Nothing Special   »   [go: up one dir, main page]

JP5074448B2 - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP5074448B2
JP5074448B2 JP2009100944A JP2009100944A JP5074448B2 JP 5074448 B2 JP5074448 B2 JP 5074448B2 JP 2009100944 A JP2009100944 A JP 2009100944A JP 2009100944 A JP2009100944 A JP 2009100944A JP 5074448 B2 JP5074448 B2 JP 5074448B2
Authority
JP
Japan
Prior art keywords
fuel injection
valve
valve opening
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009100944A
Other languages
Japanese (ja)
Other versions
JP2010249069A (en
Inventor
泰久 濱田
威生 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2009100944A priority Critical patent/JP5074448B2/en
Publication of JP2010249069A publication Critical patent/JP2010249069A/en
Application granted granted Critical
Publication of JP5074448B2 publication Critical patent/JP5074448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の燃料噴射制御装置に係り、特に、燃料噴射量精度を改善し、燃料噴射量のダイナミックレンジを向上することのできる燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly to a fuel injection control device capable of improving the fuel injection amount accuracy and improving the dynamic range of the fuel injection amount.

内燃機関には、運転状態に応じた適切な燃料量を、燃料噴射弁の噴射時間に変換する演算を行い、燃料を供給する燃料噴射弁を前記噴射時間に渡って駆動する燃料噴射制御装置が備えられている。燃料噴射弁は、コイルに流れる電流により発生する磁気力によって燃料噴射弁を構成している可動弁の開閉を行い、燃料の噴射を行う。噴射される燃料量は、主に燃料の供給圧力と燃料噴射弁の噴口部外周の雰囲気圧力との差圧、および弁体を開いた状態に維持して燃料を噴射する時間(期間)により決定される。   The internal combustion engine includes a fuel injection control device that performs an operation of converting an appropriate fuel amount corresponding to an operation state into an injection time of the fuel injection valve, and drives the fuel injection valve that supplies fuel over the injection time. Is provided. The fuel injection valve performs fuel injection by opening and closing a movable valve constituting the fuel injection valve by a magnetic force generated by a current flowing through the coil. The amount of fuel to be injected is determined mainly by the pressure difference between the fuel supply pressure and the ambient pressure around the nozzle nozzle of the fuel injection valve, and the time (period) during which fuel is injected while the valve body is kept open. Is done.

近年、エミッションの向上、燃料消費量の低減という観点から、内燃機関のアイドル回転数の低下が求められている。このため、燃料噴射弁の噴射可能な最小噴射量の低減に関する要求は増加傾向にある。   In recent years, there has been a demand for a reduction in the idling speed of an internal combustion engine from the viewpoint of improving emissions and reducing fuel consumption. For this reason, the request | requirement regarding the reduction | decrease of the minimum injection amount which can be injected by the fuel injection valve is increasing.

また、燃料消費量低減のため、内燃機関の出力が不要な場合に燃料の噴射を行わない燃料カットを行う機会が増加し、このため燃料の噴射を再開する頻度も増加している。燃料噴射を再開する際には無負荷相当の少ない燃料量を噴射する必要がある。また、出力の増加や排気性能の向上を目的として、分割噴射が行われている。分割噴射は本来1回の噴射に必要な燃料を複数回に分割して、適切な時期に噴射することで内燃機関の性能を向上させようとするものであり、分割噴射では1回の噴射当たりの燃料噴射量をより少なくすることが求められている。   In addition, in order to reduce fuel consumption, there is an increased chance of performing a fuel cut that does not inject fuel when the output of the internal combustion engine is unnecessary, and thus the frequency of restarting fuel injection is also increasing. When resuming fuel injection, it is necessary to inject a small amount of fuel corresponding to no load. Further, split injection is performed for the purpose of increasing output and improving exhaust performance. Split injection is intended to improve the performance of an internal combustion engine by dividing the fuel that is originally required for one injection into multiple times and injecting it at an appropriate time. It is required to reduce the amount of fuel injection.

また、内燃機関においては、排気量のダウンサイジングにより車両搭載時の燃料消費量を減少させる試みも実施されている。この場合には、過給等により比出力の向上が求められるため、最小噴射量を増加させることなく、あるいは減少させた上で、最大噴射量を増加させることが求められている。このため、燃料噴射弁に求められるダイナミックレンジ(最大噴射量を最小噴射量で除算した値)は増加する傾向にある。   In addition, in internal combustion engines, attempts have been made to reduce fuel consumption when the vehicle is mounted by downsizing the displacement. In this case, since the specific output is required to be improved by supercharging or the like, it is required to increase the maximum injection amount without increasing or decreasing the minimum injection amount. For this reason, the dynamic range (a value obtained by dividing the maximum injection amount by the minimum injection amount) required for the fuel injection valve tends to increase.

特許文献1には、内燃機関の運転状態が、制御可能な最小燃料噴射量特性(Qmin特性)が重要な領域である場合、複数の異なる電流波形のうち小さな保持電流の一つに切換えて供給することにより、インジェクタのソレノイドのインダクタンスが小さい場合においても、インジェクタを最適に制御でき、最小燃料噴射量特性を良好に維持することができるインジェクタ制御装置が示されている。   In Patent Document 1, when the operating state of the internal combustion engine is an area in which the controllable minimum fuel injection amount characteristic (Qmin characteristic) is important, it is switched to one of the small holding currents among a plurality of different current waveforms. Thus, there is shown an injector control device that can optimally control the injector and maintain the minimum fuel injection amount characteristic even when the inductance of the solenoid of the injector is small.

特許第4037632号明細書Japanese Patent No. 4037632

燃料噴射弁から適切な量の燃料噴射を精度良く行うには、燃料噴射弁の可動弁の開弁時間、閉弁時間を安定させる必要がある。しかし個々の燃料噴射弁には製作上避けられない電磁的なばらつき、例えば、コイルの抵抗値、インダクタンス値等にばらつきがあり、更に、抵抗値は、環境温度により変化する。   In order to accurately inject an appropriate amount of fuel from the fuel injection valve, it is necessary to stabilize the opening time and closing time of the movable valve of the fuel injection valve. However, the individual fuel injection valves have electromagnetic variations that are unavoidable in production, for example, variations in the resistance value, inductance value, and the like of the coil, and the resistance values vary depending on the environmental temperature.

燃料噴射弁の開弁時には、この電磁的なばらつきが、電流立上り特性のばらつきや、可動弁の開弁応答ばらつきを発生させ、結果として噴射量にばらつきが発生する。   When the fuel injection valve is opened, this electromagnetic variation causes a variation in current rising characteristics and a variation in valve opening response of the movable valve, resulting in variations in the injection amount.

この噴射量のばらつきにより、Qmin特性を低減できず、ダイナミックレンジが低下し、エミッション特性が悪化し、更に燃費低減を図ることもできない。無理に低い噴射量を使用しようとすると、運転性能の悪化等の跳ね返りも懸念される。   Due to the variation in the injection amount, the Qmin characteristic cannot be reduced, the dynamic range is lowered, the emission characteristic is deteriorated, and the fuel consumption cannot be further reduced. If it is attempted to use a low injection amount forcibly, there is a concern of rebounding such as deterioration in driving performance.

前記特許文献1に記載の方法では、このような燃料噴射量精度に対する要求に十分に対応することはできない。   The method described in Patent Document 1 cannot sufficiently meet the demand for such fuel injection amount accuracy.

本発明はこのような問題点に鑑みてなされたもので、燃料噴射量ばらつきを低減し、燃料噴射弁のダイナミックレンジを拡大させることができる燃料噴射制御装置を提供するものである。   The present invention has been made in view of such problems, and provides a fuel injection control device that can reduce variations in fuel injection amount and expand the dynamic range of a fuel injection valve.

本発明は上記課題を解決するため、次のような手段を採用した。   In order to solve the above problems, the present invention employs the following means.

ソレノイドを有する燃料噴射装置と、内燃機関の運転状態を検出する手段と、検出した内燃機関の運転状態に基づき前記燃料噴射装置に供給する燃料噴射パルスのパルス幅を調節する燃料噴射制御手段とを備え、前記燃料噴射制御手段は、前記燃料噴射パルス幅に基づき、前記ソレノイドに高電圧の開弁電圧を所定の高電圧開弁期間供給して開弁電流を供給する手段と、前記所定の高電圧開弁期間が終了した後は、前記ソレノイドに低電圧の開弁電圧を印加して開弁状態を保持する保持電流をソレノイドに供給する手段とを備え、前記ソレノイドに高電圧の開弁電圧を前記所定の高電圧開弁期間供給したときの開弁電流のピーク値を予め設定した目標値と比較し、開弁電流のピーク値が目標値と一致するように前記高電圧の開弁電圧をフィードバック制御する。   A fuel injection device having a solenoid; means for detecting an operating state of the internal combustion engine; and fuel injection control means for adjusting a pulse width of a fuel injection pulse supplied to the fuel injection device based on the detected operating state of the internal combustion engine. And the fuel injection control means supplies a valve opening current by supplying a high valve opening voltage to the solenoid by a predetermined high voltage valve opening period based on the fuel injection pulse width; and the predetermined high voltage After the voltage valve opening period ends, the solenoid includes a means for applying a low valve opening voltage to the solenoid and supplying a holding current for holding the valve open state to the solenoid, and the solenoid has a high voltage valve opening voltage. Is compared with a preset target value, and the high voltage valve opening voltage is set so that the peak value of the valve opening current coincides with the target value. The fee Back control.

本発明は、以上の構成を備えるため、燃料噴射量ばらつきを低減し、燃料噴射弁のダイナミックレンジを拡大させることができる。   Since the present invention has the above-described configuration, it is possible to reduce the variation in the fuel injection amount and to expand the dynamic range of the fuel injection valve.

実施形態にかかる燃料噴射制御装置を説明する図である。It is a figure explaining the fuel-injection control apparatus concerning embodiment. 燃料噴射弁の構造を説明する図である。It is a figure explaining the structure of a fuel injection valve. 燃料噴射弁に流れる電圧、電流、可動弁位置の変化の推移を説明する図である。It is a figure explaining the transition of the change of the voltage which flows into a fuel injection valve, an electric current, and a movable valve position. 燃料噴射弁に流れる電圧、電流、可動弁位置の変化の推移を説明する図である。It is a figure explaining the transition of the change of the voltage which flows into a fuel injection valve, an electric current, and a movable valve position. 燃料噴射制御装置の構成を示す図である。It is a figure which shows the structure of a fuel-injection control apparatus.

以下、実施形態を添付図面を参照しながら説明する。図1は、実施形態にかかる燃料噴射制御装置を説明する図である。図1に示すように、燃料噴射制御装置27は、エンジンの状態に適応した最適な燃料噴射を行うために、回転数、Boost(吸入管負圧)、吸入空気量、吸気温度、水温、燃料圧力等を検出可能なセンサを備え、センサが検出したセンサ値(測定値)をECU(Engine Control Unit)19に取り込む。ECU19は各センサで検知された測定値をもとに最適な噴射量を演算する噴射量演算装置、および前記演算の結果をもとに噴射時間を演算する噴射時間演算装置を備え、該演算装置は噴射パルス幅Tiを算出する。   Hereinafter, embodiments will be described with reference to the accompanying drawings. FIG. 1 is a diagram illustrating a fuel injection control device according to an embodiment. As shown in FIG. 1, the fuel injection control device 27 performs rotation, boost (intake pipe negative pressure), intake air amount, intake air temperature, water temperature, fuel, in order to perform optimal fuel injection adapted to the state of the engine. A sensor capable of detecting pressure or the like is provided, and a sensor value (measured value) detected by the sensor is taken into an ECU (Engine Control Unit) 19. The ECU 19 includes an injection amount calculation device that calculates an optimal injection amount based on the measurement values detected by each sensor, and an injection time calculation device that calculates an injection time based on the result of the calculation. Calculates the injection pulse width Ti.

算出された噴射パルス幅Tiに対応して、噴射弁制御装置27では燃料噴射弁1の可動弁7を磁気力で吸引して開弁する。このために、燃料噴射制御装置27は、例えば予め規定された通電時間Thに渡って開弁電圧VHを印加し、その後予め設定された保持電流値が供給できる保持電圧VBを印加する。   Corresponding to the calculated injection pulse width Ti, the injection valve control device 27 opens the valve by attracting the movable valve 7 of the fuel injection valve 1 with magnetic force. For this purpose, the fuel injection control device 27 applies, for example, a valve opening voltage VH over a predetermined energization time Th, and then applies a holding voltage VB that can supply a preset holding current value.

このとき、予め燃圧条件毎に設定された開弁電圧通電時間Thで開弁電圧VHを印加したとき、得られるピーク電流Ipを検出し、開弁電流目標値Ipeakと比較し、(1)Ip>Ipeakの場合、(VHをVH−Vr)とし、(2)Ip<Ipeakの場合、(VHをVH+Vr)〔Vr:規定の可変電圧単位〕として、開弁電圧VHをフィードバック制御し、予め規定された通電時間Thで開弁電流Ipが目標ピーク電流Ipeakに等しくなるように開弁電圧VHを制御する。これにより、コイルの抵抗等の電磁特性にばらつきのある燃料噴射弁においても、開弁電流の立上り特性を揃えることが可能となる。   At this time, when the valve opening voltage VH is applied with the valve opening voltage energization time Th set in advance for each fuel pressure condition, the peak current Ip obtained is detected and compared with the valve opening current target value Ipeak, and (1) Ip If> Ipeak, (VH is VH-Vr), and (2) if Ip <Ipeak, (VH is VH + Vr) [Vr: specified variable voltage unit], feedback control of the valve opening voltage VH is performed in advance. The valve opening voltage VH is controlled so that the valve opening current Ip becomes equal to the target peak current Ipeak during the energized time Th. Thereby, even in the fuel injection valve having variations in electromagnetic characteristics such as coil resistance, it is possible to make the rising characteristics of the valve opening current uniform.

図2は、燃料噴射弁の構造を説明する図である。燃料噴射弁1には、燃料ポンプ(図示せず)から加圧された燃料が供給される。可動弁7と、ノズル3側に形成された弁座面(シート面)10との間で燃料通路の開閉を行い、オリフィス11からの燃料噴射を制御する。オリフィス11と弁座面10は、オリフィスプレート12に形成されている。   FIG. 2 is a view for explaining the structure of the fuel injection valve. The fuel injection valve 1 is supplied with pressurized fuel from a fuel pump (not shown). The fuel passage is opened and closed between the movable valve 7 and a valve seat surface (seat surface) 10 formed on the nozzle 3 side to control fuel injection from the orifice 11. The orifice 11 and the valve seat surface 10 are formed in the orifice plate 12.

可動弁7はプランジャ6の先端に取付けられており、可動弁7に駆動力を発生する手段として、燃料噴射弁にはコイル2が具備されている。コイル2が通電されず吸引力が無い場合には、プランジャ6及び可動弁7を弁座面10に押し付けて閉弁するようにばね部材であるリターンスプリング9が設けられている。   The movable valve 7 is attached to the tip of the plunger 6, and the fuel injection valve is provided with a coil 2 as means for generating a driving force on the movable valve 7. When the coil 2 is not energized and there is no suction force, a return spring 9 as a spring member is provided so as to close the valve 6 by pressing the plunger 6 and the movable valve 7 against the valve seat surface 10.

コイル2が通電されると磁束が発生し、該磁束はコア4、ヨーク5、プランジャ6を通り、コア4、ヨーク5、プランジャ6の間に磁気吸引力を発生する。これによりプランジャ6及び可動弁7が弁座面10から離れる方向に(図の上側)変位し、オリフィス11から燃料が噴射される。   When the coil 2 is energized, a magnetic flux is generated. The magnetic flux passes through the core 4, the yoke 5, and the plunger 6, and generates a magnetic attractive force between the core 4, the yoke 5, and the plunger 6. As a result, the plunger 6 and the movable valve 7 are displaced in a direction away from the valve seat surface 10 (upper side in the figure), and fuel is injected from the orifice 11.

通常リターンスプリング9と燃料圧力によって、可動弁7は弁座面10に押し付けられている。このため、素早く開弁させるためには大きな電磁力を素早く発生させる必要がある。このため、開弁用の供給電圧VHはバッテリ電圧VBより高く設定し、開弁した後は、可動弁7をバッテリ電圧VBで断続的に駆動して、一定の保持電流値Iholdを流すように制御する。   Usually, the movable valve 7 is pressed against the valve seat surface 10 by the return spring 9 and the fuel pressure. For this reason, in order to open the valve quickly, it is necessary to quickly generate a large electromagnetic force. For this reason, the supply voltage VH for valve opening is set higher than the battery voltage VB, and after opening the valve, the movable valve 7 is intermittently driven by the battery voltage VB so that a constant holding current value Ihold flows. Control.

図3は、演算された噴射パルス幅Tiが、最小制御噴射量を発生するパルス幅より充分に大きい場合について、燃料噴射弁に流れる電圧、電流、可動弁位置の変化の推移を説明する図である。なお、図3において、図3(A)は噴射パルスTiを示し、図3(B)は、噴射弁駆動電圧Vを示し、図3(C)は、駆動電流Iを示し、図3(D)は、燃料噴射弁の可動弁弁体位置を示している。   FIG. 3 is a diagram for explaining the transition of changes in the voltage, current, and movable valve position flowing through the fuel injector when the calculated injection pulse width Ti is sufficiently larger than the pulse width for generating the minimum control injection amount. is there. 3A shows the injection pulse Ti, FIG. 3B shows the injection valve drive voltage V, FIG. 3C shows the drive current I, and FIG. ) Indicates the position of the movable valve body of the fuel injection valve.

ここで、図5は燃料噴射制御装置の構成を示す図である。図5において、50.51,52はスイッチング素子、56は燃料噴射弁駆動ICである。後述するように燃料噴射弁駆動IC56はECU19が演算した噴射パルス幅Tiを受信し、受信した噴射パルス幅Tiにおいてスイッチング素子50と52をTh時間駆動した後、スイッチング素子51と52を断続駆動する。   Here, FIG. 5 is a diagram showing a configuration of the fuel injection control device. In FIG. 5, 50.51 and 52 are switching elements, and 56 is a fuel injection valve drive IC. As will be described later, the fuel injection valve drive IC 56 receives the injection pulse width Ti calculated by the ECU 19, drives the switching elements 50 and 52 for the Th time within the received injection pulse width Ti, and then intermittently drives the switching elements 51 and 52. .

まず、図3(A)に示すように、時点t0において、ECU19の噴射量演算回路と噴射パルス演算回路により計算された噴射パルスTiは駆動IC56に送信される。駆動IC56は、駆動パルスTiの信号の立ち上がり時に、図5に示した燃料噴射制御装置27のスイッチング素子50、52を同時にONして、図3(B)に示す開弁電圧VHを供給し、図3(C)に示すように、燃料噴射弁53に迅速な開弁に必要な開弁電流を供給する。 このとき、燃料噴射弁1には、高電圧電源VHが印加され、開弁電流が供給される。実線が標準的な電磁特性の電流挙動を示す。   First, as shown in FIG. 3A, at time t0, the injection pulse Ti calculated by the injection amount calculation circuit and the injection pulse calculation circuit of the ECU 19 is transmitted to the drive IC 56. The drive IC 56 simultaneously turns on the switching elements 50 and 52 of the fuel injection control device 27 shown in FIG. 5 at the rising edge of the signal of the drive pulse Ti, and supplies the valve opening voltage VH shown in FIG. As shown in FIG. 3C, the fuel injection valve 53 is supplied with a valve opening current necessary for quick valve opening. At this time, a high voltage power supply VH is applied to the fuel injection valve 1 to supply a valve opening current. The solid line shows the current behavior of standard electromagnetic characteristics.

図3(C)に示すように、時点t0からTh時間経過後、時点t2において電流が目標値Ipeakに到達すると、駆動IC56はスイッチング素子50をOFFにする。目標ピーク電流Ipeakは、例えば、11Aである。このとき燃料噴射弁に供給されていた電流はダイオード59、燃料噴射弁のコイル2を循環し、エネルギは熱として散逸される。   As shown in FIG. 3C, when the current reaches the target value Ipeak at time t2 after Th time has elapsed from time t0, the driving IC 56 turns off the switching element 50. The target peak current Ipeak is 11 A, for example. At this time, the current supplied to the fuel injection valve circulates through the diode 59 and the coil 2 of the fuel injection valve, and the energy is dissipated as heat.

時点t3において、電流値が燃料噴射弁1の開弁を維持できる第2の目標値Iholdに達すると、駆動IC56は、スイッチング素子51,52をONとし、低電圧源VBから燃料噴射弁1に通電する。このとき電流値は、開弁を維持できる程度の第2の目標値Iholdに保つように、スイッチング素子51をON,OFFする。例えば、第2の目標値Iholdは3Aである。   When the current value reaches the second target value Ihold that can keep the fuel injection valve 1 open at the time point t3, the drive IC 56 turns on the switching elements 51 and 52 and switches the low voltage source VB to the fuel injection valve 1. Energize. At this time, the switching element 51 is turned on and off so that the current value is maintained at the second target value Ihold that can maintain the valve opening. For example, the second target value Ihold is 3A.

時点t4において、駆動パルスTiの信号の立ち下がりと同時に、燃料噴射弁への電流の供給は停止される。   At time t4, the supply of current to the fuel injection valve is stopped simultaneously with the fall of the signal of the drive pulse Ti.

ところで、燃料噴射弁の開弁および閉弁は、燃料噴射制御装置27内部の回路や、燃料噴射弁1までのハーネスに起因する電流の応答遅れ、発生する磁力に対する弁体の応答遅れによって、燃料噴射制御装置27が真に開弁および閉弁させたい時間t0、t4よりも遅れる。   By the way, the opening and closing of the fuel injection valve are caused by the delay in the response of the current caused by the circuit inside the fuel injection control device 27 and the harness up to the fuel injection valve 1 and the response delay of the valve body with respect to the generated magnetic force. This is later than the times t0 and t4 when the injection control device 27 wants to truly open and close the valve.

図3(D)に示すように、開弁時は、応答遅れ時間(t20−t0)後に燃料噴射弁1の可動弁7が完全に開弁位置(open)に移動し、閉弁時は、応答遅れ時間(t5−t4)後に燃料噴射弁1の可動弁7が完全に閉弁位置(close)に移動する。ここで、実線が標準的な電磁特性の可動弁挙動を示す。なお、可動弁の挙動を表す線で囲まれた面積が概ね噴射量とみなせる。   As shown in FIG. 3D, when the valve is opened, the movable valve 7 of the fuel injection valve 1 is completely moved to the open position (open) after the response delay time (t20-t0), and when the valve is closed, After the response delay time (t5-t4), the movable valve 7 of the fuel injection valve 1 is completely moved to the closed position (close). Here, the solid line shows the movable valve behavior with standard electromagnetic characteristics. Note that the area surrounded by the line representing the behavior of the movable valve can be regarded as the injection amount.

図3(C)に電磁的なばらつきによる開弁電流の変動を示し、図3(D)に開弁電流の変動に伴う燃料噴射弁の可動弁挙動を示す。ここでは長い破線が噴射弁のコイル抵抗が小のときの挙動、短い破線が噴射弁のコイル抵抗が大のときの挙動を示す。   FIG. 3 (C) shows the variation of the valve opening current due to electromagnetic variation, and FIG. 3 (D) shows the movable valve behavior of the fuel injection valve accompanying the variation of the valve opening current. Here, the long broken line shows the behavior when the coil resistance of the injection valve is small, and the short broken line shows the behavior when the coil resistance of the injection valve is large.

実線で示した標準的な電磁特性のピーク電流到達点(Ipeak)および可動弁挙動に対して、抵抗が小のときは、ピーク電流値はIp1まで上昇し、可動弁の開弁開始時点が早くなるとともに開弁完了時間も早くなる。このため燃料噴射量は増加方向にばらつく。   When the resistance is small with respect to the peak current arrival point (Ipeak) and the movable valve behavior of the standard electromagnetic characteristics indicated by the solid line, the peak current value increases to Ip1, and the opening time of the movable valve is earlier. The valve opening completion time is also shortened. For this reason, the fuel injection amount varies in the increasing direction.

また、抵抗が大の時には、ピーク電流値はIp2と低く、可動弁の開弁開始時間が遅いと共に開弁完了時間も遅いため、燃料噴射量は減少方向にばらつく。   Further, when the resistance is large, the peak current value is as low as Ip2, and since the valve opening start time is slow and the valve opening completion time is also slow, the fuel injection amount varies in the decreasing direction.

すなわち、電磁特性のばらつきにより、開弁電流立上り特性、可動弁の開弁挙動ひいては燃料噴射量のばらつきが発生する。このため、開弁電流の立上り特性を合わせることができれば、噴射量のばらつきを低減することが可能となる。   That is, variation in electromagnetic characteristics causes variation in valve opening current rising characteristics, opening behavior of the movable valve, and hence fuel injection amount. For this reason, if the rising characteristics of the valve opening current can be matched, it is possible to reduce the variation in the injection amount.

ここで、図3(B)に示すコイル2に供給する開弁電圧Vを可変とし、規定時間Th印加したときピーク電流Ipeakが得られるように前記開弁電圧Vをフィードバック制御する。例えば、図3(C)において、Ip1>Ipeakである場合には、開弁供給電圧VHに対して、ある規定の電圧Vrを減算し、VH=VH−Vrとし、Ip1=Ipeakとなるまで、繰り返しフィードバック制御を行う。   Here, the valve opening voltage V supplied to the coil 2 shown in FIG. 3 (B) is made variable, and the valve opening voltage V is feedback-controlled so that a peak current Ipeak is obtained when a specified time Th is applied. For example, in FIG. 3C, when Ip1> Ipeak, a predetermined voltage Vr is subtracted from the valve opening supply voltage VH to obtain VH = VH−Vr, until Ip1 = Ipeak. Repeat feedback control.

またIp1<Ipeakである場合には、開弁供給電圧VHに対して、ある規定の電圧Vrを加算し、VH=VH+Vrとし、Ip1=Ipeakとなるまで、繰り返しフィードバック制御を行う。   When Ip1 <Ipeak, a specified voltage Vr is added to the valve opening supply voltage VH, VH = VH + Vr, and feedback control is repeatedly performed until Ip1 = Ipeak.

このように、噴射パルス幅Tiが通常の値(パルス幅Tiが、最小制御噴射量を発生するパルス幅より充分に大きい場合)である場合において、噴射量ばらつきを低減することが可能である。なお、開弁電圧のフィードバック値がある閾値を超えるときは装置の異常状態であるからこの処理は中止するのが好ましい。   Thus, when the injection pulse width Ti is a normal value (when the pulse width Ti is sufficiently larger than the pulse width for generating the minimum control injection amount), it is possible to reduce the injection amount variation. Note that when the feedback value of the valve opening voltage exceeds a certain threshold value, it is preferable to stop this processing because the device is in an abnormal state.

ところで、噴射パルス幅Tiの短い領域(最小制御噴射量領域)では、噴射量ばらつきの影響度が大きくなる。   By the way, in the area | region (minimum control injection quantity area | region) with short injection pulse width Ti, the influence degree of injection quantity dispersion | variation becomes large.

図4は、噴射パルス幅Tiが短い領域における燃料噴射弁に流れる電圧、電流、可動弁位置の変化の推移を説明する図である。   FIG. 4 is a diagram for explaining the transition of changes in the voltage, current, and movable valve position flowing through the fuel injection valve in the region where the injection pulse width Ti is short.

図3の場合と同様に、図4(A)は噴射パルスTiを示し、図4(B)は、噴射弁駆動電圧Vを示し、図4(C)は、電流Iを示し、図4(D)は、燃料噴射弁の可動弁弁体位置を示している。   4A shows the injection pulse Ti, FIG. 4B shows the injection valve drive voltage V, FIG. 4C shows the current I, and FIG. D) shows the position of the movable valve body of the fuel injection valve.

低電圧電源VBによる保持電流制御に移行する直前に噴射パルスTiが終了するような最小制御噴射量の領域では、図4(C)の時点t4で噴射パルスが切れた位置での電流値がばらつく。このため、図4(D)の可動弁の開弁側における挙動のばらつきに加え、閉弁における挙動にもばらつが発生する。   In the region of the minimum control injection amount in which the injection pulse Ti ends immediately before shifting to the holding current control by the low-voltage power supply VB, the current value at the position where the injection pulse has expired at time t4 in FIG. 4C varies. . For this reason, in addition to the variation in the behavior on the valve opening side of the movable valve in FIG. 4D, the behavior in the valve closing also varies.

図4(D)に示す可動弁の挙動に関して、図4(C)において電流がIp1に到達する場合、噴射量は(t11、t21、t31、t51)で囲まれる台形面積で示され、図4(C)において電流がIp2になる場合には、噴射量は(t12、t22、t32、t52)で囲まれる台形面積で示される。   Regarding the behavior of the movable valve shown in FIG. 4D, when the current reaches Ip1 in FIG. 4C, the injection amount is shown as a trapezoidal area surrounded by (t11, t21, t31, t51), and FIG. When the current becomes Ip2 in (C), the injection amount is indicated by a trapezoidal area surrounded by (t12, t22, t32, t52).

このように、噴射パルス幅Tiが短い領域では、開弁電流波形の立上り特性のばらつきの噴射量への影響度が極端に増加することがわかる。すなわち、開弁電流の立上り特性を合わせることにより、可動弁の挙動を合わせることができる。これにより、噴射量ばらつきおよび制御可能な最小噴射領域を低減することができ、ダイナミックレンジを拡大することができる。なお、燃料噴射制御装置は各気筒毎に配置することができる。   Thus, it can be seen that in the region where the injection pulse width Ti is short, the degree of influence of the variation in the rising characteristics of the valve opening current waveform on the injection amount is extremely increased. That is, the behavior of the movable valve can be matched by matching the rising characteristics of the valve opening current. Thereby, the injection amount variation and the minimum controllable injection region can be reduced, and the dynamic range can be expanded. The fuel injection control device can be arranged for each cylinder.

以上説明したように、本実施形態によれば、燃料噴射弁へ供給する開弁電流立上り特性を、供給電圧を制御することによりあわせることができる。このため、燃料噴射量のばらつきを低減し、燃料噴射弁のダイナミックレンジを拡大させることができる。   As described above, according to the present embodiment, the valve opening current rising characteristic supplied to the fuel injection valve can be adjusted by controlling the supply voltage. For this reason, variation in the fuel injection amount can be reduced, and the dynamic range of the fuel injection valve can be expanded.

1 燃料噴射弁
2 コイル
3 ノズル
4 コア
5 ヨーク
6 プランジャ
7 可動弁
8 プランジャガイド部材
9 リターンスプリング
10 弁座面
11 オリフィス
12 オリフィスプレート
13 Oリング
14 フィルタ
15 コネクタモールド
16 アジャスタ
17 スペーサ
19 ECU(Engine Control Unit)
50〜52 スイッチング素子
53 燃料噴射弁
54 ECU‐駆動IC通信線
55 駆動パルス送信線
56 燃料噴射弁駆動IC
58、59 ダイオード
60 電流検出抵抗
1 Fuel Injection Valve 2 Coil 3 Nozzle 4 Core 5 Yoke 6 Plunger 7 Movable Valve 8 Plunger Guide Member 9 Return Spring 10 Valve Seat Surface 11 Orifice 12 Orifice Plate 13 O-ring 14 Filter 15 Connector Mold 16 Adjuster 17 Spacer 19 ECU (Engine Control Unit)
50 to 52 Switching element 53 Fuel injection valve 54 ECU-drive IC communication line 55 Drive pulse transmission line 56 Fuel injection valve drive IC
58, 59 Diode 60 Current detection resistor

Claims (1)

ソレノイドを有する燃料噴射装置と、
内燃機関の運転状態を検出する手段と、
検出した内燃機関の運転状態に基づき前記燃料噴射装置に供給する燃料噴射パルスのパルス幅を調節する燃料噴射制御手段とを備え、
前記燃料噴射制御手段は、前記燃料噴射パルス幅に基づき、前記ソレノイドに高電圧の開弁電圧を所定の高電圧開弁期間供給して開弁電流を供給する手段と、
前記所定の高電圧開弁期間が終了した後は、前記ソレノイドに低電圧の開弁電圧を印加して開弁状態を保持する保持電流をソレノイドに供給する手段とを備え、
前記ソレノイドに高電圧の開弁電圧を前記所定の高電圧開弁期間供給したときの開弁電流のピーク値を予め設定した目標値と比較し、開弁電流のピーク値が目標値と一致するように前記高電圧の開弁電圧をフィードバック制御することを特徴とする内燃機関の燃料噴射制御装置。
A fuel injection device having a solenoid;
Means for detecting the operating state of the internal combustion engine;
Fuel injection control means for adjusting a pulse width of a fuel injection pulse supplied to the fuel injection device based on the detected operating state of the internal combustion engine,
The fuel injection control means supplies a valve opening current by supplying a high valve opening voltage to the solenoid according to a predetermined high voltage valve opening period based on the fuel injection pulse width;
Means for supplying a solenoid with a holding current for applying a low valve opening voltage to the solenoid to maintain the valve open state after the predetermined high voltage valve opening period is completed ;
The peak value of the valve opening current when a high valve opening voltage is supplied to the solenoid for the predetermined high voltage valve opening period is compared with a preset target value, and the peak value of the valve opening current matches the target value. As described above, a fuel injection control device for an internal combustion engine, which performs feedback control of the high valve opening voltage.
JP2009100944A 2009-04-17 2009-04-17 Fuel injection control device Expired - Fee Related JP5074448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009100944A JP5074448B2 (en) 2009-04-17 2009-04-17 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100944A JP5074448B2 (en) 2009-04-17 2009-04-17 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2010249069A JP2010249069A (en) 2010-11-04
JP5074448B2 true JP5074448B2 (en) 2012-11-14

Family

ID=43311659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100944A Expired - Fee Related JP5074448B2 (en) 2009-04-17 2009-04-17 Fuel injection control device

Country Status (1)

Country Link
JP (1) JP5074448B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886685B2 (en) * 2012-05-24 2016-03-16 本田技研工業株式会社 Fuel supply control device for internal combustion engine
JP5542884B2 (en) * 2012-08-30 2014-07-09 三菱電機株式会社 In-vehicle engine controller
JP5768800B2 (en) * 2012-11-05 2015-08-26 株式会社デンソー Fuel injection device
GB2524259A (en) * 2014-03-17 2015-09-23 Gm Global Tech Operations Inc Method of operating a fuel injector
JP6337098B2 (en) * 2014-04-25 2018-06-06 日立オートモティブシステムズ株式会社 Control device for electromagnetic fuel injection valve
JP6384173B2 (en) * 2014-07-23 2018-09-05 株式会社デンソー Fuel injection control device
JP6416674B2 (en) * 2015-03-24 2018-10-31 株式会社ケーヒン Control device for fuel injection valve
JP6477321B2 (en) 2015-07-23 2019-03-06 株式会社デンソー Fuel injection control device for internal combustion engine
DE102016200743A1 (en) * 2016-01-20 2017-07-20 Robert Bosch Gmbh Method for determining an opening delay duration of a fuel injector
JP6485402B2 (en) * 2016-04-27 2019-03-20 トヨタ自動車株式会社 Control device for internal combustion engine
DE102016209770B3 (en) * 2016-06-03 2017-05-11 Continental Automotive Gmbh Method and device for adjusting the opening behavior of a fuel injector
DE102017215017A1 (en) * 2017-08-28 2019-02-28 Hitachi Automotive Systems, Ltd. Method and device for operating an electromagnetically actuated valve of a fuel injector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317540A (en) * 1996-05-23 1997-12-09 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2002201987A (en) * 2000-12-28 2002-07-19 Denso Corp Fuel injection controller for internal combustion engine

Also Published As

Publication number Publication date
JP2010249069A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5074448B2 (en) Fuel injection control device
JP4691523B2 (en) Control circuit for electromagnetic fuel injection valve
US10072596B2 (en) Control unit for a fuel injector
US6571773B1 (en) Fuel injector and internal combustion engine
JP5572604B2 (en) Control device for fuel injection valve
JP5698938B2 (en) Drive device for fuel injection device and fuel injection system
JP4917556B2 (en) Fuel injection control device for internal combustion engine
JP5053868B2 (en) Fuel injection control device
CN106917692B (en) Injector control method using opening duration
JP2010255444A (en) Device and method for fuel injection control of internal combustion engine
JP2018115628A (en) Drive device of fuel injection device
US20190010889A1 (en) Optimization of current injection profile for solenoid injectors
US20160076501A1 (en) Method and device for controlling a quantity control valve
KR101731135B1 (en) Method and device for controlling a rate control valve
JP2786332B2 (en) Solenoid operation control method and device
JP6010480B2 (en) Solenoid valve drive control device
CN113167185B (en) Fuel injection control device
JP6561184B2 (en) Drive device for fuel injection device
JP2013137028A (en) Device and method for fuel injection control of internal combustion engine
WO2016170739A1 (en) Fuel injection control device
JP6186402B2 (en) Drive device for solenoid valve device
WO2020195206A1 (en) Control device for fuel injection device
JP6386129B2 (en) Drive device for fuel injection device
JP2002115591A (en) Fuel injection system for internal combustion engine
CN114729615B (en) Fuel injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120823

R150 Certificate of patent or registration of utility model

Ref document number: 5074448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees