Nothing Special   »   [go: up one dir, main page]

JP5076691B2 - Manufacturing method of high-strength cold-rolled steel sheet - Google Patents

Manufacturing method of high-strength cold-rolled steel sheet Download PDF

Info

Publication number
JP5076691B2
JP5076691B2 JP2007181948A JP2007181948A JP5076691B2 JP 5076691 B2 JP5076691 B2 JP 5076691B2 JP 2007181948 A JP2007181948 A JP 2007181948A JP 2007181948 A JP2007181948 A JP 2007181948A JP 5076691 B2 JP5076691 B2 JP 5076691B2
Authority
JP
Japan
Prior art keywords
less
temperature
annealing
cooling rate
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007181948A
Other languages
Japanese (ja)
Other versions
JP2009019231A (en
Inventor
英之 木村
義彦 小野
毅 藤田
理孝 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007181948A priority Critical patent/JP5076691B2/en
Publication of JP2009019231A publication Critical patent/JP2009019231A/en
Application granted granted Critical
Publication of JP5076691B2 publication Critical patent/JP5076691B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車、家電等の分野に適し、低降伏応力でかつ耐常温時効性および焼付硬化性に優れた高強度冷延鋼板およびその製造方法に関するものである。   The present invention relates to a high-strength cold-rolled steel sheet suitable for the fields of automobiles, home appliances, etc., having a low yield stress and excellent in normal temperature aging resistance and bake hardenability, and a method for producing the same.

近年、自動車用鋼板に対しては、車体軽量化による燃費向上を目的とした鋼板の薄肉化および安全性向上のための高強度化が進められている。しかしながら、鋼板の高強度化は一般にプレス成形性の劣化を招き、面歪と呼ばれる数十μm程度のゆがみが発生し意匠性の劣化を招くという問題がある。
これに対して、プレス成形時には軟質で成形しやすく、プレス成形後の塗装焼付工程にて高い焼付硬化性を示す鋼板(BH鋼板)が開発されてきた。この鋼板は、極低炭素鋼をベースにTi、Nbを添加し固溶C量を制御したもので、強度が340MPa級では降伏応力(以下、YPと称することもある)が240MPa程度と低いため耐面歪性は良好であり、プレス成形および塗装焼付後の降伏応力(YP’)は300MPa程度と高めて耐デント性を確保するものである。
しかしながら、軽量化の観点からは現状の板厚0.65〜0.80mmの340BH鋼板よりさらに薄い鋼板が望まれ、例えば、板厚を0.05mm薄肉化するためにはプレス成形および塗装焼付後の降伏応力(YP’)が約350MPa以上必要である。そして、低YPを確保しつつ高いYP’を得るためには、塗装焼付硬化性(以下、BHと称することもある)および加工硬化性(以下、WHと称することもある)の高い鋼板が必要となる。
このような背景から、例えば、特許文献1には、C:0.005〜0.0070%、Mn:0.01〜4.0%、Cr:0.01〜3.0%を含有する鋼の焼鈍および冷却条件を適正に制御し、焼鈍後の組織を低温変態生成物単位組織とすることで、低降伏応力で高いWH、BH性を併せ持ち、さらに耐常温時効性に優れた鋼板を得る方法が記載されている。
また、特許文献2には、C:0.04%以下、Mn:0.5〜3.0%、Mo:0.01〜1.0%を含有する鋼の焼鈍および冷却条件を適正に制御し、焼鈍後の組織を体積率で0.5%以上10%未満の残留オーステナイトを含み、残部がフェライトとベイナイトおよび/またはマルテンサイトの硬質相からなる複合組織とすることで、降伏応力が300MPa以下でかつ高いWH、BH性を併せ持つ耐常温時効性、形状凍結性、耐デント性に優れた鋼板を得る方法が記載されている。
特許文献3には、C:0.01%以上0.040%未満、Mn:0.3〜1.6%、Cr:0.5%以下、Mo:0.5%以下でかつMn+1.29Cr+3.29Moが1.3%以上2.1%以下を含有する鋼の焼鈍後の冷却条件を適正に制御し、焼鈍後の組織を体積分率で70%以上のフェライトと1〜15%のマルテンサイトとすることで高強度かつ高い焼付硬化性(BH)を有する鋼板を得る方法が記載されている。
特開平6-122940号公報 特開2005-281867号公報 特開2006-233294号公報
2. Description of the Related Art In recent years, steel sheets for automobiles have been made thinner and thinner for the purpose of improving fuel efficiency by reducing the weight of the vehicle body and increasing the strength for improving safety. However, increasing the strength of a steel sheet generally causes a deterioration in press formability, and there is a problem that a distortion of about several tens of μm called a surface distortion occurs, resulting in a deterioration in design.
On the other hand, steel plates (BH steel plates) have been developed that are soft and easy to form during press forming and exhibit high bake hardenability in the paint baking process after press forming. This steel plate is based on ultra-low carbon steel, with Ti and Nb added to control the amount of solute C. Since the strength is 340MPa, the yield stress (hereinafter sometimes referred to as YP) is as low as 240MPa. The surface distortion resistance is good, and the yield stress (YP ') after press molding and paint baking is increased to about 300 MPa to ensure dent resistance.
However, from the viewpoint of weight reduction, a steel sheet that is thinner than the current 340BH steel sheet with a thickness of 0.65 to 0.80 mm is desired.For example, in order to reduce the thickness to 0.05 mm, the yield stress after press molding and paint baking ( YP ') is required to be about 350 MPa or more. In order to obtain a high YP 'while ensuring a low YP, a steel plate having high paint bake hardenability (hereinafter also referred to as BH) and work hardenability (hereinafter also referred to as WH) is required. It becomes.
From such a background, for example, in Patent Document 1, annealing and cooling conditions of steel containing C: 0.005 to 0.0070%, Mn: 0.01 to 4.0%, Cr: 0.01 to 3.0% are appropriately controlled, and annealing is performed. It describes a method for obtaining a steel sheet having a low yield stress, high WH and BH properties, and having excellent room temperature aging resistance by making the subsequent structure a low-temperature transformation product unit structure.
In Patent Document 2, the annealing and cooling conditions of steel containing C: 0.04% or less, Mn: 0.5-3.0%, Mo: 0.01-1.0% are appropriately controlled, and the structure after annealing is expressed in volume ratio. Room temperature resistance with a yield stress of 300MPa or less and high WH and BH properties by including a composite structure containing 0.5% or more and less than 10% retained austenite and the balance being a hard phase of ferrite and bainite and / or martensite A method for obtaining a steel sheet excellent in aging, shape freezing property, and dent resistance is described.
Patent Document 3 states that C: 0.01% or more and less than 0.040%, Mn: 0.3 to 1.6%, Cr: 0.5% or less, Mo: 0.5% or less, and Mn + 1.29Cr + 3.29Mo is 1.3% or more and 2.1% or less. Highly strong and high bake hardenability (BH) by properly controlling the cooling conditions after annealing of the contained steel, and making the structure after annealing 70% ferrite or more and 1-15% martensite in volume fraction ) Is described.
Japanese Unexamined Patent Publication No. 6-12940 JP 2005-281867 JP JP 2006-233294 A

しかしながら、上記従来技術には次のような問題点がある。
例えば、特許文献1に記載の技術は、耐常温時効性の評価として100℃×1hrの人工時効処理後の降伏点伸び(以下、YPElと称することもある)の回復量で評価しているが、(2)式に示すHundyの式(出典:Hundy,B.B”Accelerated Strain Ageing of Mild Steel”.J.Iron & Steel Inst., 178,p.34-38, (1954).)を用いて30℃での等価時効時間を算出した結果、30℃では18日相当であり、必ずしも耐常温時効性に優れるとは言えない。また、低温変態生成物単位組織とするため、例えば、実施例では860〜980℃の極めて高い温度域で焼鈍を実施しているが、この場合、板破断等のトラブルが懸念される。これらより、高温焼鈍を必要とせず、また、耐常温時効性に優れる鋼板の開発が必要である。
log10(tr/t)=4400(1/Tr-1/T)-log10(T/Tr)・・・(2)
T:促進時効温度(K)
Tr:評価対象温度(K)
t:促進時効温度Tでの時効時間(hr)
:評価対象温度Tr(K)に換算したときの等価時効時間(hr)
特許文献2に記載の技術は、加工硬化性(WH)を高める観点から、Moを0.01%以上1.0%以下、好ましくは0.1%以上0.6%以下含有し、金属組織として残留オーステナイトを活用している。しかしながら、Moは非常に高い元素であり、実施例にあるようにMoを0.18〜0.56%も添加すると著しいコスト増を招く。一方、実施例中のMoの添加量が極めて低い比較例ではYRが高く、WHが著しく低い。これらより、高価なMoを必要とせず、低YRで高WHを有する鋼板の開発が必要である。
特許文献3に記載の技術は、マルテンサイト分率およびフェライト中の固溶Cを制御し、高い焼付硬化性を得るために焼鈍後の冷却として、550〜750℃の温度から200℃以下の温度まで100℃/sの冷却速度で冷却している。しかしながら、このような冷却条件を満足するには特許文献3にも記載されているような噴流水中に焼入れるなどの特殊な方法が必要であり、現状の連続溶融亜鉛めっきラインでの製造は困難である。
However, the above prior art has the following problems.
For example, the technique described in Patent Document 1 is evaluated by the recovery amount of yield point elongation after artificial aging treatment of 100 ° C. × 1 hr (hereinafter sometimes referred to as YPEl) as an evaluation of normal temperature aging resistance. 30 using the Hundy equation shown in equation (2) (Source: Hundy, BB “Accelerated Strain Aging of Mild Steel”. J. Iron & Steel Inst., 178, p. 34-38, (1954).) As a result of calculating the equivalent aging time at ℃, it is equivalent to 18 days at 30 ℃, and it cannot be said that the aging resistance at room temperature is necessarily excellent. Further, in order to obtain a low temperature transformation product unit structure, for example, in the examples, annealing is performed in a very high temperature range of 860 to 980 ° C. In this case, there is a concern about troubles such as plate breakage. For these reasons, it is necessary to develop a steel sheet that does not require high-temperature annealing and has excellent room temperature aging resistance.
log 10 (t r / t) = 4400 (1 / T r -1 / T) -log 10 (T / T r ) (2)
T: Accelerated aging temperature (K)
T r : Evaluation target temperature (K)
t: Aging time (hr) at accelerated aging temperature T
tr : Equivalent aging time (hr) when converted into evaluation target temperature Tr (K)
The technique described in Patent Document 2 contains Mo in an amount of 0.01% to 1.0%, preferably 0.1% to 0.6%, and uses retained austenite as a metal structure from the viewpoint of improving work hardening (WH). . However, Mo is a very high element, and adding 0.18 to 0.56% of Mo as in the examples causes a significant increase in cost. On the other hand, in the comparative examples in which the amount of Mo added in the examples is very low, YR is high and WH is extremely low. Therefore, it is necessary to develop a steel sheet having a low YR and a high WH without requiring expensive Mo.
The technology described in Patent Document 3 controls the martensite fraction and the solid solution C in the ferrite, and as a cooling after annealing to obtain high bake hardenability, a temperature of 550 to 750 ° C to 200 ° C or less Cooling at a cooling rate of 100 ° C / s. However, in order to satisfy such cooling conditions, a special method such as quenching in jet water as described in Patent Document 3 is necessary, and it is difficult to manufacture the current continuous hot dip galvanizing line. It is.

本発明は、上述の問題を解決するためになされたもので、高価なMoを活用することなく、特殊な設備を必要とすることなく、低降伏応力でかつ耐常温時効性および焼付硬化性に優れた高強度冷延鋼板およびその製造方法を提供することを目的とする。   The present invention was made in order to solve the above-mentioned problems, without using expensive Mo, without requiring special equipment, with low yield stress, room temperature aging resistance and bake hardenability. An object is to provide an excellent high-strength cold-rolled steel sheet and a method for producing the same.

上記課題を解決するため、鋭意研究した結果、下記の知見を得た。
焼鈍冷却中に生成するパーライトやベイナイトは微量であっても降伏応力の上昇を招く。このため、焼入性の高いMn、Crを特定範囲に制御することで、パーライトやベイナイトの生成を抑制し、低降伏応力で、かつ高い加工硬化性を得る。
同一Mn当量ではMn添加量が少なくなるほどFe-C状態図のA1およびA3線が高温、高C側にシフトするため、フェライト中の固溶Cが増大する。よって、Mn添加量を少なくすることでと固溶Cの歪時効現象である焼付硬化特性は向上する。一方、Mn添加量を低減しすぎると時効性が劣化するため、耐常温時効性と焼付硬化性の両立を図るにはMnを適正な範囲に制御することが重要である。
すなわち、Mn量を適正に制御することで耐常温時効性と焼付硬化性を高位にバランスさせ、Cr量の調整によるMn当量(=Mn+1.3Cr)を適正な範囲に制御することで、低降伏応力でかつ高い加工硬化性を有する高強度冷延鋼板が製造できることを見出し、本発明を完成させた。
本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]成分組成は、質量%でC:0.01%以上0.08%未満、Si:0.2%以下、Mn:0.8%以上1.7%以下、P:0.10%以下、S:0.03%以下、Al: 0.1%以下、N:0.008%以下、Cr:0.8%以上を含有し、かつ1.9≦Mn(質量%)+1.3Cr(質量%)≦3.0を満足し、残部が鉄および不可避的不純物からなり、組織はフェライト相と面積率で2〜15%のマルテンサイト相を有することを特徴とする高強度冷延鋼板。
[2]前記[1]において、さらに、質量%で、Mo:0.15%以下、V:0.5%以下、B:0.01%以下、Ti:0.1%以下およびNb:0.1%以下のうちの1種以上を含有することを特徴とする高強度冷延鋼板。
[3]前記[1]または[2]に記載の成分組成を有する鋼スラブを熱間圧延および冷間圧延した後、750℃超820℃未満の焼鈍温度で焼鈍し、次いで、焼鈍温度から650℃までの温度範囲を2℃/s以上20℃/s以下の平均冷却速度で1次冷却し、次いで、650℃から下記(1)式で与えられる温度Tcまでの温度範囲を10℃/s以上の平均冷却速度で2次冷却し、さらに、温度Tcから200℃までの温度範囲を0.2℃/s以上10℃/s以下の平均冷却速度で3次冷却することを特徴とする高強度冷延鋼板の製造方法。
Tc(℃)=410-40×Mn-30×Cr (1)
ここで、式中の元素記号は鋼中での元素含有量を質量%にて表したものである。
なお、本明細書において、鋼の成分を示す%はすべて質量%である。また、高強度冷延鋼板とは、340MPa以上の引張強度を有する冷延鋼板である。
As a result of earnest research to solve the above problems, the following findings were obtained.
Even if a small amount of pearlite or bainite is generated during annealing and cooling, the yield stress increases. For this reason, by controlling Mn and Cr having high hardenability within a specific range, generation of pearlite and bainite is suppressed, and low work yield and high work hardenability are obtained.
At the same Mn equivalent, the smaller the amount of Mn added, the more the A1 and A3 lines in the Fe-C phase diagram shift to a higher temperature and higher C side, so the solid solution C in the ferrite increases. Therefore, by reducing the amount of Mn added, the bake hardening characteristic, which is a strain aging phenomenon of solute C, is improved. On the other hand, if the amount of Mn added is excessively reduced, the aging property deteriorates. Therefore, it is important to control Mn within an appropriate range in order to achieve both room temperature aging resistance and bake hardenability.
In other words, by properly controlling the Mn content, the room temperature aging resistance and bake hardenability are balanced to a high level, and the Mn equivalent (= Mn + 1.3Cr) by adjusting the Cr content is controlled to an appropriate range. The inventors have found that a high-strength cold-rolled steel sheet having a yield stress and high work hardenability can be produced, and the present invention has been completed.
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Component composition is mass% C: 0.01% or more and less than 0.08%, Si: 0.2% or less, Mn: 0.8% or more, 1.7% or less, P: 0.10% or less, S: 0.03% or less, Al: 0.1% In the following, N: 0.008% or less, Cr: 0.8% or more and 1.9 ≦ Mn (mass%) + 1.3Cr (mass%) ≦ 3.0, with the balance being iron and inevitable impurities, A high-strength cold-rolled steel sheet having a ferrite phase and a martensite phase with an area ratio of 2 to 15%.
[2] In the above [1], one or more of Mo: 0.15% or less, V: 0.5% or less, B: 0.01% or less, Ti: 0.1% or less and Nb: 0.1% or less A high-strength cold-rolled steel sheet comprising:
[3] A steel slab having the composition described in [1] or [2] is hot-rolled and cold-rolled, and then annealed at an annealing temperature of more than 750 ° C. and less than 820 ° C., and then from the annealing temperature to 650 The temperature range up to ℃ is primary cooled at an average cooling rate of 2 ℃ / s or more and 20 ℃ / s or less, then the temperature range from 650 ℃ to the temperature Tc given by the following formula (1) is 10 ℃ / s Secondary cooling is performed at the above average cooling rate, and third cooling is performed at an average cooling rate of 0.2 ° C / s to 10 ° C / s in the temperature range from temperature Tc to 200 ° C. A method for producing rolled steel sheets.
Tc (℃) = 410-40 × Mn-30 × Cr (1)
Here, the element symbol in the formula represents the element content in steel in mass%.
In the present specification, “%” indicating the component of steel is “% by mass”. The high strength cold rolled steel sheet is a cold rolled steel sheet having a tensile strength of 340 MPa or more.

本発明によれば、低降伏応力でかつ耐常温時効性および焼付硬化性に優れた高強度冷延鋼板が、Moを活用することなく、また、特殊な設備を必要とすることなく得られる。この結果、自動車内外板用途に用いた場合、薄肉化による軽量化も可能である。
そして、本発明の高強度冷延鋼板は上記のような優れた特性を有しているため、自動車用鋼板をはじめ、家電等に広く活用でき、産業上有益である。
According to the present invention, a high-strength cold-rolled steel sheet having a low yield stress and excellent in room temperature aging resistance and bake hardenability can be obtained without using Mo and without requiring special equipment. As a result, when used for automobile inner and outer plate applications, it is possible to reduce the weight by reducing the thickness.
And since the high intensity | strength cold-rolled steel plate of this invention has the above outstanding characteristics, it can utilize widely for household appliances etc. including the steel plate for motor vehicles, and is industrially useful.

本発明は、成分組成をMn:0.8%以上1.7%以下、Cr:0.8%以上と規定し、Mn当量を1.9≦Mn(質量%)+1.3Cr(質量%)≦3.0と適正な範囲に制御する。そして、組織を、フェライト相と面積率で2〜15%のマルテンサイト相とする。これは本発明の特徴であり、最も重要な要件である。このような成分組成と組織とすることで、低降伏応力でかつ耐常温時効性および焼付硬化性に優れた高強度冷延鋼板が得られることになる。
また、このような低降伏応力でかつ耐常温時効性および焼付硬化性に優れた高強度冷延鋼板を製造するには焼鈍・冷却条件の制御が必須であり、本発明では、750℃超820℃未満の焼鈍温度で焼鈍し、1次冷却(焼鈍温度から650℃までを2℃/s以上20℃/s以下の平均冷却速度で冷却)、2次冷却(650℃からTc(℃)(=410-40×Mn(質量%)-30×Cr(質量%))で与えられるMs点近傍の温度までの温度範囲を10℃/s以上の平均冷却速度で冷却)、3次冷却(上記温度Tcから200℃までを0.2℃/s以上10℃/s以下の平均冷却速度で冷却)することを特徴とする。
In the present invention, the component composition is defined as Mn: 0.8% to 1.7%, Cr: 0.8% or more, and the Mn equivalent is controlled within an appropriate range of 1.9 ≦ Mn (mass%) + 1.3Cr (mass%) ≦ 3.0 To do. And a structure | tissue is made into a martensitic phase of 2-15% by a ferrite phase and an area ratio. This is a feature of the present invention and is the most important requirement. By setting it as such a component composition and structure, a high-strength cold-rolled steel sheet having low yield stress and excellent room temperature aging resistance and bake hardenability can be obtained.
Also, in order to produce such a high-strength cold-rolled steel sheet with low yield stress and excellent room temperature aging resistance and bake hardenability, it is essential to control the annealing and cooling conditions. Annealing at an annealing temperature of less than ℃, primary cooling (cooling from annealing temperature to 650 ℃ with an average cooling rate of 2 ℃ / s to 20 ℃ / s), secondary cooling (from 650 ℃ to Tc (℃) ( = 410-40 × Mn (mass%)-30 × Cr (mass%)), the temperature range up to the temperature near the Ms point is cooled at an average cooling rate of 10 ° C / s or more), 3rd cooling (above The temperature is cooled from Tc to 200 ° C. at an average cooling rate of 0.2 ° C./s to 10 ° C./s).

以下、本発明について詳細に説明する。
まず、本発明における鋼の化学成分の限定理由について説明する。
C: 0.01%以上0.08%未満
Cは高強度化に有効であり、本発明において重要な元素のひとつである。C量が0.01%未満では所望のマルテンサイト相が得られなくなり、降伏点伸びの発生やYPの上昇により自動車外板パネル用途への適用が困難となる。所望のマルテンサイト相を確保するにはC量を0.01%以上とする。一方、C量が0.08%以上では、マルテンサイト相が多くなりすぎてしまい、YPの上昇、BHの低下、さらに溶接性も劣化させる。したがって、C量は0.01%以上0.08%未満とする。低YP、高BH化の観点から好ましくは0.01%以上0.06%未満とし、0.01%以上0.05%未満とすることがより好ましい。
Si: 0.2%以下
Siは固溶強化能が大きく、低YP化の観点から少ない方がよい。しかしながら、Si量が0.2%までは許容されるため、Si量は0.2%以下とする。
P: 0.10%以下
Pは高強度化に有効な元素である。しかし、P量が0.10%を超えると、YPが上昇し、耐面歪性が劣化する。また、鋼板の粒界に偏析して耐二次加工脆性を劣化させる。したがって、P量は0.10%以下とする。
S: 0.03%以下
Sは熱間加工性を低下させ、スラブの熱間割れ感受性を高めるので少ない方がよい。特に、S量が0.03%を超えると微細なMnSの析出により延性が劣化し、プレス成形性を劣化させる。よって、S量は0.03%以下とする。なお、プレス成形性の観点からは、S量を0.015%以下とすることが好ましい。
Al:0.1%以下
Alは脱酸元素として鋼中の介在物を減少させ、さらに鋼中の不要な固溶Nを窒化物として固定する役割がある。しかし、Al量が0.1%を超えると、クラスター状のアルミナ系介在物が増加し、延性が劣化し、プレス成形性を劣化させる。したがって、Al量は0.1%以下とする。
N:0.008%以下
Nは耐常温時効性の観点から固溶状態で残存させることは好ましくないので、少ない方がよい。特に、N量が0.008%を超えると、Nを固定するのに必要な窒化物形成元素の添加量が増加し製造コストの増加を招く。また、過剰な窒化物の生成により延性および靭性が劣化する。したがって、N量は0.008%以下とする。
Cr:0.8%以上
Crは焼入性向上元素であり、マルテンサイト相の生成に非常に重要な元素である。さらにCrはMnと比較して、焼入性向上効果が高く、また、固溶強化能が小さいため、低YP化に有効であり、本発明では積極的に添加する。Cr量が0.8%未満では上記の焼入性向上効果および低YP効果が得られない場合があるため、Cr量は0.8%以上とする。また、上述のように、MnはBH特性と耐常温時効性を両立する観点から、その添加量が制限されるため、焼鈍後の冷却過程におけるパーライト、ベイナイトの生成を抑制し、低YP化するためには、Cr量の調整により所定のMn当量に制御する必要がある。
Mn+1.3Cr:1.9%以上3.0%以下
Mn+1.3Crの値は、焼入れ性を表す指標のひとつであり、マルテンサイト相を生成させるために適正範囲に制御することが重要となる。Mn+1.3Crの値が1.9%未満になると、焼入れ性が不十分となり、焼鈍後の冷却時にパーライトやベイナイトが生じやすくなり、YPが上昇する。一方、Mn+1.3Crの値が3.0を超えると、マルテンサイト相が増大し、YPが上昇するため、耐面歪性の劣化が懸念される。また、過剰な合金元素の添加によって製造コストの増大を引き起こす。したがって、Mn + 1.3Crの値は1.9%以上3.0%以下とし、低YP化の観点から好ましくは2.2%超3.0%以下とする。
以上の必須添加元素で、本発明鋼は目的とする特性が得られるが、上記の必須添加元素に加えて、必要に応じて下記の元素を添加することができる。
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the chemical components of steel in the present invention will be described.
C: 0.01% or more and less than 0.08%
C is effective for increasing the strength and is one of the important elements in the present invention. If the amount of C is less than 0.01%, a desired martensite phase cannot be obtained, and it becomes difficult to apply it to automotive outer panel applications due to the occurrence of yield point elongation and YP increase. In order to secure a desired martensite phase, the C content is 0.01% or more. On the other hand, if the C content is 0.08% or more, the martensite phase becomes too much, resulting in an increase in YP, a decrease in BH, and a deterioration in weldability. Therefore, the C content is 0.01% or more and less than 0.08%. From the viewpoint of low YP and high BH, it is preferably 0.01% or more and less than 0.06%, and more preferably 0.01% or more and less than 0.05%.
Si: 0.2% or less
Si has a large solid solution strengthening ability, and it is better to be less from the viewpoint of low YP. However, since the Si content is allowed up to 0.2%, the Si content is 0.2% or less.
P: 0.10% or less
P is an element effective for increasing the strength. However, if the P content exceeds 0.10%, YP increases and the surface distortion resistance deteriorates. Moreover, it segregates at the grain boundary of the steel sheet and degrades the secondary work brittleness resistance. Therefore, the P content is 0.10% or less.
S: 0.03% or less
S is better because it lowers the hot workability and increases the hot cracking susceptibility of the slab. In particular, when the amount of S exceeds 0.03%, the ductility deteriorates due to the precipitation of fine MnS, and the press formability deteriorates. Therefore, the S amount is 0.03% or less. From the viewpoint of press formability, the S content is preferably 0.015% or less.
Al: 0.1% or less
Al serves as a deoxidizing element to reduce inclusions in the steel and to fix unnecessary solid solution N in the steel as nitrides. However, when the Al content exceeds 0.1%, cluster-like alumina inclusions increase, ductility deteriorates, and press formability deteriorates. Therefore, the Al content is 0.1% or less.
N: 0.008% or less
Since it is not preferable that N is left in a solid solution state from the viewpoint of room temperature aging resistance, it is preferable that N be less. In particular, if the amount of N exceeds 0.008%, the amount of nitride-forming elements added to fix N increases, leading to an increase in manufacturing cost. Moreover, ductility and toughness deteriorate due to the formation of excess nitride. Therefore, the N content is 0.008% or less.
Cr: 0.8% or more
Cr is an element that improves hardenability and is an extremely important element for the formation of a martensite phase. Furthermore, Cr has a higher effect of improving hardenability than Mn and has a small solid solution strengthening ability, so that it is effective for lowering YP, and is actively added in the present invention. If the Cr content is less than 0.8%, the above hardenability improving effect and low YP effect may not be obtained, so the Cr content is 0.8% or more. In addition, as described above, Mn has a limited amount of addition from the viewpoint of achieving both BH characteristics and room temperature aging resistance, and thus suppresses the formation of pearlite and bainite in the cooling process after annealing, thereby reducing YP. Therefore, it is necessary to control to a predetermined Mn equivalent by adjusting the Cr amount.
Mn + 1.3Cr: 1.9% to 3.0%
The value of Mn + 1.3Cr is one of the indexes representing hardenability, and it is important to control within an appropriate range in order to generate a martensite phase. If the value of Mn + 1.3Cr is less than 1.9%, the hardenability becomes insufficient, pearlite and bainite are likely to occur during cooling after annealing, and YP increases. On the other hand, if the value of Mn + 1.3Cr exceeds 3.0, the martensite phase increases and YP increases, so there is a concern about deterioration of surface strain resistance. Further, the addition of an excessive alloy element causes an increase in manufacturing cost. Therefore, the value of Mn + 1.3Cr is 1.9% to 3.0%, and preferably from more than 2.2% to 3.0% from the viewpoint of low YP.
With the above essential additive elements, the steel of the present invention can achieve the desired characteristics, but in addition to the above essential additive elements, the following elements can be added as necessary.

Mo:0.15%以下、V:0.5%以下、B:0.01%以下、Ti:0.1%以下、Nb:0.1%以下のうちの1種以上
Mo:0.15%以下
Moは焼入性を向上させ、マルテンサイト相を安定して得るのに有効な元素であり、0.01%以上添加することができる。しかし、Mo量が0.15%を超えるとその効果が飽和し、著しいコスト増を招く。したがって、Moを添加する場合、0.15%以下とする。
V: 0.5%以下、B: 0.01%以下
V、Bは焼入性向上元素であり、マルテンサイト相を安定して生成させるためにそれぞれ0.01%以上、0.0005%以上添加することができる。しかし、これらの元素を過剰に添加してもコストに見合う効果が得られない。したがって、V、Bを添加する場合はそれぞれ0.5%以下、0.01%以下とする。
Ti: 0.1%以下、Nb: 0.1%以下
Ti、Nbは、炭窒化物を形成して固溶C、N量を低下させ、時効劣化を防止するため、それぞれ0.005%以上添加することができる。しかし、いずれも0.1%を超えて過剰に添加しても、その効果は飽和し、コストに見合う効果が得られない。したがって、Ti、Nbを添加する場合は、それぞれ0.1%以下とする。
なお、上記以外の残部はFe及び不可避的不純物からなる。不可避的不純物として、例えば、Oは非金属介在物を形成し品質に悪影響を及ぼすため、Oは0.003%以下に低減するのが望ましい。
One or more of Mo: 0.15% or less, V: 0.5% or less, B: 0.01% or less, Ti: 0.1% or less, Nb: 0.1% or less
Mo: 0.15% or less
Mo is an element effective in improving hardenability and stably obtaining a martensite phase, and can be added in an amount of 0.01% or more. However, if the amount of Mo exceeds 0.15%, the effect is saturated and the cost is significantly increased. Therefore, when adding Mo, it is 0.15% or less.
V: 0.5% or less, B: 0.01% or less
V and B are hardenability improving elements, and can be added in an amount of 0.01% or more and 0.0005% or more, respectively, in order to stably produce a martensite phase. However, even if these elements are added excessively, an effect commensurate with the cost cannot be obtained. Therefore, when V and B are added, the content is made 0.5% or less and 0.01% or less, respectively.
Ti: 0.1% or less, Nb: 0.1% or less
Ti and Nb can be added in an amount of 0.005% or more in order to form carbonitrides to reduce the amount of dissolved C and N and prevent deterioration of aging. However, even if they are added excessively in excess of 0.1%, the effect is saturated and an effect commensurate with the cost cannot be obtained. Therefore, when adding Ti and Nb, respectively, it is made 0.1% or less.
The remainder other than the above consists of Fe and inevitable impurities. As an unavoidable impurity, for example, O forms non-metallic inclusions and adversely affects quality, so it is desirable to reduce O to 0.003% or less.

次に、本発明の低降伏応力でかつ耐常温時効性および焼付硬化性に優れた高強度冷延鋼板の組織について説明する。
フェライト相と面積率で2%以上15%以下のマルテンサイト相
本発明の高強度冷延鋼板は、フェライト相と面積率で2%以上15%以下のマルテンサイト相の2相組織とする。マルテンサイト相をこの範囲に制御することで耐面歪性や加工硬化性を高め、自動車外板パネル用途に使用可能な鋼板が得られる。マルテンサイト相の面積率が15%を超えると、強度が著しく上昇し、例えば、本発明が対象とする自動車内外板パネル用鋼板として十分な耐面歪性やプレス成形性を有しない。したがって、マルテンサイト相の面積率は15%以下とする。一方で、マルテンサイト相の面積率が2%未満の場合、YPElが残存しやすく、また、降伏応力(YP)が高くなり、その結果、耐面歪性が劣化する。したがってマルテンサイト相の面積率は2%以上15%以下とし、好ましくは2%以上10%以下とする。
なお、本発明の鋼板ではフェライト相とマルテンサイト相の2相以外にパーライト相、ベイナイト相、さらには残留γ相、不可避的な炭化物が合計面積率で2%程度であれば含まれても良い。
また、上記面積率は鋼板のL断面(圧延方向に平行な垂直断面)を研磨後、ナイタールで腐食し、SEMで4000倍の倍率にて12視野観察し、撮影した組織写真を画像解析して求めることができる。組織写真でフェライトはやや黒いコントラストの領域であり、炭化物がラメラー状もしくは点列状に生成している領域をパーライトおよびベイナイトとし、白いコントラストの付いている粒子をマルテンサイトとした。
また、例えば、Mn当量および焼鈍後の冷却条件を適正に制御することで、組織を上記面積率範囲内に制御することができる。
Next, the structure of the high-strength cold-rolled steel sheet having low yield stress and excellent room temperature aging resistance and bake hardenability according to the present invention will be described.
Ferrite phase and martensite phase with area ratio of 2% to 15% The high-strength cold-rolled steel sheet of the present invention has a two-phase structure of ferrite phase and martensite phase with area ratio of 2% to 15%. By controlling the martensite phase within this range, the surface distortion resistance and work hardenability are enhanced, and a steel plate that can be used for automotive outer panel applications is obtained. When the area ratio of the martensite phase exceeds 15%, the strength is remarkably increased, and, for example, it does not have sufficient surface distortion resistance and press formability as a steel sheet for automobile inner and outer panels targeted by the present invention. Therefore, the area ratio of the martensite phase is 15% or less. On the other hand, when the area ratio of the martensite phase is less than 2%, YPEl tends to remain, and the yield stress (YP) increases, resulting in deterioration of surface strain resistance. Accordingly, the area ratio of the martensite phase is 2% to 15%, preferably 2% to 10%.
In the steel sheet of the present invention, a pearlite phase, a bainite phase, a residual γ phase, and an inevitable carbide other than the two phases of the ferrite phase and the martensite phase may be included if the total area ratio is about 2%. .
In addition, the above area ratio is obtained by polishing the L cross section of the steel sheet (vertical cross section parallel to the rolling direction), corroding with nital, observing 12 fields of view at a magnification of 4000 times with SEM, and analyzing the photographed structure photograph. Can be sought. In the structure photograph, ferrite is a region with a slightly black contrast, the region where carbides are generated in a lamellar or dot array is pearlite and bainite, and particles with white contrast are martensite.
Further, for example, by appropriately controlling the Mn equivalent and the cooling condition after annealing, the structure can be controlled within the above-described area ratio range.

次に本発明の低降伏応力でかつ耐常温時効性および焼付硬化性に優れた高強度冷延鋼板の製造方法について説明する。
本発明の高強度冷延鋼板は、前述の化学成分範囲に調整された鋼を溶製しスラブとし、次いで、熱間圧延後、(酸洗)、冷間圧延を行い、次いで、焼鈍し冷却することにより得られる。ここで、焼鈍は750℃超820℃未満の焼鈍温度で行い、冷却は、焼鈍温度から650℃までの温度範囲を2℃/s以上20℃/s以下の平均冷却速度で1次冷却し、650℃からTc(℃)(=410-40×Mn(質量%)-30×Cr(質量%))で与えられるMs点近傍の温度までの温度範囲を10℃/s以上の平均冷却速度で2次冷却し、さらに上記温度Tcから200℃までの温度範囲を0.2℃/s以上10℃/s以下の平均冷却速度で3次冷却する。
ここで、鋼の溶製方法は特に限定せず、電気炉を用いても、転炉を用いても良い。また、溶製後の鋼の鋳造方法は、連続鋳造法により鋳片としても良いし、造塊法により鋼塊としても良い。
連続鋳造後にスラブを熱間圧延するにあたって、加熱炉でスラブを再加熱した後に圧延してもよいし、またはスラブを加熱することなく直送圧延することもできる。また、鋼塊を造塊した後に分塊圧延してから、熱間圧延に供しても良い。
熱間圧延は常法に従って実施可能であり、例えば、スラブの加熱温度は1100〜1300℃、仕上圧延温度はAr3点以上、仕上圧延後の冷却速度は10〜200℃/s、巻取温度は400〜750℃とすることができる。冷間圧延率については、通常の操業範囲内の50〜85%で行うことができる。
以下、本発明において重要な焼鈍および冷却工程について詳細を説明する。
焼鈍温度:750℃超820℃未満
焼鈍温度は、フェライト相+マルテンサイト相のミクロ組織を得るため、適切な温度に加熱する必要がある。焼鈍温度が750℃以下では、オーステナイト相の生成が不十分のため、所定量のマルテンサイト相を得ることができない。このため、YPElの残存やYPの上昇などにより耐面歪性が劣化する。一方、焼鈍温度が820℃以上であると、フェライト中の固溶C量が低減し、高いBH量が得られない場合がある。したがって、焼鈍温度は750℃超820℃未満とする。
1次冷却速度: 2℃/s以上20℃/s以下
焼鈍温度から650℃までの1次冷却速度は、平均冷却速度で2℃/s以上20℃/s以下とする。冷却速度が2℃/s未満ではフェライトの成長が顕著となり、所定量のマルテンサイト相が得られず、YPElの残存によりYPが上昇する。一方、冷却速度が20℃/s超えでは、オーステナイトへのC、Mn、Crの濃化が不十分となり、その後の冷却過程でパーライトやベイナイトの生成量が増大しYPが上昇する。したがって、低YP化のためには焼鈍温度から650℃までの平均冷却速度は2℃/s以上20℃/s以下とする。
2次冷却速度: 10℃/s以上
650℃からTcで与えられるMs点近傍の温度までの2次冷却速度は、平均冷却速度で10℃/s以上とする。2次冷却速度が10℃/s未満の緩冷却では400〜500℃付近でパーライトあるいはベイナイトが生成し、YPが上昇する。一方、2次冷却速度の上限は特に規定しないが100℃/sを超えるとフェライト中の固溶Cが低減されずに残存し、高BHを示すが、耐常温時効性の劣化ならびにYPの上昇を招く。したがって、2次冷却速度は10℃/s以上とし、100℃/s以下とすることが好ましい。ここで、Tc=410-40×Mn-30×Crで与えられる温度であり、元素記号は質量%を示す。
3次冷却速度:0.2℃/s以上10℃/s以下
Tcで与えられるMs点近傍の温度から200℃までの温度域は0.2℃/s以上10℃/s以下の平均冷却速度で冷却するのがよい。これにより、フェライト中に過剰に残存する固溶Cを析出させて低YP化することが可能となる。しかしながら、10℃/s超ではフェライト中の固溶Cが低減しきれず、YPが上昇する場合がある。また、高BHとなる一方で耐常温時効性の劣化を招く。したがって、3次冷却速度は0.2℃/s以上10℃/s以下とする。
さらに、本発明においては、熱処理後に形状矯正のため本発明の鋼板に調質圧延をすることも可能である。また、本発明では、鋼素材を通常の製鋼、鋳造、熱延の各工程を経て製造する場合を想定しているが、例えば薄手鋳造などにより熱延工程の一部もしくは全部を省略して製造することもできる。
Next, a method for producing a high-strength cold-rolled steel sheet having low yield stress, excellent room temperature aging resistance and bake hardenability according to the present invention will be described.
The high-strength cold-rolled steel sheet of the present invention is made by melting steel adjusted to the above-described chemical composition range into a slab, then after hot rolling (pickling), cold rolling, then annealing and cooling Can be obtained. Here, annealing is performed at an annealing temperature of more than 750 ° C. and less than 820 ° C., and cooling is primarily cooled at an average cooling rate of 2 ° C./s to 20 ° C./s in the temperature range from the annealing temperature to 650 ° C., The temperature range from 650 ° C to the temperature near the Ms point given by Tc (° C) (= 410-40 × Mn (mass%)-30 × Cr (mass%)) with an average cooling rate of 10 ° C / s or more Secondary cooling is performed, and further, the temperature range from the temperature Tc to 200 ° C. is subjected to tertiary cooling at an average cooling rate of 0.2 ° C./s to 10 ° C./s.
Here, the method for melting steel is not particularly limited, and an electric furnace or a converter may be used. Moreover, the casting method of the steel after melting may be a slab by a continuous casting method, or may be a steel ingot by an ingot forming method.
When the slab is hot-rolled after continuous casting, the slab may be reheated in a heating furnace and then rolled, or may be rolled directly without heating the slab. In addition, the steel ingot may be ingot-rolled and then subjected to hot rolling and then subjected to hot rolling.
Hot rolling can be carried out according to a conventional method, for example, the heating temperature of the slab is 1100 to 1300 ° C, the finishing rolling temperature is Ar3 point or higher, the cooling rate after finishing rolling is 10 to 200 ° C / s, and the winding temperature is It can be set to 400-750 degreeC. About a cold rolling rate, it can carry out by 50 to 85% within a normal operation range.
Hereinafter, details of the annealing and cooling processes important in the present invention will be described.
Annealing temperature: An annealing temperature of more than 750 ° C. and less than 820 ° C. needs to be heated to an appropriate temperature in order to obtain a microstructure of a ferrite phase and a martensite phase. When the annealing temperature is 750 ° C. or lower, a predetermined amount of martensite phase cannot be obtained because the austenite phase is not sufficiently generated. For this reason, the surface strain resistance deteriorates due to YPEl remaining or YP increase. On the other hand, if the annealing temperature is 820 ° C. or higher, the amount of dissolved C in the ferrite may be reduced, and a high BH amount may not be obtained. Therefore, the annealing temperature is more than 750 ° C. and less than 820 ° C.
Primary cooling rate: 2 ° C / s or more and 20 ° C / s or less The primary cooling rate from the annealing temperature to 650 ° C is an average cooling rate of 2 ° C / s or more and 20 ° C / s or less. When the cooling rate is less than 2 ° C./s, the growth of ferrite becomes remarkable, a predetermined amount of martensite phase cannot be obtained, and YP increases due to the remaining YPEl. On the other hand, when the cooling rate exceeds 20 ° C./s, the concentration of C, Mn, and Cr in the austenite becomes insufficient, and the amount of pearlite and bainite increases and YP increases in the subsequent cooling process. Therefore, to reduce the YP, the average cooling rate from the annealing temperature to 650 ° C. should be 2 ° C./s or more and 20 ° C./s or less.
Secondary cooling rate: 10 ℃ / s or more
The secondary cooling rate from 650 ° C. to the temperature near the Ms point given by Tc is 10 ° C./s or more in terms of average cooling rate. When the secondary cooling rate is less than 10 ° C / s, pearlite or bainite is generated around 400 to 500 ° C, and YP increases. On the other hand, the upper limit of the secondary cooling rate is not specified, but if it exceeds 100 ° C / s, the solid solution C in the ferrite remains unreduced and shows high BH, but the deterioration of room temperature aging resistance and YP increase. Invite. Therefore, the secondary cooling rate is preferably 10 ° C./s or more and preferably 100 ° C./s or less. Here, the temperature is given by Tc = 410-40 × Mn-30 × Cr, and the element symbol indicates mass%.
Third cooling rate: 0.2 ℃ / s or more and 10 ℃ / s or less
The temperature range from the temperature in the vicinity of the Ms point given by Tc to 200 ° C should be cooled at an average cooling rate of 0.2 ° C / s or more and 10 ° C / s or less. As a result, it is possible to lower the YP by precipitating excessively dissolved solid solution C in the ferrite. However, if it exceeds 10 ° C / s, solute C in ferrite cannot be reduced and YP may increase. Moreover, while it becomes high BH, deterioration of normal temperature aging resistance is caused. Therefore, the tertiary cooling rate is 0.2 ° C./s or more and 10 ° C./s or less.
Furthermore, in the present invention, the steel sheet of the present invention can be subjected to temper rolling for shape correction after heat treatment. Further, in the present invention, it is assumed that the steel material is manufactured through normal steelmaking, casting, and hot rolling processes. However, for example, thin casting or the like omits part or all of the hot rolling process. You can also

以下、実施例により本発明をさらに説明する。
表1に示す鋼A〜Rの化学成分を有する鋼を真空溶解にて溶製し、スラブを作製した。これらのスラブを1200℃にて加熱した後、仕上げ温度を870℃として、熱間圧延を行い、次いで冷却した後、600℃で巻取り、板厚2.5mmの熱延鋼板を製造した。得られた熱延鋼板に対して酸洗した後、圧延率70%で冷間圧延を行い、板厚0.75mmの冷延鋼板とした。
次いで、上記により得られた冷延鋼板から切り出したサンプルを赤外線イメージ炉にて、770℃×90秒の条件で焼鈍した後、その焼鈍温度から650℃までを平均冷却速度5℃/sで1次冷却し、その後、Tcで与えられるMs点近傍の温度までを平均冷却速度20℃/sで2次冷却し、さらにTcで与えられるMs点近傍の温度から200℃までを平均冷却速度1℃/sで3次冷却した後、伸長率0.5%の調質圧延を施した。
以上により得られた冷延鋼板に対して、サンプルを採取し、マルテンサイト相の面積率、を測定し、引張特性、加工硬化量(WH)、焼付硬化量(BH)および促進時効試験後の降伏点伸び(YPEl)を測定した。詳細な測定方法を以下に示す。
(1)マルテンサイト相の面積率:サンプルのL断面(圧延方向に平行な垂直断面)を機械的に研磨し、ナイタールで腐食した後、走査型電子顕微鏡(SEM)で倍率4000倍にて12視野について観察を行い、撮影した組織写真(SEM写真)を用いて定量化した。ここで、白いコントラストのついている粒子をマルテンサイト、残りの黒いコントラストのついているものをフェライトとし、全体に占めるマルテンサイトの割合を求めた。
(2)引張特性:圧延方向に対して90°方向(C方向)にJIS5号試験片を採取し、JIS Z 2241の規定に準拠した引張試験を行い、降伏応力(YP)および引張強度(TS)を測定した。
(3)加工硬化量(WH):2%予歪後の応力と降伏応力(YP)の応力差を測定した。
(4)焼付硬化量(BH):2%予歪後の応力と170℃×20分の塗装焼付相当の熱処理を加えた後の降伏応力の応力差を測定した。
(5)促進時効試験後の降伏点伸び(YPEl):100℃×24時間の熱処理を施した後、引張試験(JIS Z 2241準拠)を行い、YPElを測定した。促進時効条件は、例えば、鋼板を輸出する際に赤道を越えるような場合も想定し、Hundyの式で算出した等価時効時間が30℃では1.2年、50℃では約2ヶ月となるように設定した。
以上の測定結果を製造条件と併せて表1に示す。
Hereinafter, the present invention will be further described by examples.
Steels having chemical components of steels A to R shown in Table 1 were melted by vacuum melting to produce slabs. These slabs were heated at 1200 ° C, then hot rolled at a finishing temperature of 870 ° C, cooled, and then wound at 600 ° C to produce a hot-rolled steel sheet having a thickness of 2.5 mm. The obtained hot-rolled steel sheet was pickled and then cold-rolled at a rolling rate of 70% to obtain a cold-rolled steel sheet having a thickness of 0.75 mm.
Next, after the sample cut out from the cold-rolled steel plate obtained above was annealed under the conditions of 770 ° C. × 90 seconds in an infrared image furnace, the annealing temperature to 650 ° C. was 1 at an average cooling rate of 5 ° C./s. Next cooling, then secondary cooling to the temperature near the Ms point given by Tc at an average cooling rate of 20 ° C / s, and further from the temperature near the Ms point given by Tc to 200 ° C to an average cooling rate of 1 ° C After tertiary cooling at / s, temper rolling with an elongation of 0.5% was performed.
For the cold-rolled steel sheet obtained as described above, a sample was taken, the area ratio of the martensite phase was measured, the tensile properties, work hardening amount (WH), bake hardening amount (BH), and after the accelerated aging test The yield point elongation (YPEl) was measured. The detailed measurement method is shown below.
(1) Area ratio of martensite phase: L-section (vertical section parallel to the rolling direction) of the sample was mechanically polished and corroded with nital, then 12 times at a magnification of 4000 using a scanning electron microscope (SEM) The field of view was observed and quantified using the photographed tissue photograph (SEM photograph). Here, the particles having white contrast were martensite and the remaining particles having black contrast were ferrite, and the ratio of martensite to the whole was determined.
(2) Tensile properties: JIS No. 5 test specimens were taken in the 90 ° direction (C direction) with respect to the rolling direction, and subjected to a tensile test in accordance with the provisions of JIS Z 2241, yield stress (YP) and tensile strength (TS ) Was measured.
(3) Work hardening (WH): The stress difference between the stress after 2% pre-strain and the yield stress (YP) was measured.
(4) Bake hardening amount (BH): The stress difference between the stress after 2% pre-strain and the yield stress after applying heat treatment equivalent to 170 ° C x 20 minutes baking was measured.
(5) Yield point elongation after accelerated aging test (YPEl): After heat treatment at 100 ° C. for 24 hours, a tensile test (based on JIS Z 2241) was performed to measure YPEl. The accelerated aging conditions are set so that the equivalent aging time calculated by the Hundy equation is 1.2 years at 30 ° C and about 2 months at 50 ° C, assuming that the equator is exceeded when exporting steel sheets, for example. did.
The above measurement results are shown in Table 1 together with the manufacturing conditions.

Figure 0005076691
Figure 0005076691

表1においてNo.1〜15(鋼A〜O)は成分、製造条件が本発明範囲であり、マルテンサイト相の面積率が2%以上15%以下である組織を有する本発明例である。本発明例では、低YR、高BHでかつ時効後YPElも認められない。
一方、成分が本発明範囲から外れるNo.16〜18(鋼P〜R)は、YR、BH、時効後YPElのいずれかが劣っている。
具体的には、No.16(鋼P)はMn量が低く、固溶C量が多いため、高いBHを有するが、一方で時効後YPElが高い。また、Mn+1.3Crの値が低いため、焼鈍後の冷却時にパーライトやベイナイトが生じ、所定量のマルテンサイトが確保できないため、YRが高めで、かつ時効後のYPElが高い。No.17(鋼Q)はMn量が多いため、フェライト中の固溶C量が少なく、BHが低い。また、フェライトが固溶強化されるため、YPが高めであり、耐面歪性が劣位である。
No.18(鋼R)は、C量が低いため、所定量のマルテンサイトが得られず、YRが高く、時効後のYPElも高い。
In Table 1, Nos. 1 to 15 (steel A to O) are examples of the present invention having a structure in which the components and production conditions are within the scope of the present invention, and the area ratio of the martensite phase is 2% to 15%. In the examples of the present invention, low YR, high BH and YPEl after aging are not observed.
On the other hand, Nos. 16 to 18 (steel P to R) whose components depart from the scope of the present invention are inferior in YR, BH, or YPEl after aging.
Specifically, No. 16 (steel P) has a high Mn content and a high amount of solute C, and thus has a high BH, but has a high YPEl after aging. Further, since the value of Mn + 1.3Cr is low, pearlite and bainite are generated during cooling after annealing, and a predetermined amount of martensite cannot be secured, so that YR is high and YPEl after aging is high. Since No. 17 (steel Q) has a large amount of Mn, the amount of solute C in ferrite is small and BH is low. Moreover, since ferrite is solid-solution strengthened, YP is high and surface distortion resistance is inferior.
Since No. 18 (steel R) has a low C content, a predetermined amount of martensite cannot be obtained, YR is high, and YPEl after aging is also high.

表1に示す鋼B、G、Jの化学成分を有する鋼を真空溶解にて溶製し、実施例1と同様の条件にて熱間圧延、酸洗、冷間圧延を施し、表2に示す焼鈍温度で90秒保持した後、表2に示す条件で1次冷却、2次冷却、3次冷却および調質圧延を施した。
上記より得られた冷延鋼板に対して、サンプルを採取し、実施例1と同様の方法にて、マルテンサイト相の面積率、さらには引張特性、加工硬化量(WH)、焼付硬化量(BH)および促進時効試験後のYPElを測定した。
得られた結果を製造条件と併せて表2に示す。
Steels having chemical components of steels B, G, and J shown in Table 1 were melted by vacuum melting, and subjected to hot rolling, pickling, and cold rolling under the same conditions as in Example 1. After maintaining at the annealing temperature shown for 90 seconds, primary cooling, secondary cooling, tertiary cooling and temper rolling were performed under the conditions shown in Table 2.
For the cold-rolled steel sheet obtained from the above, a sample was taken, and in the same manner as in Example 1, the area ratio of the martensite phase, further tensile properties, work hardening (WH), bake hardening ( BH) and YPEl after accelerated aging test.
The obtained results are shown in Table 2 together with the production conditions.

Figure 0005076691
Figure 0005076691

表2においてNo.19、20、23、24、27は成分、製造条件が本発明範囲であり、マルテンサイト相の面積率が2%以上15%以下である組織を有する本発明例である。本発明例では、低YR、高BHでかつ時効後YPElも認められない。
一方、No.21は焼鈍温度が低いため、所定量のマルテンサイト相が得られず、YRが高く、時効後のYPElも高い。
No.22は焼鈍温度が高いため、フェライト中の固溶C量が低減し、BHが低い。No.25は1次冷却速度が遅いため、フェライトの成長が顕著となり、所定量のマルテンサイト相が得られず、YPElが残存し、YPが上昇する。また、時効後YPElも高く、耐常温時効性が劣位である。
No.26は1次冷却速度が速いため、オーステナイト中への元素濃化が不十分となり、その後の冷却時にパーライトやベイナイトが生成しやすくなる。この結果、冷却後に得られるマルテンサイト面積率が減少し、YRが高めで、時効後のYPElも高くなる。
No.28は2次冷却速度が遅いため、400〜500℃付近でオーステナイトがパーライトやベイナイトに分解し、これらの生成量が増加するため、冷却後に得られるマルテンサイト面積率が減少する。このため、YRが高めで、時効後のYPElも高くなる。
No.29は3次冷却速度が速いため、フェライト中の固溶Cが低減しきれず、同一強度レベルの発明例に比べてYRが高めである。また、固溶Cが多いため、高BHとなる一方で耐常温時効性の劣化を招く懸念がある。
In Table 2, Nos. 19, 20, 23, 24, and 27 are examples of the present invention having a structure in which the components and production conditions are within the scope of the present invention, and the area ratio of the martensite phase is 2% to 15%. In the examples of the present invention, low YR, high BH and YPEl after aging are not observed.
On the other hand, since No. 21 has a low annealing temperature, a predetermined amount of martensite phase cannot be obtained, YR is high, and YPEl after aging is also high.
Since No. 22 has a high annealing temperature, the amount of C dissolved in the ferrite is reduced and BH is low. In No. 25, since the primary cooling rate is slow, the growth of ferrite becomes remarkable, a predetermined amount of martensite phase cannot be obtained, YPEl remains, and YP increases. Moreover, YPEl after aging is also high, and the room temperature aging resistance is inferior.
Since No. 26 has a fast primary cooling rate, element concentration in austenite becomes insufficient, and pearlite and bainite are likely to be formed during subsequent cooling. As a result, the martensite area ratio obtained after cooling decreases, YR increases, and YPEl after aging also increases.
Since No. 28 has a slow secondary cooling rate, austenite decomposes into pearlite and bainite around 400 to 500 ° C., and the amount of these products increases, so the martensite area ratio obtained after cooling decreases. For this reason, YR is high and YPEl after aging is also high.
Since No. 29 has a fast tertiary cooling rate, solid solution C in ferrite cannot be reduced, and YR is higher than that of the invention example of the same strength level. Moreover, since there is much solid solution C, there exists a possibility of causing deterioration of normal temperature aging resistance, while becoming high BH.

本発明の高強度冷延鋼板は、低降伏応力でかつ優れた耐常温時効性および焼付硬化性を兼ね備えるため、薄肉化による軽量化も可能であり、自動車内外板用途はもとより、高成形性が必要とされる分野に好適に使用される。   The high-strength cold-rolled steel sheet of the present invention has low yield stress and excellent room temperature aging resistance and bake hardenability. It is preferably used in a required field.

Claims (2)

成分組成は、質量%でC:0.01%以上0.08%未満、Si:0.2%以下、Mn:0.8%以上1.7%以下、P:0.10%以下、S:0.03%以下、Al: 0.1%以下、N:0.008%以下、Cr:0.8%以上を含有し、かつ1.9≦Mn(質量%)+1.3Cr(質量%)≦3.0を満足し、残部が鉄および不可避的不純物からなる鋼スラブを熱間圧延および冷間圧延した後、750℃超820℃未満の焼鈍温度で焼鈍し、次いで、焼鈍温度から650℃までの温度範囲を2℃/s以上20℃/s以下の平均冷却速度で1次冷却し、次いで、650℃から下記(1)式で与えられる温度Tcまでの温度範囲を10℃/s以上の平均冷却速度で2次冷却し、さらに、温度Tcから200℃までの温度範囲を0.2℃/s以上10℃/s以下の平均冷却速度で3次冷却することを特徴とする高強度冷延鋼板の製造方法。
Tc(℃)=410-40×Mn-30×Cr (1)
ここで、式中の元素記号は鋼中での元素含有量を質量%にて表したものである。
Ingredient composition is C: 0.01% or more and less than 0.08%, Si: 0.2% or less, Mn: 0.8% or more, 1.7% or less, P: 0.10% or less, S: 0.03% or less, Al: 0.1% or less, N : Hot rolling a steel slab containing 0.008% or less, Cr: 0.8% or more, and satisfying 1.9 ≦ Mn (mass%) + 1.3Cr (mass%) ≦ 3.0, the balance being iron and inevitable impurities And after cold rolling, annealing at an annealing temperature of more than 750 ° C and less than 820 ° C, then primary cooling at an average cooling rate of 2 ° C / s to 20 ° C / s in the temperature range from annealing temperature to 650 ° C Then, the temperature range from 650 ° C to the temperature Tc given by the following formula (1) is secondarily cooled at an average cooling rate of 10 ° C / s or more, and the temperature range from the temperature Tc to 200 ° C is 0.2. A method for producing a high-strength cold-rolled steel sheet, characterized in that the third cooling is performed at an average cooling rate of from ℃ / s to 10 ℃ / s.
Tc (℃) = 410-40 × Mn-30 × Cr (1)
Here, the element symbol in the formula represents the element content in steel in mass%.
成分組成は、質量%でC:0.01%以上0.08%未満、Si:0.2%以下、Mn:0.8%以上1.7%以下、P:0.10%以下、S:0.03%以下、Al: 0.1%以下、N:0.008%以下、Cr:0.8%以上を含有し、さらに、Mo:0.15%以下、V:0.5%以下、B:0.01%以下、Ti:0.1%以下およびNb:0.1%以下のうちの1種以上を含有し、かつ1.9≦Mn(質量%)+1.3Cr(質量%)≦3.0を満足し、残部が鉄および不可避的不純物からなる鋼スラブを熱間圧延および冷間圧延した後、750℃超820℃未満の焼鈍温度で焼鈍し、次いで、焼鈍温度から650℃までの温度範囲を2℃/s以上20℃/s以下の平均冷却速度で1次冷却し、次いで、650℃から下記(1)式で与えられる温度Tcまでの温度範囲を10℃/s以上の平均冷却速度で2次冷却し、さらに、温度Tcから200℃までの温度範囲を0.2℃/s以上10℃/s以下の平均冷却速度で3次冷却することを特徴とする高強度冷延鋼板の製造方法。
Tc(℃)=410-40×Mn-30×Cr (1)
ここで、式中の元素記号は鋼中での元素含有量を質量%にて表したものである。
Ingredient composition is C: 0.01% or more and less than 0.08%, Si: 0.2% or less, Mn: 0.8% or more, 1.7% or less, P: 0.10% or less, S: 0.03% or less, Al: 0.1% or less, N : 0.008% or less, Cr: 0.8% or more, Mo: 0.15% or less, V: 0.5% or less, B: 0.01% or less, Ti: 0.1% or less, and Nb: 0.1% or less 750 ° C after hot rolling and cold rolling a steel slab containing the above and satisfying 1.9 ≦ Mn (mass%) + 1.3Cr (mass%) ≦ 3.0, the balance being iron and inevitable impurities Annealing is performed at an annealing temperature of less than 820 ° C, and then primary cooling is performed at an average cooling rate of 2 ° C / s or more and 20 ° C / s or less from the annealing temperature to 650 ° C. Secondary cooling is performed at an average cooling rate of 10 ° C / s or more, and the temperature range from temperature Tc to 200 ° C is 0.2 ° C / s or more and 10 ° C / s or less. High-strength cold rolling characterized by tertiary cooling at an average cooling rate of Method of manufacturing the plate.
Tc (℃) = 410-40 × Mn-30 × Cr (1)
Here, the element symbol in the formula represents the element content in steel in mass%.
JP2007181948A 2007-07-11 2007-07-11 Manufacturing method of high-strength cold-rolled steel sheet Expired - Fee Related JP5076691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181948A JP5076691B2 (en) 2007-07-11 2007-07-11 Manufacturing method of high-strength cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181948A JP5076691B2 (en) 2007-07-11 2007-07-11 Manufacturing method of high-strength cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2009019231A JP2009019231A (en) 2009-01-29
JP5076691B2 true JP5076691B2 (en) 2012-11-21

Family

ID=40359132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181948A Expired - Fee Related JP5076691B2 (en) 2007-07-11 2007-07-11 Manufacturing method of high-strength cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP5076691B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2500445T3 (en) 2009-11-09 2020-08-10 Nippon Steel Corporation High-strength steel sheet having excellent processability and paint bake hardenability, and method for producing of high-strength steel sheet
WO2013053100A1 (en) 2011-10-11 2013-04-18 Henkel China Co. Ltd. Gel time controllable two part epoxy adhesive

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639996B2 (en) * 2004-07-06 2011-02-23 住友金属工業株式会社 Manufacturing method of high-tensile cold-rolled steel sheet
JP4837604B2 (en) * 2007-03-16 2011-12-14 新日本製鐵株式会社 Alloy hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP2009019231A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP5332355B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR102119333B1 (en) High-strength steel sheet and its manufacturing method
US9322091B2 (en) Galvanized steel sheet
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
KR101485237B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
KR101561358B1 (en) High-strength cold rolled steel sheet having excellent deep drawability and bake hardenability and method for manufacturing the same
WO2013150669A1 (en) Galvannealed hot-rolled steel sheet and method for manufacturing same
JP2015224359A (en) Method of producing high strength steel sheet
JP2010265545A (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing the same
WO2017168957A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
KR20210034640A (en) High-strength steel sheet and its manufacturing method
AU2005227556A1 (en) High-rigidity high-strength thin steel sheet and method for producing same
KR101975136B1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP5151390B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
JP3525812B2 (en) High strength steel plate excellent in impact energy absorption and manufacturing method thereof
JP5076691B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP4525383B2 (en) Low yield ratio high strength steel sheet with excellent bake hardening characteristics and method for producing the same
CN115210398B (en) Steel sheet, member, and method for producing same
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP2002226937A (en) Cold rolled steel sheet and plated steel sheet capable of increasing strength by heat treatment after forming and method for producing the same
JP4178940B2 (en) High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same
JP4517629B2 (en) Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof
JPWO2020039697A1 (en) High-strength steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees