = 5.398
(8) n f = 1.883
(9) | F I / F | = 100
(10) n IIN = 1.738
(11) WD / L = 0.162

NA=0.6、WD=8.9、f=1.8、β=−100 NA = 0.6, WD = 8.9, f = 1.8, β = -100

(1) Lh/L = 0.339
(2),(5) ν2N2P =νIIINIIIP = 47.47
(3),(6) |f1/f2| =fI-fII-III = 3.543
(4),(7) f1/F =fI/F = 5.518
(8) nf = 1.883
(9) | FI / F | = 100
(10) nIIN = 1.72047
(11) WD/L = 0.182
(1) L h / L = 0.339
(2), (5) ν 2N2P = ν IIINIIIP = 47.47
(3), (6) | f 1 / f 2 | = f I -f II-III = 3.543
(4), (7) f 1 / F = f I /F=5.518
(8) n f = 1.883
(9) | F I / F | = 100
(10) n IIN = 1.72047
(11) WD / L = 0.182

NA=0.35、WD=18.1、f=3.6、β=−50 NA = 0.35, WD = 18.1, f = 3.6, β = −50

(1) Lh/L = 0.448
(2),(5) ν2N2P =νIIINIIIP = 31.92
(3),(6) |f1/f2| =fI-fII-III = 2.995
(4),(7) f1/F =fI/F = 3.177
(8) nf = 1.834
(12) | FI / F | = 50
(13) WD/L = 0.37
(14),(15) fA1/F =fAI/F = 4.828
(1) L h / L = 0.448
(2), (5) ν 2N2P = ν IIINIIIP = 31.92
(3), (6) | f 1 / f 2 | = f I -f II-III = 2.995
(4), (7) f 1 / F = f I /F=3.177
(8) n f = 1.834
(12) | F I / F | = 50
(13) WD / L = 0.37
(14), (15) f A1 / F = f AI / F = 4.828

NA=0.35、WD=20、f=3.6、β=−50 NA = 0.35, WD = 20, f = 3.6, β = −50

(1) Lh/L = 0.605
(2),(5) ν2N2P =νIIINIIIP = 31.92
(3),(6) |f1/f2| =fI-fII-III = 3.352
(4),(7) f1/F =fI/F = 3.193
(8) nf = 1.834
(12) | FI / F | = 50
(13) WD/L = 0.408
(14),(15) fA1/F =fAI/F = 5.077
(1) L h / L = 0.605
(2), (5) ν 2N2P = ν IIINIIIP = 31.92
(3), (6) | f 1 / f 2 | = f I -f II-III = 3.352
(4), (7) f 1 / F = f I /F=3.193
(8) n f = 1.834
(12) | F I / F | = 50
(13) WD / L = 0.408
(14), (15) f A1 / F = f AI / F = 5.077

NA=0.25、WD=24.1、f=3.6、β=−50 NA = 0.25, WD = 24.1, f = 3.6, β = −50

(1) Lh/L = 0.559
(2),(5) ν2N2P =νIIINIIIP = 30.7
(3),(6) |f1/f2| =fI-fII-III = 4.523
(4),(7) f1/F =fI/F = 3.143
(8) nf = 1.834
(12) | FI / F | = 50
(13) WD/L = 0.49
(14),(15) fA1/F =fAI/F = 5.088
上記実施例1〜6の対物レンズと以下に記載の図13の結像レンズとの間の間隔は50mm〜170mm間の何れの位置でもよいが、この間隔を120mmとした場合の実施例1〜6の収差図をそれぞれ図7から図12に示す。ただし、これらの収差図において、(a)は球面収差、(b)は非点収差、(c)は歪曲収差、(d)はコマ収差を示す。これら収差図中のIHは、像高を示す。なお、上記間隔が50mm〜170mmの間で120mm以外の位置においても、同様の収差状況を示す。
(1) L h / L = 0.559
(2), (5) ν 2N2P = ν IIINIIIP = 30.7
(3), (6) | f 1 / f 2 | = f I -f II-III = 4.523
(4), (7) f 1 / F = f I /F=3.143
(8) n f = 1.834
(12) | F I / F | = 50
(13) WD / L = 0.49
(14), (15) f A1 / F = f AI / F = 5.088
The interval between the objective lenses of Examples 1 to 6 and the imaging lens of FIG. 13 described below may be any position between 50 mm and 170 mm, but Examples 1 to 1 in the case where this interval is 120 mm. The aberration diagrams of Fig. 6 are shown in Figs. In these aberration diagrams, (a) shows spherical aberration, (b) shows astigmatism, (c) shows distortion, and (d) shows coma. IH in these aberration diagrams indicates the image height. In addition, the same aberration state is shown also in positions other than 120 mm between the intervals of 50 mm to 170 mm.

また、以下に記載の結像レンズの焦点距離は180mmであり、実施例1から実施例3は倍率100倍、実施例4から実施例6は倍率50倍の対物レンズが実現されている。   In addition, the focal length of the imaging lens described below is 180 mm, and objective lenses having a magnification of 100 times in Examples 1 to 3 and a magnification of 50 in Examples 4 to 6 are realized.

以上のように、上述したいずれの実施例の顕微鏡対物レンズも、従来以上の長い作動距離を有しつつ、優れた結像性能を有する50〜100倍率程度の工業顕微鏡に適したレンズ系である。 As described above, the microscope objective lens according to any of the above-described embodiments is also a lens system suitable for an industrial microscope with a magnification of about 50 to 100 having excellent imaging performance while having a longer working distance than before. .

本発明の顕微鏡対物レンズの実施例1のレンズ断面図である。It is lens sectional drawing of Example 1 of the microscope objective lens of this invention. 実施例2のレンズ断面図である。6 is a lens cross-sectional view of Example 2. FIG. 実施例3のレンズ断面図である。5 is a lens cross-sectional view of Example 3. FIG. 実施例4のレンズ断面図である。6 is a lens cross-sectional view of Example 4. FIG. 実施例5のレンズ断面図である。6 is a lens cross-sectional view of Example 5. FIG. 実施例6のレンズ断面図である。10 is a lens cross-sectional view of Example 6. FIG. 実施例1の球面収差、非点収差、歪曲収差、コマ収差を示す収差図である。FIG. 3 is an aberration diagram showing spherical aberration, astigmatism, distortion, and coma aberration in Example 1. 実施例2の球面収差、非点収差、歪曲収差、コマ収差を示す収差図である。FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, distortion, and coma aberration of Example 2. 実施例3の球面収差、非点収差、歪曲収差、コマ収差を示す収差図である。FIG. 7 is an aberration diagram showing spherical aberration, astigmatism, distortion, and coma aberration in Example 3. 実施例4の球面収差、非点収差、歪曲収差、コマ収差を示す収差図である。FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, distortion, and coma aberration of Example 4. 実施例5の球面収差、非点収差、歪曲収差、コマ収差を示す収差図である。FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, distortion, and coma aberration of Example 5. 実施例6の球面収差、非点収差、歪曲収差、コマ収差を示す収差図である。FIG. 7 is an aberration diagram showing spherical aberration, astigmatism, distortion, and coma aberration in Example 6. 各実施例の顕微鏡対物レンズと組み合わせて用いる結像レンズの例のレンズ断面図である。It is a lens sectional view of an example of an imaging lens used in combination with a microscope objective lens of each example.

符号の説明Explanation of symbols

G1…第1レンズ群
G2…第2レンズ群
I…第Iレンズ群
II…第IIレンズ群
III…第IIIレンズ群
A1…第A1レンズ群
B2…第B2レンズ群
AI…第AIレンズ群
BII…第BIIレンズ群
CIII…第CIIIレンズ群
G1 ... 1st lens group
G2 ... Second lens group
I ... I lens group
II ... Second lens group
III ... III lens group
A1 ... A1 lens group
B2 ... B2 lens group
AI ... AI lens group
BII ... BII lens group
CIII ... CIII lens group

Claims (6)

長作動距離対物レンズであって、
物体側より順に第1レンズ群と第2レンズ群とから構成され、
前記第1レンズ群は、正の単レンズおよび接合レンズを含み、正の屈折力を持つ物体からの光線を収斂光束に変換するレンズ群であり、
前記第2レンズ群は、少なくとも1つの接合レンズを含み、負の屈折力を持つレンズ群であり、
物体面〜像側の最終レンズ面までの距離をL、物体面〜レンズに入射および射出する光線が最も高くなる位置までの距離をLh、前記第2レンズ群中の最も像側の接合レンズの負レンズのアッベ数をν2N、前記第2レンズ群中の最も像側の接合レンズの正レンズのアッベ数をν2P、前記第1レンズ群の焦点距離をf1、前記第2レンズ群の焦点距離をf2とし、前記長作動距離対物レンズの全系の焦点距離をFとしたときに、以下の条件式
0.3 ≦ Lh/L ≦ 0.65
30 ≦ν2N2P ≦ 50
2.995 ≦ |f1/f2| ≦ 5
3.1 ≦ f 1 /F ≦ 6
を満たすことを特徴とする長作動距離対物レンズ。
A long working distance objective lens,
Consists of a first lens group and a second lens group in order from the object side,
The first lens group includes a positive single lens and a cemented lens, and is a lens group that converts a light beam from an object having a positive refractive power into a convergent light beam,
The second lens group includes at least one cemented lens, and is a lens group having a negative refractive power,
L is the distance from the object surface to the final lens surface on the image side, L h is the distance from the object surface to the position where the light beam incident on and exits the lens is the highest, and the most image-side cemented lens in the second lens group The Abbe number of the negative lens is ν 2N , the Abbe number of the positive lens of the most image-side cemented lens in the second lens group is ν 2P , the focal length of the first lens group is f 1 , and the second lens group Where f 2 is the focal length of the lens, and F is the focal length of the entire system of the long working distance objective lens.
0.3 ≤ L h / L ≤ 0.65
30 ≦ ν 2N2P ≦ 50
2.995 ≤ | f 1 / f 2 | ≤ 5
3.1 ≤ f 1 / F ≤ 6
Long working distance objective lens characterized by satisfying
長作動距離対物レンズであって、
物体側より順に第Iレンズ群と第IIレンズ群と第IIIレンズ群とから構成され、
前記第Iレンズ群は、正の単レンズおよび接合レンズを含み、正の屈折力を持ち物体からの光線を収斂光束に変換するレンズ群であり、
前記第IIレンズ群は、少なくとも1つの接合レンズを含み、負の屈折を有するレンズ群であり、
前記第IIIレンズ群は、単レンズと接合レンズまたは接合レンズのみからなり、負の屈折力を持つレンズ群であり、
物体面〜像側の最終レンズ面までの距離をL、物体面〜レンズに入射および射出する光線が最も高くなる位置までの距離をLh、前記第IIIレンズ群中の負レンズのアッベ数をνIIIN、前記第IIIレンズ群中の正レンズのアッベ数をνIIIP、前記第Iレンズ群の焦点距離をfI、前記第IIレンズ群と前記第IIIレンズ群の合成焦点距離をfII-IIIとし、前記長作動距離対物レンズの全系の焦点距離をFとしたときに、以下の条件式
0.3 ≦ Lh/L ≦ 0.65
30 ≦ νIIINIIIP ≦ 50
2.995 ≦ |fI/fII-III| ≦ 5
3.1 ≦ f I /F ≦ 6
を満たすことを特徴とする長作動距離対物レンズ。
A long working distance objective lens,
Consists of an I lens group, a II lens group, and a III lens group in order from the object side,
The first lens group includes a positive single lens and a cemented lens, and has a positive refractive power and converts a light beam from an object into a convergent light beam,
The second lens group includes at least one cemented lens and has a negative refractive power ,
The third lens group consists of only a single lens and a cemented lens or a cemented lens, and is a lens group having negative refractive power,
L is the distance from the object surface to the final lens surface on the image side, L h is the distance from the object surface to the position where the light beam incident on and exits the lens is the highest, and the Abbe number of the negative lens in the third lens group is ν IIIN , the Abbe number of the positive lens in the III lens group is ν IIIP , the focal length of the I lens group is f I , and the combined focal length of the II lens group and the III lens group is f II− III, and when the focal length of the entire system of the long working distance objective lens is F , the following conditional expression
0.3 ≤ L h / L ≤ 0.65
30 ≤ ν IIINIIIP ≤ 50
2.995 ≤ | f I / f II-III | ≤ 5
3.1 ≤ f I / F ≤ 6
Long working distance objective lens characterized by satisfying
請求項又はに記載の長作動距離対物レンズにおいて、
前記長作動距離対物レンズの最も物体側に近い正レンズの屈折率をnfとしたときに、以下の条件式
nf >1.8
を満たすことを特徴とする長作動距離対物レンズ。
The long working distance objective according to claim 1 or 2 ,
When the refractive index of the positive lens closest to the object side of the long working distance objective lens is n f , the following conditional expression
n f > 1.8
Long working distance objective lens characterized by satisfying
焦点距離がFIの結像レンズと組み合わせて用いる請求項に記載の長作動距離対物レンズにおいて、
対物レンズの全系の焦点距離をF、前記第IIレンズ群の負レンズの屈折率をnIINとしたときに、以下の条件式
95 < | FI/ F | < 105
nIIN > 1.7
を満たすことを特徴とする長作動距離対物レンズ。
In long working distance objective lens according to claim 2 in which the focal length is used in combination with the imaging lens of F I,
When the focal length of the entire objective lens system is F and the refractive index of the negative lens of the second lens group is n IIN , the following conditional expression
95 <| F I / F | <105
n IIN > 1.7
Long working distance objective lens characterized by satisfying
請求項に記載の長作動距離対物レンズにおいて、
前記長作動対物レンズの作動距離をWDとしたときに、以下の条件式
WD/ L ≦0.25
を満たすことを特徴とする長作動距離対物レンズ。
The long working distance objective according to claim 4 ,
When the working distance of the long working objective lens is WD, the following conditional expression WD / L ≦ 0.25
Long working distance objective lens characterized by satisfying
焦点距離がFIの結像レンズと組み合わせて用いる請求項に記載の長作動距離対物レンズにおいて、
対物レンズの全系の焦点距離をF、前記長作動対物レンズの作動距離をWDとしたときに、以下の条件式
45 < | FI/ F | < 55
WD/ L ≦0.55
を満たすことを特徴とする長作動距離対物レンズ。
In long working distance objective lens according to claim 2 in which the focal length is used in combination with the imaging lens of F I,
When the focal length of the whole objective lens system is F and the working distance of the long working objective lens is WD, the following conditional expression
45 <| F I / F | <55
WD / L ≦ 0.55
Long working distance objective lens characterized by satisfying
JP2006333796A 2006-12-11 2006-12-11 Long working distance objective lens Active JP5087265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333796A JP5087265B2 (en) 2006-12-11 2006-12-11 Long working distance objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333796A JP5087265B2 (en) 2006-12-11 2006-12-11 Long working distance objective lens

Publications (2)

Publication Number Publication Date
JP2008145787A JP2008145787A (en) 2008-06-26
JP5087265B2 true JP5087265B2 (en) 2012-12-05

Family

ID=39606030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333796A Active JP5087265B2 (en) 2006-12-11 2006-12-11 Long working distance objective lens

Country Status (1)

Country Link
JP (1) JP5087265B2 (en)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161516A (en) * 1980-05-16 1981-12-11 Nippon Kogaku Kk <Nikon> Long working distance projection lens
JPS6063513A (en) * 1983-09-17 1985-04-11 Nippon Kogaku Kk <Nikon> Long operating distance objective lens
JPS60241009A (en) * 1984-05-15 1985-11-29 Nippon Kogaku Kk <Nikon> Objective lens of high power with long operation distance
JPS6262317A (en) * 1985-09-13 1987-03-19 Mitsutoyo Mfg Corp Objective lens for microscope
JP3022583B2 (en) * 1990-06-06 2000-03-21 オリンパス光学工業株式会社 Long working distance high magnification objective lens
JPH06175034A (en) * 1992-12-10 1994-06-24 Olympus Optical Co Ltd Long operating distance objective lens
JP3254786B2 (en) * 1993-02-24 2002-02-12 株式会社ニコン Microscope objective lens
JPH0720385A (en) * 1993-07-05 1995-01-24 Mitsutoyo Corp Microscopic objective lens
JPH08286112A (en) * 1995-04-12 1996-11-01 Olympus Optical Co Ltd Objective lens for microscope
JPH0990230A (en) * 1995-09-25 1997-04-04 Olympus Optical Co Ltd Microscope objective lens with long operation distance
JP3600926B2 (en) * 1996-03-27 2004-12-15 オリンパス株式会社 Long working distance microscope objective
JPH10133118A (en) * 1996-11-01 1998-05-22 Nikon Corp Objective lens for microscope
JPH10142510A (en) * 1996-11-08 1998-05-29 Nikon Corp Objective lens for microscope
JPH10221609A (en) * 1997-02-04 1998-08-21 Nikon Corp Microscope objective lens
JPH10282429A (en) * 1997-04-11 1998-10-23 Nec Corp Objective lens long in orerating distance
JPH10288740A (en) * 1997-04-15 1998-10-27 Olympus Optical Co Ltd Long operating distance microscope objective lens
JPH11223774A (en) * 1998-02-06 1999-08-17 Nikon Corp Microscope objective lens
JP4288394B2 (en) * 1999-01-18 2009-07-01 株式会社ニコン Long working distance microscope objective
JP2000241710A (en) * 1999-02-24 2000-09-08 Nikon Corp Microscope objective lens
JP4552248B2 (en) * 2000-01-28 2010-09-29 株式会社ニコン Microscope objective lens
JP4082015B2 (en) * 2001-10-17 2008-04-30 株式会社ニコン Immersion microscope objective lens
JP3960784B2 (en) * 2001-11-29 2007-08-15 株式会社ミツトヨ Microscope objective lens
JP2004341170A (en) * 2003-05-15 2004-12-02 Nikon Corp Immersion objective lens for microscope
JP4418263B2 (en) * 2004-03-12 2010-02-17 株式会社ミツトヨ Microscope objective lens

Also Published As

Publication number Publication date
JP2008145787A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP5277324B2 (en) Microscope objective lens
US8199408B2 (en) Immersion microscope objective lens
JPH10274742A (en) Immersion microscopic objective lens
JP2006113486A (en) Immersion system microscope objective
JP4496524B2 (en) Immersion microscope objective lens
US7253972B2 (en) Telephoto lens system
JP2011107313A5 (en)
JP5045919B2 (en) Imaging lens and microscope apparatus using the same
JP4457666B2 (en) Microscope objective lens
JP2019191273A (en) Objective lens
JP2008015418A (en) Eyepiece
JP3384163B2 (en) Microscope objective lens
JP2007133071A (en) Microscope objective lens of liquid immersion system
JP4987417B2 (en) Long working distance microscope objective
US20180364466A1 (en) Objective
JPH09222565A (en) Microscope objective
US11067782B2 (en) Microscope objective
JP5087265B2 (en) Long working distance objective lens
JP2017215541A (en) Microscope objective lens and microscope image formation optical system using the same
JP3944099B2 (en) Immersion microscope objective lens
JP7099454B2 (en) Objective lens, optical system and microscope
JPH10133119A (en) Microscope objective lens
JP2001208976A (en) Objective lens for microscope
JP2019191272A (en) Liquid-immersion microscope objective lens
JP5288242B2 (en) Microscope objective lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

R151 Written notification of patent or utility model registration

Ref document number: 5087265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250