Nothing Special   »   [go: up one dir, main page]

JP5062615B2 - Natural fiber-like mesh sheet with excellent heat insulation - Google Patents

Natural fiber-like mesh sheet with excellent heat insulation Download PDF

Info

Publication number
JP5062615B2
JP5062615B2 JP2007033815A JP2007033815A JP5062615B2 JP 5062615 B2 JP5062615 B2 JP 5062615B2 JP 2007033815 A JP2007033815 A JP 2007033815A JP 2007033815 A JP2007033815 A JP 2007033815A JP 5062615 B2 JP5062615 B2 JP 5062615B2
Authority
JP
Japan
Prior art keywords
heat
mesh sheet
mass
layer
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007033815A
Other languages
Japanese (ja)
Other versions
JP2008196085A (en
Inventor
丈門 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP2007033815A priority Critical patent/JP5062615B2/en
Publication of JP2008196085A publication Critical patent/JP2008196085A/en
Application granted granted Critical
Publication of JP5062615B2 publication Critical patent/JP5062615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Woven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

本発明は、屋内外で使用する日除け、ブラインドなどの用途に用いる遮熱性に優れた天然繊維調メッシュシートに関するものであり、更に詳しく述べるなら、和み感をもたらす天然繊維調の外観を有し、透視性、通気性が有り、しかも優れた赤外線遮熱性を持ち、特に日除けやブラインドなどの用途に好適な、遮熱性に優れた天然繊維調メッシュシートに関するものである。   The present invention relates to a natural fiber-like mesh sheet excellent in heat-shielding properties used for applications such as awnings and blinds used indoors and outdoors, and more specifically, has a natural fiber-like appearance that brings a feeling of relaxation, The present invention relates to a natural fiber-like mesh sheet having transparency and air permeability and having excellent infrared heat shielding properties, particularly suitable for applications such as sunshades and blinds, and having excellent heat shielding properties.

ブラインドは外部からの目隠し、あるいは陽射し調節器具として使用され、特に店舗やオフィスなどにおいては、内部から外界が透視可能なシート状材料が多用されている。中でも特に床等の天然繊維織物(フェッシャンクロス等)、葦等による簾は、天然素材の有する和み感が万人に好まれている。しかし、これらのシート状材料は、冬場の保温性には優れているけれども、夏場の遮熱性が低く、そのためエアコン消費電力の削減には寄与度の低い素材であった。またこれらの天然繊維素材では耐候性・耐久性に乏しく、経時的に変色するなど耐用年数が短かく、また汚れ易いなどの不満があるものであった。(特許文献1及び2)   Blinds are used as blindfolds from outside or as a sunshine adjusting device. Especially in stores and offices, sheet-like materials that allow the outside to be seen through from the inside are often used. In particular, natural fabrics such as floors (Fessian cloth, etc.), and cocoons made from cocoons, etc. are preferred by everyone because of the softness of natural materials. However, although these sheet-like materials are excellent in heat retention in winter, they have low heat shielding properties in summer, and are therefore low contribution materials for reducing power consumption of air conditioners. In addition, these natural fiber materials have poor weather resistance and durability, and are unsatisfactory such as short service life such as discoloration over time and easy contamination. (Patent Documents 1 and 2)

一方、日除けやブラインドとして用いられる合成樹脂製膜材は、太陽光のまぶしさの軽減、及び太陽光に含まれる紫外線や赤外線を遮る目的で使用される。特に繊維基布を樹脂で全面被覆したターポリン調シートは赤外線の透過性や吸収性が高く、その赤外線により膜材の温度が上昇し輻射熱として膜材の裏面から放出することにより室温を上昇させてしまうので、エアコン消費電力削減の観点からも室温を上昇させ難いブラインド材、日除け材の提供が望まれていた。このような要望に対し、遮熱効果を得るために酸化チタン等の白色顔料を大量に配合して赤外線を散乱させる提案があるが、これでは、意匠性が重視されるインテリア商品において、白色以外の色彩を得ることが困難であるので、その上に更に表面華飾を施すことを必要としていた。また、金属粉末を配合する方法では完全遮光となり、仄かな光を取り込むための採光機能を得ることができなくなる。またこれらの日除けやブラインド材は、外界透視性が全く無いため生活空間用途には融通性に劣るものであった。(特許文献3及び4)
そこで昨今では、天然繊維調の和み外観を有し、しかも遮熱効果・耐久性・外界透視性に優れた日除け材、ブラインド材が望まれている。
特開平9−105078 特開2006−152496 特開平8−49171 特開平6−146166
On the other hand, synthetic resin film materials used as awnings and blinds are used for the purpose of reducing the glare of sunlight and blocking ultraviolet rays and infrared rays contained in sunlight. In particular, tarpaulin-like sheets with a fiber base fabric entirely covered with resin are highly permeable and absorbing infrared rays, and the infrared rays raise the temperature of the membrane material and release it from the back surface of the membrane material as radiant heat, raising the room temperature. Therefore, from the viewpoint of reducing power consumption of air conditioners, it has been desired to provide blind materials and sunscreen materials that are difficult to raise the room temperature. In response to such a request, there is a proposal to scatter infrared rays by blending a large amount of white pigment such as titanium oxide in order to obtain a heat shielding effect. Since it was difficult to obtain the color, it was necessary to further decorate the surface. Further, the method of blending the metal powder provides complete light shielding and makes it impossible to obtain a daylighting function for taking in faint light. Moreover, since these sunshades and blinds have no external transparency, they are inferior in flexibility for living space use. (Patent Documents 3 and 4)
Therefore, in recent years, there is a demand for a awning material and a blind material that have a natural fiber-like soft appearance and are excellent in heat shielding effect, durability, and external transparency.
JP-A-9-105078 JP 2006-152496 A JP-A-8-49171 JP-A-6-146166

本発明は天然繊維調の和み外観を有し、しかも遮熱効果・耐久性・外界透視性に優れ、日除け材、ブラインド材に有用な遮熱性に優れた天然繊維調メッシュシートを提供しようとするものである。   The present invention seeks to provide a natural fiber-like mesh sheet having a natural fiber-like soft appearance, excellent in heat-shielding effect, durability and external transparency, and excellent in heat-shielding properties useful for sunshades and blind materials. Is.

本発明者は上記課題を解決するために鋭意検討の結果、表面毛羽を有する短繊維紡績糸を含む基布に、特定範囲の粒子径分布を有する不定形金属酸化物粒子の特定量を含む熱可塑性樹脂遮熱層を含浸・被覆することにより、遮熱性に優れた天然繊維調メッシュシートが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that a base fabric including short fiber spun yarn having surface fluff has a heat containing a specific amount of amorphous metal oxide particles having a particle size distribution in a specific range. It has been found that a natural fiber-like mesh sheet excellent in heat-shielding property can be obtained by impregnating and coating a plastic resin heat-shielding layer, and the present invention has been completed.

本発明の遮熱性天然繊維調メッシュシートは、表面毛羽を有する短繊維紡績糸を含む繊維糸条から形成された粗目編織物からなる基布と、前記基布を含浸・被覆している遮熱層とを含み、前記遮熱層が、(i)熱可塑性樹脂と、(ii)不定形金属酸化物粒子とを含み、前記遮熱層の質量が前記基布と前記遮熱層の合計質量に対し20〜60質量%であり、かつ前記不定形金属酸化物粒子の含有量が、前記遮熱層の質量に対し1〜30質量%であり、
前記不定形金属酸化物粒子が、シリカ又はアルミナによりコーティングされた酸化チタン粒子であって、その粒子径分布が、0.3〜3.0μmの範囲内にあり、かつそのアスペクト比が1.0〜3.0の範囲内にある不定形粒子である
ことを特徴とするものである。
本発明の遮熱性天然繊維調メッシュシートにおいて、前記不定形酸化チタン粒子の粒子径分布が0.3〜1.6μmの範囲内にあり、かつそのアスペクト比が1.1〜2.5の範囲内にあることが好ましい。
本発明の遮熱性天然繊維調メッシュシートにおいて、前記遮熱層上に防汚層が形成されていることが好ましい。
The heat-insulating natural fiber-like mesh sheet of the present invention comprises a base fabric made of a coarse knitted fabric formed from fiber yarns including short fiber spun yarn having surface fluff, and a heat-insulating material impregnating and covering the base fabric . And the thermal barrier layer includes (i) a thermoplastic resin and (ii) amorphous metal oxide particles, and the mass of the thermal barrier layer is the total mass of the base fabric and the thermal barrier layer. a 20 to 60% by weight with respect to, and the content of the amorphous metal oxide particles, 1 to 30% by mass relative to the mass of the thermal barrier layer,
The amorphous metal oxide particles are titanium oxide particles coated with silica or alumina, the particle size distribution is in the range of 0.3 to 3.0 μm, and the aspect ratio is 1.0. It is an amorphous particle in the range of ~ 3.0 .
In the heat-shielding natural fiber-like mesh sheet of the present invention, the amorphous titanium oxide particles have a particle size distribution in the range of 0.3 to 1.6 μm and an aspect ratio in the range of 1.1 to 2.5. It is preferable to be within .
In the heat insulating natural fiber-like mesh sheet of the present invention, it is preferable that an antifouling layer is formed on the heat insulating layer.

本発明によれば、耐候耐久性、遮熱効果持続性に優れており、通気性、透視性を持ち、天然繊維様の和み感をもたらすクロス調外観のメッシュシートを容易に得ることができ、これらは特に屋外で使用される日除け等のエクステリア用途、あるいは室内で用いるブラインド等のインテリア用途などに好適である。   According to the present invention, it is excellent in weather resistance durability, heat insulation effect persistence, has breathability, transparency, and can easily obtain a mesh sheet with a cross tone appearance that brings a natural fiber-like softness, These are particularly suitable for exterior applications such as awnings used outdoors, or interior applications such as blinds used indoors.

本発明の遮熱性に優れた天然繊維調メッシュシート(以下遮熱性メッシュシートと表記する)に用いられる基布は、天然繊維、半合成繊維、合成繊維などの織編物から選ばれる。但し、前記基布用の繊維織編物は、短繊維紡績糸を含み、表面に毛羽を有しているものである。前記基布用の繊維編織物中の短繊維紡績糸の含有量は15〜100質量%であることが好ましい。短繊維紡績糸の質量比率が15%未満では、短繊維紡績糸に起因する繊維糸条の表面の毛羽立ちが不十分になり、樹脂被覆を施したときに、得られる遮光性メッシュシートの光沢度が過度に高いものになってしまい、和み感に乏しく天然繊維調とは似つかない外観になってしまう。前記基布用の繊維糸条は、長繊維糸条、スプリットヤーン、テープヤーンなどの繊維糸条との混撚糸であってもよく、メッシュシート基布の経糸及び緯糸のいずれか一方に長繊維糸条を用い、他方に短繊維紡績糸を用いた編織組織でもよい。また繊維糸条が長繊維糸条の芯と短繊維紡績糸の鞘からなる芯鞘構造複合糸であってもよい。短繊維紡績糸の製造方法には制限はなく、例えばポリエステル糸の場合、ポリエステル樹脂を溶融紡糸で得られたマルチフィラメント原糸を切断して得られたステープルを開繊し、ダブリングドラフトを掛けながらスライバを引き伸ばしてロービング(粗糸)を製造し、このロービングに撚りとドラフトを掛けて得られたポリエステル短繊維紡績糸を用いてもよい。短繊維紡績糸を含むことにより表面の毛羽が天然繊維調の和み感を有する外観が形成される。また基布用メッシュシートの組織は織物、編物、いずれであってもよい。更に基布の編織組織にも格別の制限はないが、例えば、それぞれ、糸間間隙をおいて平行に配置された経糸及び緯糸を含む糸条により構成された粗目布状の編織物を用いることができる。前記粗目編織物の目付は50〜700g/m2であることが好ましい。日除け用途としては、前記粗目編織物の空隙率は5〜60%であることが好ましく、より好ましくは10〜50%であり、更に好ましくは15〜30%である。透視性及び通気性が高いことを優先させるならば、空隙率を高めに設定し、また、遮熱性が高いことを優先させるならば、空隙率を低めに設定することが好ましい。空隙率とは粗目編織物の全表面積に対する合計空隙面積の比(%)である。繊維基布には必要に応じて撥水処理、吸水防止処理、接着処理、難燃処理、着色処理などが施されていても良い。 The base fabric used for the natural fiber-like mesh sheet excellent in heat-shielding property of the present invention (hereinafter referred to as heat-insulating mesh sheet) is selected from woven and knitted fabrics such as natural fiber, semi-synthetic fiber and synthetic fiber. However, the fiber woven or knitted fabric for the base fabric includes short fiber spun yarn and has fluff on the surface. It is preferable that the content of the short fiber spun yarn in the fiber knitted fabric for the base fabric is 15 to 100% by mass. When the mass ratio of the short fiber spun yarn is less than 15%, the surface of the fiber yarn caused by the short fiber spun yarn is insufficiently fuzzed, and the glossiness of the light-shielding mesh sheet obtained when the resin coating is applied. Becomes excessively high, resulting in an appearance that is not soft and does not resemble natural fiber. The fiber yarn for the base fabric may be a mixed yarn with a fiber yarn such as a long fiber yarn, a split yarn, a tape yarn or the like, and a long fiber is used for either the warp or the weft of the mesh sheet base fabric. A knitted fabric using a yarn and a short fiber spun yarn on the other side may be used. The fiber yarn may be a core / sheath composite yarn comprising a long fiber yarn core and a short fiber spun yarn sheath. There is no limitation on the production method of short fiber spun yarn. For example, in the case of polyester yarn, a staple obtained by cutting a multifilament yarn obtained by melt spinning polyester resin is opened, and a doubling draft is applied. A polyester short fiber spun yarn obtained by stretching a sliver to produce a roving (coarse yarn) and twisting and drafting the roving may be used. By including the short fiber spun yarn, the appearance that the fluff on the surface has a natural fiber-like feel is formed. Moreover, the structure of the mesh sheet for base fabrics may be either woven fabric or knitted fabric. Furthermore, there is no particular limitation on the knitted fabric structure of the base fabric. For example, a coarse knitted fabric made of yarns including warps and wefts arranged in parallel with a gap between yarns is used. Can do. The basis weight of the coarse knitted fabric is preferably 50 to 700 g / m 2 . For awning applications, the coarse knitted fabric preferably has a porosity of 5 to 60%, more preferably 10 to 50%, and even more preferably 15 to 30%. If priority is given to high transparency and air permeability, the porosity is preferably set high, and if priority is given to high heat shielding properties, the porosity is preferably set low. The porosity is the ratio (%) of the total void area to the total surface area of the coarse knitted fabric. The fiber base fabric may be subjected to a water repellent treatment, a water absorption prevention treatment, an adhesion treatment, a flame retardant treatment, a coloring treatment, and the like as necessary.

本発明のメッシュシートの遮熱層に用いられる熱可塑性樹脂としては、塩化ビニル樹脂(可塑剤、安定剤等を配合した軟質塩化ビニル樹脂)、塩化ビニル系共重合体樹脂、オレフィン樹脂、オレフィン系共重合体樹脂、アクリル樹脂、アクリル系共重合体樹脂、ウレタン樹脂、ウレタン系共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル系共重合体樹脂、スチレン樹脂、スチレン系共重合体樹脂、ポリエステル樹脂、ポリエステル系共重合体樹脂、及びフッ素含有共重合体樹脂などを単独で用いてもよく、或はその2種以上を併用してもよい。本発明において、遮熱層は前記樹脂から選ばれた少なくとも1種の熱可塑性樹脂と、不定形金属酸化物粒子とを含有し、この遮熱層と基布との複合化方法は、有機溶剤に可溶化した熱可塑性樹脂、水中で乳化重合された熱可塑性樹脂エマルジョン(ラテックス)、あるいは熱可塑性樹脂を水中に強制分散させて安定化したディスパージョン樹脂などの水分散樹脂、或は軟質ポリ塩化ビニル樹脂ペーストゾル、等を用いるディッピング加工(繊維布帛への両面加工)、及びコーティング加工(繊維布帛への両面加工、または片面加工)等を包含する。   Examples of the thermoplastic resin used in the heat shielding layer of the mesh sheet of the present invention include vinyl chloride resin (soft vinyl chloride resin containing plasticizer, stabilizer, etc.), vinyl chloride copolymer resin, olefin resin, and olefin resin. Copolymer resin, acrylic resin, acrylic copolymer resin, urethane resin, urethane copolymer resin, vinyl acetate resin, vinyl acetate copolymer resin, styrene resin, styrene copolymer resin, polyester resin, A polyester copolymer resin, a fluorine-containing copolymer resin, or the like may be used alone, or two or more thereof may be used in combination. In the present invention, the heat shielding layer contains at least one thermoplastic resin selected from the above resins and amorphous metal oxide particles, and the compounding method of the heat shielding layer and the base fabric is an organic solvent. Water-dispersed resin such as thermoplastic resin solubilized in water, thermoplastic emulsion (latex) emulsion-polymerized in water, or dispersion resin stabilized by forcibly dispersing thermoplastic resin in water, or soft polychlorinated resin It includes dipping processing (double-sided processing on fiber fabric) using vinyl resin paste sol, etc., coating processing (double-sided processing or single-sided processing on fiber fabric), and the like.

本発明において、遮熱層が示す遮熱効果は、熱可塑性樹脂中に分散した、シリカ又はアルミナによるコーティングされた不定形酸化チタン粒子(以下前記不定形酸化チタン粒子と記す)が太陽光に含まれる赤外線を散乱させ、膜材を透過する赤外線量を減少させることにより得られる。つまり、可視領域を超えた0.8μm以上の波長の光を効果的に散乱させることにより遮熱効果が得られるのである。前記不定形酸化チタン粒子の平均粒子径の分布範囲が0.3〜3.0μmであり、アスペクト比が1.0〜3.0であることが好ましい。太陽光のエネルギー分布には、0.48μm付近にピークが存在し、赤外領域では、波長が大きくなるに従ってエネルギーが小さくなるため、前記不定形酸化チタン粒子の遠赤外線の遮熱効果に及ぼす影響は近赤外線にくらべると僅かである。従って、遮熱層においては0.4〜0.78μmの波長を有する可視光線の散乱を少なくし、0.8〜2.1μmの波長を有する近赤外線領域を効果的に散乱させることができれば、遮熱層の色相への影響を少なくして、色彩の多様化を可能にし、太陽光に対する遮熱効果を高めることができる。光の散乱は光線が通過する媒質(熱可塑性樹脂)の屈折率とその媒質に添加された前記不定形酸化チタン粒子の屈折率に影響を受ける。一般に熱可塑性樹脂の屈折率は1.3〜1.6程度であるため、光を多く散乱させるためには、用いる前記不定形酸化チタン粒子の屈折率が1.8以上であることが好ましく、2.0以上であることが更に好ましい。また、光の散乱は熱可塑性樹脂に添加される前記不定形酸化チタン粒子の粒子径にも影響される。そこで遮熱層の色彩を多様化するためには、可視光領域の散乱を少なく抑制しなければならず、このためには不定形金属酸化物粒子の粒子径は0.3μm以上であることが好ましい。前記不定形酸化チタン粒子の粒子径が0.3μm未満では、可視光を散乱してしまうため遮熱層の色彩の多様性が失われてしまう。前記不定形酸化チタン粒子の粒子径が大きくなればなるほど長波長の赤外線を散乱させることができるが、ある程度以上の大きな粒子を用いると、可視光全域に亘る散乱を起こし、遮熱層が白濁し、やはり色彩の多様性が失われてしまう。従って、可視光領域の光の散乱を抑えるためには、前記不定形酸化チタン粒子の粒子径は3.0μm以下であることが好ましく、2.0μm以下であることがより好ましく、1.6μm以下であることが更に好ましい。 In the present invention, the heat insulating effect exhibited by the heat insulating layer is that the amorphous titanium oxide particles coated with silica or alumina dispersed in the thermoplastic resin (hereinafter referred to as the above-mentioned amorphous titanium oxide particles) are included in sunlight. It is obtained by scattering the infrared rays to be transmitted and reducing the amount of infrared rays transmitted through the film material. That is, a heat shielding effect can be obtained by effectively scattering light having a wavelength of 0.8 μm or more exceeding the visible region. It is preferable that the distribution range of the average particle diameter of the amorphous titanium oxide particles is 0.3 to 3.0 μm and the aspect ratio is 1.0 to 3.0. The solar energy distribution has a peak in the vicinity of 0.48 μm, and in the infrared region, the energy decreases as the wavelength increases, so the influence of the amorphous titanium oxide particles on the heat shielding effect of far-infrared rays. Is little compared to near infrared. Accordingly, if the thermal barrier layer can reduce the scattering of visible light having a wavelength of 0.4 to 0.78 μm and effectively scatter the near infrared region having a wavelength of 0.8 to 2.1 μm, The influence of the heat shield layer on the hue can be reduced, the color can be diversified, and the heat shield effect on sunlight can be enhanced. Light scattering is affected by the refractive index of a medium (thermoplastic resin) through which light passes and the refractive index of the amorphous titanium oxide particles added to the medium. In general, since the refractive index of the thermoplastic resin is about 1.3 to 1.6, in order to scatter a lot of light, it is preferable that the refractive index of the amorphous titanium oxide particles used is 1.8 or more, More preferably, it is 2.0 or more. Light scattering is also affected by the particle size of the amorphous titanium oxide particles added to the thermoplastic resin. Therefore, in order to diversify the colors of the heat shielding layer, it is necessary to suppress the scattering in the visible light region, and for this purpose, the particle size of the amorphous metal oxide particles should be 0.3 μm or more. preferable. If the particle diameter of the amorphous titanium oxide particles is less than 0.3 μm, the visible light is scattered and the color diversity of the heat shield layer is lost. The larger the particle diameter of the amorphous titanium oxide particles, the longer the wavelength of infrared rays can be scattered. However, if particles larger than a certain size are used, scattering occurs over the entire visible light region, and the heat shielding layer becomes cloudy. After all, the diversity of colors will be lost. Therefore, in order to suppress light scattering in the visible light region, the particle diameter of the amorphous titanium oxide particles is preferably 3.0 μm or less, more preferably 2.0 μm or less, and 1.6 μm or less. More preferably.

本来、前記不定形酸化チタン粒子の粒径分布が0.3〜3.0μmの範囲内で均一であれば、前記不定形酸化チタン粒子の形状は真球形もしくはそれに近い形状であってもよいが、通常の方法により製造された粒子は、その粒子径分布に1個以上のピークが存在し、そのピークの前後に、その頻度を減ずる粒子径分布曲線が形成されるため、この粒子によって効果的に散乱される光の波長にもピークがあり、近赤外線の領域全てに亘って効果的に散乱させることはできない。本発明においては、樹脂に分散させる粒子が不定形粒子であり、そのアスペクト比が1.0〜3.0、特に1.1〜2.5であるときに、遮熱性に優れ、かつ色彩に影響を与えない遮熱層が得られる事が見出された。ここで、アスペクト比とは一般に物体の縦横比を指し、粒子の場合その最大縦径とそれに直交する最大の横幅との比を表す。なお、前記不定形酸化チタン粒子の粒子径分布は、レーザー回折/散乱式粒度分布測定装置(例えば(株)堀場製作所製LA300等)で測定することができ、不定形粒子の粒子径は粒度分布測定装置で測定した球相当径を意味する。不定形の粒子を用いることにより、遮熱効果に優れた遮熱層が得られる原因については、未だ十分に定かではないが、粒子が光を散乱させるとき、光の入射方向に対して垂直な最大断面の面積が散乱に影響を与えることが知られており、このことから下記の様に推察することができる。 Originally, if the particle size distribution of the amorphous titanium oxide particles is uniform within a range of 0.3 to 3.0 μm, the shape of the amorphous titanium oxide particles may be a sphere or a shape close thereto. The particles produced by the usual method have one or more peaks in the particle size distribution, and a particle size distribution curve that decreases the frequency is formed before and after the peak, so this particle is effective. There is also a peak in the wavelength of light scattered by the light, and it cannot be effectively scattered over the entire near infrared region. In the present invention, the particles to be dispersed in the resin are amorphous particles, and when the aspect ratio is 1.0 to 3.0, particularly 1.1 to 2.5, the heat shielding property is excellent and the color is excellent. It has been found that a heat-insulating layer having no effect can be obtained. Here, the aspect ratio generally refers to the aspect ratio of an object. In the case of particles, the aspect ratio represents the ratio between the maximum vertical diameter and the maximum horizontal width orthogonal thereto. The particle size distribution of the amorphous titanium oxide particles can be measured with a laser diffraction / scattering particle size distribution measuring device (for example, LA300 manufactured by Horiba, Ltd.). The particle size of the amorphous particles is the particle size distribution. It means the equivalent sphere diameter measured with a measuring device. The reason why a heat-insulating layer having an excellent heat-shielding effect can be obtained by using irregularly shaped particles is not yet fully known, but when particles scatter light, they are perpendicular to the incident direction of light. It is known that the area of the maximum cross section affects the scattering. From this, it can be inferred as follows.

1.粒子の形状が真球の場合、いずれの方向から光が入射しても、その入射方向に対して垂直な、最大粒子断面積は一定であるが、不定形な粒子の場合、入射の角度によって最大粒子断面積は変動する。したがって、同一粒子であっても光の入射する方向によって、散乱効率の高い光の波長が変動する。
2.粒子は樹脂中にランダムに分散しており、同じ粒子径の粒子であっても光線の入射方向によって、散乱効率の高い光の波長が変動する。
上記1,2より、粒子の形状不定形になることにより、真球状の粒子に較べて、同じ粒径分布であっても、近赤外線領域における光の散乱比が高くなる。
1. When the shape of the particle is a true sphere, the maximum particle cross-sectional area perpendicular to the incident direction is constant regardless of the direction from which light enters, but in the case of an irregular particle, it depends on the angle of incidence. The maximum particle cross section varies. Therefore, even for the same particle, the wavelength of light with high scattering efficiency varies depending on the direction in which the light is incident.
2. The particles are randomly dispersed in the resin, and the wavelength of light with high scattering efficiency varies depending on the incident direction of light even if the particles have the same particle diameter.
From the above 1 and 2, by making the shape of the particles indefinite, the light scattering ratio in the near-infrared region becomes higher even with the same particle size distribution as compared to the spherical particles.

この様な前記不定形酸化チタン粒子は、石ころ及び玉砂利の様な紡錘形、回転楕円形、立方体、円筒形などの形の崩れたもの、あるいは大きな粒子の粉砕により形成された不規則な形状、微細な一次粒子がランダムに焼結し形成された不規則な二次粒子形状等、のいずれの形状であってもよく、これらの2種類以上の混合であっても良く、混合の場合、アスペクト比が1.0の粒子を含んでいてもよいが、粒子の70%以上をアスペクト比1.1〜3.0の粒子が占めることが好ましい。アスペクト比3.0を超える粒子、例えば太さに対して長さが3倍を超える針状粒子や、厚さに対して長径が3倍を超える様な鱗片状粒子などを用いた場合、赤外線の散乱が不十分であったり、可視光線を散乱させて色相に影響を与えることがある。アスペクト比3.0を超える粒子が混入している場合には、その混入量は前記不定形酸化チタン粒子全体の5質量%以下であることが好ましい。なお、表面がコーティングされている金属酸化物粒子を用いる場合には、コーティング後の粒子のアスペクト比が1.0〜3.0であればよい。
本発明に用いる前記不定形酸化チタン粒子としては、屈折率2.5以上、粒子径分布0.3〜3.0μm、アスペクト比1.0〜3.0のシリカ又はアルミナでコーティングされた酸化チタン粒子が用いられる。
Such amorphous titanium oxide particles may have a spindle shape, spheroid shape, spheroid shape, cubic shape, cylindrical shape, or other irregular shapes or fine shapes formed by crushing large particles. The shape may be any shape such as an irregular secondary particle shape formed by randomly sintering primary particles, and may be a mixture of two or more of these. However, it is preferable that particles having an aspect ratio of 1.1 to 3.0 occupy 70% or more of the particles. When using particles having an aspect ratio exceeding 3.0, for example, acicular particles having a length exceeding 3 times the thickness, or scaly particles having a major axis exceeding 3 times the thickness, May be insufficiently scattered, or visible light may be scattered to affect the hue. When particles having an aspect ratio of 3.0 are mixed, the mixed amount is preferably 5% by mass or less of the whole amorphous titanium oxide particles. In addition, when using the metal oxide particle by which the surface is coated, the aspect-ratio of the particle | grains after coating should just be 1.0-3.0.
The amorphous titanium oxide particles used in the present invention include titanium oxide coated with silica or alumina having a refractive index of 2.5 or more, a particle size distribution of 0.3 to 3.0 μm, and an aspect ratio of 1.0 to 3.0. particles Ru is used.

前記不定形酸化チタン粒子の配合量は、遮熱層の合計質量に対して1〜30質量%であり、特に5〜20質量%であることが好ましく、このようにすると、得られる遮熱性メッシュシートに高い遮熱性を付与することができる。前記不定形酸化チタン粒子の含有量が30質量%を超えると、得られるメッシュシートの遮熱層の強度を低下させて耐候耐久性が不十分になり、また遮熱層の風合いが硬くなり日除けとして展張する際の作業性や巻上げ耐久性が不十分になる。またその含有量が1質量%未満では、所望の遮熱性を、メッシュシートに与えることができない。 The blending amount of the amorphous titanium oxide particles is 1 to 30% by mass, particularly preferably 5 to 20% by mass, based on the total mass of the heat shielding layer. High heat shielding properties can be imparted to the sheet. If the content of the amorphous titanium oxide particles exceeds 30% by mass, the strength of the heat shield layer of the resulting mesh sheet is lowered, resulting in insufficient weather resistance, and the texture of the heat shield layer becomes hard and awning. As a result, the workability and roll-up durability at the time of spreading will be insufficient. Moreover, if the content is less than 1 mass%, desired heat-shielding property cannot be given to a mesh sheet.

本発明において、遮熱性メッシュシートにおける遮熱層の遮熱性メッシュシートの質量に対する含浸被覆率は、20〜60質量%であることが好ましく、更に好ましくは30〜50質量%である。含浸被覆率とは本発明の遮熱性メッシュシートの質量に対する遮熱層の質量比率(%)である。遮熱層の含浸被覆率が20%未満では、繊維基布中の繊維糸条の集束性が不十分となり日除け用途として展張する場合や使用時に不都合が生じ、また耐候耐久性が低いものとなる。また遮熱層の含浸被覆率が60%を超えると、樹脂の過付着により短繊維紡績糸のバルキー性が不十分になり、表面毛羽立ちが少なくなり、光沢度が高くなってしまい、天然繊維調和み感に乏しい外観を呈するようになる。遮熱層用配合組成物中には、難燃剤、架橋剤、紫外線吸収剤、酸化防止剤、無機充填剤、顔料、増粘剤、接着剤、防黴剤及び消泡剤などの1種以上を適宜添加してもよい。   In this invention, it is preferable that the impregnation coverage with respect to the mass of the heat-shielding mesh sheet of the heat-shielding layer in a heat-shielding mesh sheet is 20-60 mass%, More preferably, it is 30-50 mass%. The impregnation coverage is the mass ratio (%) of the heat shielding layer to the mass of the heat shielding mesh sheet of the present invention. When the impregnation covering ratio of the heat shielding layer is less than 20%, the fiber yarns in the fiber base fabric are insufficiently converged, causing inconvenience in the case of spreading as an awning application or in use, and low weather resistance. . When the impregnation coverage of the heat shield layer exceeds 60%, the bulkiness of the short fiber spun yarn becomes insufficient due to the excessive adhesion of the resin, the surface fluff is reduced, the glossiness is increased, and natural fiber harmony is achieved. Appears in a poor appearance. One or more of flame retardants, crosslinking agents, ultraviolet absorbers, antioxidants, inorganic fillers, pigments, thickeners, adhesives, antifungal agents, antifoaming agents, etc. May be added as appropriate.

本発明の遮熱性メッシュシートは、屋外使用時に、その遮熱層表面に汚れが付着蓄積すると、経時的に、本来の遮熱効果が失われてしまうことがあるので、本発明の遮熱性メッシュシートの遮熱層表面には防汚層を形成することが好ましい。防汚層の組成については、防汚性を有する被膜を形成するものであれば特に制限はないが、例えば、溶剤に溶解されたアクリル系樹脂、ウレタン系樹脂、フッ素系樹脂から選ばれた少なくとも1種以上からなる溶液樹脂を塗布して形成した塗膜、これらにシリカ微粒子、またはコロイダルシリカを含む塗膜、オルガノシリケート及び/又はその縮合体を含む塗布剤を塗布して形成された親水性被膜、光触媒性無機材料(例えば光触媒性酸化チタン)と、接着剤とを含む塗布剤を塗布して形成された光触媒被膜等から適宜選択することができる。前記防汚層には、本発明の遮熱層に用いた前記不定形酸化チタン粒子(屈折率1.8以上、粒子径分布0.3〜3.0μm、アスペクト比1.0〜3.0)が0.3〜30質量%の含有量で、好ましくは1.0〜10質量%の含有量で含まれていてもよい。 The heat-insulating mesh sheet of the present invention may lose its original heat-shielding effect over time if dirt adheres to and accumulates on the surface of the heat-shielding layer during outdoor use. It is preferable to form an antifouling layer on the surface of the heat shield layer of the sheet. The composition of the antifouling layer is not particularly limited as long as it forms a film having antifouling properties. For example, at least selected from an acrylic resin, a urethane resin, and a fluorine resin dissolved in a solvent. A coating formed by applying one or more types of solution resins, a coating containing silica fine particles or colloidal silica, a coating containing an organosilicate and / or a condensate thereof, and a hydrophilic property formed A film, a photocatalytic inorganic material (for example, photocatalytic titanium oxide), and a photocatalytic film formed by applying a coating agent containing an adhesive can be selected as appropriate. For the antifouling layer, the amorphous titanium oxide particles (refractive index of 1.8 or more, particle size distribution of 0.3 to 3.0 μm, aspect ratio of 1.0 to 3.0 used in the heat shielding layer of the present invention are used. ) May be contained in a content of 0.3 to 30% by mass, preferably 1.0 to 10% by mass.

前記防汚層に用いられるアクリル系樹脂は、アクリル樹脂、アクリル系共重合体樹脂、アクリル−シリコーン系共重合体樹脂、スチレン−アクリル系共重合体樹脂などであり、これらは、紫外線吸収性モノマーなどを共重合成分に含んでいてもよい。またウレタン系樹脂は特に、ポリオール成分としてポリカーボネート系ポリオール、ポリイソシアネート成分として脂肪族ポリイソシアネート、脂環式ポリイソシアネートを用いたウレタン系樹脂が、紫外線曝露によって黄変することがなく耐候性が良好なので好適に用いられる。またこれらのウレタン系樹脂には、更に架橋成分として官能基を2個以上有するアジリジン系化合物、カルボジイミド系化合物、オキサゾリン系化合物、及びイソシアネート系化合物を併用してもよく、上記架橋剤の添加により防汚層の硬度が向上し、より高度な防汚性効果を得ることができる。また、フッ素系樹脂としては、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、エチレン−クロロトリフルオロエチレン共重合体、ポリフッ化ビニリデン、テトラフルオロエチレン−フッ化ビニリデン共重合体、ヘキサフルオロプロピレン−フッ化ビニリデン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体などを用いることができ、特に水酸基を含有するフッ素系樹脂に対しては、イソシアネート系化合物による架橋を施すと、より高度な防汚性効果を得ることができる。   The acrylic resin used for the antifouling layer is an acrylic resin, an acrylic copolymer resin, an acrylic-silicone copolymer resin, a styrene-acrylic copolymer resin, etc., and these are UV absorbing monomers. Etc. may be included in the copolymerization component. In addition, urethane-based resins, in particular, polycarbonate-based polyols as polyol components, urethane-based resins using aliphatic polyisocyanates and alicyclic polyisocyanates as polyisocyanate components are not weathered by UV exposure and have good weather resistance. Preferably used. These urethane resins may be further used in combination with an aziridine compound, carbodiimide compound, oxazoline compound, and isocyanate compound having two or more functional groups as a crosslinking component. The hardness of the dirty layer is improved, and a higher level of antifouling effect can be obtained. In addition, as the fluororesin, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene , Ethylene-chlorotrifluoroethylene copolymer, polyvinylidene fluoride, tetrafluoroethylene-vinylidene fluoride copolymer, hexafluoropropylene-vinylidene fluoride copolymer, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer A coalescence or the like can be used. In particular, when a fluorine-based resin containing a hydroxyl group is subjected to crosslinking with an isocyanate compound, a higher antifouling effect can be obtained.

前記防汚層は、1層であってもよく2層以上であってもよい。防汚層を形成する方法には、格別な制限はなく公知の加工方法、例えば、ディッピング法、ディップコート法、ドクターナイフコート法、グラビアコート法、ロータリースクリーンコート法、スプレーコート法などによる含浸及び/または塗布する方法が用いられる。防汚層の厚さには特に制限はないが、例えば、0.5〜100μmとすることが好ましい。防汚層には、酸化防止剤、光安定剤、紫外線吸収剤、顔料、難燃剤、架橋剤、抗菌剤、防かび剤等の各種添加剤を含んでいてもよい。   The antifouling layer may be a single layer or two or more layers. The method for forming the antifouling layer is not particularly limited, and is a known processing method such as dipping, dip coating, doctor knife coating, gravure coating, rotary screen coating, spray coating, and the like. A coating method is used. Although there is no restriction | limiting in particular in the thickness of an antifouling layer, For example, it is preferable to set it as 0.5-100 micrometers. The antifouling layer may contain various additives such as an antioxidant, a light stabilizer, an ultraviolet absorber, a pigment, a flame retardant, a crosslinking agent, an antibacterial agent, and an antifungal agent.

本発明を下記実施例により更に具体的に説明する。製品の性能評価に用いられた測定方法は下記の通りである。
動的耐久性評価
サンシャインカーボンアーク燈式促進暴露試験(JIS規格A−1415)で500時間耐候促進後又は屋外曝露12カ月後の試験片、或は、初期試験片に、JIS L−1096のスコット法に従って、つかみ間隔2cm、押圧荷重1kgfの条件下に、回数1,000回の屈曲試験を施し、その結果を目視で評価し、動的耐久性の評価とした。
剪断強度
初期の試験片、或はサンシャインカーボンアーク燈式促進暴露試験(JIS規格A−1415)で500時間促進試験後、及び屋外曝露12カ月後の試験片のJIS L−1096のA法による剪断強度を測定した。剪断強度が491N/3cm未満のものは、日除け、ブラインドとして屋外で使用した場合に1年以内で破損の可能性が高く、また施工及びメンテナンスの作業時にメッシュシートが破ける等の問題が起こる可能性が高い。
天然繊維調和み感の評価のための光沢度の測定
JIS Z−8741に準じて、デジタル変角光沢計VG−1D(日本電色工業(株)製)を用いて、入射角度80°にて試験片の裏面を、黒色艶消し標準版によって覆い、初期及び、サンシャインカーボンアーク燈式促進暴露試験(JIS規格A−1415)で500時間耐候促進後及び屋外曝露12カ月後の光沢度を測定した。光沢度10以下のものは、紡績糸を使用した毛羽立った外観と相まって天然繊維のように和み感を有する外観を示した。
遮熱性評価
(試験方法)
高さ5cm×幅10cm×長さ15cmの箱型フレームの4側面と上面部及び底面部とに試験片を貼り付けて固定し、試験箱を準備した。試験箱内部の底面部の中央に熱流量計(Shothrm HFM熱流量計:昭和電工(株)製)のセンサーを取り付けた。次に試験環境として、外気温遮断性と気密性を有する外箱構造体(内径が、高さ45cm×幅35cm×長さ35cm)準備し、外箱構造体の天井中央に白熱ランプ(100V、500Wのフォトリフレクタランプ:デイライトカラー用:東芝(株)製)を取り付けた。試験膜材で被覆した試験箱(比較時には試験膜材の装着がないものを使用)を、この外箱構造体の底面部中央に取り付けて、ランプの中心部と試験箱の中心部を垂直方向に重なるように固定した。箱型構造体内部のランプ先端から試験箱の天井部までの距離は35cmであった。
(評価方法)
試験片を装着していない試験箱を外箱構造体内に入れて密閉状態を形成し、ランプを点灯し、試験箱内部の温度と熱流量(kcal/m2h)とを1分ごとに測定し、30分後の温度と熱流量qn(kcal/m2h)を測定した。外箱構造体内の温度を外気温度まで戻した後、試験片を装着した試験箱を外箱構造体に入れて密閉状態に置き、ランプを点灯し、試験箱内部温度と熱流量(kcal/m2h)を1分ごとに測定し、30分後の温度と熱流量qc(kcal/m2h)を測定し、下記式により遮熱率を求めた。尚、外気温度は20℃の恒温とした。
遮熱率pfは、数値が大きい程、遮熱性が高いものと判断する。
遮熱率pf(%)=〔(qn−qc)/qn〕×100
屋外曝露後の遮熱性評価
幅20cm×長さ2mの試験膜材を、遮熱層側を表側にして、陽当たりの良い南向きに設置した曝露台の傾斜30°方向に展張し、屋外曝露試験を12ヶ月間行った。展張12ヶ月後にサンプル小片を採取し、遮熱性評価を行い、遮熱率pf12を求め、未展張膜材の遮熱率pf0との比較(遮熱率差)を行った。
※屋外展張は、埼玉県草加市内において、3月に開始し、12ヶ月間継続した。
※12ヶ月遮熱率差=pf0−pf12
3:遮熱率の低下が5%未満である。
2:遮熱率の低下が5〜10%未満である。
1:遮熱率の低下が10%以上である。
The present invention will be described more specifically with reference to the following examples. The measurement method used for product performance evaluation is as follows.
Dynamic Durability Evaluation JIS L-1096 Scott is used as a test piece after accelerated weathering for 500 hours or after 12 months of outdoor exposure in the sunshine carbon arc type accelerated exposure test (JIS standard A-1415) or an initial test piece. According to the method, a bending test was performed 1,000 times under the conditions of a grip interval of 2 cm and a pressing load of 1 kgf, and the result was visually evaluated to evaluate dynamic durability.
JIS L-1096 A method shearing of specimens at the initial stage of shear strength or specimens after 500 hours accelerated test in sunshine carbon arc type accelerated exposure test (JIS standard A-1415) and after 12 months outdoor exposure The strength was measured. If the shear strength is less than 491N / 3cm, it is likely to break within one year when used outdoors as a sunshade or blind, and problems such as breaking the mesh sheet during construction and maintenance work may occur. High nature.
Measurement of glossiness for evaluation of natural fiber harmony feeling In accordance with JIS Z-8741, a digital variable gloss meter VG-1D (manufactured by Nippon Denshoku Industries Co., Ltd.) is used at an incident angle of 80 °. The back surface of the test piece was covered with a black matte standard plate, and the glossiness was measured at the initial stage and after 500 hours of accelerated weathering and 12 months after outdoor exposure in the sunshine carbon arc type accelerated exposure test (JIS A-1415). . Those having a glossiness of 10 or less exhibited an appearance having a soft feeling like natural fibers in combination with a fuzzy appearance using spun yarn.
Thermal insulation evaluation (test method)
A test box was prepared by attaching and fixing test pieces to the four side surfaces, top surface portion, and bottom surface portion of a box-shaped frame having a height of 5 cm, a width of 10 cm, and a length of 15 cm. A sensor of a heat flow meter (Shotrm HFM heat flow meter: Showa Denko KK) was attached to the center of the bottom surface inside the test box. Next, as a test environment, an outer box structure (inner diameter: 45 cm height x width 35 cm x length 35 cm) having an outside air-blocking property and airtightness was prepared, and an incandescent lamp (100V, A 500 W photo reflector lamp (for daylight color: manufactured by Toshiba Corporation) was attached. Attach a test box covered with test membrane material (use the one without the test membrane material for comparison) to the center of the bottom of the outer box structure, and place the center of the lamp and the center of the test box vertically It fixed so that it might overlap. The distance from the lamp tip inside the box structure to the ceiling of the test box was 35 cm.
(Evaluation method)
A test box with no test piece is put in the outer box structure to form a sealed state, the lamp is turned on, and the temperature and heat flow (kcal / m 2 h) inside the test box are measured every minute. Then, the temperature after 30 minutes and the heat flow qn (kcal / m 2 h) were measured. After returning the temperature in the outer box structure to the outside air temperature, put the test box with the test piece in the outer box structure, put it in a sealed state, turn on the lamp, test box internal temperature and heat flow (kcal / m 2 h) was measured every minute, the temperature after 30 minutes and the heat flow rate qc (kcal / m 2 h) were measured, and the heat shielding rate was determined by the following formula. The outside air temperature was a constant temperature of 20 ° C.
It is determined that the heat shielding rate pf is higher as the numerical value is larger.
Heat shielding rate pf (%) = [(qn−qc) / qn] × 100
Heat exposure evaluation after outdoor exposure A test film material with a width of 20cm x length of 2m is spread in the direction of 30 ° of the exposure table installed southward with the heat shield layer side facing up, and exposed outdoors. The test was conducted for 12 months. After 12 months of stretching, a small sample was taken, the heat shielding property was evaluated, the heat shielding rate pf 12 was obtained, and the unheated membrane material was compared with the heat shielding rate pf 0 (heat shielding rate difference).
* The outdoor exhibition started in March in Soka City, Saitama Prefecture and continued for 12 months.
* 12 months heat insulation rate difference = pf 0 -pf 12
3: Decrease in heat shielding rate is less than 5%.
2: Decrease in heat shielding rate is less than 5 to 10%.
1: Decrease in heat shielding rate is 10% or more.

実施例1
粗目編織物からなる基布として、表面毛羽を有するポリエステル短繊維紡績糸(1182dtex)の3本模紗織り組織を有する粗目状織物:
1182dtex/3×1182dtex/3
───────────────────
7×7(本/25.4mm)
を使用した。下記組成の軟質ポリ塩化ビニル系樹脂ゾルを調製した。
<配合1.軟質ポリ塩化ビニル系樹脂ゾル組成>
ポリ塩化ビニル樹脂 100質量部
DOP(ジオクチルフタレート、可塑剤) 65質量部
エポキシ化大豆油 2.0質量部
Ba−Zn系安定剤 1.5質量部
紫外線吸収剤 0.3質量部
シリカ被覆不定形ルチル型酸化チタン粒子 20質量部
前記軟質ポリ塩化ビニル系樹脂ゾル中に前記粗目編織物からなる基布を浸漬し、マングルで絞った後、180℃で熱処理して遮熱層を形成した。遮熱層の付着量は180g/m2であった。なお、配合1では、不定形なルチル型酸化チタン粒子をシリカでコーティング(酸化チタン94質量%、シリカ6質量%)したものを用いた。その粒子径の分布範囲は0.3〜1.0μm、屈折率は2.75であり、アスペクト比は1.2〜2.5であった。得られた遮熱性メッシュシートにおける遮熱層の質量比率は、およそ50%であった。前記粗目編織物からなる基布に占める短繊維紡績糸の質量比率は100%であった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Example 1
As a base fabric made of a coarse knitted fabric, a coarse woven fabric having a three-dimensional weave texture of polyester staple fiber spun yarn (1182 dtex) having surface fluff:
1182 dtex / 3 x 1182 dtex / 3
───────────────────
7 × 7 (book / 25.4mm)
It was used. A soft polyvinyl chloride resin sol having the following composition was prepared.
<Formulation 1. Soft polyvinyl chloride resin sol composition>
Polyvinyl chloride resin 100 parts by mass DOP (dioctyl phthalate, plasticizer) 65 parts by mass Epoxidized soybean oil 2.0 parts by mass Ba-Zn stabilizer 1.5 parts by mass Ultraviolet absorber 0.3 parts by mass
Silica-coated amorphous rutile-type titanium oxide particles 20 parts by weight A base fabric made of the coarse knitted fabric is immersed in the soft polyvinyl chloride resin sol, squeezed with mangle, and then heat treated at 180 ° C. to form a heat shielding layer. Formed. The adhesion amount of the heat shielding layer was 180 g / m 2 . In Formulation 1, amorphous rutile titanium oxide particles coated with silica (94% by mass of titanium oxide, 6% by mass of silica) were used. The particle diameter distribution range was 0.3 to 1.0 μm, the refractive index was 2.75, and the aspect ratio was 1.2 to 2.5. The mass ratio of the heat shield layer in the obtained heat shield mesh sheet was approximately 50%. The mass ratio of the short fiber spun yarn in the base fabric made of the coarse knitted fabric was 100%. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

実施例2
実施例1と同様にして遮熱性メッシュシートを作製した。但し、遮熱層上に下記組成の防汚層用樹脂分散液を、60メッシュのグラビアコーターによりコーティング加工し、120℃で2分間乾燥することにより防汚層を設けた。
<配合2.防汚層用樹脂分散液の組成>
アクリル系樹脂(セイコー化成(株)製、商標:ラックスキン
Z−594−2 固形分25%) 100質量部
トルエン(溶剤) 100質量部
得られた遮熱性メッシュシートにおける遮熱層の質量比率は、およそ50%であった。前記粗目編織物からなる基布に占める表面毛羽を有する短繊維紡績糸の質量比率は100%であった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Example 2
A heat-shielding mesh sheet was produced in the same manner as in Example 1. However, the antifouling layer resin dispersion having the following composition was coated on the heat shield layer with a 60 mesh gravure coater and dried at 120 ° C. for 2 minutes to provide an antifouling layer.
<Formulation 2. Composition of resin dispersion for antifouling layer>
Acrylic resin (manufactured by Seiko Kasei Co., Ltd., trademark: rack skin Z-594-2 solid content 25%) 100 parts by mass Toluene (solvent) 100 parts by mass The mass ratio of the heat shielding layer in the obtained heat shielding mesh sheet is , Approximately 50%. The mass ratio of the short fiber spun yarn having surface fluff in the base fabric made of the coarse knitted fabric was 100%. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

実施例3
実施例2と同様にして遮熱性メッシュシートを作製した。但し、遮熱層を形成する軟質ポリ塩化ビニル系樹脂ゾル組成中の前記不定形酸化チタン粒子の配合量を3質量部とした。得られたメッシュシートにおける遮熱層の質量比率は、およそ50%であった。前記粗目編織物からなる基布に占める表面毛羽を有する短繊維紡績糸の質量比率は100%であった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Example 3
A heat-shielding mesh sheet was produced in the same manner as in Example 2. However, the blending amount of the amorphous titanium oxide particles in the soft polyvinyl chloride resin sol composition forming the heat shielding layer was 3 parts by mass. The mass ratio of the heat shield layer in the obtained mesh sheet was approximately 50%. The mass ratio of the short fiber spun yarn having surface fluff in the base fabric made of the coarse knitted fabric was 100%. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

実施例4
実施例2と同様にして遮熱性メッシュシートを作製した。但し、粗目編織物からなる基布として、経糸がポリエステルフィラメント糸(1111dtex)、緯糸が表面毛羽を有するポリエステル短繊維紡績糸(1182dtex)の3本模紗織り組織を有する粗目状織物:
1111dtex/3×1182dtex/3
───────────────────
7×7(本/25.4mm)
を用いた。また、遮熱層上に下記組成の防汚層用樹脂分散液を60メッシュのグラビアコーターによりコーティング加工し、120℃で2分間乾燥することにより防汚層を設けた。
<配合3.防汚層用樹脂分散液の組成>
アクリル系樹脂(セイコー化成(株)製、商標:ラックスキン
Z−594−2 固形分25%) 100質量部
シリカ((株)トクヤマ製、商標:ファインシールX37) 3質量部
トルエン(溶剤) 100質量部
得られたメッシュシートにおける遮熱層の質量比率は、およそ50%であった。前記粗目編織物からなる基布に占める短繊維紡績糸の質量比率は36%であった。得られたメッシュシートの評価結果を表1〜4に示す。
Example 4
A heat-shielding mesh sheet was produced in the same manner as in Example 2. However, as a base fabric made of a coarse knitted fabric, a coarse woven fabric having a three-dimensional woven structure of a polyester filament yarn (1111 dtex) as a warp and a polyester short fiber spun yarn (1182 dtex) as a weft having surface fluff:
1111dtex / 3 × 1182dtex / 3
───────────────────
7 × 7 (book / 25.4mm)
Was used. Further, the antifouling layer resin dispersion having the following composition was coated on the heat shielding layer with a 60 mesh gravure coater and dried at 120 ° C. for 2 minutes to provide an antifouling layer.
<Formulation 3. Composition of resin dispersion for antifouling layer>
Acrylic resin (manufactured by Seiko Kasei Co., Ltd., trademark: Luck Skin Z-594-2, solid content 25%) 100 parts by mass Silica (trade name: Fine Seal X37, manufactured by Tokuyama Corporation) 3 parts by mass Toluene (solvent) 100 Mass part The mass ratio of the heat shielding layer in the obtained mesh sheet was about 50%. The mass ratio of the short fiber spun yarn in the base fabric made of the coarse knitted fabric was 36%. The evaluation results of the obtained mesh sheet are shown in Tables 1 to 4.

実施例5
粗目編織物からなる基布として、経糸がポリエステルフィラメント糸(1111dtex)、緯糸が表面毛羽を有するポリエステル短繊維紡績糸(1182dtex)の1本とポリエステルフィラメント糸(1111dtex)2本で構成された紗織り組織を有する粗目状織物:
1111dtex/3×1182dtex1111dtex/2
─────────────────────────
7×7(本/25.4mm)
を使用し、ウレタン系樹脂エマルジョンを用いて、下記組成(配合4)の遮熱層用エマルジョンを調製した。なお、配合4では、不定形なルチル型酸化チタンをシリカでコーティング(酸化チタン94質量%、シリカ6質量%)した粒子を用いた。その粒子径分布は0.3〜1.0μm、屈折率は2.75であり、アスペクト比は1.2〜2.5であった。
<配合4.遮熱層用エマルジョン組成>
ウレタン系樹脂エマルジョン(固形分:30質量%) 100質量部
シリカ被覆不定形ルチル型酸化チタン粒子 5質量部
紫外線吸収剤 0.5質量部
前記遮熱層用エマルジョン中に、前記粗目織物を浸漬し、マングルで絞った後100℃で乾燥し、更に140℃で熱処理して遮熱層を形成した。遮熱層付着量は100g/m2であった。更に遮熱層上に下記組成の防汚層用樹脂分散液を60メッシュのグラビアコーターによりコーティング加工し、120℃で2分間乾燥することにより防汚層を設けた。
<配合5.防汚層用樹脂分散液の組成>
ウレタン系樹脂(セイコー化成(株)製、商標:ラックスキン
U−1475 固形分25%) 100質量部
トルエン(溶剤) 100質量部
得られたメッシュシートにおける遮熱層の質量比率は、およそ36%であった。前記粗目編織物からなる基布に占める短繊維紡績糸の質量比率はおよそ17.5%であった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Example 5
As a base fabric made of coarse knitted fabric, warp weave is composed of polyester filament yarn (1111 dtex), weft yarn is composed of one polyester short fiber spun yarn (1182 dtex) with surface fluff and two polyester filament yarns (1111 dtex) Coarse woven fabric with texture:
1111dtex / 3 × 1182dtex1111dtex / 2
─────────────────────────
7 × 7 (book / 25.4mm)
Was used to prepare an emulsion for a heat shielding layer having the following composition (formulation 4) using a urethane resin emulsion. In formulation 4, the amorphous rutile titanium oxide (94 wt% titanium oxide, silica 6 wt%) silica coated with particles. The particle size distribution was 0.3 to 1.0 μm, the refractive index was 2.75, and the aspect ratio was 1.2 to 2.5.
<Formulation 4. Emulsion composition for thermal barrier layer>
Urethane resin emulsion (solid content: 30% by mass) 100 parts by mass
Silica-coated amorphous rutile-type titanium oxide particles 5 parts by weight Ultraviolet absorber 0.5 parts by weight The coarse fabric is immersed in the emulsion for the heat shielding layer, squeezed with mangles, dried at 100 ° C, and further 140 ° C. A heat shield layer was formed by heat treatment. The amount of heat shielding layer deposited was 100 g / m 2 . Further, the antifouling layer resin dispersion having the following composition was coated on the heat shielding layer with a 60 mesh gravure coater and dried at 120 ° C. for 2 minutes to provide an antifouling layer.
<Formulation 5. Composition of resin dispersion for antifouling layer>
Urethane resin (manufactured by Seiko Kasei Co., Ltd., trademark: rack skin U-1475, solid content 25%) 100 parts by mass Toluene (solvent) 100 parts by mass The mass ratio of the heat shielding layer in the obtained mesh sheet is approximately 36%. Met. The mass ratio of the short fiber spun yarn in the base fabric made of the coarse knitted fabric was approximately 17.5%. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

実施例6
実施例2と同様にして遮熱性メッシュシートを作製した。但し、遮熱層上に下記組成の防汚層用樹脂分散液を60メッシュのグラビアコーターによりコーティング加工し、120℃で2分間乾燥することにより防汚層を設けた。
<配合6.防汚層用樹脂分散液の組成>
フッ素系樹脂(大日本インキ化学工業(株)製、商標:ディフェンサー
TR−230K 固形分16%) 100質量部
トルエン(溶剤) 100質量部
得られたメッシュシートにおける遮熱層の質量比率は、およそ50%であった。前記粗目編織物からなる基布に占める短繊維紡績糸の質量比率は100%であった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Example 6
A heat-shielding mesh sheet was produced in the same manner as in Example 2. However, the antifouling layer resin dispersion having the following composition was coated on the heat shield layer with a 60 mesh gravure coater and dried at 120 ° C. for 2 minutes to provide an antifouling layer.
<Formulation 6. Composition of resin dispersion for antifouling layer>
Fluorine-based resin (Dainippon Ink Chemical Co., Ltd., trademark: Defencer TR-230K, solid content 16%) 100 parts by mass Toluene (solvent) 100 parts by mass The mass ratio of the heat shielding layer in the obtained mesh sheet is About 50%. The mass ratio of the short fiber spun yarn in the base fabric made of the coarse knitted fabric was 100%. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

実施例7
粗目編織物からなる基布として、予め緑色に原着され、表面毛羽を有するポリエステル短繊維紡績糸(1182dtex)の3本と模紗織り組織を有する粗目状織物:
1182dtex/3×1182dtex/3
───────────────────
7×7(本/25.4mm)
を使用し、下記組成(配合7)の遮熱層用エマルジョンを調製した。なお、配合7では、不定形なルチル型酸化チタン粒子をシリカでコーティング(酸化チタン94質量%、シリカ6質量%)した粒子を用いた。その粒子径分布は0.3〜1.0μm、屈折率は2.75であり、アスペクト比は1.2〜2.5であった。
<配合7.遮熱層用エマルジョン組成>
アクリル系樹脂エマルジョン(固形分:45質量%) 100質量部
不定形金属酸化物粒子:シリカ被覆不定形ルチル型酸化チタン 10質量部
紫外線吸収剤 0.5質量部
前記遮熱用エマルジョン中に、前記着色粗目織物を浸漬し、マングルで絞った後100℃で乾燥し、更に140℃で熱処理して遮熱層を形成した。遮熱層付着量は100g/m2であった。更に遮熱層上に下記組成の接着層用樹脂分散液を60メッシュのグラビアコーターによりコーティング加工し、100℃で2分間乾燥することにより接着層を設けた。その上に更に、下記組成の光触媒防汚層形成用塗布液を60メッシュのグラビアコーターによりコーティング加工し、100℃で2分間乾燥することにより光触媒防汚層を形成した。
<配合8.接着層用樹脂分散液の組成>
シリコン含有量3mol%のアクリルシリコン樹脂を8質量%(固形分)
含有するエタノール−酢酸エチル(50/50質量比)溶液 100質量部
メチルシリケートMS51
(コルコート(株)製)の20%エタノール溶液(ポリシロキサン) 8質量部
γ−グリシドキシプロピルトリメトキシシラン(シランカップリング剤) 1質量部
<配合9.光触媒防汚層形成用塗布液>
酸化チタン含有量10質量%に相当する硝酸酸性酸化チタンゾルが
分散している水−エタノール(50/50質量比)溶液 50質量部
酸化珪素含有量10質量%に相当する硝酸酸性シリカゾルが
分散している水−エタノール(50/50質量比)溶液 50質量部
得られたメッシュシートにおける遮熱層の質量比率は、およそ36%であった。前記粗目編織物からなる基布に占める短繊維紡績糸の質量比率は100%であった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Example 7
As a base fabric made of a coarse knitted fabric, a coarse woven fabric having three polyester short fiber spun yarns (1182 dtex) preliminarily green-colored and having surface fluff and an imitation weave structure:
1182 dtex / 3 x 1182 dtex / 3
───────────────────
7 × 7 (book / 25.4mm)
Was used to prepare an emulsion for a heat shielding layer having the following composition (formulation 7) . In compounding 7, the amorphous rutile type titanium oxide particles (94 wt% titanium oxide, silica 6 wt%) silica coated with particles. The particle size distribution was 0.3 to 1.0 μm, the refractive index was 2.75, and the aspect ratio was 1.2 to 2.5.
<Formulation 7. Emulsion composition for thermal barrier layer>
Acrylic resin emulsion (solid content: 45% by mass) 100 parts by mass Amorphous metal oxide particles: 10 parts by mass of silica-coated amorphous rutile titanium oxide UV absorber 0.5 parts by mass In the heat shielding emulsion, The colored coarse woven fabric was dipped, squeezed with a mangle, dried at 100 ° C., and further heat-treated at 140 ° C. to form a heat shielding layer. The amount of heat shielding layer deposited was 100 g / m 2 . Further, an adhesive layer was provided on the heat-shielding layer by coating a resin dispersion for adhesive layer having the following composition with a 60 mesh gravure coater and drying at 100 ° C. for 2 minutes. Further, a photocatalyst antifouling layer forming coating solution having the following composition was coated with a 60 mesh gravure coater and dried at 100 ° C. for 2 minutes to form a photocatalyst antifouling layer.
<Formulation 8. Composition of resin dispersion for adhesive layer>
8% by mass (solid content) of acrylic silicon resin with a silicon content of 3 mol%
Containing ethanol-ethyl acetate (50/50 mass ratio) solution 100 parts by mass Methyl silicate MS51
8. 20 parts ethanol solution (polysiloxane) (manufactured by Colcoat Co., Ltd.) 8 parts by mass γ-glycidoxypropyltrimethoxysilane (silane coupling agent) 1 part by mass <formulation 9. Photocatalyst antifouling layer forming coating solution>
Water-ethanol (50/50 mass ratio) solution in which a nitric acid acidic titanium oxide sol corresponding to a titanium oxide content of 10% by mass is dispersed 50 parts by mass A nitric acid acidic silica sol corresponding to a silicon oxide content of 10% by mass is dispersed. Water-ethanol (50/50 mass ratio) solution 50 mass parts The mass ratio of the heat shielding layer in the obtained mesh sheet was about 36%. The mass ratio of the short fiber spun yarn in the base fabric made of the coarse knitted fabric was 100%. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

実施例8
実施例2と同様にメッシュシートを作製した。但し、粗目編織物からなる基布として、278dtexのポリエステルフィラメント糸を芯成分として、鞘成分に1.6dtexでステープル長100mmの、表面毛羽を有するポリエステル短繊維紡績糸を質量比65/35になるように絡ませた芯鞘構造の複合糸を2本撚りあわせた撚糸(855dtex)の3本模紗織り組織を有する粗目状織物:
855dtex/3×855dtex/3
─────────────────
11×11(本/25.4mm)
を用いた。遮熱層付着量は180g/m2であった。更に、遮熱層上に下記組成の添加剤移行防止層形成用塗布液を60メッシュのグラビアコーターによりコーティング加工し、100℃で2分間乾燥することにより添加剤移行防止層を形成した。更に前記添加剤移行防止層の上に、実施例7と同様の配合8の接着層と配合9の光触媒防汚層とを順次に積層した。
<配合10.添加剤移行防止層形成用塗布液>
ビニリデンフルオライド−テトラフルオロエチレン共重合体樹脂
(商標:カイナー7201:エルフ・アトケム・ジャパン(株)製) 20質量部
シリカ(商標:ニップシールE−75:東ソ・シリカ(株)製) 5質量部
MEK(溶剤) 80質量部
得られたメッシュシートにおける遮熱層の質量比率は、およそ44%であった。前記粗目編織物からなる基布に占める短繊維紡績糸の質量比率は35%であった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Example 8
A mesh sheet was produced in the same manner as in Example 2. However, as a base fabric made of a coarse knitted fabric, a polyester short fiber spun yarn having a surface fluff of a 278 dtex polyester filament yarn as a core component and a sheath component of 1.6 dtex and a staple length of 100 mm has a mass ratio of 65/35. A coarse woven fabric having a triple woven structure of twisted yarn (855 dtex) in which two core-sheath composite yarns entangled with each other are twisted together:
855 dtex / 3 x 855 dtex / 3
─────────────────
11 x 11 (book / 25.4mm)
Was used. The amount of heat shielding layer deposited was 180 g / m 2 . Further, an additive migration preventing layer was formed by coating a coating solution for forming an additive migration preventing layer having the following composition on the heat shielding layer with a 60 mesh gravure coater and drying at 100 ° C. for 2 minutes. Further, an adhesive layer of Formulation 8 and a photocatalytic antifouling layer of Formulation 9 as in Example 7 were sequentially laminated on the additive migration prevention layer.
<Formulation 10. Coating liquid for forming additive migration preventing layer>
Vinylidene fluoride-tetrafluoroethylene copolymer resin (Trademark: Kainer 7201: manufactured by Elf Atchem Japan Co., Ltd.) 20 parts by mass Silica (Trademark: NipSeal E-75: manufactured by Tosoh Silica Co., Ltd.) 5 masses Part MEK (solvent) 80 parts by mass The mass ratio of the heat shielding layer in the obtained mesh sheet was approximately 44%. The mass ratio of the short fiber spun yarn in the base fabric made of the coarse knitted fabric was 35%. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

比較例1
実施例2と同様にして遮熱性メッシュシートを作製した。但し、粗目編織物からなる基布として、ポリエステルマルチフィラメント糸(1182dtex)の3本模紗織りからなり、表面毛羽のない粗目状織物:
1182dtex/3×1182dtex/3
───────────────────
7×7(本/25.4mm)
を用いた。
遮熱層付着量は180g/m2で、得られたメッシュシートにおける遮熱層の質量比率は、およそ50%であった。ポリエステルフィラメント糸基布が用いられているため、繊維糸条のバルキー性が不十分であり、表面の毛羽立ちが悪く樹脂被覆を施した時に光沢度が高く、天然繊維調とは似つかない外観を有し、和み感に乏しいメッシュシートであった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Comparative Example 1
A heat-shielding mesh sheet was produced in the same manner as in Example 2. However, as a base fabric made of a coarse knitted fabric, it is made of a polyester multifilament yarn (1182 dtex), and a coarse fabric without surface fluff:
1182 dtex / 3 x 1182 dtex / 3
───────────────────
7 × 7 (book / 25.4mm)
Was used.
The amount of the heat shield layer attached was 180 g / m 2 , and the mass ratio of the heat shield layer in the obtained mesh sheet was approximately 50%. Since the polyester filament yarn base fabric is used, the fiber yarn has insufficient bulkiness, the surface is not fuzzy, has a high gloss when coated with a resin, and has an appearance that does not resemble a natural fiber tone. However, it was a mesh sheet with a poor feeling of softening. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

比較例2
実施例2と同様にしてメッシュシートを作製した。但し、遮熱層を形成せず、防汚層のみを基布上に形成した。得られたメッシュシートは僅かな樹脂被覆で遮熱効果も無く、屋外使用での耐候耐久性や巻上げ使用による動的耐久性に劣るものであった。得られたメッシュシートの評価結果を表1〜4に示す。
Comparative Example 2
A mesh sheet was produced in the same manner as in Example 2. However, only the antifouling layer was formed on the base fabric without forming the heat shielding layer. The obtained mesh sheet had a slight resin coating and had no heat shielding effect, and was inferior in weather resistance durability in outdoor use and dynamic durability in winding use. The evaluation results of the obtained mesh sheet are shown in Tables 1 to 4.

比較例3
実施例2と同様にして遮熱性メッシュシートを作製した。但し、軟質ポリ塩化ビニル系樹脂ゾル組成に不定形酸化チタン粒子を配合しなかった。得られたメッシュシートにおける遮熱層の質量比率は、およそ50%であったが、遮熱層中に不定形酸化チタン粒子が配合されていないため、遮熱効果が低いものであった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Comparative Example 3
A heat-shielding mesh sheet was produced in the same manner as in Example 2. However, amorphous titanium oxide particles were not blended with the soft polyvinyl chloride resin sol composition. The mass ratio of the heat shield layer in the obtained mesh sheet was about 50%, but since the amorphous titanium oxide particles were not blended in the heat shield layer, the heat shield effect was low. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

比較例4
実施例2と同様にして遮熱性メッシュシートを作製した。但し、軟質ポリ塩化ビニル系樹脂ゾル組成に配合した不定形酸化チタン粒子を、ルチル型酸化チタンをシリカでコーティング(酸化チタン92質量%、シリカ8質量%)した粒子(顔料用酸化チタン粒子)に変更した。その粒子径分布は0.1〜0.5μm、屈折率は2.75であり、アスペクト比は1.0〜1.5であった。得られた遮熱性メッシュシートにおける遮熱層の質量比率は、およそ50%であったが、用いた酸化チタンの粒子径分布が0.3μm未満の粒子を多く含む顔料用酸化チタンを用いたため、近赤外線に対する散乱効果が低く、遮熱効果の低いものであった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Comparative Example 4
A heat-shielding mesh sheet was produced in the same manner as in Example 2. However, amorphous titanium oxide particles blended in a soft polyvinyl chloride resin sol composition are particles (titanium oxide particles for pigments) obtained by coating rutile titanium oxide with silica (92% by mass of titanium oxide, 8% by mass of silica). changed. The particle size distribution was 0.1 to 0.5 μm, the refractive index was 2.75, and the aspect ratio was 1.0 to 1.5. The mass ratio of the heat-insulating layer in the obtained heat-insulating mesh sheet was about 50%, but because the titanium oxide for pigments containing a large amount of particles having a particle size distribution of less than 0.3 μm was used. The scattering effect for near infrared rays was low, and the heat shielding effect was low. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

比較例5
実施例2と同様にして遮熱性メッシュシートを作製した。但し、軟質ポリ塩化ビニル系樹脂ゾル組成に配合した不定形酸化チタン粒子を、不定形なルチル型酸化チタン粒子をシリカでコーティング(酸化チタン95質量%、シリカ5質量%)して得られ、粒子径分布は0.5〜2.0μm、屈折率は2.75であり、アスペクト比は1.0〜8.0の不定形粒子に変更した。得られたメッシュシートにおける遮熱層の質量比率は、およそ50%であったが、用いた前記不定形酸化チタン粒子のアスペクト比が1.0〜8.0であり、アスペクト比が3を超える粒子を多く含んでいるため赤外線の散乱効果が不十分であって、遮熱効果の低いものであった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Comparative Example 5
A heat-shielding mesh sheet was produced in the same manner as in Example 2. However, the amorphous titanium oxide particles blended in the soft polyvinyl chloride resin sol composition were obtained by coating amorphous rutile titanium oxide particles with silica (95% by mass of titanium oxide, 5% by mass of silica), particle size distribution is 0.5 to 2.0 [mu] m, refractive index is 2.75, the aspect ratio was changed to amorphous particles of 1.0 to 8.0. Mass ratio of the thermal barrier coating in the resulting mesh sheet is was approximately 50%, the aspect ratio of the amorphous titanium oxide particles used is 1.0 to 8.0, the aspect ratio exceeds 3 Since it contains many particles, the effect of scattering infrared rays is insufficient, and the heat shielding effect is low. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

比較例6
実施例2と同様にして遮熱性メッシュシートを作製した。但し、軟質ポリ塩化ビニル系樹脂ゾル組成に添加する前記不定形酸化チタン粒子の配合量を100質量部とした。得られた遮熱性メッシュシートにおける遮熱層付着量は250g/m2で、遮熱層の質量比率は、およそ58%であり、得られたメッシュシートの遮熱性は格段に向上したが有彩色の着色が困難で、無機材料の含有量が多いことによる熱可塑樹脂の強度低下により動的耐久性に劣るものとなった。得られたメッシュシートの評価結果を表1〜4に示す。
Comparative Example 6
A heat-shielding mesh sheet was produced in the same manner as in Example 2. However, the amount of the amorphous titanium oxide particles added to the soft polyvinyl chloride resin sol composition was 100 parts by mass. The amount of the heat shield layer attached to the obtained heat shield mesh sheet was 250 g / m 2 , and the mass ratio of the heat shield layer was about 58%. Although the heat shield property of the obtained mesh sheet was significantly improved, it was chromatic. Is difficult to be colored, and the dynamic durability is inferior due to a decrease in strength of the thermoplastic resin due to a large content of the inorganic material. The evaluation results of the obtained mesh sheet are shown in Tables 1 to 4.

比較例7
実施例2と同様にして遮光性メッシュシートを作製した。但し、遮熱層付着量を300g/m2に変更し、遮熱層の上に施す防汚層を下記の防汚層用樹脂分散液の組成に変更した。
<配合11.防汚層用樹脂分散液の組成>
アクリル系樹脂(セイコー化成(株)製、商標:ラックスキン
Z−594−2 固形分25%) 100質量部
シリカ(商標:ニップシールE−75:東ソ・シリカ(株)製) 5質量部
トルエン(溶剤) 100質量部
得られた遮熱性メッシュシートにおける遮熱層の質量比率は、およそ63%であり、熱可塑性組成樹脂から成る遮熱層の付着量が増えたため、得られたメッシュシートの遮熱性、耐候耐久性は良好なものであったが、基布を被覆する被覆層樹脂付着が多いため、短繊維紡績糸の毛羽立ちが無くなりフラットな外観になり、天然繊維調とはかけ離れた外観となり、艶消し防汚層を施したにも係わらず、光沢度が高く、和み感に乏しい製品となった。得られた遮熱性メッシュシートの評価結果を表1〜4に示す。
Comparative Example 7
A light-shielding mesh sheet was produced in the same manner as in Example 2. However, the adhesion amount of the heat shielding layer was changed to 300 g / m 2 , and the antifouling layer applied on the heat shielding layer was changed to the composition of the following resin dispersion for antifouling layer.
<Formulation 11. Composition of resin dispersion for antifouling layer>
Acrylic resin (manufactured by Seiko Kasei Co., Ltd., Trademark: Lack Skin Z-594-2, solid content 25%) 100 parts by mass Silica (Trademark: Nipseal E-75: manufactured by Tosoh Silica Co., Ltd.) 5 parts by mass Toluene (Solvent) 100 parts by mass The mass ratio of the heat-shielding layer in the obtained heat-shielding mesh sheet was approximately 63%, and the amount of adhesion of the heat-shielding layer made of the thermoplastic composition resin increased. The heat insulation and weather resistance were good, but the coating layer covering the base fabric had a lot of resin adhesion, so there was no fluffing of the short fiber spun yarn and a flat appearance, which was far from natural fibers. In spite of having a matte antifouling layer, the product has a high glossiness and a low softness. The evaluation result of the obtained heat-insulating mesh sheet is shown in Tables 1-4.

Figure 0005062615
Figure 0005062615

Figure 0005062615
Figure 0005062615

Figure 0005062615
Figure 0005062615

Figure 0005062615
Figure 0005062615

実施例1〜8で得た遮熱性メッシュシートはいずれも高い透視性を有しながら、初期遮熱率が20以上の良好な遮熱性を示し、さらに遮熱層上に防汚層を設けることにより遮熱効果の持続性が飛躍的に向上した。
実施例3と比較例3を比較すると、前記不定形酸化チタン粒子の添加量が僅かでも、それを配合されることにより、初期遮熱率20を超え良好な遮熱性を示すことが明らかである。
比較例1,7に示されている様に、短繊維紡績糸の表面毛羽立ちが失われると、遮熱性や耐候耐久性は良好でも、光沢度が高く、天然繊維調には程遠く、和み感の無いものとなることが確認された。
比較例4,5に示されている様に、前記不定形酸化チタン粒子の粒子径分布に0.3μm未満の粒子を多く含むものであったり、前記不定形酸化チタン粒子のアスペクト比において3.0を超える粒子を多く含むものであると、近赤外線の散乱効果が不十分になり、遮熱率が低くなることが確認された。
比較例6に示されている様に、遮熱層中の前記不定形酸化チタン粒子の配合量が過多であると、熱可塑性樹脂の強度が低下して動的耐久性に劣るものとなってしまうことが確認された。
The heat-insulating mesh sheets obtained in Examples 1 to 8 all have high transparency, exhibit good heat-insulating properties with an initial heat-insulating rate of 20 or more, and further provide an antifouling layer on the heat-insulating layer. This drastically improved the sustainability of the heat shielding effect.
When Example 3 and Comparative Example 3 are compared, it is clear that even if the amount of the amorphous titanium oxide particles added is small, the addition of the amorphous titanium oxide particles exceeds the initial heat shielding rate of 20 and exhibits good heat shielding properties. .
As shown in Comparative Examples 1 and 7, when the surface fluff of the short fiber spun yarn is lost, the heat shielding property and weather resistance are good, but the glossiness is high, the natural fiber tone is far away, and the soft feeling is soft. It was confirmed that there was nothing.
As shown in Comparative Examples 4 and 5, the particle size distribution of the amorphous titanium oxide particles contains many particles less than 0.3 μm, or the aspect ratio of the amorphous titanium oxide particles is 3. It was confirmed that the inclusion of many particles exceeding 0 makes the near-infrared scattering effect insufficient and the heat shielding rate decreases.
As shown in Comparative Example 6, when the amount of the amorphous titanium oxide particles in the heat shielding layer is excessive, the strength of the thermoplastic resin is lowered and the dynamic durability is inferior. It was confirmed that.

本発明の天然繊維調メッシュシートにおいて、表面毛羽を有する短繊維紡績糸を含むメッシュシート基布を用いることと、熱可塑性樹脂と粒子径分布0.3〜3.0μm、アスペクト比1.0〜3.0の、シリカ又はアルミナ−コート不定形酸化チタン粒子からなる遮熱層を、メッシュシートに対して20〜60質量%の付着比率に調整することにより、短繊維紡績糸の毛羽立ちを活かして樹脂被覆層を備えながらも光沢度を低く抑えることができ、天然繊維外観に近いクロス調の和み感を付与することができ、生なりの外観で使われる日除け用シートと同等な外観を持ちながら屋外使用で高い耐候耐久性を付与することが可能になった。また、熱可塑性樹脂層に添加した前記不定形酸化チタン粒子の効果により遮熱性が向上し、更にその遮熱層上に防汚層を積層することにより屋外使用で汚れに曝されても高い遮熱効果が持続するようになった。本発明の遮熱性に優れた天然繊維調メッシュシートは特に屋外で使用される日除け等のエクステリア用途、あるいは室内で用いるブラインド等のインテリア用途の材料として実用性に優れたものである。 In the natural fiber-like mesh sheet of the present invention, the use of a mesh sheet base fabric including short fiber spun yarn having surface fluff, thermoplastic resin and particle size distribution 0.3 to 3.0 μm, aspect ratio 1.0 to By adjusting the heat shielding layer made of silica or alumina-coated amorphous titanium oxide particles of 3.0 to an adhesion ratio of 20 to 60% by mass with respect to the mesh sheet, the fuzz of the short fiber spun yarn is utilized. While having a resin coating layer, the glossiness can be kept low, giving a feeling of cross-like softness similar to the appearance of natural fibers, while having the same appearance as a sunshade sheet used in the natural appearance It has become possible to give high weather durability when used outdoors. In addition, the heat shielding property is improved by the effect of the amorphous titanium oxide particles added to the thermoplastic resin layer, and a high anti-smudge layer is formed even if the anti- titanium layer is exposed to dirt by using an anti-smudge layer on the heat shield layer. The heat effect has been sustained. The natural fiber-like mesh sheet having excellent heat shielding properties of the present invention is excellent in practical use as a material for exterior applications such as awnings used outdoors, or interior applications such as blinds used indoors.

Claims (3)

表面毛羽を有する短繊維紡績糸を含む繊維糸条から形成された粗目編織物からなる基布と、前記基布を含浸・被覆している遮熱層とを含み、前記遮熱層が、(i)熱可塑性樹脂と、(ii)不定形金属酸化物粒子とを含み、前記遮熱層の質量が前記基布と前記遮熱層の合計質量に対し20〜60質量%であり、かつ前記不定形金属酸化物粒子の含有量が、前記遮熱層の質量に対し1〜30質量%であり、
前記不定形金属酸化物粒子が、シリカ又はアルミナによりコーティングされた酸化チタン粒子であって、その粒子径分布が、0.3〜3.0μmの範囲内にあり、かつそのアスペクト比が1.0〜3.0の範囲内にある
ことを特徴とする、遮熱性天然繊維調メッシュシート。
Comprising: a base fabric comprising a coarse knitted fabric formed from yarns comprising staple fibers spun yarn having a surface fuzz, and a thermal barrier coating that is impregnated, covering the base fabric, the thermal barrier layer, ( i) a thermoplastic resin, (ii) and a monolithic metal oxide particles, the mass of the thermal barrier layer is 20 to 60% by weight relative to the total weight of the thermal barrier layer and said base fabric, and the content of the amorphous metal oxide particles, 1 to 30% by mass relative to the mass of the thermal barrier layer,
The amorphous metal oxide particles are titanium oxide particles coated with silica or alumina, the particle size distribution is in the range of 0.3 to 3.0 μm, and the aspect ratio is 1.0. A heat-shielding natural fiber-like mesh sheet, characterized by being in the range of ~ 3.0 .
前記不定形酸化チタン粒子の粒子径分布が0.3〜1.6μmの範囲内にあり、かつそのアスペクト比が1.1〜2.5の範囲内にある、請求項1に記載の遮熱性天然繊維調メッシュシート。 The heat shielding property according to claim 1, wherein a particle size distribution of the amorphous titanium oxide particles is in a range of 0.3 to 1.6 µm and an aspect ratio thereof is in a range of 1.1 to 2.5. Natural fiber-like mesh sheet. 前記遮熱層上に防汚層が形成されている、請求項1又は2に記載の遮熱性天然繊維調メッシュシート。   The heat-insulating natural fiber-like mesh sheet according to claim 1 or 2, wherein an antifouling layer is formed on the heat-insulating layer.
JP2007033815A 2007-02-14 2007-02-14 Natural fiber-like mesh sheet with excellent heat insulation Active JP5062615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033815A JP5062615B2 (en) 2007-02-14 2007-02-14 Natural fiber-like mesh sheet with excellent heat insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033815A JP5062615B2 (en) 2007-02-14 2007-02-14 Natural fiber-like mesh sheet with excellent heat insulation

Publications (2)

Publication Number Publication Date
JP2008196085A JP2008196085A (en) 2008-08-28
JP5062615B2 true JP5062615B2 (en) 2012-10-31

Family

ID=39755285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033815A Active JP5062615B2 (en) 2007-02-14 2007-02-14 Natural fiber-like mesh sheet with excellent heat insulation

Country Status (1)

Country Link
JP (1) JP5062615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7035040B2 (en) 2016-10-20 2022-03-14 エスケイエフ・カナダ・リミテッド Thin rotor for magnetic bearing assembly

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493225B2 (en) * 2009-11-02 2014-05-14 平岡織染株式会社 Near-infrared shielding sheet and manufacturing method thereof
JP5339015B1 (en) * 2012-03-16 2013-11-13 日東紡績株式会社 Resin-coated flame-retardant fiber yarn and resin-coated flame-retardant fiber fabric
CN104755669A (en) * 2012-10-26 2015-07-01 As株式会社 Cool-feeling fabric and method for producing same
JP6191054B2 (en) * 2013-11-11 2017-09-06 平岡織染株式会社 Thermal barrier mesh shade
JP2018003204A (en) * 2016-07-05 2018-01-11 倉橋アート株式会社 Heat-shielding cloth material
KR101876882B1 (en) * 2016-09-02 2018-07-10 주식회사 나경 Process Of Producing Black―Out Fabric For Blind
CN112385461A (en) * 2020-11-12 2021-02-23 无棣益展塑业有限公司 Oxidation-resistant sunshade net and processing technology thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921067A (en) * 1996-06-27 1997-01-21 Toyo Kogyo Kk Production of radiation shielding fiber or its product
JP3994189B2 (en) * 2002-02-28 2007-10-17 平岡織染株式会社 Daylighting thermal barrier film material
JP3994191B2 (en) * 2002-03-15 2007-10-17 平岡織染株式会社 Thermal barrier antifouling film material
JP4647342B2 (en) * 2005-02-28 2011-03-09 アキレス株式会社 Solar reflective sheet
JP4517178B2 (en) * 2005-08-26 2010-08-04 平岡織染株式会社 Daylighting film material with excellent thermal insulation effect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7035040B2 (en) 2016-10-20 2022-03-14 エスケイエフ・カナダ・リミテッド Thin rotor for magnetic bearing assembly

Also Published As

Publication number Publication date
JP2008196085A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5062615B2 (en) Natural fiber-like mesh sheet with excellent heat insulation
JP4517178B2 (en) Daylighting film material with excellent thermal insulation effect
JP5146962B2 (en) Thermal barrier film material
JP5493225B2 (en) Near-infrared shielding sheet and manufacturing method thereof
JP6191054B2 (en) Thermal barrier mesh shade
JP5360656B2 (en) Heat shielding daylighting film material and manufacturing method thereof
JP5126792B2 (en) High translucent film material
JP2014040035A (en) Heat control sheet
CN110815985A (en) Radiation refrigeration fabric and application thereof
JP6212822B2 (en) Thermal barrier film material with excellent daylighting
JP2003266612A (en) Heat barrier anti-staining film material
JP7241403B2 (en) industrial sheet material
US11091874B2 (en) Yarn with coating over yarn core
JP5938830B2 (en) Flexible composite sheet
JP6368913B2 (en) Highly translucent film material with heat insulation and heat retention
JP2012051113A (en) Heat controllable sheet
EP2789732B1 (en) Resin-coated flame-retardant glass fiber bundle and resin-coated flame-retardant fiber woven fabric
JP5392445B1 (en) Resin-coated flame-retardant fiber yarn and resin-coated flame-retardant fiber fabric using the same
JP2008068482A (en) Film material
JP6191027B2 (en) Architectural curing mesh sheet
JP2006161248A (en) Heat-blocking fiber and heat-blocking and light-collecting fabric
JP4474610B2 (en) Flame retardant film material with excellent daylighting
CN117616166A (en) Non-foaming aqueous composition, coated textile and method of making same
JP6212771B2 (en) Architectural curing mesh sheet
JP2012140754A (en) Variable lighting-sheet with heat-shielding and heat-releasing properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

R150 Certificate of patent or registration of utility model

Ref document number: 5062615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250