Nothing Special   »   [go: up one dir, main page]

JP5072057B2 - Microcapsule manufacturing method using microchannel structure - Google Patents

Microcapsule manufacturing method using microchannel structure

Info

Publication number
JP5072057B2
JP5072057B2 JP2005239499A JP2005239499A JP5072057B2 JP 5072057 B2 JP5072057 B2 JP 5072057B2 JP 2005239499 A JP2005239499 A JP 2005239499A JP 2005239499 A JP2005239499 A JP 2005239499A JP 5072057 B2 JP5072057 B2 JP 5072057B2
Authority
JP
Japan
Prior art keywords
phase
liquid
dispersed phase
flow path
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005239499A
Other languages
Japanese (ja)
Other versions
JP2007054681A (en
Inventor
英昭 桐谷
秀和 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2005239499A priority Critical patent/JP5072057B2/en
Publication of JP2007054681A publication Critical patent/JP2007054681A/en
Application granted granted Critical
Publication of JP5072057B2 publication Critical patent/JP5072057B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Description

本発明は、医療分野、各種工業分野などで好適に使用されるマイクロカプセルの製造方法に関するThe present invention relates to a method for producing microcapsules suitably used in the medical field and various industrial fields.

近年、数cm角のガラス基板上に、長さが数cm程度で幅と深さがサブμmから数百μmの微小流路が形成された微小流路構造体を用いて、界面張力の異なる2種類の液体からなるエマルションを調製する研究が注目されている。また、こうして調製されたエマルションからマイクロカプセルを製造する検討も実施されている。
例えば、特許文献1や非特許文献1などには、一方の液体が導入され流通する微小流路と、他方の液体が導入され流通する微小流路とが合流部で合流する構造の微小流路構造体を用いることで、一方の液体中に、他方の液体からなる均一な微小液滴が分散したエマルションを調製できることが記載されている。なお、エマルションとは、互いに溶け合わない液体の一方(分散相)が他方(連続相)中に微小液滴として分散している系をいう。
In recent years, interfacial tension differs using a microchannel structure in which a microchannel having a length of about several cm and a width and depth of sub-μm to several hundreds of μm is formed on a glass substrate of several centimeters square. Research to prepare emulsions composed of two types of liquids has attracted attention. In addition, studies have been conducted to produce microcapsules from the emulsion thus prepared.
For example, in Patent Document 1, Non-Patent Document 1, and the like, a microchannel having a structure in which a microchannel in which one liquid is introduced and circulated and a microchannel in which the other liquid is introduced and circulated merge at a junction. It is described that by using a structure, an emulsion in which uniform fine droplets composed of one liquid are dispersed in one liquid can be prepared. An emulsion refers to a system in which one liquid (dispersed phase) that does not dissolve in each other is dispersed as fine droplets in the other (continuous phase).

これら文献に示されている手法は、具体的には図9に示すように、基板51の片面にT字型の流路52が形成され、その上に図示略のカバー体が接合された微小流路構造体50を使用するものである。形成されている流路52は、連続相をなす流体が導入され流通する連続相流路54と、分散相をなす流体が導入され流通する分散相流路55と、連続相流路54と分散相流路55とが合流部56で合流し、合流部56で形成されたエマルションを排出する排出流路57とを有して構成されている。また、連続相流路54および分散相流路55の基端部には、それぞれ連続相導入口54aと分散相導入口55aとが形成され、排出流路57の末端部にはエマルションを排出する排出口57aが形成されている。
このような微小流路構造体50を使用することにより、連続相流路54を流通している流体に対して、分散相をなす流体が交差する向きで供給される。その結果、連続相をなす流体のせん断力によって、分散相をなす流体が微細化され、分散相流路55の幅よりも小さい径の分散相からなる微小液滴が、連続相をなす流体中に分散したエマルションが得られる。
Specifically, as shown in FIG. 9, the techniques disclosed in these documents are microscopically formed with a T-shaped flow path 52 formed on one surface of a substrate 51 and a cover body (not shown) joined thereto. The flow path structure 50 is used. The formed flow path 52 includes a continuous phase flow path 54 through which a fluid forming a continuous phase is introduced and distributed, a dispersed phase flow path 55 through which a fluid forming a dispersed phase is introduced and distributed, and a dispersion with the continuous phase flow path 54. The phase channel 55 is joined at the junction 56 and has a discharge channel 57 for discharging the emulsion formed at the junction 56. Further, a continuous phase introduction port 54 a and a dispersed phase introduction port 55 a are respectively formed at the base end portions of the continuous phase flow channel 54 and the dispersed phase flow channel 55, and the emulsion is discharged to the end portion of the discharge flow channel 57. A discharge port 57a is formed.
By using such a microchannel structure 50, the fluid forming the dispersed phase is supplied to the fluid flowing through the continuous phase channel 54 in an intersecting direction. As a result, the fluid forming the dispersed phase is refined by the shearing force of the fluid forming the continuous phase, and the fine droplets composed of the dispersed phase having a diameter smaller than the width of the dispersed phase channel 55 are contained in the fluid forming the continuous phase. An emulsion dispersed in is obtained.

このようにしてエマルションを調製し、このエマルションからマイクロカプセルを製造する方法としては、例えば、連続相をなす流体としてゼラチン溶液などのゾル溶液を用いる場合、得られたエマルションを容器などに取り出し、その中で撹拌しながら加温、冷却することにより、分散相からなる微小液滴が内容物となり、その周囲にゼラチンのゲル化膜が形成されたマイクロカプセルを得る方法がある。
また、連続相をなす流体として、重合性の物質を含有するものを用いる場合、得られたエマルションを容器などに取り出さず、排出流路内において重合させて重合膜を形成し、マイクロカプセルとする方法などもある。
国際公開WO02/068104号パンフレット 西迫貴志ら、「マイクロチャネルにおける液中微小液滴生成」、第4回化学とマイクロシステム研究会講演予稿集、59頁、2001年発行
As a method of preparing an emulsion in this way and producing microcapsules from this emulsion, for example, when using a sol solution such as a gelatin solution as a fluid forming a continuous phase, the obtained emulsion is taken out into a container or the like, There is a method of obtaining microcapsules in which fine droplets composed of a dispersed phase become contents and gelatinized film is formed around them by heating and cooling while stirring.
In addition, when a fluid containing a polymerizable substance is used as a fluid forming a continuous phase, the obtained emulsion is not taken out into a container or the like, but polymerized in a discharge channel to form a polymerized film to form a microcapsule. There are also methods.
International Publication WO02 / 068104 Pamphlet Takashi Nishisako et al., “Liquid microdroplet generation in microchannels”, Proceedings of the 4th Chemistry and Microsystem Study Group, 59 pages, 2001

しかしながら、得られたエマルションを容器などに取り出し、その中で撹拌しながら加温、冷却し、ゲル化膜を形成する方法では、撹拌時に微小液滴同士が再分裂したり合一したりして、得られるマイクロカプセルの粒径分散度が悪くなるという問題があった。
また、排出流路内で重合する方法では、流路が閉塞してしまう場合や、重合が十分に進行しない場合があった。さらには、得られたマイクロカプセルにおいて、内容物が重合膜の内部に固着してしまい、内容物の自由な移動が妨げられる場合があり、良質なマイクロカプセルが得られにくいという問題もあった。
However, in the method in which the obtained emulsion is taken out into a container and heated and cooled while stirring in the container to form a gelled film, the fine droplets may re-divide or coalesce during stirring. There is a problem that the particle size dispersion degree of the obtained microcapsules is deteriorated.
In the method of polymerizing in the discharge channel, the channel may be blocked or the polymerization may not proceed sufficiently. Furthermore, in the obtained microcapsule, the content is fixed inside the polymer film, and the free movement of the content may be hindered, and there is a problem that it is difficult to obtain a high-quality microcapsule.

本発明は、上記課題に鑑みてなされたもので、エマルションからマイクロカプセルを製造する際において、粒子径が均一で、粒径分散度が良好な良質なマイクロカプセルを製造する方法の提供を課題とする。   The present invention has been made in view of the above problems, and when producing microcapsules from an emulsion, it is an object to provide a method for producing high-quality microcapsules having a uniform particle size and good particle size dispersion. To do.

本発明のマイクロカプセルの製造方法は、連続相を形成する液体と分散相を形成する液体とを流路内で合流させて、前記連続相中に前記分散相が分散したエマルションを調製する第1工程と、前記エマルションに、相分離誘起剤を含む流体を流路内で合流させ、前記分散相の周囲に前記連続相中の成分からなる濃厚相を形成する第2工程と、前記濃厚相をコアセルベート膜化し、前記分散相の周囲にコアセルベート膜が形成されたコアセルベートカプセルの分散液を調製する第3工程とを有することを特徴とする。
前記第3工程としては、前記濃厚相をゲル化することで、コアセルベート膜化する方法が好適である。また、その際には、前記第2工程を前記ゲル化の温度より高い温度で行うことが好ましい。さらに、前記第3工程の後に、前記分散液を加熱下で撹拌してから冷却する第4工程を実施することが好ましい
The method for producing a microcapsule of the present invention is a first method for preparing an emulsion in which a liquid that forms a continuous phase and a liquid that forms a dispersed phase are merged in a flow path, and the dispersed phase is dispersed in the continuous phase. A second step in which a fluid containing a phase separation inducer is joined to the emulsion in a flow path to form a concentrated phase composed of components in the continuous phase around the dispersed phase, and the concentrated phase. And a third step of preparing a coacervate capsule dispersion in which a coacervate film is formed and a coacervate film is formed around the dispersed phase.
As the third step, a method of forming a coacervate film by gelling the concentrated phase is suitable. In that case, the second step is preferably performed at a temperature higher than the gelation temperature. Furthermore, it is preferable to implement the 4th process which cools, after stirring the said dispersion liquid under a heating after the said 3rd process .

本発明によれば、粒子径が均一で、粒径分散度が良好な良質なマイクロカプセルを製造することができる。   According to the present invention, it is possible to produce a high-quality microcapsule having a uniform particle size and good particle size dispersion.

以下、本発明について、図面を使用して詳細に説明する。
本発明のマイクロカプセルの製造方法は、連続相を形成する液体(以下、連続相液体という。)と分散相を形成する液体(以下、分散相液体という。)とを流路内で合流させて、連続相中に分散相が液滴状に分散したエマルションを調製する第1工程と、調製されたエマルションに相分離誘起剤を含む流体を流路内で合流させ、液滴状の分散相の周囲に連続相中の成分からなる濃厚相を形成する第2工程と、第2工程で形成された濃厚相をコアセルベート膜化し、分散相の周囲にコアセルベート膜が形成されたコアセルベートカプセルの分散液を調製する第3工程とを有する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
In the method for producing microcapsules of the present invention, a liquid that forms a continuous phase (hereinafter referred to as a continuous phase liquid) and a liquid that forms a dispersed phase (hereinafter referred to as a dispersed phase liquid) are combined in a flow path. A first step of preparing an emulsion in which a dispersed phase is dispersed in droplets in a continuous phase, and a fluid containing a phase separation inducer is joined in the flow path to the prepared emulsion to form a droplet-shaped dispersed phase. A second step of forming a concentrated phase consisting of components in the continuous phase around the periphery, and a coacervate capsule dispersion in which the concentrated phase formed in the second step is converted into a coacervate film and a coacervate film is formed around the dispersed phase. A third step of preparation.

図1は、本発明のマイクロカプセルの製造方法に好適に使用される製造システムの一例を示すものであって、第1工程を行うための微小流路構造体10Aを備えて構成されている。
この例の微小流路構造体10Aは、図2および図3にも示すように、ガラス製の基板11の片面に流路12が形成され、その面上にガラス製のカバー体13が接合、一体化されたものであって、流路12は、連続相液体が導入され流通する連続相流路14と、分散相液体が導入され流通する分散相流路15と、連続相流路14と分散相流路15とが合流部16で合流することで形成された排出流路17とからなり、これらが互いに連通したY字型の形状となっている。
また、この例では、連続相流路14、分散相流路15、排出流路17はいずれも、幅が500μm以下、深さ300μm以下のサイズの微小流路(マイクロチャンネル)となっている。
また、連続相流路14、分散相流路15、排出流路17は、いずれもエッチングにより形成され、図3(b),(c)に示すように、流路の底面と壁面とは曲面状につながっている。
FIG. 1 shows an example of a manufacturing system suitably used in the method for manufacturing a microcapsule of the present invention, and includes a microchannel structure 10A for performing the first step.
As shown in FIGS. 2 and 3, the microchannel structure 10 </ b> A of this example has a channel 12 formed on one surface of a glass substrate 11, and a glass cover body 13 bonded to the surface. The integrated flow path 12 includes a continuous phase flow path 14 through which a continuous phase liquid is introduced and circulated, a dispersed phase flow path 15 through which a dispersed phase liquid is introduced and circulated, and a continuous phase flow path 14. The dispersed phase flow path 15 is composed of a discharge flow path 17 formed by merging at the merging portion 16, and these have a Y-shaped shape communicating with each other.
In this example, each of the continuous phase flow path 14, the dispersed phase flow path 15 and the discharge flow path 17 is a micro flow path (micro channel) having a width of 500 μm or less and a depth of 300 μm or less.
Further, the continuous phase flow path 14, the dispersed phase flow path 15 and the discharge flow path 17 are all formed by etching, and the bottom surface and the wall surface of the flow path are curved surfaces as shown in FIGS. 3 (b) and 3 (c). Connected to the shape.

カバー体13における連続相流路14および分散相流路15の基端部に対応する部分には小穴が形成されて、それぞれ連続相導入口14aおよび分散相導入口15aとされ、連続相液体と分散相液体とを外部から導入して送液できるようになっている。また、排出流路17の末端部に対応する部分にも小穴が形成されて排出口17aとされ、微小流路構造体10A内で生成したエマルションがここから外部に排出されるようになっている。   Small holes are formed in portions of the cover body 13 corresponding to the base end portions of the continuous phase flow path 14 and the dispersed phase flow path 15 to form a continuous phase introduction port 14a and a dispersed phase introduction port 15a, respectively. The dispersed phase liquid can be introduced from the outside and fed. Further, a small hole is formed in a portion corresponding to the end portion of the discharge channel 17 to form a discharge port 17a, and the emulsion generated in the microchannel structure 10A is discharged from here. .

連続相導入口14aと分散相導入口15aには、それぞれ配管18,19を介してマイクロシリンジ20,21とマイクロシリンジポンプ22,23とが接続され、連続相液体と分散相液体とがそれぞれ所定の流量で送液されるようになっている。このように、連続相導入口14aと分散相導入口15aに、マイクロシリンジ20,21やマイクロシリンジポンプ22,23を備えた定量送液手段を接続することにより、連続相液体や分散相液体が微量であったとしても、これらを安定して連続相流路14および分散相流路15に導入し、送液することが可能となる。
一方、排出口17aは、配管24により捕集容器25に接続されているが、この配管24の途中には3方ジョイントを備えたジョイント部26が設けられ、ここで相分離誘起剤を含む流体が供給される配管27が合流するようになっている。配管27の上流側には、相分離誘起剤を含む流体をこの配管27に導入するためのマイクロシリンジ28,マイクロシリンジポンプ29が接続されている。すなわち、微小流路構造体10A内で生成し、排出口17aから排出されたエマルションは、ジョイント部26で相分離誘発剤を含む流体と合流し、その結果、分散相の周囲に連続相中の成分からなる濃厚相が形成されて捕集容器25に捕集されることとなる。
Microsyringes 20 and 21 and microsyringe pumps 22 and 23 are connected to the continuous phase introduction port 14a and the dispersed phase introduction port 15a through pipes 18 and 19, respectively. The liquid is fed at a flow rate of. In this way, by connecting a constant liquid feeding means including the microsyringes 20 and 21 and the microsyringe pumps 22 and 23 to the continuous phase introduction port 14a and the dispersed phase introduction port 15a, the continuous phase liquid and the dispersed phase liquid can be obtained. Even if it is a trace amount, these can be stably introduced into the continuous phase flow path 14 and the dispersed phase flow path 15 and fed.
On the other hand, the discharge port 17a is connected to the collection container 25 by a pipe 24, and a joint portion 26 having a three-way joint is provided in the middle of the pipe 24, where a fluid containing a phase separation inducing agent is provided. The pipe 27 to which the gas is supplied is joined. A microsyringe 28 and a microsyringe pump 29 for introducing a fluid containing a phase separation inducer into the pipe 27 are connected to the upstream side of the pipe 27. That is, the emulsion generated in the microchannel structure 10A and discharged from the discharge port 17a merges with the fluid containing the phase separation inducer at the joint portion 26. As a result, the emulsion in the continuous phase around the dispersed phase. A concentrated phase composed of components is formed and collected in the collection container 25.

なお、この例では、各配管18,19,24,27には、内径2mmのテフロン(登録商標)チューブが使用されている。また、図1中符号30は、一対の板状体からなるホルダーであって、このホルダー30により微小流路構造体10Aが安定に挟持、固定されており、図1中符号31はフィレットジョイントである。
また、図1中破線で囲まれた部分は恒温槽に収められ加温されていて、一方、破線よりも外側の部分はそれよりも低い室温に保持されている。
In this example, Teflon (registered trademark) tubes having an inner diameter of 2 mm are used for the pipes 18, 19, 24 and 27. 1 is a holder made of a pair of plate-like bodies, and the microchannel structure 10A is stably held and fixed by the holder 30. Reference numeral 31 in FIG. 1 is a fillet joint. is there.
Moreover, the part enclosed with the broken line in FIG. 1 is stored in the thermostat, and the part outside the broken line is hold | maintained at room temperature lower than it.

本例の第1工程では、このような微小流路構造体10Aの流路内で、連続相液体と分散相液体とを合流させて、連続相中に分散相が液滴状に分散したエマルションを調製する。具体的には、連続相液体と分散相液体とをそれぞれマイクロシリンジ20,21に充填し、マイクロシリンジポンプ22,23により所定の流量で連続相流路14と分散相流路15に導入し、微小流路構造体10Aの流路内(この例では合流部16)で合流させることにより、分散相が一定の間隔を空けて、均一な大きさの液滴状で連続相中に分散したエマルションを調製でき、これを排出流路17内に流通させることができる。   In the first step of this example, an emulsion in which the continuous phase liquid and the dispersed phase liquid are merged in the flow path of the microchannel structure 10A, and the dispersed phase is dispersed in the form of droplets in the continuous phase. To prepare. Specifically, the microsyringe 20 and 21 are filled with the continuous phase liquid and the dispersed phase liquid, respectively, and introduced into the continuous phase channel 14 and the dispersed phase channel 15 at a predetermined flow rate by the microsyringe pumps 22 and 23, An emulsion in which the dispersed phase is dispersed in the continuous phase in the form of droplets of a uniform size at a certain interval by being merged in the flow channel (the confluence portion 16 in this example) of the microchannel structure 10A. Can be prepared and can be circulated in the discharge channel 17.

ここで使用される分散相液体は、このようにエマルション中で液滴状に分散するものであり、一方、連続相液体は、分散相液体からなる液滴状の分散相の周囲を取り囲む溶液である。よって、分散相液体と連続相液体とは、互いに相溶しない液体である必要がある。例えば、分散相液体または連続相液体のうちの一方が水相である場合には、他方は実質的に水に不溶な有機相(油相)となる。   The dispersed phase liquid used here is dispersed in the form of droplets in the emulsion as described above, whereas the continuous phase liquid is a solution surrounding the periphery of the droplet-shaped dispersed phase composed of the dispersed phase liquid. is there. Therefore, the dispersed phase liquid and the continuous phase liquid need to be liquids that are not compatible with each other. For example, when one of the dispersed phase liquid or the continuous phase liquid is an aqueous phase, the other is an organic phase (oil phase) that is substantially insoluble in water.

また、分散相液体は最終的には得られるマイクロカプセルの内容物(芯物質)となるものであり、連続相液体は内容物を取り囲み、内容物を外部と隔てる膜を形成するものである。
よって、分散相液体は、連続相液体中の成分から形成される膜内に収容され得るものであればよく、特に制限はない。ただし、分散相流路15は、幅が500μm以下、深さ300μm以下のサイズの微小流路(マイクロチャンネル)であることがエマルションの形成しやすさから好適であるので、分散相液体としては、このような微小流路を流通可能なものが好ましい。
The dispersed phase liquid eventually becomes the contents (core substance) of the obtained microcapsules, and the continuous phase liquid surrounds the contents and forms a film that separates the contents from the outside.
Therefore, the dispersed phase liquid is not particularly limited as long as it can be accommodated in a film formed from components in the continuous phase liquid. However, since the dispersed phase flow channel 15 is preferably a micro flow channel (micro channel) having a width of 500 μm or less and a depth of 300 μm or less because of the ease of forming an emulsion, What can distribute | circulate such a microchannel is preferable.

さらに、分散相液体は、微粒子などの固体を含有しているスラリー状のものでも、複数の液体からなる混合液体でもよく、また、複数の液体が層流を形成して流通するものであってもよい。特に、微粒子などの固体を含有しているスラリー状のものを分散相液体として使用する場合、スラリー中の微粒子と液体との比重差がある場合でも、流路内で連続相液体と分散相液体とを流路内で合流させてエマルションとする本第1工程によれば、微粒子が分散相から脱離してしまうことが抑制され、微粒子を分散相内に効果的に取り込むことができる。これは、流路内、特に微小流路内では、重力による影響が界面張力や粘性力の影響に比較して小さくなるためである。また、後述するように、本発明では、このようにして調製されたエマルションに、相分離誘起剤を含む流体を流路内で合流させ、分散相の周囲に連続相中の成分からなる濃厚相を形成する第2工程と、濃厚相をコアセルベート膜化し、分散相の周囲にコアセルベート膜が形成されたコアセルベートカプセルの分散液を調製する第3工程とを実施するため、分散相内の微粒子がコアセルベート膜中に取り込まれ固着することも抑制できる。   Furthermore, the dispersed phase liquid may be a slurry containing solids such as fine particles or a mixed liquid composed of a plurality of liquids, and the plurality of liquids may circulate in a laminar flow. Also good. In particular, when a slurry containing solids such as fine particles is used as the dispersed phase liquid, even if there is a difference in specific gravity between the fine particles in the slurry and the liquid, the continuous phase liquid and the dispersed phase liquid in the flow path. According to the first step, the particles are joined in the flow path to form an emulsion, so that the fine particles are prevented from being detached from the dispersed phase, and the fine particles can be effectively taken into the dispersed phase. This is because the influence of gravity is smaller than the influence of interfacial tension and viscous force in the flow channel, particularly in the micro flow channel. In addition, as described later, in the present invention, a fluid containing a phase separation inducer is joined in the flow path to the emulsion thus prepared, and a concentrated phase composed of components in the continuous phase around the dispersed phase. And the third step of preparing a coacervate capsule dispersion in which a concentrated phase is formed into a coacervate film and a coacervate film is formed around the dispersed phase, so that the fine particles in the dispersed phase are coacervated. Incorporation into the film and fixing can also be suppressed.

一方、連続相液体としては、相分離誘起剤を含む流体との接触により分散相の周囲に濃厚相を形成し、さらに、濃厚相をゲル化する方法などでコアセルベート膜化し、内容物を閉じこめ得る成分を有しているものであることが必要である。このようなものとしては、例えば、ポリビニルアルコールなどの分散剤が適当な溶媒に溶解した溶液、ドデシル硫酸ナトリウムなどの界面活性剤を含んだ液体、必要に応じてpH調整され架橋剤が添加されたゼラチンなどを含むゾル溶液(例えばゼラチン−アラビアゴム系の水溶液)などが挙げられる。   On the other hand, as a continuous phase liquid, a concentrated phase is formed around the dispersed phase by contact with a fluid containing a phase separation inducer, and further, the contents can be confined by forming a coacervate film by a method of gelling the concentrated phase. It is necessary to have a component. Examples of such a solution include a solution in which a dispersant such as polyvinyl alcohol is dissolved in an appropriate solvent, a liquid containing a surfactant such as sodium dodecyl sulfate, and a pH-adjusted cross-linking agent as necessary. Examples thereof include sol solutions containing gelatin and the like (for example, gelatin-gum arabic aqueous solution).

また、微小流路構造体10Aの備える流路12は、連続相流路14に対して分散相流路15が交差する向きで形成され、その結果、連続相液体のせん断力によって分散相液体が微細化され、分散相流路15の幅よりも小さい径の液滴状の分散相が分散したエマルションが得られるように形成されている限り、特に制限はない。
例えば、図1の例のようなY字型の他、図9のようなT字型でもよいし、連続相流路14、分散相流路15、排出流路17のなす角度やそれぞれの位置、各流路14,15,17の深さや幅なども適宜設定できる。また、分散相流路15が2本以上形成されていて、分散相として2種以上の液体を供給できるようにされていてもよいし、分散相が複数の物質の混合物である場合には、連続相流路14との合流部16よりも上流側に混合物を調製するための合流部を別途設けておいてもよい。
Further, the flow path 12 included in the micro flow path structure 10A is formed in a direction in which the dispersed phase flow path 15 intersects the continuous phase flow path 14, and as a result, the dispersed phase liquid is absorbed by the shearing force of the continuous phase liquid. There is no particular limitation as long as it is formed so as to obtain a finely divided emulsion in which droplet-like dispersed phases having a diameter smaller than the width of the dispersed phase channel 15 are dispersed.
For example, in addition to the Y-shape as in the example of FIG. 1, a T-shape as in FIG. 9 may be used. The depth and width of each of the flow paths 14, 15, and 17 can be set as appropriate. Further, two or more dispersed phase flow paths 15 may be formed so that two or more kinds of liquids can be supplied as the dispersed phase. When the dispersed phase is a mixture of a plurality of substances, A junction for preparing the mixture may be separately provided on the upstream side of the junction 16 with the continuous phase flow path 14.

ただし、すでに上述したように、少なくとも分散相流路15は、幅が500μm以下、深さ300μm以下の微小流路(マイクロチャンネル)であることがエマルションの形成しやすさから好ましい。
また、排出流路17の幅や深さを連続相流路14や分散相流路15よりも広くすると、その壁面からの影響を小さくでき、合流部16で形成されたエマルション中の液滴の再分裂をより回避できるという効果がある。その場合には、エマルションの流速が前方に行くにしたがって急激に低下しないように、排出流路17の幅や深さを少しずつ広げていくか、あるいは、合流部16直後に一気に排出流路17の幅や深さを広げて、分散相からなる液滴が進行方向に対して交互に左右に広がって流れるようにすることが好ましい。このようにすると、排出流路17において、前方の液滴の流速が急激に低下して後方の液滴がこれに追いつき衝突してしまい、液滴同士が合一するという可能性を低下させることができる。なお、液滴同士の合一や再分裂のしやすさは、排出流路17におけるエマルションの送液速度や、連続相液体および分散相液体の種類などによっても大きく影響を受けるので、これらを適宜設定することが好適である。
However, as already described above, at least the dispersed phase flow channel 15 is preferably a micro flow channel (micro channel) having a width of 500 μm or less and a depth of 300 μm or less from the viewpoint of easy formation of an emulsion.
Further, if the width and depth of the discharge channel 17 are made wider than those of the continuous phase channel 14 and the dispersed phase channel 15, the influence from the wall surface can be reduced, and the droplets in the emulsion formed at the merging portion 16 can be reduced. It has the effect of avoiding re-division more. In that case, the width and depth of the discharge flow path 17 are gradually increased so that the flow rate of the emulsion does not decrease rapidly as it goes forward, or the discharge flow path 17 is immediately after the junction 16. It is preferable to widen the width and depth of the liquid droplets so that the droplets composed of the dispersed phase flow alternately to the left and right with respect to the traveling direction. In this way, in the discharge channel 17, the flow velocity of the front droplet rapidly decreases and the rear droplet catches up and collides with this, thereby reducing the possibility that the droplets coalesce. Can do. Note that the ease of coalescence and re-division of the droplets is greatly affected by the emulsion feed speed in the discharge channel 17 and the type of the continuous phase liquid and the dispersed phase liquid. It is preferable to set.

また、第1工程で形成されるエマルション中の分散相の液滴サイズは、各流路14,15,17の形状、送液する連続相液体や分散相液体の粘度や界面張力、これら液体の送液速度などの各種条件により制御される。分散相流路15内を液柱となって移動してきた分散相液体の先端部は合流部16において、これら各種条件に応じて、連続相中に一定間隔で分散していき、均一な大きさの液滴を形成するが、例えば、流路内を流れる連続相液体の送液速度を分散相液体の送液速度より大とすることが、粒径分散度のよいエマルションを安定して形成させる点から好適である。
なお、ここで、連続相液体と連続相流路14との濡れやすさを、分散相液体と分散相流路15との濡れやすさよりも大きくしておくと、均一な大きさの液滴を製造しやすく、また、分散相液体の送液量も増加させることができ、好ましい。
The droplet size of the dispersed phase in the emulsion formed in the first step is the shape of each flow path 14, 15, 17 and the viscosity and interfacial tension of the continuous phase liquid and the dispersed phase liquid to be fed, It is controlled according to various conditions such as liquid feeding speed. The tip of the dispersed phase liquid that has moved in the dispersed phase flow path 15 as a liquid column is dispersed at a constant interval in the continuous phase at the junction 16 according to these various conditions, and has a uniform size. For example, if the liquid feeding speed of the continuous phase liquid flowing in the flow path is larger than the liquid feeding speed of the dispersed phase liquid, an emulsion having a good particle size dispersion can be stably formed. This is preferable from the point of view.
Here, if the wettability between the continuous phase liquid and the continuous phase flow path 14 is made larger than the wettability between the dispersed phase liquid and the dispersed phase flow path 15, droplets of a uniform size can be obtained. This is preferable because it is easy to produce and the amount of the dispersed phase liquid fed can be increased.

第2工程では、第1工程で調製されたエマルションに相分離誘起剤を含む流体を流路内で合流させ、各分散相の周囲に連続相中の成分からなる濃厚相を形成する。
具体的には、相分離誘起剤を含む流体をマイクロシリンジ28に充填し、マイクロシリンジポンプ29により所定の流量で供給し、流路内(この例ではジョイント部26)で合流させる。その結果、分散相の周囲に連続相中の成分からなる濃厚相が形成される、いわゆるコアセルベートが起こる。
ここで仮に、相分離誘起剤を含む流体を流路内ではなく、それよりも下流の捕集容器25に添加するなどした場合には、分散相の周囲を取り囲まない無核の濃厚相が多く形成される、反対に濃厚相が複数の分散相の周囲を取り囲み複核となってしまう、周囲に濃厚相が形成されない分散相が生じる、などの現象が認められる。その結果、濃厚相を後述のゲル化などの方法でコアセルベート膜化して得られるマイクロカプセルは、凝集しやすく、また、内容物を有さない無核のものや反対に複核のもの、さらには、膜の形成が不十分なものなどの含有割合が大きくなってしまう傾向がある。
よって、図1の例のように、エマルジョンが送液されている流路に、相分離誘起剤を含む流体の流通する流路(この例では、配管27)を交差、合流させるなどして、相分離誘起剤を含む流体を流路内でエマルションに合流させることが、粒子径が均一で、粒径分散度が良く、凝集のない良質なマイクロカプセルを生成させる観点から重要である。
In the second step, a fluid containing a phase separation inducer is joined to the emulsion prepared in the first step in the flow path, and a concentrated phase composed of components in the continuous phase is formed around each dispersed phase.
Specifically, the microsyringe 28 is filled with a fluid containing a phase separation inducer, supplied at a predetermined flow rate by the microsyringe pump 29, and merged in the flow path (in this example, the joint portion 26). As a result, so-called coacervate occurs in which a concentrated phase composed of components in the continuous phase is formed around the dispersed phase.
Here, if a fluid containing a phase separation inducer is added not to the flow path but to the collection container 25 downstream of the fluid, there are many non-nucleated rich phases that do not surround the periphery of the dispersed phase. On the other hand, phenomena such as the formation of a dispersed phase in which a concentrated phase surrounds a plurality of dispersed phases to form a double nucleus, and a concentrated phase is not formed in the surroundings are observed. As a result, the microcapsules obtained by coagulating the concentrated phase by a method such as gelation described later are easy to aggregate, and are non-nuclear without the contents, or conversely, with multi-nuclei, There is a tendency that the content ratio of an insufficient film is increased.
Therefore, as in the example of FIG. 1, the flow path (in this example, the pipe 27) through which the fluid containing the phase separation inducer intersects and merges with the flow path in which the emulsion is fed, It is important to join the fluid containing the phase separation inducer to the emulsion in the flow path from the viewpoint of producing good quality microcapsules having a uniform particle size, good particle size dispersion, and no aggregation.

また、相分離誘起剤を含む流体をエマルションに合流させる流路の前後には、必要に応じて公知の各種機構を設けて、分散相の周囲に濃厚相が形成されやすくなるようにしてもよい。このような機構としては、流路においては流体が流線に沿った流れに沿って移動するという現象を利用して、エマルション中の分散相からなる液滴を分級する機構や、流路内に凹凸を形成して撹拌作用を発現させる機構などが例示できる。   In addition, before and after the flow path for joining the fluid containing the phase separation inducer to the emulsion, various known mechanisms may be provided as necessary so that a concentrated phase is easily formed around the dispersed phase. . As such a mechanism, a mechanism for classifying droplets composed of dispersed phases in an emulsion by utilizing a phenomenon that a fluid moves along a flow along a streamline in the channel, Examples include a mechanism for forming irregularities and developing a stirring action.

相分離誘起剤を含む流体としては、コアセルベートを誘起する相分離誘起剤を含み、連続相液体と相溶するものであれば特に制限はない。相分離誘起剤としては、希釈のための水や、pH調整のための硫酸、酢酸、塩酸などの酸や、水酸化ナトリウム等のアルカリ、貧溶媒であるメタノール、エタノール、アセトン、ジオキサンや、硫酸ナトリウム等の塩などがあげられる。このような相分離誘起剤は、連続相液体と相溶する流体の形態で使用される必要があるので、必要に応じて適当な溶媒などを使用する。
また、相分離誘起剤を含む流体の送液速度は、適宜設定できるが、上流で形成したエマルジョンを破壊しないような流速で添加することが好ましい。
The fluid containing the phase separation inducer is not particularly limited as long as it contains a phase separation inducer that induces coacervate and is compatible with the continuous phase liquid. Examples of the phase separation inducer include water for dilution, acids such as sulfuric acid, acetic acid and hydrochloric acid for pH adjustment, alkalis such as sodium hydroxide, methanol, ethanol, acetone, dioxane which are poor solvents, sulfuric acid Examples include salts such as sodium. Since such a phase separation inducer needs to be used in the form of a fluid that is compatible with the continuous phase liquid, an appropriate solvent or the like is used as necessary.
Moreover, although the liquid feeding speed of the fluid containing a phase separation inducer can be set as appropriate, it is preferable to add at a flow speed that does not break the emulsion formed upstream.

ついで、第3工程では、第2工程で得られた液状物(各分散相の周囲に連続相中の成分からなる濃厚相が形成されたものを含有する液状物)を捕集容器25に捕集した後、使用した連続相液体の種類に応じた方法により、濃厚相をコアセルベート膜化する第3工程を行う。その結果、分散相からなる内容物の周囲がコアセルベート膜で覆われたコアセルベートカプセル(マイクロカプセル)の分散液を得ることができる。
濃厚相をコアセルベート膜化する具体的方法としては、連続相液体がゲルを形成し得るゾル溶液である場合などには、捕集容器25内の液状物をそのゲル化の温度(以下、ゲル化温度という。)以下まで冷却して濃厚相をゲル化することによりコアセルベート膜を形成し、分散相の周囲にコアセルベート膜が形成されたコアセルベートカプセルの分散液を調製できる。また、その場合には、上述の第2工程をゲル化温度よりも高い温度で行うことで、第2工程において連続相液体がゲル化せずに良好に濃厚相を形成する。図1の例では、第2工程が行われるジョイント部26は恒温槽内に収められることでゲル化温度よりも高い温度に加温され、一方、第3工程が行われる捕集容器25は室温とされ、ゲル化温度以下となっている。
なお、本明細書では、濃厚相がゲル化などでコアセルベート膜化し、分散相からなる内容物の周囲がコアセルベート膜で覆われたものをコアセルベートカプセルと言い、このコアセルベートカプセルもマイクロカプセルの1つである。
Next, in the third step, the liquid material obtained in the second step (liquid material containing a concentrated phase composed of components in the continuous phase formed around each dispersed phase) is collected in the collection container 25. After the collection, a third step of forming the concentrated phase into a coacervate film is performed by a method according to the type of the continuous phase liquid used. As a result, a dispersion of coacervate capsules (microcapsules) in which the content of the dispersed phase is covered with a coacervate film can be obtained.
As a specific method for forming a concentrated phase into a coacervate film, when the continuous phase liquid is a sol solution capable of forming a gel, the liquid in the collection vessel 25 is subjected to the gelation temperature (hereinafter referred to as gelation). It is referred to as temperature.) A coacervate film can be prepared by forming a coacervate film by cooling to the following and gelling the concentrated phase, and forming a coacervate film around the dispersed phase. In that case, by performing the second step described above at a temperature higher than the gelation temperature, the continuous phase liquid does not gel in the second step, and a dense phase is formed well. In the example of FIG. 1, the joint part 26 in which the second step is performed is warmed to a temperature higher than the gelling temperature by being housed in a thermostatic bath, while the collection container 25 in which the third step is performed is room temperature. And below the gelation temperature.
In this specification, the concentrated phase is formed into a coacervate film by gelation or the like, and the content of the dispersed phase is covered with a coacervate film, which is called a coacervate capsule. This coacervate capsule is also one of the microcapsules. is there.

また、連続相液体がゲルを形成し得るゾル溶液などである場合には、必要に応じて、第3工程で調製されたコアセルベートカプセルの分散液を再度ゲル化温度以上に加熱し、さらに再度冷却してゲル化するという第4工程を行うことによって、均一な粒子径で、より凝集のない良質なコアセルベートカプセルを生成させることもできる。すなわち、第4工程では加熱下で撹拌を実施するために、コアセルベート膜の流動性を増加させて内容物を保護し、コアセルベートカプセルの破壊を抑制しつつ、コアセルベートカプセル同士の合一や分裂、さらには凝集を低減させることができる。また、このような第4工程によれば、1つの液滴状の分散相を内容物として備える単核のマイクロカプセルを生成しやすいという利点もある。   In addition, when the continuous phase liquid is a sol solution that can form a gel, the coacervate capsule dispersion prepared in the third step is heated again to the gelling temperature or higher if necessary, and then cooled again. Then, by performing the fourth step of gelling, it is possible to produce a high quality coacervate capsule with a uniform particle size and less aggregation. That is, in order to carry out stirring under heating in the fourth step, the fluidity of the coacervate membrane is increased to protect the contents, and the coacervate capsules are coalesced and split while suppressing the destruction of the coacervate capsules. Can reduce aggregation. In addition, according to such a fourth step, there is also an advantage that mononuclear microcapsules having a single droplet-like dispersed phase as contents are easily generated.

以上のようにして第1〜3工程を行い、必要に応じて第4工程を行うことにより、コアセルベートカプセルが分散液に分散した状態で得られるが、さらにコアセルベート膜を硬化させるとともに、分散液から溶媒分を除去する第5工程を行って、粉末状のマイクロカプセルとして取り出すこともできる。
第5工程の具体的方法としては、公知の各種方法が挙げられ、例えば、コアセルベート膜を架橋して硬化させた後、脱水するなどし、さらに洗浄、濾過を行う方法がある。架橋の方法としては、例えばホルムアルデヒド水溶液などの架橋剤を分散液に加え、必要に応じてアルカリ水溶液でpHを調整した後、加熱、撹拌する方法が挙げられる。
By performing the first to third steps as described above, and performing the fourth step as necessary, the coacervate capsules are obtained in a state of being dispersed in the dispersion liquid. It can also be taken out as a powdery microcapsule by performing the fifth step of removing the solvent.
Specific methods of the fifth step include various known methods, for example, a method in which the coacervate film is crosslinked and cured, and then dehydrated, and further washed and filtered. Examples of the crosslinking method include a method in which a crosslinking agent such as an aqueous formaldehyde solution is added to the dispersion, and the pH is adjusted with an alkaline aqueous solution as necessary, followed by heating and stirring.

また、形成したマイクロカプセルの膜をより厚くしたい場合などには、第3工程以降で得られたマイクロカプセルをカプセル核として用い、さらにその外側に膜を形成してもよい。具体的な方法としては、第3工程以降で得られたマイクロカプセルを含む液体を、マイクロカプセルが破壊しない程度に攪拌しながら、相分離法、液中乾燥法、in−situ重合法などに供すればよい。このような方法により、はじめに得られたマイクロカプセルの形状、分散性、粒径の均一性などを保持したまま、より強固なマイクロカプセルを得ることができる。   In addition, when it is desired to make the formed microcapsule film thicker, the microcapsules obtained in the third step and thereafter may be used as capsule nuclei, and a film may be formed on the outside thereof. Specifically, the liquid containing the microcapsules obtained in the third and subsequent steps is stirred to such an extent that the microcapsules are not destroyed, and is subjected to a phase separation method, a submerged drying method, an in-situ polymerization method, or the like. do it. By such a method, a stronger microcapsule can be obtained while maintaining the shape, dispersibility, particle size uniformity and the like of the microcapsule obtained first.

このようにして製造されたマイクロカプセルは、例えば、高速液体クロマトグラフィー用カラムの充填剤、圧力測定フィルム、ノーカーボン(感圧複写)紙、トナー、熱膨張剤、熱媒体、調光ガラス、ギャップ剤(スペーサ)、サーモクロミック(感温液晶、感温染料)、磁気泳動カプセル、農薬、人工飼料、人工種子、芳香剤、マッサージクリーム、口紅、ビタミン類カプセル、活性炭、含酵素カプセル、DDS(ドラッグデリバリーシステム)などの用途に使用できる。   The microcapsules produced in this way are, for example, high-performance liquid chromatography column packing, pressure measurement film, carbonless (pressure-sensitive copying) paper, toner, thermal expansion agent, heat medium, light control glass, gap Agent (spacer), thermochromic (thermosensitive liquid crystal, thermosensitive dye), magnetophoresis capsule, pesticide, artificial feed, artificial seed, fragrance, massage cream, lipstick, vitamins capsule, activated carbon, enzyme-containing capsule, DDS (drug) It can be used for applications such as delivery systems.

なお、以上の説明においては、図1の製造システムの具備する微小流路構造体10Aとして、ガラス製の基板11にガラス製のカバー体13が接合、一体化されたものを例示しているが、基板11やカバー体13の材質としては、流路12の形成加工が可能であって、耐薬品性に優れ、適度な剛性を備えたものであればよく、ガラスに限定されない。そのような材質としては、例えば、石英、セラミック、シリコンが挙げられ、その他に、金属や樹脂などであってもよい。また、基板11やカバー体13の接合、一体化方法としては、熱処理による接合法(熱接合)や、熱硬化樹脂などの接着剤を用いた接着法などが例示できる。また、基板11やカバー体13の大きさや形状についても特に限定はないが、厚みは数mm以下程度とすることが望ましい。また、カバー体13に形成された連続相導入口14a、分散相導入口15a、排出口17aの大きさや形状にも特に制限はないが、例えば数百mm程度から数mm程度の径の小穴であることが望ましい。小穴の加工には、各種化学的手段、機械的手段などが適用でき、具体的にはレーザー照射やイオンエッチングなどにより行えばよい。   In the above description, the fine channel structure 10A included in the manufacturing system of FIG. 1 is exemplified by a glass substrate 11 joined and integrated with a glass substrate 11. The material of the substrate 11 and the cover body 13 is not limited to glass as long as it can form the flow path 12 and has excellent chemical resistance and moderate rigidity. Examples of such a material include quartz, ceramic, and silicon, and other materials such as metal and resin may be used. Examples of the method for joining and integrating the substrate 11 and the cover body 13 include a joining method by heat treatment (thermal joining), an adhesion method using an adhesive such as a thermosetting resin, and the like. Moreover, although there is no limitation in particular also about the magnitude | size and shape of the board | substrate 11 and the cover body 13, it is desirable for thickness to be about several mm or less. The size and shape of the continuous phase introduction port 14a, the dispersed phase introduction port 15a, and the discharge port 17a formed in the cover body 13 are not particularly limited. For example, a small hole having a diameter of about several hundred mm to several mm is used. It is desirable to be. Various chemical means, mechanical means, and the like can be applied to the processing of the small holes, and specifically, laser irradiation, ion etching, or the like may be performed.

また、定量送液手段としては、マイクロシリンジ20,21,28とマイクロシリンジポンプ22,23,29とからなるものを例示しているが、これに限定されず、各種機械的手段の他、物理的手段なども適宜使用可能である。
また、この例では、第3工程を捕集容器25にて行っているが、第3工程が行えるかぎり、容器状のものに限定されず、チューブなどを用いてもよい。
In addition, as the quantitative liquid feeding means, those composed of the microsyringes 20, 21, 28 and the microsyringe pumps 22, 23, 29 are illustrated, but not limited thereto, in addition to various mechanical means, physical Means and the like can be used as appropriate.
Moreover, in this example, although the 3rd process is performed in the collection container 25, as long as the 3rd process can be performed, it is not limited to a container shape, A tube etc. may be used.

さらに、本発明では、図4および図5のような微小流路構造体10Bも好適に使用できる。この微小流路構造体10Bは、排出流路17の途中に、相分離誘起剤を含む流体が導入され流通する相分離誘起剤流路32が合流するようになっていて、微小流路構造体10B中で、第1工程だけでなく第2工程をも行うことができる。図中、符号32aは相分離誘起剤を含む流体が導入される相分離誘起剤導入口である。このような微小流路構造体10Bを使用することにより、合流部16で生成したエマルションに、流路内(この例では合流部33)で相分離誘起剤を含む流体が合流し、その結果、分散相の周囲に連続相中の成分からなる濃厚相が形成される。なお、この微小流路構造体10Bにおいては、基板11が切り抜かれて各流路が形成され、基板11の両面にカバー体13,13’が積層した構成となっている。また、この微小流路構造体10Bを使用した場合、第3工程以降は、図1の場合と同様に行えばよい。   Furthermore, in the present invention, a microchannel structure 10B as shown in FIGS. 4 and 5 can also be suitably used. This microchannel structure 10B is configured such that a phase separation inducing agent channel 32 into which a fluid containing a phase separation inducing agent is introduced and circulates is joined in the middle of the discharge channel 17. In 10B, not only the first step but also the second step can be performed. In the figure, reference numeral 32a denotes a phase separation inducer inlet into which a fluid containing the phase separation inducer is introduced. By using such a microchannel structure 10B, the fluid containing the phase separation inducing agent is merged with the emulsion generated in the merging portion 16 in the channel (merging portion 33 in this example). A dense phase composed of components in the continuous phase is formed around the dispersed phase. In the microchannel structure 10B, the substrate 11 is cut out to form each channel, and the covers 13 and 13 'are laminated on both surfaces of the substrate 11. Moreover, when this microchannel structure 10B is used, the third and subsequent steps may be performed in the same manner as in FIG.

以下、本発明について実施例を挙げて具体的に説明する。
[実施例1]
図1の構成の製造システムを用いて、第1〜3工程を行い、コアセルベートカプセルの分散液を得た。
微小流路構造体10Aの基板11としては、幅136μm、深さ48μmの連続相流路14と、幅106μm、深さ48μmの微小流路に相当する分散相流路15と、幅136μm、深さ48μm、長さが40mmの排出流路17とからなるY字型の流路12が片面に形成された70mm×20mm×1mm(厚さ)のパイレックス(登録商標)ガラス基板を用いた。なお、連続相流路14と分散相流路15とは図3中のα=44°の角度にて合流部16において交差、合流している。また、流路12は、一般的なフォトリソグラフィとウェットエッチングにより形成した。
カバー体13としては、70mm×20mm×1mm(厚さ)のガラス板を用い、基板11において流路12が形成されている側の面に熱接合した。なお、カバー体13には、連続相導入口14a、分散相導入口15a、排出口17aとして、予め直径1.2mmの小穴を機械的加工手段により3カ所形成しておいた。
また、配管18,19,24,27には、内径2mmのテフロン(登録商標)チューブを用い、ジョイント部26の3方ジョイントには、3方が各交差角120°で合流するものを使用した。捕集容器25としては、ガラス製のビーカーを使用した。
そして、図1中破線で囲まれた部分を恒温槽に収め、50℃に加温した。一方、破線よりも外側の部分をそれよりも低い室温に保持した。
Hereinafter, the present invention will be specifically described with reference to examples.
[Example 1]
The first to third steps were performed using the manufacturing system having the configuration shown in FIG. 1 to obtain a coacervate capsule dispersion.
The substrate 11 of the microchannel structure 10A includes a continuous phase channel 14 having a width of 136 μm and a depth of 48 μm, a dispersed phase channel 15 corresponding to a microchannel having a width of 106 μm and a depth of 48 μm, a width of 136 μm, and a depth. A Pyrex (registered trademark) glass substrate of 70 mm × 20 mm × 1 mm (thickness) in which a Y-shaped flow channel 12 composed of a discharge flow channel 17 having a length of 48 μm and a length of 40 mm was formed on one side was used. Note that the continuous phase flow path 14 and the dispersed phase flow path 15 intersect and merge at the merge portion 16 at an angle of α = 44 ° in FIG. The channel 12 was formed by general photolithography and wet etching.
As the cover body 13, a glass plate of 70 mm × 20 mm × 1 mm (thickness) was used and thermally bonded to the surface of the substrate 11 on the side where the flow path 12 is formed. Note that three small holes with a diameter of 1.2 mm were previously formed in the cover body 13 by mechanical processing means as the continuous phase inlet 14a, the dispersed phase inlet 15a, and the outlet 17a.
Further, Teflon (registered trademark) tubes having an inner diameter of 2 mm were used for the pipes 18, 19, 24, and 27, and the three-way joint of the joint part 26 was used that joined at three crossing angles of 120 °. . As the collection container 25, a glass beaker was used.
And the part enclosed with the broken line in FIG. 1 was stored in the thermostat, and it heated at 50 degreeC. On the other hand, the part outside the broken line was kept at a lower room temperature.

このような製造システムを使用して、第1〜3工程を行った。
分散相液体としては、ドデカンとOil Blue Nの混合物を使用し、連続相液体としては、ゼラチン1wt%とアラビアゴム1wt%を混合した水溶液を使用した。また、相分離誘起剤を含む流体としては、酢酸1%水溶液を用いた。
これら分散相液体、連続相液体、相分離誘起剤を含む流体をそれぞれマイクロシリンジ20,21、28に入れ、マイクロシリンジポンプ22,23、29を作動させて、分散相液体は2μl/min、連続相液体は125μl/min、相分離誘起剤は5μl/minの送液速度(流量)で供給した。
配管24の下流端と捕集容器25は室温とされ、連続相液体のゲル化温度(40℃)よりも低くなっているため、配管24の下流端近傍と捕集容器25内でゲル化が進行し、捕集容器25には、ドデカン溶液の周囲に、連続相液体がゲル化したコアセルベート膜が形成されたコアセルベートカプセルの分散液が捕集された。
分散液を観察したところ、得られたコアセルベートカプセルは図6に示すように、カプセルの核の平均粒径が98μm、粒径分散度が3.5%であり、均一な核を含むマイクロカプセルであった。
このように実施例1によれば、表面にコアセルベート膜が形成され、合一や分裂の抑制された粒径分散度の良好な均一なマイクロカプセルを得ることができた。
The first to third steps were performed using such a manufacturing system.
As the dispersed phase liquid, a mixture of dodecane and Oil Blue N was used, and as the continuous phase liquid, an aqueous solution in which 1 wt% of gelatin and 1 wt% of gum arabic were mixed was used. In addition, a 1% aqueous solution of acetic acid was used as the fluid containing the phase separation inducer.
The dispersed phase liquid, the continuous phase liquid, and the fluid containing the phase separation inducer are put into the microsyringes 20, 21, and 28, respectively, and the microsyringe pumps 22, 23, and 29 are operated, and the dispersed phase liquid is continuously 2 μl / min. The phase liquid was supplied at 125 μl / min, and the phase separation inducer was supplied at a flow rate (flow rate) of 5 μl / min.
Since the downstream end of the pipe 24 and the collection container 25 are at room temperature and are lower than the gelation temperature (40 ° C.) of the continuous phase liquid, gelation occurs in the vicinity of the downstream end of the pipe 24 and in the collection container 25. As a result, a dispersion of coacervate capsules in which a coacervate film in which a continuous phase liquid was gelled was collected around the dodecane solution was collected in the collection container 25.
When the dispersion was observed, the obtained coacervate capsule was a microcapsule having a uniform core as shown in FIG. 6 having an average particle diameter of the core of the capsule of 98 μm and a degree of particle size dispersion of 3.5%. there were.
As described above, according to Example 1, a coacervate film was formed on the surface, and uniform microcapsules with good particle size dispersion in which coalescence and splitting were suppressed could be obtained.

[比較例1]
相分離誘起剤を含む流体をジョイント部26からエマルションに合流させるのではなく、捕集容器25に捕集されたエマルションに直接添加した以外は、実施例1と同様の工程を行った。分散相液体、連続相液体、相分離誘起剤を含む流体としては、実施例1と同じものをそれぞれ使用し、分散相液体の送液速度と連続相液体の送液速度も実施例1と同様にした。なお、相分離誘起剤を含む流体(酢酸1%水溶液)は、捕集したエマルション5mlに対して0.2ml添加した。
合流部16においては、安定した状態でエマルションが生成されることが確認できたが、捕集容器25に捕集された分散液を観察したところ、図7に示すように、核のないカプセル(ゲル)、核を有するものの凝集したカプセル、さらには、コアセルベート膜が形成されていない液滴などが認められた。
このように相分離誘起剤を含む流体を流路中ではなくエマルションを捕集した捕集容器25内に添加し、ここでエマルションと接触させると、核のないカプセル(ゲル)、核を有するものの凝集したカプセル、さらには、コアセルベート膜が形成されていない液滴などが生成してしまい、良質なコアセルベートカプセルの収率を低下させることになった。
[Comparative Example 1]
The same process as in Example 1 was performed except that the fluid containing the phase separation inducer was not directly joined to the emulsion from the joint portion 26 but directly added to the emulsion collected in the collection container 25. As the fluid containing the dispersed phase liquid, the continuous phase liquid, and the phase separation inducer, the same fluids as in Example 1 are used, and the liquid feeding speed of the dispersed phase liquid and the liquid feeding speed of the continuous phase liquid are the same as in Example 1. I made it. In addition, 0.2 ml of fluid (1% acetic acid aqueous solution) containing a phase separation inducer was added to 5 ml of the collected emulsion.
In the merging portion 16, it was confirmed that the emulsion was generated in a stable state. However, when the dispersion liquid collected in the collection container 25 was observed, as shown in FIG. Gel), capsules having nuclei but agglomerated, and liquid droplets in which a coacervate film was not formed.
As described above, when the fluid containing the phase separation inducer is added to the collection container 25 that collects the emulsion, not in the flow path, and is brought into contact with the emulsion, Aggregated capsules, and further droplets in which the coacervate film is not formed, are generated, and the yield of high-quality coacervate capsules is reduced.

[実施例2]
分散相液体の送液速度、連続相液体の送液速度、相分離誘起剤を含む流体の送液速度を、それぞれ10μl/min、125μl/min、5μl/minとした以外は実施例1と同様にして、第1〜3工程まで行い、捕集容器25にコアセルベートカプセルの分散液を捕集した。
得られた分散液において、コアセルベートカプセルは凝集していたため、さらに以下のような第4工程を行った。すなわち、ホットスターラーと、星形ヘッド撹拌子を用いて、捕集容器25を50℃に加温した湯浴中に設置して950rpm、10分間の条件で撹拌した後、撹拌を続けながら湯浴に氷を添加して10℃とし、30分間冷却した。
このように第4工程を経た分散液を観察したところ、得られたコアセルベートカプセルは、図8に示すように、ドデカン溶液の周囲に、連続相液体がゲル化したコアセルベート膜が形成され、カプセルの核の平均粒径が97μm、粒径分散度が2.1%であり、均一な核を含む単核マイクロカプセルであった。
このように第3工程で得られた分散液を加熱下で撹拌してから冷却する第4工程をさらに実施することにより、表面にコアセルベート膜が形成され、合一や分裂、凝集が非常に抑制され、粒径分散度の非常に良好な良質な単核マイクロカプセルを得ることができた。
これは、第4工程では加熱下で撹拌を実施したために、コアセルベート膜の流動性を増加させて内容物を保護し、コアセルベートカプセルの破壊を抑制しつつ、コアセルベートカプセル同士の合一や分裂、さらには凝集を低減させることができたためと考えられる。
[Example 2]
The same as Example 1 except that the liquid feeding speed of the dispersed phase liquid, the liquid feeding speed of the continuous phase liquid, and the liquid feeding speed of the fluid containing the phase separation inducer were 10 μl / min, 125 μl / min, and 5 μl / min, respectively. Then, the first to third steps were performed, and the coacervate capsule dispersion liquid was collected in the collection container 25.
In the obtained dispersion, the coacervate capsules were agglomerated, and therefore, the following fourth step was performed. That is, using a hot stirrer and a star-shaped head stirrer, the collection container 25 is placed in a hot water bath heated to 50 ° C. and stirred at 950 rpm for 10 minutes, and then the hot water bath is kept stirring. Ice was added to 10 ° C. and cooled for 30 minutes.
Thus, when the dispersion liquid which passed through the 4th process was observed, as shown in FIG. 8, the coacervate film | membrane which the continuous phase liquid gelatinized was formed around the dodecane solution as shown in FIG. The average particle size of the nuclei was 97 μm, the particle size dispersion was 2.1%, and it was a mononuclear microcapsule containing uniform nuclei.
In this way, by further implementing the fourth step of stirring the dispersion obtained in the third step and then cooling it, a coacervate film is formed on the surface, and coalescence, splitting, and aggregation are greatly suppressed. As a result, it was possible to obtain high-quality mononuclear microcapsules with very good particle size dispersion.
This is because the agitation was carried out under heating in the fourth step, thereby increasing the fluidity of the coacervate membrane to protect the contents and suppressing the destruction of the coacervate capsules, This is probably because aggregation could be reduced.

本発明のマイクロカプセルの製造方法で使用される製造システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the manufacturing system used with the manufacturing method of the microcapsule of this invention. 図1の製造システムが備える微小流路構造体の斜視図である。It is a perspective view of the microchannel structure with which the manufacturing system of FIG. 1 is provided. 図2の微小流路構造体の備える流路と各導入口および排出口の形状を概略的に示す平面図(a)、連続相流路および排出流路の流路断面を示す断面図(b)、分散相流路の流路断面を示す断面図(c)である。FIG. 2A is a plan view schematically showing the shapes of the flow channels and the respective inlets and discharge ports provided in the micro flow channel structure of FIG. 2, and FIG. ) Is a cross-sectional view (c) showing a cross section of the dispersed phase flow path. 本発明のマイクロカプセルの製造方法で使用される微小流路構造体の他の一例を示す斜視図である。It is a perspective view which shows another example of the microchannel structure used with the manufacturing method of the microcapsule of this invention. 図4の微小流路構造体の備える流路と各導入口および排出口の形状を概略的に示す平面図(a)、連続相流路および排出流路の流路断面を示す断面図(b)、分散相流路の流路断面を示す断面図(c)、相分離誘起剤流路の流路断面を示す断面図(d)である。FIG. 4A is a plan view schematically showing the shapes of the flow channels and the respective inlets and discharge ports provided in the micro flow channel structure of FIG. 4, and FIG. 5B is a cross-sectional view showing the cross sections of the continuous phase flow channels and the discharge channels. ), A cross-sectional view (c) showing the cross section of the dispersed phase flow path, and a cross sectional view (d) showing the cross section of the phase separation inducer flow path. 実施例1で得られたマイクロカプセルを示す光学顕微鏡写真である。2 is an optical micrograph showing the microcapsules obtained in Example 1. FIG. 比較例1で得られたマイクロカプセルを示す光学顕微鏡写真である。2 is an optical micrograph showing the microcapsules obtained in Comparative Example 1. 実施例2で得られたマイクロカプセルを示す光学顕微鏡写真である。2 is an optical micrograph showing the microcapsules obtained in Example 2. FIG. 従来の微小流路構造体の備える流路と各導入口および排出口の形状を概略的に示す平面図(a)、連続相流路および分散相流路の流路断面を示す断面図(b)である。Plan view (a) schematically showing the shape of the flow path and each inlet and outlet provided in the conventional micro flow path structure, and cross-sectional view showing the cross section of the continuous phase flow path and the dispersed phase flow path (b) ).

符号の説明Explanation of symbols

10A,10B 微小流路構造体
11 基板
12 流路
14 連続相流路
15 分散相流路
16 合流部
17 排出流路

10A, 10B Microchannel structure 11 Substrate 12 Channel 14 Continuous phase channel 15 Dispersed phase channel 16 Junction portion 17 Discharge channel

Claims (4)

連続相を形成する液体と分散相を形成する液体とを流路内で合流させて、前記連続相中に前記分散相が分散したエマルションを調製する第1工程と、
前記エマルションに、相分離誘起剤を含む流体を流路内で合流させ、前記分散相の周囲に前記連続相中の成分からなる濃厚相を形成する第2工程と、
前記濃厚相をコアセルベート膜化し、前記分散相の周囲にコアセルベート膜が形成されたコアセルベートカプセルの分散液を調製する第3工程とを有することを特徴とするマイクロカプセルの製造方法。
A first step in which a liquid that forms a continuous phase and a liquid that forms a dispersed phase are merged in a flow path to prepare an emulsion in which the dispersed phase is dispersed in the continuous phase;
A second step in which a fluid containing a phase separation inducer is joined to the emulsion in a flow path to form a concentrated phase composed of components in the continuous phase around the dispersed phase;
And a third step of preparing a coacervate capsule dispersion in which the concentrated phase is converted into a coacervate film and a coacervate film is formed around the dispersed phase.
前記第3工程では、前記濃厚相をゲル化してコアセルベート膜化することを特徴とする請求項1に記載のマイクロカプセルの製造方法。   The method for producing a microcapsule according to claim 1, wherein in the third step, the concentrated phase is gelled to form a coacervate film. 前記第2工程を前記ゲル化の温度より高い温度で行うことを特徴とする請求項2に記載のマイクロカプセルの製造方法。   The method for producing a microcapsule according to claim 2, wherein the second step is performed at a temperature higher than the gelation temperature. 前記第3工程の後に、前記分散液を加熱下で撹拌してから冷却する第4工程を有することを特徴とする請求項2または3に記載のマイクロカプセルの製造方法。   The method for producing microcapsules according to claim 2 or 3, further comprising a fourth step of stirring the dispersion under heating and then cooling after the third step.
JP2005239499A 2005-08-22 2005-08-22 Microcapsule manufacturing method using microchannel structure Expired - Fee Related JP5072057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239499A JP5072057B2 (en) 2005-08-22 2005-08-22 Microcapsule manufacturing method using microchannel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239499A JP5072057B2 (en) 2005-08-22 2005-08-22 Microcapsule manufacturing method using microchannel structure

Publications (2)

Publication Number Publication Date
JP2007054681A JP2007054681A (en) 2007-03-08
JP5072057B2 true JP5072057B2 (en) 2012-11-14

Family

ID=37918623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239499A Expired - Fee Related JP5072057B2 (en) 2005-08-22 2005-08-22 Microcapsule manufacturing method using microchannel structure

Country Status (1)

Country Link
JP (1) JP5072057B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732213A (en) * 2016-12-27 2017-05-31 中国科学院合肥物质科学研究院 A kind of golden nanometer particle/hydrogel composite material and its preparation method and application
CN107008514A (en) * 2017-04-24 2017-08-04 北京交通大学 A kind of magnetic liquid experiment chip determined for multisample

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061436A (en) * 2007-09-10 2009-03-26 Ricoh Co Ltd Method and apparatus for manufacturing encapsulated particle, particle for electrophoresis display device, and electrophoresis display device
JP4849648B2 (en) 2007-11-09 2012-01-11 エム・テクニック株式会社 Method for producing emulsion
FR2931082B1 (en) * 2008-05-13 2010-05-21 Commissariat Energie Atomique DEVICE, SYSTEM AND MICROFLUIDIC PROCESS FOR THE CONTROLLED ENCAPSULATION OF PARTICLES OR AMOUNTS OF PARTICLES
CN106669556B (en) * 2017-01-09 2019-05-21 中国工程物理研究院激光聚变研究中心 A method of millimeter grade particles are prepared using transformation microfluidic channel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PH19942A (en) * 1980-11-18 1986-08-14 Sintex Inc Microencapsulation of water soluble polypeptides
JPH08151322A (en) * 1994-09-30 1996-06-11 Takeda Chem Ind Ltd Oral sustained release agent
JPH11105429A (en) * 1997-10-02 1999-04-20 Fuji Photo Film Co Ltd Thermosensible recording material
JP2002282678A (en) * 2001-03-28 2002-10-02 Fuji Photo Film Co Ltd Method for producing microcapsule and thermal recording material
JP2002282679A (en) * 2001-03-28 2002-10-02 Fuji Photo Film Co Ltd Method for producing microcapsule and thermal recording material
JP2003290647A (en) * 2002-03-29 2003-10-14 Toyo Ink Mfg Co Ltd Method for producing microcapsule encapsulating electrophoretic particle dispersion and reversible display medium using the capsule
JP2004154745A (en) * 2002-09-10 2004-06-03 Tosoh Corp Microchannel structure for forming droplet, droplet forming method using the same and product thereof
JP4209308B2 (en) * 2003-10-29 2009-01-14 株式会社日本触媒 Method for producing microcapsules

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732213A (en) * 2016-12-27 2017-05-31 中国科学院合肥物质科学研究院 A kind of golden nanometer particle/hydrogel composite material and its preparation method and application
CN107008514A (en) * 2017-04-24 2017-08-04 北京交通大学 A kind of magnetic liquid experiment chip determined for multisample
CN107008514B (en) * 2017-04-24 2019-06-25 北京交通大学 A kind of magnetic liquid experiment chip for multisample measurement

Also Published As

Publication number Publication date
JP2007054681A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4193561B2 (en) Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure
Ofner et al. High‐throughput step emulsification for the production of functional materials using a glass microfluidic device
Liu et al. Droplet-based synthetic method using microflow focusing and droplet fusion
US8524173B2 (en) Microchannel structure and fine-particle production method using the same
Shah et al. Designer emulsions using microfluidics
Shui et al. Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics
JP4042683B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP5335784B2 (en) Generation of monodisperse droplets
EP1358931A2 (en) Fine channel device, fine particle producing method and solvent extraction method
JP3777427B2 (en) Emulsion production method and production apparatus
US20090273105A1 (en) Method and system for performing an interfacial reaction in a microfluidic device
Chen et al. Microfluidic generation of high-viscosity droplets by surface-controlled breakup of segment flow
JP5072057B2 (en) Microcapsule manufacturing method using microchannel structure
Boskovic et al. Synthesis of polymer particles and capsules employing microfluidic techniques
JP5076742B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP4305145B2 (en) Particle production method using micro flow channel
JP4186637B2 (en) Particle manufacturing method and microchannel structure therefor
JP5146562B2 (en) Microchannel structure and solvent extraction method using microchannel structure
JP4896418B2 (en) Method for producing organic fine particles and dispersion thereof, and organic fine particles obtained thereby and dispersion thereof
JP4639624B2 (en) Micro channel structure
JP2005238118A (en) Method and device for preparing solidified particle using micro-flow channel structure
JP2008168175A (en) Method and device for manufacturing shelled micro-bubble
Hattoria et al. Fabrication of composite particles through single pass using a coaxial tube reactor
JP4743165B2 (en) Micro channel structure
JP2005054023A (en) Method for producing polymer particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees