Nothing Special   »   [go: up one dir, main page]

JP5064827B2 - Fuel tank manufacturing method - Google Patents

Fuel tank manufacturing method Download PDF

Info

Publication number
JP5064827B2
JP5064827B2 JP2007032891A JP2007032891A JP5064827B2 JP 5064827 B2 JP5064827 B2 JP 5064827B2 JP 2007032891 A JP2007032891 A JP 2007032891A JP 2007032891 A JP2007032891 A JP 2007032891A JP 5064827 B2 JP5064827 B2 JP 5064827B2
Authority
JP
Japan
Prior art keywords
welding
flange
line
fuel tank
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007032891A
Other languages
Japanese (ja)
Other versions
JP2008194730A5 (en
JP2008194730A (en
Inventor
信英 鈴木
博幸 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unipres Corp
Original Assignee
Unipres Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unipres Corp filed Critical Unipres Corp
Priority to JP2007032891A priority Critical patent/JP5064827B2/en
Publication of JP2008194730A publication Critical patent/JP2008194730A/en
Publication of JP2008194730A5 publication Critical patent/JP2008194730A5/ja
Application granted granted Critical
Publication of JP5064827B2 publication Critical patent/JP5064827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Laser Beam Processing (AREA)

Description

この発明は、六価クロムフリーめっき鋼板からの自動車用などの燃料タンクの製造方法に関するものである。   The present invention relates to a method for manufacturing a fuel tank for automobiles or the like from hexavalent chromium-free plated steel sheets.

環境汚染対策として自動車用などの燃料タンクの素材鋼板に対して六価クロムフリーの要求が出てきている。即ち、燃料タンクの素材としては鋼板に耐食性皮膜をめっきして使用されるが、めっき液として6価クロムを含むものが従来使用されていたが、めっき層からの6価クロムイオンの溶出による環境汚染の懸念からこれらのイオンの溶出を起こさない表面処理層を備えたものとして錫−亜鉛(Sn-Zn)めっき六価クロムフリーめっき鋼板等の六価クロムフリーめっき鋼板が注目されている。   As a measure against environmental pollution, there has been a demand for hexavalent chromium-free steel plates for fuel tanks for automobiles. That is, as a material for the fuel tank, a steel plate is used after being plated with a corrosion-resistant film, but a material containing hexavalent chromium as a plating solution has been used in the past, but the environment due to elution of hexavalent chromium ions from the plating layer is used. Due to the concern of contamination, hexavalent chromium-free plated steel sheets such as tin-zinc (Sn-Zn) -plated hexavalent chromium-free plated steel sheets have attracted attention as those having a surface treatment layer that does not cause elution of these ions.

燃料タンクは大抵めっき鋼板より絞り加工により上下のフランジ付半体を形成し、上下の半体のフランジ部を溶接により一体化している。溶接方法としてはシーム溶接によるものが従来最も一般的であったが、レーザ溶接によるものも提案されている。シーム溶接にあってもレーザ溶接にあっても溶接ビームは重ね合せフランジ部に沿って前進移動させるのが普通であった(特許文献1)。   The fuel tank is usually formed by drawing from the plated steel plate to form upper and lower flanged halves, and the upper and lower half halves are integrated by welding. As a welding method, seam welding has been most commonly used, but laser welding has also been proposed. In both seam welding and laser welding, the welding beam is usually moved forward along the overlapping flange portion (Patent Document 1).

従来は溶接ビームはフランジ部に沿って前進移動されることで、フランジ部に沿った溶接部を得ていた。溶接ビームは前進移動させるだけであるため、溶接部には溶接ビームによる入熱が一度あるだけで、入熱後は溶接部の温度は単調に減少するのみであり、凝固速度が速いため燃焼時に発生する亜鉛などのめっき材の燃焼により発生するガスが大気に放出されずビード内に残置されるため溶接欠陥となりめっき鋼板には適していなかった。そのため、素材としては特許文献1に記載のようにガス発生の問題のないステンレス材のような素材に限定されており、素材として高価なためコストアップにつながっていた。   Conventionally, the welding beam is moved forward along the flange portion to obtain a weld portion along the flange portion. Since the welding beam only moves forward, there is only one heat input by the welding beam at the weld, and after the heat input, the temperature of the weld only decreases monotonically, and the solidification rate is fast, so during the combustion Since the gas generated by the combustion of the plating material such as zinc generated is not released to the atmosphere but remains in the bead, it becomes a welding defect and is not suitable for a plated steel sheet. Therefore, the material is limited to a material such as a stainless material that does not have a problem of gas generation as described in Patent Document 1, and the material is expensive, leading to an increase in cost.

そこで、レーザビームを円運動させながら移動させ、これによりフランジ部に沿ったコイル状の溶接部が得られるようにしたものが提案されている(特許文献2)。円を描きながらの移動により、一度入熱部分が凝固前の再入熱(加熱)されることで凝固速度が遅くなるため、大気中へのガスの放出がされやすくなり、ブローホールやポロシティの発生の恐れが少なくなる。
特開2003−21012号公報 特許第3238977号公報
In view of this, there has been proposed a technique in which a laser beam is moved while being circularly moved to obtain a coil-shaped weld along the flange (Patent Document 2). By moving while drawing a circle, once the heat input part is reheated (heated) before solidification, the solidification rate becomes slow, so it is easier for gas to be released into the atmosphere, and blowholes and porosity The risk of occurrence is reduced.
Japanese Patent Laid-Open No. 2003-2102 Japanese Patent No. 3238977

溶接ビームを円運動させながら移動させることにより凝固速度が遅くなり、六価クロムフリーめっき鋼板からの燃料タンクであっても環境汚染への懸念の対策となるが、溶接ビームを円運動させて移動させると相対的に溶接経路が延長され、入りのエネルギ量が増大し、製造コストがその分悪化する問題がある。   Moving the welding beam in a circular motion slows the solidification rate, and even a fuel tank made of hexavalent chromium-free plated steel plate is a countermeasure against environmental pollution, but moves the welding beam in a circular motion. If it does, there will be a problem that the welding path is relatively extended, the amount of energy entering is increased, and the manufacturing cost is deteriorated accordingly.

この発明は六価クロムフリーめっき鋼板からの燃料タンクの製造に際し、溶接欠陥を抑えつつエネルギ効率を上げるようにすることを目的とする。   An object of the present invention is to increase energy efficiency while suppressing welding defects when manufacturing a fuel tank from a hexavalent chromium-free plated steel sheet.

この発明の燃料タンク製造方法においては、六価クロムフリーめっき鋼板を絞り加工に付し、絞りによる凹部の外周に沿ってフランジ部を形成した半体を一対形成し、この一対の半体を夫々の凹部が内面側で対面し、かつ夫々のフランジ部を対向当接せしめ、この対向当接されたフランジ部に沿って溶接するが、溶接時に溶接ビームは三角形を描きながらフランジ部に沿って移動されるが、フランジ部に沿った溶接ビームの移動軌跡は、フランジ部の幅方向にその一側部から他側部に向かう第1の直線状のラインと溶接ビームの移動方向における第1のラインの終端からフランジ部の前記他側部においてフランジ部の長手方向に一旦移動する直線状の第2のラインと、溶接ビームの移動方向における第2のラインの終端から斜め方向に第1のラインと交錯するようにフランジ部の幅方向における前記一側部に向け移動する直線状の第3のラインとからなる1単位の繰り返しにより構成される。

In the fuel tank manufacturing method of the present invention, a hexavalent chromium-free plated steel sheet is subjected to drawing, and a pair of halves each having a flange portion formed along the outer periphery of the recess formed by the drawing is formed. recess faces the inner surface side of, and opposition abutting the flange portion of the respective movement is welded along the flange portion which is the opposite abutment, welding beam along the flange drawing a triangle during welding Although that Ru is, the movement trajectory of the welding beam along the flange portion, the first line in the moving direction of the first straight line and the welding beam toward the other side from the one side in the width direction of the flange portion A linear second line that temporarily moves in the longitudinal direction of the flange portion on the other side of the flange portion from the terminal end of the flange portion, and a first oblique direction from the terminal end of the second line in the moving direction of the welding beam. Ru is constituted by one unit the repetition of which consists of a linear third line moving toward the one side in the width direction of the flange portion so as to intersect with the in.

ここに六価クロムフリーめっき鋼板としては錫−亜鉛(Sn-Zn) 六価クロムフリーめっき鋼板がある。しかしながら、この発明は錫−亜鉛めっき鋼板に限らず、他の六価クロムフリーめっき鋼板においても実現することができる。   Here, as the hexavalent chromium-free plated steel sheet, there is a tin-zinc (Sn-Zn) hexavalent chromium-free plated steel sheet. However, the present invention can be realized not only in the tin-zinc plated steel sheet but also in other hexavalent chromium-free plated steel sheets.

レーザビームは三角形を描きながらフランジ当接部に沿って移動されることから、溶接ビードは基本的には鋸歯状に形成されるが、隣接する三角形部では溶接ビードは溶接方向に対して一旦後退し折れ曲がる形状をなし、この部位において3角形の局部的ループをなしている。そのため、最初に入熱後に冷却した部分の凝固前の再入熱が得られ凝固速度が相対的に遅くなるため、錫−亜鉛めっき鋼板のような六価クロムフリーめっき鋼板の溶接であっても大気中へのガスの放出がされやすくなり、ブローホールやポロシティの発生の恐れが少なくなる。   Since the laser beam is moved along the flange contact portion while drawing a triangle, the weld bead is basically formed in a sawtooth shape, but in the adjacent triangle portion, the weld bead is temporarily retracted with respect to the welding direction. It has a bent shape and a triangular local loop at this site. Therefore, since re-entry heat before solidification of the part cooled after heat input first is obtained and the solidification rate becomes relatively slow, even in welding hexavalent chromium-free plated steel sheets such as tin-zinc plated steel sheets Gases are easily released into the atmosphere, and the risk of blowholes and porosity is reduced.

レーザビームの三角形の運動により凝固前の再入熱円運動と同様な溶接欠陥発生防止効果が奏されると共にレーザビームの移動長が円運動の場合と比較して相対的に短縮され、エネルギ効率を高めることができる。   The movement of the triangle of the laser beam provides the same weld defect prevention effect as the re-entry circular motion before solidification, and the movement length of the laser beam is relatively shortened compared to the circular motion, resulting in energy efficiency. Can be increased.

この発明の実施形態において、燃料タンクはSn-Zn(錫−亜鉛)めっき鋼板等の六価クロムフリーめっき鋼板にて形成される。Sn-Znめっき鋼板は0.7〜1.0mmといった厚みの冷延鋼板にSn-Zn合金めっきを施してなるもので、めっき層においてSnに対してZnが微細に分散するように共晶組成をなしている。めっき層中におけるSn, Znの重量比率は5〜10wt%である。   In the embodiment of the present invention, the fuel tank is formed of a hexavalent chromium-free plated steel plate such as a Sn—Zn (tin-zinc) plated steel plate. Sn-Zn-plated steel sheet is a cold-rolled steel sheet with a thickness of 0.7-1.0mm, plated with Sn-Zn alloy. Eutectic composition so that Zn is finely dispersed with respect to Sn in the plating layer. I am doing. The weight ratio of Sn and Zn in the plating layer is 5 to 10 wt%.

図1は燃料タンクの構造を模式的に示しており、上下の半体10, 12を備えている。半体10, 12はSn-Znめっき鋼板をプレス機によって絞る加工に付することにより窪ませ(窪み部を図2において10A, 12Aにて示す)、全外周に沿ってフランジ部10-1, 12-1(図2)を形成している。組み立て時に図2に示すように窪み部10A, 12Aは対向せしめられ、フランジ部10-1, 12-1は対向(レーザ溶接の場合は対向フランジ部10-1, 12-1間は微小の間隙に維持)せしめられ、この対向部の全周に沿って溶接が行われる。   FIG. 1 schematically shows the structure of a fuel tank, which includes upper and lower halves 10 and 12. The halves 10 and 12 are recessed by subjecting the Sn-Zn plated steel sheet to a drawing process using a press machine (the recessed portions are indicated by 10A and 12A in FIG. 2), and the flange portions 10-1, 12-1 (FIG. 2) is formed. As shown in FIG. 2, the recesses 10A and 12A are opposed to each other and the flanges 10-1 and 12-1 are opposed to each other (in the case of laser welding, a small gap is formed between the opposed flanges 10-1 and 12-1). And welding is performed along the entire circumference of the facing portion.

半体10, 12を窪み部10A, 12Aが対向するようにフランジ部10-1, 12-1で対向させ、対向面に沿って溶接することにより燃料タンクの形状が呈せしめられるが、この実施形態では燃料タンクは側面に凹み形状部10´を有している。そのため、フランジ部10-1, 12-1の対向部で溶接ラインもこの凹み形状部10´では凹んでおり、シーム溶接の場合は電板輪が凹み形状部10´におけるフランジ部10-1, 12-1の対向部において干渉し、溶接不可能の懸念がある。そこで、図1の形状の燃料タンクの場合はレーザ溶接を採用することが好ましい。即ち、レーザビーム溶接ではCO2又はYAGレーザビームを熱源としており、レーザビームを図2の矢印fのように上面からフランジ部10-1, 12-1に当てられ、溶接部11が形成される。レーザ溶接の場合は、シーム溶接の場合における電板輪の場合のような機械的な干渉の懸念なく、燃料タンク側面の凹み形状部10´においてもフランジ部10-1, 12-1の対向部に沿って溶接ビームfを凹み形状部10´に干渉させることなく移動させることができる。そして、周知のようにレーザ溶接においては、溶接部間を微小間隙に維持することは必須であり、溶接方法としてレーザ溶接を採用した場合にあっては溶接部であるフランジ部10-1, 12-1間は厳密に所定間隙に維持しつつ溶接作業を行う必要がある。   The half tanks 10 and 12 are opposed to each other by the flanges 10-1 and 12-1 so that the depressions 10A and 12A are opposed to each other, and welding is performed along the facing surface. In the form, the fuel tank has a recessed portion 10 'on the side surface. Therefore, the welding line is also recessed in the recessed portion 10 'at the opposing portion of the flange portions 10-1, 12-1, and in the case of seam welding, the electric plate wheel is in the flange portion 10-1, in the recessed portion 10'. There is a concern that welding will be impossible due to interference at the opposing part of 12-1. Therefore, it is preferable to employ laser welding in the case of the fuel tank having the shape shown in FIG. That is, in laser beam welding, a CO2 or YAG laser beam is used as a heat source, and the laser beam is applied to the flange portions 10-1 and 12-1 from the upper surface as indicated by an arrow f in FIG. In the case of laser welding, there is no concern of mechanical interference as in the case of the electric plate wheel in the case of seam welding, and the opposing portions of the flange portions 10-1 and 12-1 also in the recessed portion 10 'on the side surface of the fuel tank. , The welding beam f can be moved without interfering with the recessed portion 10 ′. As is well known, in laser welding, it is indispensable to maintain a gap between the welded portions. When laser welding is employed as the welding method, the flange portions 10-1, 12 that are welded portions are used. It is necessary to perform the welding operation while maintaining a strictly predetermined gap between -1.

この発明では図3に示すように溶接部位である、上下の燃料タンク半体10, 12における所定微小間隙にて対向配置されたフランジ部10-1, 12-1に沿ってレーザビームは三角形の軌跡を描きながら矢印のように移動される。即ち、レーザビームの運動は閉じた三角形運動と被溶接部に沿った直進運動との合成によって構成される。そのため、レーザビームの軌跡は図3及び図4に示すように基本的には鋸歯形状であるが、鋸歯形状における隣接する山形部の接続部はレーザビームが一端後退し再前進することで溶接済みの部位と交錯している。即ち、図4のPで示す領域について熱の出入りについて考察すると、ラインl1で入熱され、ラインl2で後退し、l1の入熱部は一端冷却するが、未凝固の内にラインl3で再入熱される。即ち、各溶接部位において、入熱後の凝固前の再入熱が得られ、凝固速度が相対的に遅くなるため、大気中へのガスの放出がされやすくなり、ブローホールやポロシティの発生の恐れが少なくなる。   In the present invention, as shown in FIG. 3, the laser beam has a triangular shape along flange portions 10-1 and 12-1 that are opposed to each other at a predetermined minute gap in the upper and lower fuel tank halves 10 and 12, which are welded portions. It is moved like an arrow while drawing a trajectory. That is, the movement of the laser beam is composed of a combination of a closed triangular movement and a linear movement along the welded portion. Therefore, although the locus of the laser beam is basically a sawtooth shape as shown in FIGS. 3 and 4, the connection portion of the adjacent chevron portion in the sawtooth shape is welded by the laser beam retreating once and re-advancing. It intersects with the part of. That is, considering the heat input / output in the region indicated by P in FIG. 4, the heat is input at the line 11, retreats at the line 12, and the heat input portion of the 11 is cooled once, but is re-established at the line 13 while being unsolidified. Heat input. That is, at each welding site, re-entry heat before solidification after heat input is obtained, and the solidification rate is relatively slow, so that gas is easily released to the atmosphere, and blow holes and porosity are generated. There is less fear.

本発明の実施としてレーザ・アークハイブリッド溶接により溶接を行うこともできる。この場合は本発明の溶接ビームとはレーザビームとアークとを組み合わせたものをいう。図5はレーザ・アークハイブリッド溶接の概略構成を示し、22はレーザヘッドであり、内部にはレーザ光のための集光レンズ24が設けられ、レーザビーム26が被溶接面に直交方向で当てられる。他方、28はMIGトーチであり、そのアーク溶接ワイヤ30は、レーザビーム26に対して幾分傾斜して設けられ、この実施形態では矢印に示す溶接方向に対してレーザビーム26が最初に当てられ、それから微小距離遅れてアークビームが当てられるようになっている。しかしながら、この発明においてはアークを最初当て、それに後行してレーザビームを当てる方式も包含される。そして、被溶接面であるフランジ対向面上でのレーザヘッド及びMIGトーチの移動は図3と同様に三角形を描きながらフランジ部に沿って移動させる。そのため、レーザ・アークハイブリッドビームは三角形を描きながらフランジ部に沿って移動され、結果として、隣接する三角形部分が折り重なった鋸歯状の溶接部(図3及び図4)が得られ、入熱後の凝固前の再入熱が得られ凝固速度が相対的に遅くなるため、大気中へのガスの放出がされやすくなり、ブローホールやポロシティの発生の恐れが少なくなるという同等の効果が得られる。また、レーザ・アークハイブリッドビームの採用により被溶接部であるフランジ部10-1, 12-1を密着させても溶接欠陥が出難く、単純なレーザ溶接に対する利点となる。即ち、錫−亜鉛めっき鋼板を使用した場合、レーザ溶接では鋼板の重ね溶接の場合に鋼板間の隙間の厳密管理が必要であり、隙間が少しでも大きいと溶け落ちが生じ、密着させてしまうと、亜鉛の蒸発により溶接金属の吹き飛ばしや溶接金属に残置によるブローホールやポロシティの発生があり、溶接欠陥となりやすく、厳密な隙間管理が必要であった。これに対してレーザ・アークハイブリッドビームではそのような隙間管理が不必要で、密着させた状態でも溶接欠陥が出難く、溶接工程の歩留まりが高まり、効率化及び低コスト化を実現することができる。   As an embodiment of the present invention, welding can be performed by laser-arc hybrid welding. In this case, the welding beam of the present invention refers to a combination of a laser beam and an arc. FIG. 5 shows a schematic configuration of laser-arc hybrid welding, 22 is a laser head, a condenser lens 24 for laser light is provided inside, and a laser beam 26 is applied to the surface to be welded in an orthogonal direction. . On the other hand, 28 is a MIG torch, and its arc welding wire 30 is provided with a slight inclination with respect to the laser beam 26. In this embodiment, the laser beam 26 is first applied to the welding direction indicated by the arrow. Then, the arc beam can be applied with a slight delay. However, the present invention includes a method in which an arc is first applied and then a laser beam is applied subsequently. Then, the laser head and the MIG torch are moved along the flange portion while drawing a triangle in the same manner as in FIG. Therefore, the laser-arc hybrid beam is moved along the flange portion while drawing a triangle, and as a result, a saw-tooth welded portion (FIGS. 3 and 4) in which adjacent triangular portions are folded is obtained. Since re-entry heat before solidification is obtained and the solidification rate is relatively slow, gas can be easily released into the atmosphere, and an equivalent effect of reducing the possibility of blowholes and porosity is obtained. Further, by adopting a laser / arc hybrid beam, even if the flange portions 10-1 and 12-1 which are welded portions are brought into close contact with each other, welding defects are hardly generated, which is an advantage over simple laser welding. That is, when using a tin-galvanized steel sheet, laser welding requires strict management of the gap between the steel sheets in the case of lap welding of the steel sheets. However, the evaporation of zinc caused blowout of the weld metal and the occurrence of blowholes and porosity due to the residue in the weld metal, which was likely to cause welding defects, and strict clearance management was required. On the other hand, with the laser / arc hybrid beam, such gap management is unnecessary, it is difficult to produce welding defects even in the state of close contact, the yield of the welding process is increased, and efficiency and cost reduction can be realized. .

図1は燃料タンクの概略斜視図である。FIG. 1 is a schematic perspective view of a fuel tank. 図2は燃料タンクのフランジ溶接部の断面図である。FIG. 2 is a cross-sectional view of the flange welded portion of the fuel tank. 図3はフランジ面にそった溶接ビームの移動軌跡を示す図である。FIG. 3 is a diagram showing the movement trajectory of the welding beam along the flange surface. 図4は溶接ビームの移動軌跡の部分拡大図である。FIG. 4 is a partially enlarged view of the movement trajectory of the welding beam. 図5はレーザ・アークハイブリッド溶接の概略構成を示す図。FIG. 5 is a diagram showing a schematic configuration of laser-arc hybrid welding.

符号の説明Explanation of symbols

10, 12…上下の半体
10A, 12A …窪み部
10-1, 12-1…フランジ部
22…レーザヘッド
24…集光レンズ
26…レーザビーム
28…MIGトーチ
30…アーク溶接ワイヤ
31, 32…電極輪
l1, l2, l3…溶接ライン
P…溶接部
10, 12 ... upper and lower half
10A, 12A ... depression
10-1, 12-1 ... Flange 22 ... Laser head 24 ... Condensing lens 26 ... Laser beam 28 ... MIG torch 30 ... Arc welding wire
31, 32… Electrode wheel
l1, l2, l3 ... welding line P ... welded part

Claims (1)

六価クロムフリーめっき鋼板を絞り加工に付し、絞りによる凹部の外周に沿ってフランジ部を形成した半体を一対形成し、この一対の半体を夫々の凹部が内面側で対面し、かつ夫々のフランジ部を対向当接せしめ、この対向当接されたフランジ部に沿って溶接し、溶接ビームは三角形を描きながらフランジ部に沿って移動させるようにし、フランジ部に沿った溶接ビームの移動軌跡は、フランジ部の幅方向にその一側部から他側部に向かう第1の直線状のライン(l1)と溶接ビームの移動方向における第1のラインの終端からフランジ部の前記他側部においてフランジ部の長手方向に一旦移動する直線状の第2のライン(l2)と、溶接ビームの移動方向における第2のライン(l2)の終端から斜め方向に第1のライン(l1)と交錯するようにフランジ部の幅方向における前記一側部に向け移動する直線状の第3のライン(l3)とからなる1単位の繰り返しにより構成されることを特徴とする燃料タンク製造方法。 Subjecting the hexavalent chromium-free plated steel sheet to drawing, forming a pair of halves formed with flanges along the outer periphery of the recesses by drawing, each pair of halves facing each other on the inner surface side, and The respective flanges are brought into contact with each other and welded along the flanges that are in contact with each other. The welding beam is moved along the flange while drawing a triangle, and the welding beam moves along the flange. The trajectory includes a first linear line (l1) extending from one side to the other side in the width direction of the flange and the other side of the flange from the end of the first line in the moving direction of the welding beam. And the second line (l2) linearly moving once in the longitudinal direction of the flange portion and the first line (l1) in an oblique direction from the end of the second line (l2) in the moving direction of the welding beam. The width of the flange part A fuel tank manufacturing method comprising one unit of repetition consisting of a linear third line (l3) moving toward the one side in the direction .
JP2007032891A 2007-02-14 2007-02-14 Fuel tank manufacturing method Expired - Fee Related JP5064827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007032891A JP5064827B2 (en) 2007-02-14 2007-02-14 Fuel tank manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007032891A JP5064827B2 (en) 2007-02-14 2007-02-14 Fuel tank manufacturing method

Publications (3)

Publication Number Publication Date
JP2008194730A JP2008194730A (en) 2008-08-28
JP2008194730A5 JP2008194730A5 (en) 2010-04-02
JP5064827B2 true JP5064827B2 (en) 2012-10-31

Family

ID=39754162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007032891A Expired - Fee Related JP5064827B2 (en) 2007-02-14 2007-02-14 Fuel tank manufacturing method

Country Status (1)

Country Link
JP (1) JP5064827B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030011A (en) * 2013-08-02 2015-02-16 日本アビオニクス株式会社 Laser joint method, method for manufacturing airtight cell, laser joint apparatus and airtight cell
FR3009506B1 (en) * 2013-08-07 2016-02-05 Peugeot Citroen Automobiles Sa METHOD FOR WELDING TOGETHER THE TWO SUPERPOSED EDGES OF TWO SHEETS OF GALVANIZED STEEL OR ALUMINUM
CN105873714B (en) 2014-01-08 2019-08-30 松下知识产权经营株式会社 Method for laser welding
DE102014200834A1 (en) * 2014-01-17 2015-07-23 Siemens Aktiengesellschaft Oscillating welding process
DE102019218019A1 (en) * 2019-11-22 2021-05-27 Thyssenkrupp Steel Europe Ag Method for producing a sheet metal component with an at least partially closed cross-section
WO2021131560A1 (en) * 2019-12-25 2021-07-01 日本軽金属株式会社 Joining method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000683A (en) * 1998-06-12 2000-01-07 Advanced Materials Processing Inst Kinki Japan Laser welding method
JP2003200852A (en) * 2001-10-25 2003-07-15 Toyota Motor Corp Hollow structure
JP4299705B2 (en) * 2003-03-19 2009-07-22 新日本製鐵株式会社 Helicopter joint laser welding method for Sn or Pb plated steel sheet

Also Published As

Publication number Publication date
JP2008194730A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5064827B2 (en) Fuel tank manufacturing method
KR101554800B1 (en) Method of manufacturing laser welded steel pipe
CN102791420B (en) Laser/arc hybrid welding method and method of producing welded member using same
JP5196128B2 (en) Laser welding method
US8575512B2 (en) Laser lap welding method for galvanized steel sheet
JP4299705B2 (en) Helicopter joint laser welding method for Sn or Pb plated steel sheet
KR101756762B1 (en) Method for manufacturing laser welded steel pipe
JP5866790B2 (en) Laser welded steel pipe manufacturing method
US20090134131A1 (en) Laser welding method for galvanized steel sheets
JP4854327B2 (en) Lap laser welding method
JP2016198796A (en) Fillet welding method for zinc-coated steel plate
JP2018034188A (en) Weld joint and manufacturing method thereof
Iordachescu et al. Recent achievements and trends in laser welding of thin plates
US20150360321A1 (en) Method for assembling fuel supply pipe, and fuel supply pipe assembly device
JP2010279991A (en) Laser lap welding method for thin steel sheet
JP4232024B2 (en) Weld bead structure and welding method
JP6031227B2 (en) Welding method
JP4532984B2 (en) Laser welding method for plated steel plate
JP5803160B2 (en) Laser welded steel pipe manufacturing method
JP2007038269A (en) Laser beam welding method
Ono et al. Welding properties of thin steel sheets by laser-arc hybrid welding: laser-focused arc welding
JP5724294B2 (en) Laser welded steel pipe manufacturing method
JP7267770B2 (en) Method for joining plated steel sheets and joining structure
JP2010253545A (en) Method of welding vehicle frame member, and vehicle frame member
JP2007144431A (en) Laser welding method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5064827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees