JP5077943B2 - PtTi high temperature shape memory alloy - Google Patents
PtTi high temperature shape memory alloy Download PDFInfo
- Publication number
- JP5077943B2 JP5077943B2 JP2007301957A JP2007301957A JP5077943B2 JP 5077943 B2 JP5077943 B2 JP 5077943B2 JP 2007301957 A JP2007301957 A JP 2007301957A JP 2007301957 A JP2007301957 A JP 2007301957A JP 5077943 B2 JP5077943 B2 JP 5077943B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- ptti
- shape memory
- alloy
- memory alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Materials For Medical Uses (AREA)
Description
この出願の発明は、PtTiあるいはIr添加したPtTi高温形状記憶合金に関するものである。 The invention of this application relates to a PtTi high temperature shape memory alloy to which PtTi or Ir is added.
従来、形状記憶合金としては主にTiNiが知られているが、室温付近の温度で使用されている。化学プラント、エンジン等に使用される高温センサーやアクチュエイター等として使用するためには、高温で動作する形状記憶合金が必要である。そこで、TiNiに高融点金属を添加する等、高温形状記憶合金の開発が行われている(たとえば、特許文献1参照)。また、本出願人の提案に係る特許文献2でも、Ir添加PtTi高温形状記憶合金について、後掲する比較例に示すようなデータが開示されている。
だが、形状記憶効果が発現する温度を上昇させることは容易ではなく、そのため高温で応力を負荷後に除荷することにより歪みが回復する超弾性あるいは擬弾性効果を発現させることも困難である。 However, it is not easy to raise the temperature at which the shape memory effect appears, and it is therefore difficult to develop a superelasticity or pseudoelasticity effect that recovers strain by unloading stress after loading at high temperature.
本発明は、このような実情に鑑み、擬弾性効果を発現させることができるPtTi系高温形状記憶合金を提供することを目的とする。 An object of this invention is to provide the PtTi type | system | group high temperature shape memory alloy which can express a pseudoelastic effect in view of such a situation.
本発明1のPtTi系高温形状記憶合金は、変態温度以上で1時間以上均質化熱処理を施し、その後変態温度以下であって、応力負荷−除荷圧縮試験の温度に直接焼き入れし、その温度で1時間以上保持して、マルテンサイト相を生成させると共に、当該PtTi高温形状記憶合金の変態温度以下であって、当該応力負荷−除荷圧縮試験の温度である200から900℃の範囲で擬弾性を示すことを特徴とする。
The PtTi high-temperature shape memory alloy of the present invention 1 is subjected to a homogenization heat treatment at a transformation temperature or higher for 1 hour or longer, and then at a transformation temperature or lower and directly quenched at the stress load-unloading compression test temperature. At a temperature of 200 to 900 ° C. that is equal to or lower than the transformation temperature of the PtTi high-temperature shape memory alloy and is the temperature of the stress load-unloading compression test. It is characterized by exhibiting elasticity .
発明2は、発明1のPtTi系高温形状記憶合金において、Irが添加され、Ptの一部がIrで置換されてなることを特徴とする。
発明3は、発明2のPtTi系高温形状記憶合金において、Pt−50at%Ti合金にIrが50at%未満添加され、Ptの一部がIrで置換されてなることを特徴とする。
Invention 2 is characterized in that in the PtTi high temperature shape memory alloy of Invention 1, Ir is added and a part of Pt is substituted with Ir.
Invention 3 is characterized in that in the PtTi high temperature shape memory alloy of Invention 2, Ir is added to the Pt-50 at% Ti alloy in an amount of less than 50 at%, and a part of Pt is substituted with Ir.
この出願の発明のPtTiおよびIr添加PtTi高温形状記憶合金によれば、形状記憶効果の発現温度の高いPtTiおよびIr添加PtTi高温形状記憶合金が実現する。
また、変態点温度以下であって、当該応力負荷−除荷圧縮試験の温度で応力を負荷後除荷することにより、歪みが回復する擬弾性効果が発現する。
According to the PtTi and Ir-added PtTi high-temperature shape memory alloy of the invention of this application, a PtTi and Ir-added PtTi high-temperature shape memory alloy having a high expression temperature of the shape memory effect is realized.
Moreover, it is below the transformation point temperature , and a pseudo-elastic effect that recovers the strain appears by unloading the stress after loading at the temperature of the stress load- unloading compression test .
以下、実施例を示しつつ、この出願の発明のPtTiおよびIr添加PtTi高温形状記憶合金についてさらに詳しく説明する。
この出願の発明のIr添加PtTi高温形状記憶合金におけるPtTi合金は、高温でB2構造、低温でB19構造をとり、形状記憶効果に深い関係を持つマルテンサイト変態を起こす。このマルテンサイト変態に基づいて、PtTi合金では、1000℃付近で形状記憶効果が発現する。そして、PtTi合金にIrを添加することにより形状記憶効果の発現温度が上昇し、1200℃付近で形状記憶効果が発現する。このことから、Irが添加されたPtTi合金は、1000℃〜1200℃の温度域で使用可能な高温形状記憶合金といえる。化学プラント、エンジン等に使用される高温センサーやアクチュエイター等の材料としての適用が有望視される。
Hereinafter, the PtTi and Ir-added PtTi high-temperature shape memory alloy of the invention of this application will be described in more detail with reference to examples.
The PtTi alloy in the Ir-added PtTi high-temperature shape memory alloy of the invention of this application takes a B2 structure at a high temperature and a B19 structure at a low temperature, and causes martensitic transformation having a deep relationship with the shape memory effect. Based on this martensitic transformation, the PtTi alloy exhibits a shape memory effect around 1000 ° C. Then, by adding Ir to the PtTi alloy, the temperature at which the shape memory effect is manifested rises, and the shape memory effect is exhibited at around 1200 ° C. From this, it can be said that the PtTi alloy to which Ir is added is a high-temperature shape memory alloy that can be used in a temperature range of 1000 ° C. to 1200 ° C. Application as a material for high temperature sensors and actuators used in chemical plants and engines is promising.
この出願の発明のIr添加PtTi高温形状記憶合金では、Ti量は42〜63at%に限定される。これは、上記の範囲内でPtTi合金はB2単相となり、それ以外の範囲では他の相が出現し、マルテンサイト変態に影響を及ぼすからである。 In the Ir-added PtTi high-temperature shape memory alloy of the invention of this application, the Ti amount is limited to 42 to 63 at%. This is because the PtTi alloy becomes a B2 single phase within the above range, and other phases appear in the other ranges and affect the martensitic transformation.
添加されるIrは、PtTi合金のPtを一部置換して固溶する。Irの添加量は、Pt−50at%Ti合金の場合、50at%未満である。50at%のIrの添加は、IrTi合金となり、B2→単斜晶系相の相転移を起こし、マルテンサイト変態を起こさない。上記合金に、変態温度以上で1時間以上均質化熱処理を施し、その後変態温度以下に直接焼き入れし1時間以上保持することにより、擬弾性が発現する。
[比較例]
Ir to be added is partly substituted for Pt of the PtTi alloy and is dissolved. The amount of Ir added is less than 50 at% in the case of a Pt-50 at% Ti alloy. The addition of 50 at% Ir results in an IrTi alloy, causing a phase transition of B2 → monoclinic phase and no martensitic transformation. The alloy is subjected to a homogenization heat treatment at a temperature not lower than the transformation temperature for 1 hour or longer, and then directly quenched to the temperature not higher than the transformation temperature and maintained for 1 hour or longer to exhibit pseudoelasticity.
[Comparative example]
特許文献2は、本発明者のグループを発明者とする特許出願であり、本願発明の比較例として、再掲する。即ち、Pt−50at%Ti合金にIrを12.5,25,37.5,42,46at%添加してPtを置換した合金を作製し、Pt−50at%Ti合金及びIr−50at%Ti合金と比較した。1250℃で24時間熱処理した後、氷塩水中に入れて急冷した。 Patent Document 2 is a patent application in which the inventor's group is an inventor, and is re-posted as a comparative example of the present invention. That is, 12.5, 25, 37.5, 42, 46 at% of Ir is added to a Pt-50 at% Ti alloy to prepare an alloy in which Pt is substituted, and Pt-50 at% Ti alloy and Ir-50 at% Ti alloy are produced. Compared with. After heat treatment at 1250 ° C. for 24 hours, it was quenched in ice-salt water.
熱処理後の供試材の室温における結晶構造をX線回折により調べた。その結果を示したのが、図1のX線回折パターンである。Irの添加量が増えるにしたがい、B19が多少歪んだ構造に変化するが、高温のB2相からB19をベースとした他の相に変態していることが確認される。 The crystal structure of the specimen after heat treatment at room temperature was examined by X-ray diffraction. The result is the X-ray diffraction pattern of FIG. As the amount of Ir added increases, B19 changes to a slightly distorted structure, but it is confirmed that the B2 phase at a high temperature is transformed into another phase based on B19.
供試材について示差熱分析を行った。図2は、その結果を示したチャートである。IrTi合金を除く全ての合金について吸熱反応が確認される。相変態が起こっていることが明らかにされる。変態温度は、Irの添加により上昇しており、Pt−46at%Ir−50at%Ti合金では1250℃に達している。Irの添加により、形状記憶効果がより高温において得られることが確認される。 Differential thermal analysis was performed on the specimen. FIG. 2 is a chart showing the results. An endothermic reaction is confirmed for all alloys except the IrTi alloy. It is revealed that a phase transformation is taking place. The transformation temperature is increased by the addition of Ir, and reaches 1250 ° C. for the Pt-46 at% Ir-50 at% Ti alloy. It is confirmed that the shape memory effect can be obtained at a higher temperature by adding Ir.
以上のIr添加PtTi合金の典型的な組織を示したのが図3の透過電子顕微鏡像である。この透過電子顕微鏡像は、Pt−37.5at%Ir−50at%Ti合金のものであるが、透過電子顕微鏡像にはマルテンサイト変態した合金にしばしば観測されるマルテンサイト組織が認められる。 A transmission electron microscope image of FIG. 3 shows a typical structure of the above Ir-added PtTi alloy. This transmission electron microscope image is of a Pt-37.5 at% Ir-50 at% Ti alloy, but the transmission electron microscope image shows a martensitic structure often observed in alloys martensitic transformed.
図4は、Pt−12.5at%Ir−50at%Ti合金に圧縮歪みを与え、その後の熱膨張及び収縮を測定したチャートである。縦軸のTMSは温度上昇下降時の伸び・収縮長さを意味している。 FIG. 4 is a chart in which compressive strain is applied to a Pt-12.5 at% Ir-50 at% Ti alloy and the subsequent thermal expansion and contraction are measured. The TMS on the vertical axis means the length of elongation / contraction when the temperature rises and falls.
圧縮歪みを与えることによりマルテンサイト変態が誘起される。この状態で試料を加熱すると、変態点で逆変態が起こり、高温相に変化する。マルテンサイト変態により導入されている変態歪みは大きく、変態点で歪みが解放されるため、試料は瞬時に大きく伸びる(1300K付近)。高温相になった後冷却すると、再び変態点でマルテンサイト変態を起こすが、収縮のみが認められ、また、はじめの長さには戻らない。このような現象からマルテンサイト変態による形状記憶回復が示唆される。 Martensitic transformation is induced by applying compressive strain. When the sample is heated in this state, reverse transformation occurs at the transformation point and changes to a high temperature phase. The transformation strain introduced by the martensitic transformation is large, and the strain is released at the transformation point, so that the sample is greatly elongated instantaneously (around 1300 K). When cooled after the high temperature phase is reached, martensite transformation occurs again at the transformation point, but only shrinkage is observed, and it does not return to the initial length. Such a phenomenon suggests shape memory recovery by martensitic transformation.
図5はPt−12.5at%Ir−50at%Ti合金に異なる熱処理を施した後に、900℃で応力負荷−除荷圧縮試験を施した応力歪み曲線である。
(a)処理:変態温度以上で1時間熱処理後、0℃の氷塩水に焼き入れてマルテンサイト相を生成させたものである。
(b)処理:変態温度以上で1時間熱処理後、変態温度以下である900℃に焼き入れ、1時間熱処理し、マルテンサイト相を生成させたものである。
(a)処理ではマルテンサイトヴァリアント再配列がはっきりと現れ、除荷後に変態温度以上にあげることにより、2%の歪み回復を示した。(図5(a)参照)
一方、(b)処理では、16%もの歪みを与えた後に、除荷すると、歪みが100%回復した。これは再配列したマルテンサイトのヴァリアントが除荷により元の状態に戻る「擬弾性効果」である。(図5(b)参照)
FIG. 5 is a stress strain curve obtained by subjecting a Pt-12.5 at% Ir-50 at% Ti alloy to different heat treatments and then applying a stress load-unloading compression test at 900 ° C.
(A) Treatment: A heat treatment at a transformation temperature or higher for 1 hour, followed by quenching in 0 ° C. ice-salt water to produce a martensite phase.
(B) Treatment: After heat treatment for 1 hour above the transformation temperature, quenching at 900 ° C. below the transformation temperature and heat treatment for 1 hour to produce a martensite phase.
In the treatment (a), martensitic variant rearrangement clearly appeared, and after unloading, 2% strain recovery was shown by raising it above the transformation temperature. (See Fig. 5 (a))
On the other hand, in the process (b), the strain recovered 100% when unloading after applying the strain as 16%. This is a “pseudoelastic effect” in which the rearranged martensite variant returns to its original state upon unloading. (See FIG. 5 (b))
図6に(a)Pt−50at%Tiおよび(b)Pt−37.5Ir−50Ti合金に、前記実施例1の(b)処理を施し、圧縮試験を施したときの応力歪み曲線を示す。組成が変わっても擬弾性効果が発現することがわかる。 FIG. 6 shows stress strain curves when (a) Pt-50 at% Ti and (b) Pt-37.5 Ir-50Ti alloy were subjected to the treatment (b) of Example 1 and subjected to a compression test. It can be seen that the pseudoelastic effect appears even when the composition changes.
図7に前記実施例1の(b)処理した合金の900℃における繰り返し試験の結果を示す。繰り返し試験の回数が増えるたびに、歪み量を増大させているが、5回の繰り返し試験で16%もの歪みをかけても歪みが100%回復している様子がわかる。 FIG. 7 shows the results of repeated tests at 900 ° C. of the alloy treated in (b) of Example 1. As the number of repeated tests increases, the amount of distortion is increased, but it can be seen that even when 16% of strain is applied in five repeated tests, the strain is recovered 100%.
図8はPt−25Ir−50Tiに前記実施例1の(b)処理を施した合金の1000℃における繰り返し圧縮試験の結果を示す。この組成においても、応力負荷−除荷圧縮試験により、歪みが回復し、また複数回歪み回復を示すことが明らかである。 FIG. 8 shows the results of repeated compression tests at 1000 ° C. of an alloy obtained by performing the treatment (b) of Example 1 on Pt-25Ir-50Ti. Even in this composition, it is apparent that the strain is recovered by the stress load-unloading compression test and also exhibits multiple strain recovery.
図9はPt−50Tiに前記実施例1の(b)処理を施した合金の910℃における繰り返し圧縮試験の結果を示す。繰り返し試験の回数が増えるたびに、歪み量を増大させているが、この組成においても、最大16%まで歪みをかけても歪みが100%回復している様子がわかる。 FIG. 9 shows the results of a repeated compression test at 910 ° C. of an alloy obtained by performing the treatment (b) of Example 1 on Pt-50Ti. As the number of repeated tests increases, the amount of strain increases, but it can be seen that even in this composition, strain is recovered 100% even when strain is applied up to 16%.
図10はPt−50Tiに前記実施例1の(b)処理を施した合金の910℃における繰り返し圧縮試験の結果を示すが、この図では16%の歪みを与えてから除荷した試料に再び10%の歪みを与え、除荷する試験を繰り返し行った結果を示している。5回繰り返しても塑性変形することなく、擬弾性効果が繰り返し発現していることが明らかである。 FIG. 10 shows the result of the repeated compression test at 910 ° C. of the alloy obtained by applying the treatment (b) of Example 1 to Pt-50Ti. In this figure, the sample unloaded after applying 16% strain is again shown. The result of repeating the test to give 10% distortion and unloading is shown. It is clear that the pseudoelastic effect is repeatedly exhibited without plastic deformation even when repeated five times.
図11はPt−50Tiに前記実施例1の(b)処理の900℃を200℃に変え、変態点温度以上で1時間熱処理後、変態温度以下である200℃に焼き入れ、1時間熱処理し、マルテンサイト相を生成させた場合の繰り返し圧縮試験の結果を示す。最大14%まで歪みをかけても歪みが100%回復している様子がわかる。
また最後のカーブは14%歪みを与え除荷した後、再び8%の歪みを与えたものであるが、除荷後に歪みがすべて回復している。同様に8%歪みを与えた左から3番目のカーブと比較すると歪みの回復が完全であるため、繰り返し応力を加えることにより、擬弾性効果がより明瞭に現れる事も明らかである。
FIG. 11 shows that Pt-50Ti was changed from 900 ° C. in the treatment (b) of Example 1 to 200 ° C., heat-treated for 1 hour above the transformation temperature, and then quenched at 200 ° C. below the transformation temperature for 1 hour. The result of the repeated compression test at the time of producing | generating a martensite phase is shown. It can be seen that even when strain is applied up to 14%, the strain has recovered 100%.
The last curve is 14% strain applied and unloaded, then 8% strain is applied again, but all strain is recovered after unloading. Similarly, since the strain recovery is complete as compared with the third curve from the left to which 8% strain is applied, it is also clear that the pseudoelastic effect appears more clearly by repeatedly applying stress.
もちろん、この出願の発明は、以上の実施例によって限定されるものではない。PtTiおよびIr添加PtTi合金の作製条件等の細部については様々な態様が可能であることはいうまでもない。 Of course, the invention of this application is not limited by the above embodiments. It goes without saying that various modes are possible for details such as the production conditions of PtTi and Ir-added PtTi alloys.
以上より明らかなとおり、本発明の形状記憶合金は、200から900℃の広い温度範囲で擬弾性効果を示すものである。 As is clear from the above, the shape memory alloy of the present invention exhibits a pseudoelastic effect in a wide temperature range of 200 to 900 ° C.
以上詳しく説明したとおり、この出願の発明によって、高温で形状記憶効果および擬弾性効果を発現する高温機器への適用を可能とするPtTiおよびIr添加PtTi高温形状記憶合金が提供される。 As described in detail above, the invention of this application provides a PtTi and Ir-added PtTi high-temperature shape memory alloy that can be applied to high-temperature devices that exhibit a shape memory effect and a pseudoelastic effect at high temperatures.
Claims (3)
変態温度以上で1時間以上均質化熱処理を施し、
その後変態温度以下であって、応力負荷−除荷圧縮試験の温度に直接焼き入れし、その温度で1時間以上保持して、マルテンサイト相を生成させると共に、
当該PtTi高温形状記憶合金の変態温度以下であって、当該応力負荷−除荷圧縮試験の温度である200から900℃の範囲で擬弾性を示すことを特徴とするPtTi高温形状記憶合金。 A PtTi high temperature shape memory alloy made of a Pt-42 to 63 at% Ti alloy,
Perform homogenization heat treatment for 1 hour or more above the transformation temperature,
After that , it is below the transformation temperature, directly quenched to the temperature of the stress load-unloading compression test, and kept at that temperature for 1 hour or more to produce a martensite phase,
A PtTi high-temperature shape memory alloy characterized by exhibiting pseudoelasticity in the range of 200 to 900 ° C. which is equal to or lower than the transformation temperature of the PtTi high-temperature shape memory alloy and is the temperature of the stress load-unloading compression test .
3. The PtTi high temperature shape memory alloy according to claim 2, wherein Ir is added to the Pt-50 at% Ti alloy in an amount of less than 50 at%, and a part of Pt is replaced with Ir.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007301957A JP5077943B2 (en) | 2006-11-22 | 2007-11-21 | PtTi high temperature shape memory alloy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006315942 | 2006-11-22 | ||
JP2006315942 | 2006-11-22 | ||
JP2007301957A JP5077943B2 (en) | 2006-11-22 | 2007-11-21 | PtTi high temperature shape memory alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008150705A JP2008150705A (en) | 2008-07-03 |
JP5077943B2 true JP5077943B2 (en) | 2012-11-21 |
Family
ID=39653189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007301957A Expired - Fee Related JP5077943B2 (en) | 2006-11-22 | 2007-11-21 | PtTi high temperature shape memory alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5077943B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014058711A (en) * | 2012-09-14 | 2014-04-03 | National Institute For Materials Science | TiPt BASED HIGH TEMPERATURE SHAPE MEMORY ALLOY AND MANUFACTURING METHOD THEREOF |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03100159A (en) * | 1989-09-12 | 1991-04-25 | Agency Of Ind Science & Technol | Platinum alloy to be brightly blackened and method for blackening the same |
US5114504A (en) * | 1990-11-05 | 1992-05-19 | Johnson Service Company | High transformation temperature shape memory alloy |
JP3135224B2 (en) * | 1996-05-10 | 2001-02-13 | 株式会社フルヤ金属 | Iridium-based alloy |
JP3671213B2 (en) * | 2001-09-21 | 2005-07-13 | 独立行政法人物質・材料研究機構 | Platinum iridium alloy |
JP2004162178A (en) * | 2002-10-25 | 2004-06-10 | National Institute For Materials Science | Ir-ADDED Pt-Ti HIGH TEMPERATURE SHAPE MEMORY ALLOY |
-
2007
- 2007-11-21 JP JP2007301957A patent/JP5077943B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008150705A (en) | 2008-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tong et al. | Recent development of TiNi‐based shape memory alloys with high cycle stability and high transformation temperature | |
Tsuchiya et al. | Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation | |
Pushin et al. | Nanostructured TiNi-based shape memory alloys processed by severe plastic deformation | |
Zhou et al. | Pseudo-elastic deformation behavior in a Ti/Mo-based alloy | |
Karaca et al. | Microstructure and transformation related behaviors of a Ni45. 3Ti29. 7Hf20Cu5 high temperature shape memory alloy | |
Guo et al. | On the mechanical properties of TiNb based alloys | |
Frenzel et al. | Improvement of NiTi shape memory actuator performance through ultra‐fine grained and nanocrystalline microstructures | |
Hong et al. | Influence of Zr content on phase formation, transition and mechanical behavior of Ni-Ti-Hf-Zr high temperature shape memory alloys | |
Adharapurapu et al. | Superelasticity in a new bioimplant material: Ni-rich 55NiTi alloy | |
Luo et al. | A comparison of methods for the training of NiTi two-way shape memory alloy | |
US7306683B2 (en) | Shape memory material and method of making the same | |
Zhang et al. | Multi-scale pseudoelasticity of NiTi alloys fabricated by laser additive manufacturing | |
Song et al. | Strain induced martensite stabilization in β Ti-Zr-Nb shape memory alloy | |
US20090071577A1 (en) | Process for making ti-ni based functionally graded alloys and ti-ni based functionally graded alloys produced thereby | |
Churakova et al. | Microstructure transformation and physical and mechanical properties of ultrafine‐grained and nanocrystalline TiNi alloys in multiple martensitic transformations B2‐B19’ Gefügeumwandlung sowie physikalische und mechanische Eigenschaften von ultrafeinkörnigen, nanokristallinen TiNi‐Legierungen unter verschiedenen martensitischen Umwandlungen B2‐B19’ | |
Wadood et al. | Recent research and developments related to near-equiatomic titanium-platinum alloys for high-temperature applications | |
Belyaev et al. | Shape memory effects in Ti-50.2 at% Ni alloy with different grain size | |
JP5077943B2 (en) | PtTi high temperature shape memory alloy | |
Belyaev et al. | Martensite stabilization effect in the Ni 50 Ti 50 alloy after preliminary deformation by cooling under constant stress | |
Wu et al. | The superelasticity of TiPdNi high temperature shape memory alloy | |
Wang et al. | Superelastic stability of nanocrystalline Ni47Ti50Fe3 shape memory alloy | |
Yamazaki et al. | Tuning the temperature range of superelastic Ni-Ti alloys for elastocaloric cooling via thermal processing | |
Acar et al. | On the stress-assisted aging in NiTiHfPd single crystal shape memory alloys | |
Spiridon et al. | A study of free recovery in a Fe–Mn–Si–Cr shape memory alloy | |
Zhan et al. | The Effect of Ageing Treatment on Shape‐Setting and Shape Memory Effect of a NiTi SMA Corrugated Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120619 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120821 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120822 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |