Nothing Special   »   [go: up one dir, main page]

JP5070920B2 - Overlay wear-resistant iron-base alloy - Google Patents

Overlay wear-resistant iron-base alloy Download PDF

Info

Publication number
JP5070920B2
JP5070920B2 JP2007123635A JP2007123635A JP5070920B2 JP 5070920 B2 JP5070920 B2 JP 5070920B2 JP 2007123635 A JP2007123635 A JP 2007123635A JP 2007123635 A JP2007123635 A JP 2007123635A JP 5070920 B2 JP5070920 B2 JP 5070920B2
Authority
JP
Japan
Prior art keywords
iron
wear
build
copper
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007123635A
Other languages
Japanese (ja)
Other versions
JP2008279463A (en
Inventor
稔 河崎
裕介 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007123635A priority Critical patent/JP5070920B2/en
Publication of JP2008279463A publication Critical patent/JP2008279463A/en
Application granted granted Critical
Publication of JP5070920B2 publication Critical patent/JP5070920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は肉盛耐摩耗鉄基合金に関する。本発明の肉盛耐摩耗鉄基合金は例えば摺動材料に適用することができる。   The present invention relates to a built-up wear-resistant iron-based alloy. The overlay wear-resistant iron-based alloy of the present invention can be applied to, for example, a sliding material.

従来、肉盛耐摩耗合金として、銅を主成分とする銅基合金のものや鉄を主成分とする鉄基合金のものが知られている。   Conventionally, as a build-up wear-resistant alloy, a copper-based alloy mainly composed of copper or an iron-based alloy mainly composed of iron is known.

肉盛耐摩耗銅基合金としては、例えば特許文献1に、重量%で、ニッケル:5.0〜20.0%、シリコン:0.5〜5.0%、マンガン:3.0〜30.0%、及び、マンガンと結合してラーベス相を形成すると共にシリサイドを形成する元素:3.0〜30.0%及び不可避不純物を含み、残部が銅の組成を有するCu−Ni−Mn系合金が記載されている。   As a build-up wear-resistant copper-based alloy, for example, in Patent Document 1, by weight%, nickel: 5.0-20.0%, silicon: 0.5-5.0%, manganese: 3.0-30. Cu-Ni-Mn based alloy containing 0% and element that forms Laves phase by combining with manganese and forms silicide: 3.0 to 30.0% and unavoidable impurities, with the balance being copper Is described.

一方、肉盛耐摩耗鉄基合金としては、例えば特許文献2に、重量%で、クロム:30〜40%、ニッケル:15〜31%、モリブデン:7〜20%、炭素:0.7〜2.2%、シリコン:1.5%以下及び不可避不純物を含み、残部が鉄の組成を有するFe−Cr−Ni系合金が記載されている。   On the other hand, as a build-up wear-resistant iron-based alloy, for example, in Patent Document 2, by weight%, chromium: 30-40%, nickel: 15-31%, molybdenum: 7-20%, carbon: 0.7-2 Fe-Cr-Ni alloys containing 2%, silicon: 1.5% or less and inevitable impurities with the balance being iron are described.

銅基合金は、鉄基合金と比べて、融点が400℃程度も低いために耐熱性が低く、高温領域での耐摩耗性が低い。このため、例えば自動車エンジンシリンダヘッドのバルブシート部用の肉盛材料として銅基合金を適用することには、高温摩耗特性の点から限界があった。   A copper-based alloy has a melting point as low as about 400 ° C. as compared with an iron-based alloy, and therefore has low heat resistance and low wear resistance in a high temperature region. For this reason, there has been a limit from the viewpoint of high-temperature wear characteristics, for example, to apply a copper-based alloy as a build-up material for a valve seat part of an automobile engine cylinder head.

一方、鉄基合金は、銅基合金と比べて、高温領域での耐摩耗性を高めるのに有利となる。しかし、鉄基合金は銅基合金と比べて自己潤滑性に劣る。また、鉄基マトリックス中に分散するクロム炭化物やモリブデン炭化物等よりなる硬質粒子が、摺動の相手部材を攻撃する。このため、例えば自動車エンジンシリンダヘッドのバルブシート部用の肉盛材料として鉄基合金を使用すれば、相手部材としてのエンジンバルブの摩耗量が増大するという問題があった。
特開2005−256147号公報 特開平2−117797号公報
On the other hand, an iron-based alloy is advantageous in improving wear resistance in a high temperature region as compared with a copper-based alloy. However, iron-based alloys are less self-lubricating than copper-based alloys. Further, hard particles made of chromium carbide, molybdenum carbide, or the like dispersed in the iron-based matrix attack the sliding counterpart member. For this reason, for example, when an iron-based alloy is used as a build-up material for a valve seat portion of an automobile engine cylinder head, there is a problem that the amount of wear of an engine valve as a counterpart member increases.
JP 2005-256147 A Japanese Patent Laid-Open No. 2-17797

ところで近年、肉盛耐摩耗合金は様々な環境で使用されつつあり、しかもその使用条件は一層過酷になりつつある。特に自動車業界においては排気ガスクリーン規制が厳しくなっており、これに対処すべく燃料の希薄化により燃焼温度が高温化している。このため、自動車用摺動部品においては、高温領域での耐摩耗性の要求がより厳しくなってきている。   By the way, in recent years, the overlay wear resistant alloy is being used in various environments, and the use conditions are becoming more severe. Particularly in the automobile industry, exhaust gas screen regulations are becoming stricter, and in order to cope with this, the combustion temperature is increased due to the dilution of fuel. For this reason, in automotive sliding parts, the requirement for wear resistance in a high temperature region has become more severe.

よって、産業界、特に自動車業界においては、上記公報に記載の肉盛耐摩耗合金よりも、さらに耐摩耗性に優れた肉盛耐摩耗合金が要望されている。   Therefore, in the industry, particularly in the automobile industry, there is a demand for a built-up wear-resistant alloy that is further superior in wear resistance to the built-up wear-resistant alloy described in the above publication.

本発明は上記した実情に鑑みてなされたものであり、高温領域における耐摩耗性の向上を図り、かつ相手攻撃性の低下を図った肉盛耐摩耗鉄基合金を提供することを課題とする。   This invention is made | formed in view of the above-mentioned situation, and it aims at improving the wear resistance in a high temperature area | region, and providing a built-up wear-resistant iron-base alloy which aimed at the fall of the other party aggression property. .

第1発明は、本発明の肉盛耐摩耗鉄基合金を組成面から特定するものである。すなわち、第1発明に係る肉盛耐摩耗鉄基合金は、鉄を主成分とする鉄基合金であって、液相状態で鉄と2相分離し、かつ固相状態で鉄基マトリックス中に粒子状に分散する配合割合で添加された銅と、鉄と結合してラーベス相を形成するとともに粒子状のシリサイドを形成するラーベス相粒子形成元素と、ニッケルと、シリコンとを含むことを特徴とするものである。   1st invention specifies the build-up wear-resistant iron-base alloy of this invention from a composition surface. That is, the build-up wear-resistant iron-based alloy according to the first invention is an iron-based alloy containing iron as a main component, and is two-phase separated from iron in a liquid phase state and in an iron-based matrix in a solid phase state. It includes copper added at a blending ratio dispersed in a particulate form, a Laves phase particle-forming element that forms a Laves phase by combining with iron and forms a particulate silicide, nickel, and silicon. To do.

前記ラーベス相粒子形成元素は、モリブデン、タングステン及びバナジウムよりなる群から選ばれる少なくとも1種であることが好ましい。   The Laves phase particle forming element is preferably at least one selected from the group consisting of molybdenum, tungsten, and vanadium.

第1発明に係る肉盛耐摩耗鉄基合金は、質量%で、鉄:50%以上、銅:12.5〜26.0%、ラーベス相粒子形成元素:8.0〜10.0%、ニッケル:8.0〜10.0%及びシリコン:2.0〜2.5%を含むことが好ましい。   The build-up wear-resistant iron-based alloy according to the first invention is, in mass%, iron: 50% or more, copper: 12.5 to 26.0%, Laves phase particle forming element: 8.0 to 10.0%, It is preferable to contain nickel: 8.0 to 10.0% and silicon: 2.0 to 2.5%.

第1発明に係る肉盛耐摩耗鉄基合金は、ニオブ及び炭素をさらに含むことが好ましい。これらの元素は、質量%で、ニオブ:0.7〜1.3%、炭素:0.07〜0.13%含まれることが好ましい。   The build-up wear-resistant iron-based alloy according to the first invention preferably further contains niobium and carbon. These elements are preferably contained by mass%, containing niobium: 0.7 to 1.3% and carbon: 0.07 to 0.13%.

第2発明は、本発明の肉盛耐摩耗鉄基合金を組織面から特定したものである。すなわち、第2発明に係る肉盛耐摩耗鉄基合金は、鉄を主成分とする鉄基合金であって、鉄を主成分とする鉄基マトリックスと、該鉄基マトリックス中に分散し、銅を主成分とする銅粒子と、該銅粒子中に分散し、ラーベス相をもつシリサイドよりなる硬質ラーベス相粒子とを備えていることを特徴とするものである。   2nd invention specifies the build-up wear-resistant iron-base alloy of this invention from the surface of a structure | tissue. That is, the build-up wear-resistant iron-based alloy according to the second invention is an iron-based alloy containing iron as a main component, an iron-based matrix containing iron as a main component, and dispersed in the iron-based matrix. And a hard Laves phase particle made of silicide having a Laves phase dispersed in the copper particle.

前記鉄基マトリックスは、Fe−Ni系の固溶体と、Fe−Ni系のシリサイドとを主要素としていることが好ましい。   The iron-based matrix preferably includes a Fe—Ni-based solid solution and a Fe—Ni-based silicide as main elements.

前記硬質ラーベス層粒子は、Fe−Mo系のシリサイド、Fe−W系のシリサイド及びFe−V系のシリサイドよりなる群から選ばれる少なくとも1種よりなることが好ましい。   The hard Laves layer particles are preferably made of at least one selected from the group consisting of Fe—Mo based silicide, Fe—W based silicide and Fe—V based silicide.

第2発明に係る肉盛耐摩耗鉄基合金は、前記銅粒子中に分散し、ニオブ炭化物、モリブデン炭化物及びニオブとモリブデンとの複合炭化物よりなる群から選ばれる少なくとも1種よりなる硬質炭化物粒子をさらに備えていることが好ましい。   The build-up wear-resistant iron-based alloy according to the second invention is dispersed in the copper particles, and hard carbide particles made of at least one selected from the group consisting of niobium carbide, molybdenum carbide, and composite carbide of niobium and molybdenum. Furthermore, it is preferable to provide.

本発明の肉盛耐摩耗鉄基合金では、銅と比べて耐熱性の高い鉄を主成分とする鉄基マトリックスにより、高温領域においても高い耐摩耗性を確保することができる。   In the built-up wear-resistant iron-based alloy of the present invention, high wear resistance can be ensured even in a high temperature region by an iron-based matrix mainly composed of iron having higher heat resistance than copper.

また、液相状態で鉄と2相分離し、かつ固相状態で鉄基マトリックス中に粒子状に分散する配合割合で添加された銅は、鉄基マトリックス中に銅粒子として分散している。この鉄基マトリックス中に分散する銅粒子は、鉄基マトリックスよりも硬度の低いものである。すなわち、本発明の肉盛耐摩耗鉄基合金では、硬い鉄基マトリックス中に軟らかい銅粒子が分散している。   Moreover, the copper added in the compounding ratio which is separated into two phases from iron in the liquid phase state and dispersed in the iron base matrix in the solid phase is dispersed as copper particles in the iron base matrix. The copper particles dispersed in the iron-based matrix have a lower hardness than the iron-based matrix. That is, in the overlay wear-resistant iron-based alloy of the present invention, soft copper particles are dispersed in a hard iron-based matrix.

ここに、モリブデン、タングステン又はバナジウム等のラーベス相粒子形成元素は、鉄と結合してラーベス相を形成するとともにシリコンと結合してシリサイドを形成する。こうして形成されたラーベス相をもつシリサイドよりなる硬質ラーベス相粒子は、高温における耐摩耗性を高める。そして、本発明の肉盛耐摩耗鉄基合金では、この硬質ラーベス相粒子が硬い鉄基マトリックスではなく、軟らかい銅基粒子中に分散している。   Here, a Laves phase particle forming element such as molybdenum, tungsten, or vanadium forms a Laves phase by combining with iron and forms silicide by combining with silicon. The hard Laves phase particles made of silicide having the Laves phase thus formed enhance the wear resistance at high temperatures. And in the build-up wear-resistant iron-based alloy of the present invention, the hard Laves phase particles are dispersed not in the hard iron-based matrix but in the soft copper-based particles.

このように、本発明の肉盛耐摩耗鉄基合金では、硬い鉄基マトリックス中に軟らかい銅粒子が分散し、かつ、この軟らかい銅粒子中に硬質ラーベス相粒子が分散している。このような組織によれば、後述する実施例のデータで示されるように、例えば硬い鉄基マトリックス中に鉄基マトリックスよりもさらに硬い硬質粒子が分散してなる従来の肉盛耐摩耗鉄基合金と比べて、高温における耐摩耗性が高く、かつ、相手攻撃性が低くなる。   Thus, in the build-up wear-resistant iron-based alloy of the present invention, soft copper particles are dispersed in a hard iron-based matrix, and hard Laves phase particles are dispersed in the soft copper particles. According to such a structure, as shown in the data of the examples described later, for example, a conventional overlay wear-resistant iron-based alloy in which hard particles harder than the iron-based matrix are dispersed in a hard iron-based matrix. Compared to, the wear resistance at high temperature is high and the opponent attack is low.

なお、本明細書では特に断らない限り、%は質量%を意味する。また、本発明の肉盛耐摩耗鉄基合金において、100質量%から添加元素の総量を差し引いた残部の鉄の質量%は各添加元素の単独の質量%を上回る。   In the present specification, unless otherwise specified,% means mass%. Moreover, in the build-up wear-resistant iron-based alloy of the present invention, the remaining iron mass% obtained by subtracting the total amount of additive elements from 100 mass% exceeds the individual mass% of each additive element.

したがって、本発明の肉盛耐摩耗鉄基合金によれば、高温領域における耐摩耗性のさらなる向上と、相手攻撃性の低下とを図ることが可能となる。   Therefore, according to the build-up wear-resistant iron-based alloy of the present invention, it is possible to further improve the wear resistance in the high temperature region and reduce the opponent attack.

本発明の肉盛耐摩耗鉄基合金は、鉄を主成分とする鉄基合金であって、銅と、ラーベス相粒子形成元素と、ニッケルと、シリコンとを含む組成を有する。また、本発明の肉盛耐摩耗鉄基合金は、鉄を主成分とする鉄基マトリックスと、この鉄基マトリックス中に分散し、銅を主成分とする銅粒子と、この銅粒子中に分散し、ラーベス相をもつシリサイドよりなる硬質ラーベス相粒子とを備える組織を有する。   The build-up wear-resistant iron-based alloy of the present invention is an iron-based alloy containing iron as a main component, and has a composition containing copper, Laves phase particle forming elements, nickel, and silicon. Further, the overlay wear-resistant iron-based alloy of the present invention includes an iron-based matrix mainly composed of iron, dispersed in the iron-based matrix, copper particles mainly composed of copper, and dispersed in the copper particles. And a structure having hard Laves phase particles made of silicide having Laves phase.

鉄基マトリックスは、鉄を主成分とするものであって、Fe−Ni系の固溶体と、Fe−Ni系のシリサイドとを主要素として形成された形態とすることができる。Fe−Ni系のシリサイドは柱状共晶成分であり、肉盛性の向上に寄与する。   The iron-based matrix has iron as a main component, and can be formed with a Fe—Ni-based solid solution and a Fe—Ni-based silicide as main elements. Fe-Ni-based silicide is a columnar eutectic component and contributes to the improvement of buildup.

本発明の肉盛耐摩耗鉄基合金において、銅は、液相状態で鉄と2相分離し、かつ固相状態で鉄基マトリックス中に粒子状に分散する配合割合で添加されている。すなわち、銅は鉄基マトリックス中に銅粒子として分散している。   In the build-up wear-resistant iron-based alloy of the present invention, copper is added in such a blending ratio that it is two-phase separated from iron in the liquid phase and is dispersed in the form of particles in the iron-based matrix in the solid phase. That is, copper is dispersed as copper particles in the iron matrix.

銅の配合割合は、本発明の肉盛耐摩耗鉄基合金の全体を100%としたとき、12.5〜26.0%であることが好ましく、12.5〜20.%であることがより好ましく、12.5〜15.0%であることが特に好ましい。銅の配合割合が少なすぎると、鉄基マトリックス中に分散する銅粒子が不足する。鉄基マトリックス中に分散する銅粒子が不足すると、ラーベス相が減少し、潤滑摩耗特性が激減する。一方、銅の配合割合が多すぎると、鉄基マトリックス中で銅が粒子状に分散せずに塊状となってホモジニアス分離してしまう。鉄基マトリックス中で銅がホモジニアス分離すると、銅と鉄が大きく分離するため、分散効果が消滅する。   The blending ratio of copper is preferably 12.5 to 26.0%, preferably 12.5 to 26.0% when the entire build-up wear-resistant iron-based alloy of the present invention is taken as 100%. % Is more preferable, and 12.5 to 15.0% is particularly preferable. When there are too few compounding ratios of copper, the copper particle disperse | distributed in an iron-base matrix will run short. Insufficient copper particles dispersed in the iron-based matrix reduces the Laves phase and drastically reduces the lubricating wear properties. On the other hand, when there are too many compounding ratios of copper, copper will not be disperse | distributed in a particulate form in an iron-based matrix, but will become a lump and homogeneously separate. When copper is homogeneously separated in the iron matrix, copper and iron are largely separated, and the dispersion effect disappears.

鉄基マトリックス中に分散する銅粒子の大きさとしては、肉盛耐摩耗鉄基合金の組成や凝固速度等にも影響されるが、30〜1000μm程度であることが好ましく、50〜250μm程度であることがより好ましい。銅粒子が大きすぎると、耐熱性不足となり、逆に小さすぎると、潤滑性不足となる。   The size of the copper particles dispersed in the iron-based matrix is influenced by the composition and solidification rate of the build-up wear-resistant iron-based alloy, but is preferably about 30 to 1000 μm, and about 50 to 250 μm. More preferably. If the copper particles are too large, the heat resistance is insufficient, and conversely if the copper particles are too small, the lubricity is insufficient.

ラーベス相粒子形成元素は、鉄と結合してラーベス相を形成するとともに粒子状のシリサイドを形成することで、ラーベス相をもつシリサイドよりなる硬質ラーベス相粒子を生成する。この硬質ラーベス相粒子は、鉄基マトリックス中に分散した銅粒子中に分散している。また、硬質ラーベス相粒子は、鉄基マトリックスよりも硬度の高いものである。   The Laves phase particle-forming element combines with iron to form a Laves phase and forms a particulate silicide, thereby generating hard Laves phase particles made of silicide having a Laves phase. The hard Laves phase particles are dispersed in copper particles dispersed in an iron-based matrix. The hard Laves phase particles are higher in hardness than the iron-based matrix.

ラーベス相粒子形成元素の種類としては、鉄と結合してラーベス相を形成するとともに粒子状のシリサイドを形成することで、ラーベス相をもつシリサイドよりなる硬質ラーベス相粒子を生成するものであれば特に限定されないが、モリブデン、タングステン及びバナジウムよりなる群から選ばれる少なくとも1種であることが好ましい。   The type of Laves phase particle-forming element is particularly selected as long as it forms hard Laves phase particles made of silicide having Laves phase by forming Laves phase by combining with iron and forming particulate silicide. Although not limited, it is preferably at least one selected from the group consisting of molybdenum, tungsten and vanadium.

ラーベス相粒子形成元素の配合割合は、本発明の肉盛耐摩耗鉄基合金の全体を100%としたとき、8.0〜10.0%であることが好ましい。ラーベス相粒子形成元素の配合割合が少なすぎると、銅粒子中に分散する硬質ラーベス相粒子が不足し、高温における耐摩耗性を高める効果が低下する。一方、ラーベス相粒子形成元素の配合割合が多すぎると、肉盛耐摩耗鉄基合金の靭性が低くなり、対象物に肉盛する場合にワレが発生し易くなる。   The blending ratio of the Laves phase particle forming element is preferably 8.0 to 10.0% when the entire build-up wear-resistant iron-based alloy of the present invention is 100%. When the mixing ratio of Laves phase particle forming elements is too small, the hard Laves phase particles dispersed in the copper particles are insufficient, and the effect of increasing the wear resistance at high temperatures is lowered. On the other hand, when the mixing ratio of Laves phase particle forming elements is too large, the toughness of the build-up wear-resistant iron-based alloy becomes low, and cracking is likely to occur when building up on an object.

ニッケルは、主に鉄基マトリックス中に存在し、Fe−Ni系の固溶体やFe−Ni系のシリサイドを形成している。   Nickel is mainly present in the iron-based matrix and forms an Fe—Ni-based solid solution or Fe—Ni-based silicide.

ニッケルの配合割合は、本発明の肉盛耐摩耗鉄基合金の全体を100%としたとき、8.0〜10.0%であることが好ましい。ニッケルの配合割合が少なすぎると、耐熱性が低下し、高温における耐摩耗性を高める効果が低下する。一方、ニッケルの配合割合が多すぎると、肉盛耐摩耗鉄基合金の靭性が低くなり、対象物に肉盛する場合にワレが発生し易くなる。   The mixing ratio of nickel is preferably 8.0 to 10.0% when the entire build-up wear-resistant iron-based alloy of the present invention is defined as 100%. When the mixing ratio of nickel is too small, the heat resistance is lowered, and the effect of increasing the wear resistance at high temperatures is lowered. On the other hand, if the proportion of nickel is too large, the toughness of the build-up wear-resistant iron-based alloy becomes low, and cracking is likely to occur when depositing on an object.

シリコンは、鉄基マトリックス中に存在してFe−Ni系のシリサイドを形成したり、あるいは銅粒子中に存在してFe−Mo系のシリサイド、Fe−W系のシリサイド及び/又はFe−V系のシリサイドを形成したりしている。   Silicon is present in an iron-based matrix to form a Fe—Ni-based silicide, or silicon is present in copper particles to be Fe—Mo-based silicide, Fe—W-based silicide and / or Fe—V-based. The silicide is formed.

シリコンの配合割合は、本発明の肉盛耐摩耗鉄基合金の全体を100%としたとき、2.0〜2.5%であることが好ましい。シリコンの配合割合が少なすぎると、ラーベス相が不足し、高温における耐摩耗性を高める効果が低下する。一方、シリコンの配合割合が多すぎると、ケイ化物が多量に晶出して、肉盛耐摩耗鉄基合金の靭性が低くなり、対象物に肉盛する場合にワレが発生し易くなる。   The blending ratio of silicon is preferably 2.0 to 2.5% when the entire build-up wear-resistant iron-based alloy of the present invention is 100%. If the blending ratio of silicon is too small, the Laves phase is insufficient, and the effect of increasing the wear resistance at high temperatures is reduced. On the other hand, if the blending ratio of silicon is too large, a large amount of silicide is crystallized, the toughness of the built-up wear-resistant iron-based alloy is lowered, and cracking is likely to occur when building up on an object.

本発明の肉盛耐摩耗鉄基合金は、ニオブ及び炭素をさらに含む組成を有することが好ましい。ニオブ及び炭素は、モリブデンと共に、ニオブ炭化物、モリブデン炭化物及びニオブとモリブデンとの複合炭化物よりなる群から選ばれる少なくとも1種よりなる硬質炭化物粒子を生成する。この硬質炭化物粒子は、硬質ラーベス相粒子と同様、鉄基マトリックス中に分散した銅粒子中に分散する。すなわち、本発明の肉盛耐摩耗鉄基合金は、ニオブ及び炭素が添加されることにより、銅粒子中に分散し、ニオブ炭化物、モリブデン炭化物及びニオブとモリブデンとの複合炭化物よりなる群から選ばれる少なくとも1種よりなる硬質炭化物粒子をさらに備えていることが好ましい。これにより、高温における耐摩耗性をより高めることができる。この硬質炭化物粒子は、鉄基マトリックスよりも硬度の高いものである。   The overlay wear-resistant iron-based alloy of the present invention preferably has a composition further containing niobium and carbon. Niobium and carbon together with molybdenum produce hard carbide particles composed of at least one selected from the group consisting of niobium carbide, molybdenum carbide, and composite carbide of niobium and molybdenum. The hard carbide particles are dispersed in the copper particles dispersed in the iron-based matrix, like the hard Laves phase particles. That is, the build-up wear-resistant iron-based alloy of the present invention is selected from the group consisting of niobium carbide, molybdenum carbide, and composite carbide of niobium and molybdenum dispersed in copper particles by adding niobium and carbon. It is preferable to further include at least one kind of hard carbide particles. Thereby, the wear resistance at high temperatures can be further increased. The hard carbide particles are higher in hardness than the iron-based matrix.

ニオブの配合割合は、本発明の肉盛耐摩耗鉄基合金の全体を100%としたとき、0.7〜1.3%であることが好ましい。ニオブの配合割合が少なすぎると、銅粒子中に分散する硬質炭化物粒子が不足するため、高温における耐摩耗性を高める効果が低下する。一方、ニオブの配合割合が多すぎると、ニオブ炭化物が多量に晶出して、肉盛耐摩耗鉄基合金の靭性が低くなり、対象物に肉盛する場合にワレが発生し易くなる。   The mixing ratio of niobium is preferably 0.7 to 1.3% when the entire build-up wear-resistant iron-based alloy of the present invention is 100%. When the mixing ratio of niobium is too small, the hard carbide particles dispersed in the copper particles are insufficient, so that the effect of increasing the wear resistance at high temperatures is lowered. On the other hand, when the mixing ratio of niobium is too large, a large amount of niobium carbide is crystallized, the toughness of the built-up wear-resistant iron-based alloy is lowered, and cracking is likely to occur when building up on an object.

炭素の配合割合は、本発明の肉盛耐摩耗鉄基合金の全体を100%としたとき、0.07〜0.13%であることが好ましい。炭素の配合割合が少なすぎると、銅粒子中に分散する硬質炭化物粒子が不足するため、高温における耐摩耗性を高める効果が低下する。一方、炭素の配合割合が多すぎると、炭化物が多量に晶出して、肉盛耐摩耗鉄基合金の靭性が低くなり、対象物に肉盛する場合にワレが発生し易くなる。   The blending ratio of carbon is preferably 0.07 to 0.13% when the entire build-up wear-resistant iron-based alloy of the present invention is 100%. When the blending ratio of carbon is too small, the hard carbide particles dispersed in the copper particles are insufficient, and the effect of increasing the wear resistance at high temperatures is reduced. On the other hand, when the mixing ratio of carbon is too large, a large amount of carbides are crystallized, the toughness of the build-up wear-resistant iron-based alloy is lowered, and cracking is likely to occur when building up on the object.

硬質炭化物粒子の大きさとしては、肉盛耐摩耗鉄基合金の組成や凝固速度等にも影響されるが、5〜750μm程度であることが好ましく、10〜350μm程度であることがより好ましい。硬質炭化物粒子が大きすぎると、ワレを誘発しやすくなり、逆に小さすぎると、高温における耐摩耗性を高める効果が低下する。   The size of the hard carbide particles is influenced by the composition and solidification rate of the build-up wear-resistant iron-based alloy, but is preferably about 5 to 750 μm, and more preferably about 10 to 350 μm. If the hard carbide particles are too large, cracks are likely to be induced. Conversely, if the hard carbide particles are too small, the effect of increasing wear resistance at high temperatures is reduced.

本発明の肉盛耐摩耗鉄基合金は、融液状態において、鉄と銅とが2液相分離する。また、融液状態において、ラーベス相粒子形成元素、ニッケル及びシリコンは、それぞれ一層となっている。なお、ニオブ及び炭素が添加されている場合は、融液状態において、ニオブ及び炭素は、それぞれ一層となっている。そして、融液状態から冷却、凝固することで、液相から粒子が形成される。この融液状態からの冷却凝固過程では、まず、硬質ラーベス相粒子が形成され(ニオブ及び炭素が添加されている場合は、硬質炭化物粒子もほぼ同時に形成され)、その後、鉄が冷却凝固することで鉄基マトリックスが形成されて、鉄基マトリックス中に銅の液相が分散した状態となり(先に生成した硬質ラーベス相粒子や硬質炭化物粒子はこの銅の液相中に存在する)、そして最後に銅の液相が冷却凝固することで、硬質ラーベス相粒子や硬質炭化物粒子を含む銅粒子が形成されるものと考えられる。なお、鉄基マトリックスが形成されるときに、硬質ラーベス相粒子や炭化物粒子が鉄基マトリックスに取り込まれずに銅の液相中に存在するのは、形成能(生成傾向エネルギー)のためと考えられる。   The build-up wear-resistant iron-based alloy of the present invention undergoes two-liquid phase separation between iron and copper in the melt state. Further, in the melt state, Laves phase particle forming elements, nickel and silicon are each in one layer. When niobium and carbon are added, niobium and carbon are in a single layer in the melt state. And a particle | grain is formed from a liquid phase by cooling and solidifying from a melt state. In this cooling and solidification process from the melt state, first, hard Laves phase particles are formed (when niobium and carbon are added, hard carbide particles are also formed almost simultaneously), and then iron is cooled and solidified. The iron matrix is formed, and the liquid phase of copper is dispersed in the iron matrix (the hard Laves phase particles and hard carbide particles generated earlier are present in this copper liquid phase), and finally It is thought that copper particles containing hard Laves phase particles and hard carbide particles are formed by cooling and solidifying the liquid phase of copper. When the iron matrix is formed, the hard Laves phase particles and carbide particles are not taken into the iron matrix and are present in the copper liquid phase because of the formation ability (energy of formation tendency). .

本発明の肉盛耐摩耗鉄基合金は、次の少なくとも一つの実施形態を採用することができる。   The build-up wear-resistant iron-based alloy of the present invention can employ at least one of the following embodiments.

本発明の肉盛耐摩耗鉄基合金は、対象物に肉盛される肉盛合金として用いられる。肉盛方法としては、レーザビーム、電子ビームやアーク等の高密度エネルギ熱源を用いて溶着して肉盛する方法が例示される。この場合には、本発明の肉盛耐摩耗鉄基合金を粉末又はバルク体として肉盛用素材とし、その粉末又はバルク体を被肉盛部に集合させた状態で、上記したレーザビーム、電子ビームやアーク等の高密度エネルギ熱源に代表される熱源を用いて溶着して肉盛することができる。また上記した肉盛耐摩耗鉄基合金は、粉末又はバルク体に限らず、ワイヤ化又は棒状化した肉盛用素材としても良い。レーザビームとしては炭酸ガスレーザビームやYAGレーザビーム等の高エネルギ密度をもつものが例示される。肉盛される対象物の材質としてはアルミニウム、アルミニウム系合金、鉄若しくは鉄系合金又は銅若しくは銅系合金等が例示されるが、これらに限定されるものではない。対象物を構成するアルミニウム合金の基本組成としては鋳造用のアルミニウム合金、例えば、Al−Si系、Al−Cu系、Al−Mg系やAl−Zn系等を例示できるが、これらに限定されるものではない。対象物としては内燃機関や外燃機関等の機関が例示されるが、これらに限定されるものではない。内燃機関の場合には動弁系材料が例示される。この場合には、排気ポートを構成するバルブシートに適用しても良いし、吸気ポートを構成するバルブシートに適用しても良い。この場合には、本発明に係る肉盛耐摩耗鉄基合金でバルブシート自体を構成しても良いし、本発明に係る肉盛耐摩耗鉄基合金をバルブシートに肉盛することにしても良い。但し、本発明に係る肉盛耐摩耗鉄基合金は、内燃機関などの機関の動弁系材料に限定されるものではなく、耐摩耗性が要請される他の系統の摺動肉盛材料にも使用できるものである。   The build-up wear-resistant iron-based alloy of the present invention is used as a build-up alloy built on an object. Examples of the overlaying method include a method of depositing by welding using a high-density energy heat source such as a laser beam, an electron beam, or an arc. In this case, the build-up wear-resistant iron-based alloy of the present invention is used as a material for build-up as a powder or a bulk body, and the above-described laser beam, electron, and the like are assembled in the build-up portion. It can be welded and deposited using a heat source typified by a high-density energy heat source such as a beam or an arc. Moreover, the above-described build-up wear-resistant iron-based alloy is not limited to a powder or a bulk body, and may be a material for building-up that is formed into a wire or a rod. Examples of the laser beam include those having a high energy density such as a carbon dioxide laser beam and a YAG laser beam. Examples of the material of the object to be built up include aluminum, an aluminum-based alloy, iron, an iron-based alloy, copper, a copper-based alloy, and the like, but are not limited thereto. Examples of the basic composition of the aluminum alloy constituting the object include aluminum alloys for casting, such as Al—Si, Al—Cu, Al—Mg, and Al—Zn, but are not limited thereto. It is not a thing. Examples of the object include engines such as an internal combustion engine and an external combustion engine, but are not limited thereto. In the case of an internal combustion engine, valve system materials are exemplified. In this case, the present invention may be applied to a valve seat that constitutes an exhaust port, or may be applied to a valve seat that constitutes an intake port. In this case, the valve seat itself may be composed of the built-up wear-resistant iron-based alloy according to the present invention, or the build-up wear-resistant iron-based alloy according to the present invention may be built up on the valve seat. good. However, the build-up wear-resistant iron-based alloy according to the present invention is not limited to the valve train material of an engine such as an internal combustion engine, but to other types of sliding build-up materials that require wear resistance. Can also be used.

また、本発明に係る肉盛耐摩耗鉄基合金としては、肉盛後の肉盛層を構成しても良いし、肉盛前の肉盛用合金でも良い。   Moreover, as the build-up wear-resistant iron-based alloy according to the present invention, a build-up layer after build-up may be formed, or a build-up alloy before build-up may be used.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

(実施例)
実施例の肉盛耐摩耗鉄基合金に係る試料の組成(分析組成)を表1に示す。分析組成は基本的には配合組成と整合する。実施例の肉盛耐摩耗鉄基合金に係る試料の組成は、銅、モリブデン、ニッケル、シリコン、ニオブ及び炭素を含み、残部が鉄よりなり、表1に示されるように、鉄:50%以上、銅:12.5〜26.0%、ラーベス相粒子形成元素としてのモリブデン:8.0〜10.0%、ニッケル:8.0〜10.0%、シリコン:2.0〜2.5%、ニオブ:0.7〜1.3%、炭素:0.07〜0.13%の組成内に設定されている。
(Example)
Table 1 shows the composition (analytical composition) of the sample according to the build-up wear-resistant iron-based alloy of the examples. The analytical composition is basically consistent with the formulation composition. The composition of the sample according to the build-up wear-resistant iron-based alloy of the example includes copper, molybdenum, nickel, silicon, niobium and carbon, and the balance is made of iron. As shown in Table 1, iron: 50% or more , Copper: 12.5 to 26.0%, molybdenum as Laves phase particle forming element: 8.0 to 10.0%, nickel: 8.0 to 10.0%, silicon: 2.0 to 2.5 %, Niobium: 0.7 to 1.3%, and carbon: 0.07 to 0.13%.

すなわち、実施例の組成は、鉄:残部(52.7%)、銅:25.0%、ラーベス相粒子形成元素としてのモリブデン:9.0%、ニッケル:9.0%、シリコン:2.3%、ニオブ:1.0%、炭素:0.1%である。   That is, the composition of the examples is as follows: iron: balance (52.7%), copper: 25.0%, molybdenum as Laves phase particle forming element: 9.0%, nickel: 9.0%, silicon: 2. 3%, niobium: 1.0%, carbon: 0.1%.

上記試料は、高真空中で溶解した合金溶湯をガスアトマイズ処理して製造した粒度が5μm〜300μmの粉末である。このガスアトマイズ処理は、非酸化性雰囲気(アルゴンガス又は窒素ガスの雰囲気)に高温の溶湯をノズルから噴出させることにより行った。ガスアトマイズ処理で形成された上記粉末は成分均一性が高い。   The sample is a powder having a particle size of 5 μm to 300 μm manufactured by gas atomizing a molten alloy melted in a high vacuum. This gas atomization treatment was performed by ejecting a high-temperature molten metal from a nozzle into a non-oxidizing atmosphere (argon gas or nitrogen gas atmosphere). The powder formed by the gas atomization process has high component uniformity.

そして、肉盛の対象物であるアルミニウム合金(材質:AC2C)で形成された基体を準備し、上記試料(粉末状)を基体の被肉盛部に載せて試料層を形成した。この状態で、ガス供給管からシールドガス(アルゴンガス)を肉盛箇所に吹き付けつつ、炭酸ガスレーザのレーザビームをビームオシレータにより揺動させると共に、レーザビームと基体とを相対的に移動させ、これによりレーザビームを試料層に照射処理した。このとき、ビームオシレータによりレーザビームを試料層の幅方向に振った。また、このときの照射処理では、炭酸ガスレーザのレーザ出力を3.5kW、レーザビームの試料層でのスポット径を1.0mm、レーザビームと基体との相対走行速度を15mm/sec、シールドガス流量を10リットル/minとした。その後、試料を溶融凝固させて、肉盛層(肉盛厚み:1.8mm、肉盛幅:5.5mm)を基体の被肉盛部に形成した。   And the base | substrate formed with the aluminum alloy (material: AC2C) which is a build-up target object was prepared, and the said sample (powder form) was mounted on the build-up part of the base | substrate, and the sample layer was formed. In this state, while blowing shield gas (argon gas) from the gas supply pipe to the build-up location, the laser beam of the carbon dioxide laser is swung by the beam oscillator, and the laser beam and the substrate are moved relative to each other. The sample layer was irradiated with a laser beam. At this time, the laser beam was swung in the width direction of the sample layer by a beam oscillator. In this irradiation treatment, the laser output of the carbon dioxide laser is 3.5 kW, the spot diameter of the laser beam on the sample layer is 1.0 mm, the relative traveling speed between the laser beam and the substrate is 15 mm / sec, and the shielding gas flow rate Was 10 liters / min. Thereafter, the sample was melted and solidified to form a build-up layer (build-up thickness: 1.8 mm, build-up width: 5.5 mm) on the build-up portion of the substrate.

(顕微鏡観察)
こうして形成された肉盛層について、顕微鏡により肉盛組織を観察した。その顕微鏡写真(100倍)が図1に示されるように、鉄基マトリックスの全体に銅粒子が均一に分散していた。この銅粒子の粒径は20〜100μm程度であった。そして、硬質ラーベス相粒子及び硬質炭化物粒子は、鉄基マトリックスではなく銅粒子中に分散していた。なお、硬質ラーベス相粒子及び硬質炭化物粒子が鉄基マトリックスではなく銅粒子中に分散していることは、拡大顕微鏡観察により確認することができる。また、硬質炭化物粒子の粒径は5〜50μm程度であった。
(Microscopic observation)
About the built-up layer formed in this way, the built-up structure | tissue was observed with the microscope. As the micrograph (100 times) is shown in FIG. 1, the copper particles were uniformly dispersed throughout the iron-based matrix. The particle size of the copper particles was about 20 to 100 μm. The hard Laves phase particles and the hard carbide particles were dispersed not in the iron matrix but in the copper particles. The fact that the hard Laves phase particles and the hard carbide particles are dispersed not in the iron matrix but in the copper particles can be confirmed by observation with a magnified microscope. Moreover, the particle size of the hard carbide particles was about 5 to 50 μm.

また、EPMA分析装置により、上記肉盛組織を調べた。その結果、鉄基マトリックスは、Fe−Ni系の固溶体と、ニッケルを主要成分とする網目状のFe−Ni系のシリサイドとを主要素として形成されていた。また、銅粒子中に分散していた硬質ラーベス相粒子はFe−Mo系のシリサイドよりなるものであった。また、銅粒子中に分散していた硬質炭化物粒子は、ニオブ炭化物よりなるもの、モリブデン炭化物よりなるもの、及びニオブとモリブデンとの複合炭化物よりなるものであった。   Moreover, the above-mentioned build-up structure | tissue was investigated with the EPMA analyzer. As a result, the iron-based matrix was formed mainly with Fe-Ni-based solid solution and network Fe-Ni-based silicide having nickel as a main component. Further, the hard Laves phase particles dispersed in the copper particles were made of Fe-Mo based silicide. Further, the hard carbide particles dispersed in the copper particles were composed of niobium carbide, molybdenum carbide, and composite carbide of niobium and molybdenum.

さらに、X線回折分析装置により、上記肉盛組織を調べたところ、銅粒子中に分散していた硬質ラーベス相粒子たるFe−Mo系のシリサイドがラーベス相であることが確認できた。   Furthermore, when the above-mentioned build-up structure was examined with an X-ray diffraction analyzer, it was confirmed that the Fe-Mo-based silicide that is the hard Laves phase particles dispersed in the copper particles was Laves phase.

(比較例1)
比較例1の肉盛耐摩耗鉄基合金に係る試料の組成を表1に併せて示すように、比較例1の組成は、実施例の組成において銅の代わりにクロムを含むとともに、モリブデン、ニッケル、シリコン、ニオブ及び炭素を含み、残部が鉄よりなる。この試料は、前記特許文献2に記載された従来材(肉盛耐摩耗鉄基合金)に相当する。
(Comparative Example 1)
As shown in Table 1 together with the composition of the sample according to the overlay wear-resistant iron-based alloy of Comparative Example 1, the composition of Comparative Example 1 contains chromium instead of copper in the composition of the example, and molybdenum and nickel. , Silicon, niobium and carbon, with the balance being iron. This sample corresponds to the conventional material (building-up wear-resistant iron-based alloy) described in Patent Document 2.

すなわち、比較例1の組成は、鉄:残部(32.5%)、クロム:35.0%、モリブデン:10.0%、ニッケル:20.0%、シリコン:1.0%、炭素:1.5%である。   That is, the composition of Comparative Example 1 is iron: remainder (32.5%), chromium: 35.0%, molybdenum: 10.0%, nickel: 20.0%, silicon: 1.0%, carbon: 1 .5%.

上記試料は、実施例と同様のガスアトマイズ処理により製造した粉末である。   The said sample is the powder manufactured by the gas atomizing process similar to an Example.

(比較例2)
比較例2の肉盛耐摩耗銅基合金に係る試料の組成を表1に併せて示すように、比較例2の組成は、ニッケル、コバルト、モリブデン、鉄、シリコン及びクロムを含み、残部が銅よりなる。この試料は、従来材(型式:CuLS50)の肉盛耐摩耗銅基合金に相当する。
(Comparative Example 2)
As shown in Table 1, the composition of the overlay wear-resistant copper-based alloy of Comparative Example 2 is shown in Table 1. The composition of Comparative Example 2 includes nickel, cobalt, molybdenum, iron, silicon, and chromium, with the balance being copper. It becomes more. This sample corresponds to a build-up wear-resistant copper-based alloy of a conventional material (model: CuLS50).

すなわち、比較例2の組成は、残部:銅(%)、ニッケル:15.0%、コバルト:7.0%、モリブデン:6.0%、鉄:5.0%、シリコン:2.8%、クロム:1.5%である。   That is, the composition of Comparative Example 2 is as follows: balance: copper (%), nickel: 15.0%, cobalt: 7.0%, molybdenum: 6.0%, iron: 5.0%, silicon: 2.8% , Chromium: 1.5%.

上記試料は、実施例と同様のガスアトマイズ処理により製造した粉末である。   The said sample is the powder manufactured by the gas atomizing process similar to an Example.

(比較例3)
比較例3の試料の組成を表1に併せて示すように、比較例3の試料は鉄系焼結材である。この比較例3の組成は、Fe:残部、Co:7.5〜10.5%、Mo:5.0〜8.0%、Ni:5.0〜6.0%、C:0.25〜0.50%である。
(Comparative Example 3)
As shown in Table 1 together with the composition of the sample of Comparative Example 3, the sample of Comparative Example 3 is an iron-based sintered material. The composition of Comparative Example 3 is as follows: Fe: balance, Co: 7.5 to 10.5%, Mo: 5.0 to 8.0%, Ni: 5.0 to 6.0%, C: 0.25 -0.50%.

Figure 0005070920
Figure 0005070920

(摩耗試験)
実施例の肉盛耐摩耗鉄基合金に係る試料及び比較例1〜3の試料を用いて形成した肉盛層それぞれについて、摩耗試験を行って摩耗量を調べた。
(Abrasion test)
For each build-up layer formed using the sample related to the build-up wear-resistant iron-based alloy of the example and the samples of Comparative Examples 1 to 3, a wear test was performed to examine the wear amount.

この摩耗試験では、図2に示されるように、バルブシート材(アルミニウム合金AC2C)よりなる厚肉円板状の試験片10の表面に各試料を用いて肉盛層11を形成した。そして、この肉盛層11が形成された試験片10を第1ホルダ12に保持させた。一方、バルブ材(JIS−SUE3相当材の表面にJIS−SUH35相当材を被覆したもの)よりなる円柱状の相手材20を準備し、この相手材20の外周に誘導コイル21を巻回して第2ホルダ22に保持させた。そして、相手材20を誘導コイル21で高周波誘導加熱しつつ回転させ、相手材20の軸端面を試験片10の肉盛層11に押しつけることにより試験を行った。試験条件としては、荷重:563.5kPa、摩擦摺動速度:0.3m/sec、摩擦時間:1800sec、試験片10の表面温度:250〜400℃とした。   In this wear test, as shown in FIG. 2, a build-up layer 11 was formed on the surface of a thick disc-shaped test piece 10 made of a valve seat material (aluminum alloy AC2C) using each sample. And the test piece 10 in which this build-up layer 11 was formed was hold | maintained at the 1st holder 12. FIG. On the other hand, a cylindrical mating member 20 made of a valve material (the surface of a JIS-SUE3 equivalent material is coated with a JIS-SUH35 equivalent material) is prepared, and an induction coil 21 is wound around the outer periphery of the mating material 20 Two holders 22 were held. Then, the mating material 20 was rotated while being induction-heated by the induction coil 21, and the test was performed by pressing the shaft end surface of the mating material 20 against the build-up layer 11 of the test piece 10. As test conditions, the load was 563.5 kPa, the friction sliding speed was 0.3 m / sec, the friction time was 1800 sec, and the surface temperature of the test piece 10 was 250 to 400 ° C.

そして、摩擦試験後の肉盛層11及び相手材20の摩耗量を調べた。その結果が図3に示されるように、実施例に係る試料で形成した肉盛層では、バルブシート摩耗量(肉盛層11の摩耗量)が、比較例1に係る試料(従来材:Fe基合金)と比べて、大幅に低減した。また、実施例に係る試料で形成した肉盛層では、バルブ摩耗量(相手材20の摩耗量)が、比較例2に係る試料(従来材:Cu基合金)と同程度又はそれ以下に低減した。   Then, the wear amount of the built-up layer 11 and the counterpart material 20 after the friction test was examined. As shown in FIG. 3, in the build-up layer formed with the sample according to the example, the valve seat wear amount (wear amount of the build-up layer 11) is the sample according to Comparative Example 1 (conventional material: Fe Compared with the base alloy), it was greatly reduced. Further, in the built-up layer formed with the sample according to the example, the valve wear amount (wear amount of the counterpart material 20) is reduced to the same level or lower than that of the sample according to Comparative Example 2 (conventional material: Cu-based alloy). did.

(Cu量の効果・影響)
実施例の組成において、銅以外の添加成分の配合割合をFe:残部、Mo:9.0%、Ni:9.0%、Si:2.3%、Nb:1.0%、C:1.0%に固定したまま、銅の配合割合を種々変更した試料を準備した。
(Effect / influence of Cu content)
In the composition of the example, the blending ratio of additive components other than copper is Fe: balance, Mo: 9.0%, Ni: 9.0%, Si: 2.3%, Nb: 1.0%, C: 1 Samples with various changes in the blending ratio of copper were prepared while being fixed at 0.0%.

そして、各試料を用いて実施例と同様の方法により、アルミニウム合金(材質:AC2C)でよりなる基体の表面に肉盛層を形成した。   And the overlaying layer was formed in the surface of the base | substrate which consists of aluminum alloys (material: AC2C) by the method similar to an Example using each sample.

得られた肉盛層について、粒子分散率(肉盛層の全体を100体積%としたとき、肉盛層に占める銅粒子の体積比)を調べた。   About the obtained build-up layer, particle | grain dispersion rate (when the whole build-up layer was made into 100 volume%), the volume ratio of the copper particle which occupies for the build-up layer was investigated.

その結果が図4及び図5に示されるように、肉盛耐摩耗鉄基合金における銅の配合割合が12.5〜26.0%の範囲内であれば、銅粒子の粒子分散率が2.5〜24.5体積%の範囲内にあり、肉盛層における鉄基マトリックス中に銅粒子が均一分散した。これに対し、肉盛耐摩耗鉄基合金における銅の配合割合が12.5%未満になると、鉄基マトリックス中に分散する銅粒子が極めて少なかった。また、肉盛耐摩耗鉄基合金における銅の配合割合が26.0%を超えると、鉄基マトリックス中で銅が粒子状に分散せずに塊状となってホモジニアス分離してしまった。   As shown in FIG. 4 and FIG. 5, if the copper content in the build-up wear-resistant iron-based alloy is in the range of 12.5 to 26.0%, the particle dispersion rate of the copper particles is 2 Within the range of 0.5 to 24.5% by volume, the copper particles were uniformly dispersed in the iron-based matrix in the build-up layer. On the other hand, when the mixing ratio of copper in the build-up wear-resistant iron-based alloy was less than 12.5%, there were very few copper particles dispersed in the iron-based matrix. Moreover, when the compounding ratio of copper in the build-up wear-resistant iron-based alloy exceeded 26.0%, the copper was not dispersed in the form of particles in the iron-based matrix but became a lump and homogeneously separated.

なお、図5は肉盛層における銅粒子の分散状態を模式的に示す断面図であり、(a)は肉盛耐摩耗鉄基合金における銅の配合割合が5%であるときの模式断面図、(b)は肉盛耐摩耗鉄基合金における銅の配合割合が20%であるときの模式断面図、(c)は肉盛耐摩耗鉄基合金における銅の配合割合が30%であるときの模式断面図である。   FIG. 5 is a cross-sectional view schematically showing the dispersion state of the copper particles in the built-up layer, and (a) is a schematic cross-sectional view when the proportion of copper in the built-up wear-resistant iron-based alloy is 5%. , (B) is a schematic cross-sectional view when the proportion of copper in the built-up wear-resistant iron-based alloy is 20%, and (c) is when the proportion of copper in the built-up wear-resistant iron-based alloy is 30%. FIG.

したがって、肉盛耐摩耗鉄基合金における銅の配合割合の好ましい範囲は12.5〜26.0%であることが確認できた。   Therefore, it was confirmed that the preferable range of the mixing ratio of copper in the build-up wear-resistant iron-based alloy is 12.5 to 26.0%.

(Ni量の効果・影響)
実施例の組成において、ニッケル以外の添加成分の配合割合をFe:残部、Cu:25.0%、Mo:9.0%、Si:2.3%、Nb:1.0%、C:0.1%に固定したまま、ニッケルの配合割合を種々変更した試料を準備した。
(Effect / effect of Ni content)
In the composition of the example, the blending ratio of additive components other than nickel is Fe: balance, Cu: 25.0%, Mo: 9.0%, Si: 2.3%, Nb: 1.0%, C: 0 Samples were prepared with various mixing ratios of nickel while being fixed at 1%.

そして、各試料について、前述した摩耗試験を実施して、バルブシート摩耗量を測定した。また、各試料について、肉盛時のワレ発生率を調べた。   And the abrasion test mentioned above was implemented about each sample, and the valve seat abrasion amount was measured. Moreover, about each sample, the crack generation rate at the time of overlaying was investigated.

これらの結果が図6及び図7に示されるように、肉盛耐摩耗鉄基合金におけるニッケルの配合割合が8.0〜10.0%の範囲内にあれば、バルブシートの摩耗量及びワレ発生率を効果的に低減でき、高温領域における耐摩耗性及び耐ワレ性をバランス良く高めることができた。   As shown in FIG. 6 and FIG. 7, if the mixing ratio of nickel in the build-up wear-resistant iron-based alloy is in the range of 8.0 to 10.0%, the wear amount and crack of the valve seat The occurrence rate could be effectively reduced, and the wear resistance and crack resistance at high temperatures could be improved in a well-balanced manner.

(Mo量の効果・影響)
実施例の組成において、モリブデン以外の添加成分の配合割合をFe:残部、Cu:25.0%、Ni:9.0%、Si:2.3%、Nb:1.0%、C:0.1%に固定したまま、モリブデンの配合割合を種々変更した試料を準備した。
(Effect / influence of Mo amount)
In the composition of the example, the blending ratio of additive components other than molybdenum is Fe: balance, Cu: 25.0%, Ni: 9.0%, Si: 2.3%, Nb: 1.0%, C: 0 Samples were prepared in which the mixing ratio of molybdenum was variously changed while being fixed at 1%.

そして、各試料について、前述した摩耗試験を実施して、バルブシート摩耗量を測定した。また、各試料について、肉盛時のワレ発生率を調べた。   And the abrasion test mentioned above was implemented about each sample, and the valve seat abrasion amount was measured. Moreover, about each sample, the crack generation rate at the time of overlaying was investigated.

これらの結果が図8及び図9に示されるように、肉盛耐摩耗鉄基合金におけるモリブデンの配合割合が8.0〜10.0%の範囲内にあれば、バルブシートの摩耗量及びワレ発生率を効果的に低減でき、高温領域における耐摩耗性及び耐ワレ性をバランス良く高めることができた。   As shown in FIG. 8 and FIG. 9, when the molybdenum content in the build-up wear-resistant iron-based alloy is within the range of 8.0 to 10.0%, the wear amount and cracking of the valve seat are observed. The occurrence rate could be effectively reduced, and the wear resistance and crack resistance at high temperatures could be improved in a well-balanced manner.

(Si量の効果・影響)
実施例の組成において、シリコン以外の添加成分の配合割合をFe:残部、Cu:25.0%、Mo:9.0%、Ni:9.0%、Nb:1.0%、C:0.1%に固定したまま、シリコンの配合割合を種々変更した試料を準備した。
(Effects / influences of Si content)
In the composition of the example, the blending ratio of additive components other than silicon is Fe: balance, Cu: 25.0%, Mo: 9.0%, Ni: 9.0%, Nb: 1.0%, C: 0 Samples were prepared with various blending ratios of silicon while being fixed at 1%.

そして、各試料について、前述した摩耗試験を実施して、バルブシート摩耗量を測定した。また、各試料について、肉盛時のワレ発生率を調べた。   And the abrasion test mentioned above was implemented about each sample, and the valve seat abrasion amount was measured. Moreover, about each sample, the crack generation rate at the time of overlaying was investigated.

これらの結果が図10及び図11に示されるように、肉盛耐摩耗鉄基合金におけるシリコンの配合割合が2.0〜2.5%の範囲内にあれば、バルブシートの摩耗量及びワレ発生率を効果的に低減でき、高温領域における耐摩耗性及び耐ワレ性をバランス良く高めることができた。   As shown in FIGS. 10 and 11, these results show that the wear amount and cracking of the valve seat are within the range of 2.0 to 2.5% of silicon in the build-up wear-resistant iron-based alloy. The occurrence rate could be effectively reduced, and the wear resistance and crack resistance at high temperatures could be improved in a well-balanced manner.

(Nb量の効果・影響)
実施例の組成において、ニオブ以外の添加成分の配合割合をFe:残部、Cu:25.0%、Mo:9.0%、Ni:9.0%、Si:2.3%、C:0.1%に固定したまま、ニオブの配合割合を種々変更した試料を準備した。
(Effects / influences of Nb content)
In the composition of the examples, the blending ratio of additive components other than niobium is Fe: balance, Cu: 25.0%, Mo: 9.0%, Ni: 9.0%, Si: 2.3%, C: 0 Samples were prepared in which the mixing ratio of niobium was variously changed while being fixed at 1%.

そして、各試料について、前述した摩耗試験を実施して、バルブシート摩耗量を測定した。また、各試料について、肉盛時のワレ発生率を調べた。   And the abrasion test mentioned above was implemented about each sample, and the valve seat abrasion amount was measured. Moreover, about each sample, the crack generation rate at the time of overlaying was investigated.

これらの結果が図12及び図13に示されるように、肉盛耐摩耗鉄基合金におけるニオブの配合割合が0.7〜1.3%の範囲内にあれば、バルブシートの摩耗量及びワレ発生率を効果的に低減でき、高温領域における耐摩耗性及び耐ワレ性をバランス良く高めることができた。   As shown in FIGS. 12 and 13, these results show that the wear amount and cracking of the valve seat can be achieved if the niobium content in the build-up wear-resistant iron-based alloy is in the range of 0.7 to 1.3%. The occurrence rate could be effectively reduced, and the wear resistance and crack resistance at high temperatures could be improved in a well-balanced manner.

(C量の効果・影響)
実施例の組成において、炭素以外の添加成分の配合割合をFe:残部、Cu:25.0%、Mo:9.0%、Ni:9.0%、Si:2.3%、Nb:1.0%に固定したまま、炭素の配合割合を種々変更した試料を準備した。
(Effect / influence of C amount)
In the composition of the examples, the blending ratio of additive components other than carbon is Fe: balance, Cu: 25.0%, Mo: 9.0%, Ni: 9.0%, Si: 2.3%, Nb: 1 Samples were prepared with various blending ratios of carbon while being fixed at 0.0%.

そして、各試料について、前述した摩耗試験を実施して、バルブシート摩耗量を測定した。また、各試料について、肉盛時のワレ発生率を調べた。   And the abrasion test mentioned above was implemented about each sample, and the valve seat abrasion amount was measured. Moreover, about each sample, the crack generation rate at the time of overlaying was investigated.

これらの結果が図14及び図15に示されるように、肉盛耐摩耗鉄基合金における炭素の配合割合が0.07〜0.13%の範囲内にあれば、バルブシートの摩耗量及びワレ発生率を効果的に低減でき、高温領域における耐摩耗性及び耐ワレ性をバランス良く高めることができた。   As shown in FIGS. 14 and 15, these results show that the amount of wear and cracking of the valve seat is within the range of 0.07 to 0.13% of carbon in the build-up wear-resistant iron-based alloy. The occurrence rate could be effectively reduced, and the wear resistance and crack resistance at high temperatures could be improved in a well-balanced manner.

したがって、本発明に係る肉盛耐摩耗鉄基合金の肉盛層を、内燃機関の動弁系部品であるバルブシートに積層すれば、バルブシートの耐摩耗性を改善でき、更に相手攻撃性も抑えることができ、相手材であるバルブの摩耗量も抑えることができることがわかる。また、肉盛時の耐ワレ性を高めるのにも有利である。   Therefore, if the build-up layer of the build-up wear-resistant iron-based alloy according to the present invention is laminated on the valve seat that is a valve system component of the internal combustion engine, the wear resistance of the valve seat can be improved, and the opponent attack is also improved. It can be seen that the amount of wear of the counterpart material can be reduced. It is also advantageous to improve crack resistance when building up.

(その他)
なお、前記実施例では、ラーベス相形成元素としてモリブデンを用いる例について説明したが、モリブデンの代わりにタングステン又はバナジウムを用いて硬質ラーベス相粒子としてFe−W系のシリサイド又はFe−V系のシリサイドを形成した場合も、同様の効果が得られると考えられる。
(Other)
In the above-described embodiment, an example in which molybdenum is used as the Laves phase forming element has been described. However, instead of molybdenum, tungsten or vanadium is used, and Fe-W type silicide or Fe-V type silicide is used as hard Laves phase particles. Even if formed, the same effect is considered to be obtained.

なお、前記実施例ではガスアトマイズ処理により肉盛耐摩耗銅基合金の粉末を形成しているが、これに限らず、溶湯を回転体に衝突させて粉末化するメカニカルアトマイズ処理などの粉末化処理、あるいは、粉砕装置を用いた機械的粉砕処理により肉盛用の肉盛耐摩耗銅基合金の粉末を形成しても良い。   In addition, in the above embodiment, the overlay wear-resistant copper-based alloy powder is formed by gas atomization treatment, but is not limited to this, powderization treatment such as mechanical atomization treatment that pulverizes the molten metal against the rotating body, Alternatively, the overlay wear-resistant copper-based alloy powder for overlaying may be formed by mechanical pulverization using a pulverizer.

本発明の肉盛耐摩耗鉄基合金は、内燃機関の動弁系を構成するバルブシートの他、場合によっては、バルブシートの相手材であるバルブを構成する材料、あるいは、バルブに肉盛される材料に適用することができる。内燃機関はガソリンエンジンでも、ディーゼルエンジンでも良い。   The build-up wear-resistant iron-based alloy of the present invention is built up on the valve seat constituting the valve system of the internal combustion engine, or in some cases, on the material constituting the valve that is the counterpart material of the valve seat, or on the valve. It can be applied to any material. The internal combustion engine may be a gasoline engine or a diesel engine.

その他、本発明は上記し且つ図面に示した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できるものである。実施の形態、実施例に記載されている語句の形容は、一部であっても各請求項に記載できるものである。   In addition, the present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications within a range not departing from the gist. The description of the words and phrases described in the embodiments and examples can be described in each claim even if a part of the description.

実施例の肉盛耐摩耗鉄基合金で形成した肉盛層の肉盛組織を示す顕微鏡写真である。It is a microscope picture which shows the build-up structure of the build-up layer formed with the build-up wear-resistant iron-based alloy of an Example. 肉盛層を有する試験片に対して耐摩耗試験を行っている様子を模式的に示す構成図である。It is a block diagram which shows typically a mode that the abrasion resistance test is performed with respect to the test piece which has a build-up layer. 実施例及び比較例1〜3に係る肉盛層の摩耗量を示すグラフである。It is a graph which shows the abrasion loss of the built-up layer which concerns on an Example and Comparative Examples 1-3. 肉盛耐摩耗鉄基合金におけるCu配合量と、肉盛層における銅粒子分散率との関係を示すグラフである。It is a graph which shows the relationship between the Cu compounding quantity in a build-up wear-resistant iron-base alloy, and the copper particle dispersion rate in a build-up layer. 肉盛層における銅粒子の分散状態を模式的に示す断面図であり、(a)は肉盛耐摩耗鉄基合金における銅の配合割合が5%であるときの模式断面図、(b)は肉盛耐摩耗鉄基合金における銅の配合割合が20%であるときの模式断面図、(c)は肉盛耐摩耗鉄基合金における銅の配合割合が30%であるときの模式断面図である。It is sectional drawing which shows typically the dispersion state of the copper particle in an overlaying layer, (a) is a schematic sectional view when the compounding ratio of copper in an overlay wear-resistant iron-base alloy is 5%, (b) is Schematic cross-sectional view when the proportion of copper in the build-up wear-resistant iron-based alloy is 20%, (c) is a schematic cross-sectional view when the proportion of copper in the build-up wear-resistant iron-based alloy is 30%. is there. 肉盛耐摩耗鉄基合金におけるNi配合量と、肉盛層の摩耗量との関係を示すグラフである。It is a graph which shows the relationship between the Ni compounding amount in the build-up wear-resistant iron-based alloy, and the wear amount of the build-up layer. 肉盛耐摩耗鉄基合金におけるNi配合量と、肉盛層のワレ発生率との関係を示すグラフである。It is a graph which shows the relationship between the Ni compounding quantity in a build-up wear-resistant iron-based alloy, and the crack incidence of a build-up layer. 肉盛耐摩耗鉄基合金におけるMo配合量と、肉盛層の摩耗量との関係を示すグラフである。It is a graph which shows the relationship between Mo compounding amount in a build-up wear-resistant iron-base alloy, and the wear amount of a built-up layer. 肉盛耐摩耗鉄基合金におけるMo配合量と、肉盛層のワレ発生率との関係を示すグラフである。It is a graph which shows the relationship between Mo compounding amount in a build-up wear-resistant iron-base alloy, and the crack generation rate of a build-up layer. 肉盛耐摩耗鉄基合金におけるSi配合量と、肉盛層の摩耗量との関係を示すグラフである。It is a graph which shows the relationship between the Si compounding amount in a build-up wear-resistant iron-based alloy, and the wear amount of a built-up layer. 肉盛耐摩耗鉄基合金におけるSi配合量と、肉盛層のワレ発生率との関係を示すグラフである。It is a graph which shows the relationship between Si compounding amount in a build-up wear-resistant iron-base alloy, and the crack incidence rate of a build-up layer. 肉盛耐摩耗鉄基合金におけるNb配合量と、肉盛層の摩耗量との関係を示すグラフである。It is a graph which shows the relationship between the Nb compounding quantity in a build-up wear-resistant iron-base alloy, and the wear amount of a built-up layer. 肉盛耐摩耗鉄基合金におけるNb配合量と、肉盛層のワレ発生率との関係を示すグラフである。It is a graph which shows the relationship between the Nb compounding quantity in a build-up wear-resistant iron-base alloy, and the crack incidence of a build-up layer. 肉盛耐摩耗鉄基合金におけるC配合量と、肉盛層の摩耗量との関係を示すグラフである。It is a graph which shows the relationship between C compounding quantity in a build-up wear-resistant iron-base alloy, and the wear-amount of a built-up layer. 肉盛耐摩耗鉄基合金におけるC配合量と、肉盛層のワレ発生率との関係を示すグラフである。It is a graph which shows the relationship between C compounding quantity in a build-up wear-resistant iron-base alloy, and the crack incidence of a build-up layer.

符号の説明Explanation of symbols

10…試験片(バルブシート) 11…肉盛層
20…相手材(バルブ)
10 ... Test piece (valve seat) 11 ... Overlay layer 20 ... Counterpart material (valve)

Claims (8)

鉄を主成分とする鉄基合金であって、液相状態で鉄と2相分離し、かつ固相状態で鉄基マトリックス中に粒子状に分散する配合割合で添加された銅と、鉄と結合してラーベス相を形成するとともに粒子状のシリサイドを形成するラーベス相粒子形成元素と、ニッケルと、シリコンとを含み、これら元素の含有量が質量%で、鉄:50%以上、銅:12.5〜26.0%、ラーベス相粒子形成元素:8.0〜10.0%、ニッケル:8.0〜10.0%及びシリコン:2.0〜2.5%であることを特徴とする肉盛耐摩耗鉄基合金。 An iron-base alloy containing iron as a main component, two-phase separated from iron in a liquid phase state, and added in a blending ratio that is dispersed in the form of particles in an iron-base matrix in a solid phase state; It contains Laves phase particle forming elements that combine to form Laves phases and form particulate silicide, nickel, and silicon, and the content of these elements is mass%, iron: 50% or more, copper: 12 0.5-26.0%, Laves phase particle forming elements: 8.0-10.0%, nickel: 8.0-10.0% and silicon: 2.0-2.5% Overlay wear-resistant iron-based alloy. 前記ラーベス相粒子形成元素は、モリブデン、タングステン及びバナジウムよりなる群から選ばれる少なくとも1種であることを特徴とする請求項1に記載の肉盛耐摩耗鉄基合金。   The build-up wear-resistant iron-based alloy according to claim 1, wherein the Laves phase particle forming element is at least one selected from the group consisting of molybdenum, tungsten, and vanadium. ニオブ及び炭素をさらに含むことを特徴とする請求項1又は2に記載の肉盛耐摩耗鉄基合金。 The build-up wear-resistant iron-based alloy according to claim 1 or 2, further comprising niobium and carbon. 質量%で、ニオブ:0.7〜1.3%及び炭素:0.07〜0.13%を含むことを特徴とする請求項3に記載の肉盛耐摩耗鉄基合金。 The build-up wear-resistant iron-based alloy according to claim 3, characterized by containing niobium: 0.7 to 1.3% and carbon: 0.07 to 0.13% by mass. 鉄を主成分とする鉄基合金であって、鉄を主成分とする鉄基マトリックスと、該鉄基マトリックス中に分散し、銅を主成分とする銅粒子と、該銅粒子中に分散し、ラーベス相をもつシリサイドよりなる硬質ラーベス相粒子とを備え、かつ、元素含有量が質量%で、鉄:50%以上、銅:12.5〜26.0%、ラーベス相粒子形成元素:8.0〜10.0%、ニッケル:8.0〜10.0%及びシリコン:2.0〜2.5%であることを特徴とする肉盛耐摩耗鉄基合金。 An iron-based alloy containing iron as a main component, an iron-based matrix containing iron as a main component, dispersed in the iron-based matrix, copper particles containing copper as a main component, and dispersed in the copper particles And hard Laves phase particles made of silicide having Laves phase , and the element content is mass%, iron: 50% or more, copper: 12.5 to 26.0%, Laves phase particle forming element: 8 A build-up wear-resistant iron-base alloy characterized by 0.0 to 10.0%, nickel: 8.0 to 10.0% and silicon: 2.0 to 2.5% . 前記鉄基マトリックスは、Fe−Ni系の固溶体と、Fe−Ni系のシリサイドとを主要素としていることを特徴とする請求項5に記載の肉盛耐摩耗鉄基合金。 6. The build-up wear-resistant iron-based alloy according to claim 5, wherein the iron-based matrix is mainly composed of a Fe—Ni-based solid solution and a Fe—Ni-based silicide. 前記硬質ラーベス粒子は、Fe−Mo系のシリサイド、Fe−W系のシリサイド及びFe−V系のシリサイドよりなる群から選ばれる少なくとも1種よりなることを特徴とする請求項5又は6に記載の肉盛耐摩耗鉄基合金。 It said hard Laves phase particles, Fe-Mo system silicides, according to claim 5 or 6, characterized in that comprises at least one selected from the group consisting of silicide of silicide and Fe-V-based Fe-W system , Built-up wear-resistant iron-based alloy. 前記銅粒子中に分散し、ニオブ炭化物、モリブデン炭化物及びニオブとモリブデンとの複合炭化物よりなる群から選ばれる少なくとも1種よりなる硬質炭化物粒子をさらに備えていることを特徴とする請求項5乃至7のいずれか一つに記載の肉盛耐摩耗鉄基合金。 The copper particles are dispersed in, niobium carbide, claims 5 to 7, characterized in that it further comprises a hard carbide particles consisting of at least one selected from the group consisting of complex carbide and molybdenum carbide and niobium and molybdenum The build-up wear-resistant iron-based alloy according to any one of the above .
JP2007123635A 2007-05-08 2007-05-08 Overlay wear-resistant iron-base alloy Expired - Fee Related JP5070920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123635A JP5070920B2 (en) 2007-05-08 2007-05-08 Overlay wear-resistant iron-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007123635A JP5070920B2 (en) 2007-05-08 2007-05-08 Overlay wear-resistant iron-base alloy

Publications (2)

Publication Number Publication Date
JP2008279463A JP2008279463A (en) 2008-11-20
JP5070920B2 true JP5070920B2 (en) 2012-11-14

Family

ID=40140731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123635A Expired - Fee Related JP5070920B2 (en) 2007-05-08 2007-05-08 Overlay wear-resistant iron-base alloy

Country Status (1)

Country Link
JP (1) JP5070920B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464928B (en) * 2013-09-07 2015-07-15 山东建筑大学 Argon arc cladding material based on self-fused Fe-based alloy powder
JP6724810B2 (en) 2017-02-02 2020-07-15 トヨタ自動車株式会社 Abrasion resistant member and manufacturing method thereof
CN118871601A (en) * 2022-03-28 2024-10-29 日产自动车株式会社 Sliding member and internal combustion engine provided with same
CN114855053B (en) * 2022-05-09 2023-02-14 西安必盛激光科技有限公司 Alloy powder for repairing inner wall of hydraulic support oil cylinder and laser cladding method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131348A (en) * 1981-02-09 1982-08-14 Nippon Steel Corp Heat and wear resistant build-up welding material
JP3942136B2 (en) * 2000-01-31 2007-07-11 三菱マテリアルPmg株式会社 Iron-based sintered alloy

Also Published As

Publication number Publication date
JP2008279463A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP4472979B2 (en) Wear-resistant copper-based alloy for overlaying
JP4114922B2 (en) Wear resistant copper base alloy
JP6387988B2 (en) Wear resistant copper base alloy
JP6396865B2 (en) Wear resistant copper base alloy
JP4603808B2 (en) Overlay wear resistant copper base alloy
JP2019085626A (en) Hardfacing alloy and hardfacing member
EP1726668B9 (en) Wear-resistant copper alloy for overlaying and valve sheet
JP5070920B2 (en) Overlay wear-resistant iron-base alloy
US5495837A (en) Engine valve having improved high-temperature wear resistance
JP4314226B2 (en) Particle-dispersed copper alloy and method for producing the same
JP6754671B2 (en) Overlay alloy and overlay member
JP7168331B2 (en) copper base alloy
CN105499825A (en) Alloy powder for overlay welding, and weld overlay alloy member and engine valve obtained using the same
JP2008030071A (en) Raw material powder for laser built-up valve seat and valve seat using the same powder
JP2002194462A (en) Wear resistant copper based alloy
JP7103548B2 (en) Ni—Cr—Mo alloy member, Ni—Cr—Mo alloy powder, and composite member
JPH0610081A (en) Engine provided with titanium valve for exhaust
EP4438203A1 (en) Composite material, manufacturing method for composite material, and mold
JPH06190588A (en) Ni-base alloy for filling
JP7331290B2 (en) Iron-based sintered alloy valve seats for internal combustion engines
JPH06155074A (en) Ni-based alloy filling of engine valve
JP2004339571A (en) Filling material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R151 Written notification of patent or utility model registration

Ref document number: 5070920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees