JP5049536B2 - Aluminum piping material for automotive heat exchangers - Google Patents
Aluminum piping material for automotive heat exchangers Download PDFInfo
- Publication number
- JP5049536B2 JP5049536B2 JP2006228383A JP2006228383A JP5049536B2 JP 5049536 B2 JP5049536 B2 JP 5049536B2 JP 2006228383 A JP2006228383 A JP 2006228383A JP 2006228383 A JP2006228383 A JP 2006228383A JP 5049536 B2 JP5049536 B2 JP 5049536B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- corrosion resistance
- piping material
- aluminum
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Extrusion Of Metal (AREA)
Description
本発明は自動車用エアコン、オイルクーラ、ラジエータ、ヒーターなどの熱交換器の配管に適した耐食性に優れるアルミニウム配管材に関する。 The present invention relates to an aluminum piping material excellent in corrosion resistance suitable for piping of heat exchangers such as automobile air conditioners, oil coolers, radiators and heaters.
従来は、この種の熱交換器の配管の材料として、JIS 1000系合金、JIS 3000系合金、JIS 6000系合金などがよく使われている。例えば、JIS 6000系合金として、Mgを0.35〜1.5質量%(以下、単に%と略記する)、Siを0.2〜0.8%、Znを0.1〜0.3%を含有し、さらにSnを0.02〜0.1%、Cuを0.15〜0.4%含有することを特徴とする耐粒界腐食性及び耐孔食性に優れたアルミニウム合金が知られている(例えば、特許文献1参照)。
また、JIS 3000系合金として、Mnを0.5〜2.0%、Cuを0.25〜0.75%を含有し、さらにMg:0.05〜0.2%、Si:0.05〜1.0%、Fe:0.5〜1.2%、Ti:0.05〜0.2%、Zr:0.05〜0.2%、Cr:0.05〜0.15%、V:0.05〜0.15%のうち1種または2種以上を含有することを特徴とする管成形性に優れた熱交換器用チューブ材の製造方法が開示されている(例えば、特許文献2参照)。しかし、これは板材であり、電縫溶接などにより造管するタイプである。
Conventionally, JIS 1000 series alloys, JIS 3000 series alloys, JIS 6000 series alloys and the like are often used as piping materials for this type of heat exchanger. For example, as a JIS 6000 series alloy, Mg is 0.35 to 1.5% by mass (hereinafter simply referred to as%), Si is 0.2 to 0.8%, and Zn is 0.1 to 0.3%. An aluminum alloy excellent in intergranular corrosion resistance and pitting corrosion resistance characterized by containing 0.02 to 0.1% Sn and 0.15 to 0.4% Cu is known. (For example, refer to Patent Document 1).
Further, as a JIS 3000 series alloy, it contains 0.5 to 2.0% Mn, 0.25 to 0.75% Cu, Mg: 0.05 to 0.2%, Si: 0.05 -1.0%, Fe: 0.5-1.2%, Ti: 0.05-0.2%, Zr: 0.05-0.2%, Cr: 0.05-0.15%, V: The manufacturing method of the tube material for heat exchangers excellent in the tube formability characterized by containing 1 type (s) or 2 or more types among 0.05-0.15% is disclosed (for example, patent document) 2). However, this is a plate material and is of a type that is piped by electro-sealing welding or the like.
チューブ材として用いるアルミニウムブレージングシートにおいて、芯材の片面側にAl−Si系合金ろう材を、他面側にAl−Zn系、又はAl−Zn−Mg系合金等の犠牲陽極材をクラッドしたものが提案されている(例えば、特許文献3参照)。しかし、板タイプのチューブ材と配管材とでは鋳造法、製造工程も全く違うものである。
このように、従来の自動車用配管材には、強度、加工性、溶接性、耐食性に優れたJIS 3003合金などが使われているが、過酷な条件下では耐食性が不足する。例えば、環境が劣悪な自動車のエンジンルーム内で使用される場合や東南アジアなどの高温多湿の環境で使用される場合は、貫通腐食が生じることがある。配設された配管に1点でも貫通腐食が生じると配管内の冷媒(冷却水)が漏れて、エアコンでは冷却機能が失われ、ラジエータではエンジンが焼きついたりする。そこで、耐食性の面からは上記のように単層ではなく、JIS 3003合金などの芯材をJIS 7072合金などで内外面及び片面をクラッドしたものが一般的となっているが、製造コストが高いという問題点があった。
そこで、本発明の目的は、クラッドすることなく、単層でJIS 3003合金よりも耐食性が良いアルミニウム合金材料を開発し、優れた自動車熱交換器用アルミニウム配管材を提供することを目的とする。
As described above, JIS 3003 alloy having excellent strength, workability, weldability, and corrosion resistance is used for the conventional automobile piping material, but the corrosion resistance is insufficient under severe conditions. For example, when used in an engine room of a car with a poor environment or when used in a hot and humid environment such as Southeast Asia, penetration corrosion may occur. If even one point of penetration piping occurs in the installed piping, refrigerant (cooling water) in the piping leaks, the cooling function is lost in the air conditioner, and the engine burns in the radiator. Therefore, from the viewpoint of corrosion resistance, a core material such as JIS 3003 alloy is clad on the inner and outer surfaces and one side with JIS 7072 alloy, etc., as described above, but the manufacturing cost is high. There was a problem.
Therefore, an object of the present invention is to develop an aluminum alloy material having a single layer and better corrosion resistance than JIS 3003 alloy without being clad, and to provide an excellent aluminum piping material for an automobile heat exchanger.
本発明者等はこの問題点を解決するために鋭意検討をおこなった結果、Al−Mn系合金にTiとVを同時に添加することで耐食性が向上することを見出し、この知見に基づいて本発明をなすに至った。
すなわち、本発明は、
(1)Siを0.05〜0.4質量%、Feを0.05〜0.4質量%、Cuを0.1質量%以下、Mnを0.15〜1.5質量%、Tiを0.05〜0.3質量%およびVを0.05〜0.3質量%含有し、さらに、0.05〜0.4質量%のMg、0.05〜0.2質量%のCrおよび0.05〜0.2質量%のZrのうち少なくとも1種を含有し、残部がAlと不可避不純物からなることを特徴とする耐食性に優れた自動車熱交換器用アルミニウム配管材、
(2)Siを0.05〜0.4質量%、Feを0.05〜0.4質量%、Cuを0.1質量%以下、Mnを0.15〜1.5質量%、Tiを0.05〜0.3質量%およびVを0.2〜0.3質量%含有し、さらに、0.05〜0.4質量%のMg、0.05〜0.2質量%のCrおよび0.05〜0.2質量%のZrのうち少なくとも1種を含有し、残部がAlと不可避不純物からなることを特徴とする耐食性に優れた自動車熱交換器用アルミニウム配管材、
(3)前記Cu含有量が0.05質量%以下であることを特徴とする(1)または(2)記載の耐食性に優れた自動車熱交換器用アルミニウム配管材
(4)前記(1)〜(3)のいずれか1項に記載の組成をもつアルミニウム合金の鋳塊を熱間押出しして、押出し素管とし、ドローベンチ方式抽伸加工または連続抽伸加工で管材とすることにより製造されたことを特徴とする耐食性に優れた自動車熱交換器用アルミニウム配管材、および、
(5)Siを0.05〜0.4質量%、Feを0.05〜0.4質量%、Cuを0.1質量%以下、Mnを0.15〜1.5質量%、Tiを0.05〜0.3質量%およびVを0.05〜0.3質量%含有し、さらに、0.05〜0.4質量%のMg、0.05〜0.2質量%のCrおよび0.05〜0.2質量%のZrのうち少なくとも1種を含有し、残部がAlと不可避不純物からなる組成をもつアルミニウム合金の鋳塊を熱間押出しして、押出し素管とし、ドローベンチ方式抽伸加工または連続抽伸加工で管材とすることにより製造することを特徴とする耐食性に優れた自動車熱交換器用アルミニウム配管材の製造方法
を提供するものである。
As a result of intensive investigations to solve this problem, the present inventors have found that corrosion resistance is improved by simultaneously adding Ti and V to an Al-Mn alloy, and the present invention is based on this finding. It came to make.
That is, the present invention
( 1 ) 0.05 to 0.4 mass% of Si, 0.05 to 0.4 mass% of Fe, 0.1 mass% or less of Cu, 0.15 to 1.5 mass% of Mn, Ti 0.05 to 0.3% by mass and 0.05 to 0.3% by mass of V, and further 0.05 to 0.4% by mass of Mg, 0.05 to 0.2% by mass of Cr and Aluminum piping material for automobile heat exchanger excellent in corrosion resistance, characterized in that it contains at least one of 0.05 to 0.2% by mass of Zr, and the balance consists of Al and inevitable impurities,
(2) 0.05 to 0.4 mass% of Si, 0.05 to 0.4 mass% of Fe, 0.1 mass% or less of Cu, 0.15 to 1.5 mass% of Mn, Ti 0.05 to 0.3% by mass and 0.2 to 0.3% by mass of V, and further 0.05 to 0.4% by mass of Mg, 0.05 to 0.2% by mass of Cr and Aluminum piping material for automobile heat exchanger excellent in corrosion resistance, characterized in that it contains at least one of 0.05 to 0.2% by mass of Zr, and the balance consists of Al and inevitable impurities,
(3) The aluminum piping material for automobile heat exchangers with excellent corrosion resistance according to (1) or (2), wherein the Cu content is 0.05% by mass or less (4) 3) It is manufactured by extruding an aluminum alloy ingot having the composition described in any one of 3) by hot extrusion to obtain an extruded raw tube, and by using a draw bench type drawing process or a continuous drawing process as a pipe material. Aluminum piping materials for automobile heat exchangers with excellent corrosion resistance, and
(5) 0.05 to 0.4 mass% of Si, 0.05 to 0.4 mass% of Fe, 0.1 mass% or less of Cu, 0.15 to 1.5 mass% of Mn, and Ti 0.05 to 0.3% by mass and 0.05 to 0.3% by mass of V, and further 0.05 to 0.4% by mass of Mg, 0.05 to 0.2% by mass of Cr and An aluminum alloy ingot containing at least one of 0.05 to 0.2% by mass of Zr, with the balance being composed of Al and inevitable impurities, is hot-extruded to form an extruded element tube, and a draw bench The present invention provides a method for producing an aluminum pipe material for automobile heat exchangers having excellent corrosion resistance, characterized by being produced by forming a pipe material by a system drawing process or a continuous drawing process .
このように本発明によれば、自動車用熱交換器のアルミニウム合金配管材はクラッド材ではなく、単層のベア材であっても、優れた耐食性を具備した熱交換器配管材が得られる。そして、板材から電縫溶接などにより造管しなくてもよく、容易な押出、抽伸工程で加工でき熱交換器のコストダウンが図れる等、工業的に顕著な効果が得られる。 As described above, according to the present invention, even if the aluminum alloy piping material of the automotive heat exchanger is not a clad material but a single-layer bare material, a heat exchanger piping material having excellent corrosion resistance can be obtained. And, it is not necessary to make a pipe from the plate material by electro-sealing welding, etc., and it is possible to process by an easy extrusion and drawing process, and the cost of the heat exchanger can be reduced.
以下本発明について、詳細に説明する。
先ず、本発明のアルミニウム配管材を構成するアルミニウム合金の成分について説明する。
The present invention will be described in detail below.
First, the components of the aluminum alloy constituting the aluminum piping material of the present invention will be described.
本発明において、Siは必須の成分であり、Siの含有量は0.05〜0.4質量%(以下、単に%と略記する)である。Siはアルミニウム合金組織のマトリックスに固溶したり、Al−Mn−Si系化合物を形成することにより、ろう付後の強度を向上させる効果があり、必須成分である。この効果を得るためには0.05%以上の含有が必要である。上限値を超えると、耐食性や押出性(ダイスの寿命)が低下する。よって、Si添加の上限を0.4%とする。Siの含有量は、0.05〜0.2%がさらに好ましい。 In the present invention, Si is an essential component, and the Si content is 0.05 to 0.4 mass% (hereinafter simply referred to as%). Si has the effect of improving the strength after brazing by forming a solid solution in the matrix of the aluminum alloy structure or forming an Al—Mn—Si compound, and is an essential component. In order to acquire this effect, 0.05% or more needs to be contained. When the upper limit is exceeded, the corrosion resistance and extrudability (die life) are reduced. Therefore, the upper limit of Si addition is set to 0.4%. The content of Si is more preferably 0.05 to 0.2%.
本発明において、Feは必須成分であり、Feの含有量は0.05〜0.4%である。FeはAl−Fe系の金属間化合物として晶出または析出して強度を向上させる効果がある。この効果を得るため、0.05%以上の含有が必要である。一方、過剰のFeの含有は、これら成分が表面に晶出して腐食速度を速めるため、0.4%を上限とする。Feの含有量は、0.05〜0.2%がさらに好ましい。 In the present invention, Fe is an essential component, and the Fe content is 0.05 to 0.4%. Fe has an effect of improving the strength by crystallization or precipitation as an Al—Fe-based intermetallic compound. In order to acquire this effect, 0.05% or more needs to be contained. On the other hand, the excessive Fe content is crystallized on the surface and increases the corrosion rate, so 0.4% is made the upper limit. The content of Fe is more preferably 0.05 to 0.2%.
本発明において、Cuの含有量は0.6%以下であり、任意の添加成分である。Cuは、固溶して強度を向上させる効果がある。この効果を得るために、必要に応じて、上限0.6%まで添加して良いが、上限を超えると、著しく耐食性を低下させる。特性のうち、耐食性を最も重要視する場合は、Cuは0・05%以下とすることがより好ましい。 In the present invention, the Cu content is 0.6% or less, which is an optional additive component. Cu has the effect of improving the strength by solid solution. In order to obtain this effect, it may be added up to an upper limit of 0.6% as necessary. However, if the upper limit is exceeded, the corrosion resistance is significantly reduced. Among the characteristics, when the corrosion resistance is most important, Cu is more preferably 0.05% or less.
Mnの含有量は0.15〜1.5%で、本発明において、Mnは必須成分である。Mnは、強度向上のために0.15〜1.5%添加する。0.15%未満では、その効果が十分に得られず、1.5%を超えると、押出性及び抽伸加工性が劣るためである。さらに好ましいMnの含有量は、0.8〜1.2%である。 The Mn content is 0.15 to 1.5%, and Mn is an essential component in the present invention. Mn is added in an amount of 0.15 to 1.5% in order to improve the strength. If the content is less than 0.15%, the effect cannot be obtained sufficiently. If the content exceeds 1.5%, the extrudability and the drawability are inferior. A more preferable Mn content is 0.8 to 1.2%.
Tiの含有量およびVの含有量は共に0.05〜0.3%であり、本発明において、TiおよびVは必須成分である。TiとVは、耐食性をより一層向上させる効果がある。すなわち、TiとVは、濃度の高い領域と低い領域とに分かれ、それらが板厚方向に交互に分布して層状となり、Ti濃度及びV濃度の低い領域が高い領域に比べて優先的に腐食することにより腐食形態が層状となる結果、肉厚方向への腐食の進行が妨げられ、耐孔食性が向上する。TiとVを同時に添加することにより、この効果がより顕著に発揮される。 また、TiとVは強度向上にも寄与し、複合添加することにより、一層の効果を得ることができる。これらの十分な効果を得るためには、Ti、Vともに0.05%以上の含有が必要である。上限の0.3%を超えると、鋳造時に粗大な金属間化合物が生成され、押出性や抽伸加工性に悪影響を及ぼす。より好ましい含有量は、Ti、V共に0.1〜0.2%である。 The content of Ti and the content of V are both 0.05 to 0.3%. In the present invention, Ti and V are essential components. Ti and V have the effect of further improving the corrosion resistance. That is, Ti and V are divided into a high concentration region and a low concentration region, and they are alternately distributed in the thickness direction to form a layer, and corrosion is preferentially compared to a region where the Ti concentration and V concentration are low. As a result, the corrosion form becomes lamellar, so that the progress of corrosion in the thickness direction is hindered and the pitting corrosion resistance is improved. By adding Ti and V simultaneously, this effect is more prominent. Moreover, Ti and V contribute to strength improvement, and further effects can be obtained by adding them in combination. In order to obtain these sufficient effects, both Ti and V must contain 0.05% or more. When the upper limit of 0.3% is exceeded, coarse intermetallic compounds are produced during casting, which adversely affects extrudability and drawing workability. A more preferable content is 0.1 to 0.2% for both Ti and V.
本発明においては、0.05〜0.4%のMg、0.05〜0.2%のCrおよび0.05〜0.2%のZrのうち少なくとも1種を含有させることができる。これらの成分は、均質化処理によって固溶もしくは微細金属間化合物として分散し、合金の強度向上に寄与する。そのため、少なくとも1種を含有させる。上記作用を十分に得るためには、各元素において0.05%以上の含有が好ましい。一方、過剰に含有すると押出性や抽伸加工性を低下させるので、それぞれ上記のように上限を定める。これらのより好ましい含有量は、Mgが0.15〜0.3%、Cr、Zrが0.05〜0.15%である。
In the present invention , 0 . At least one of 0.05 to 0.4% Mg, 0.05 to 0.2% Cr, and 0.05 to 0.2% Zr can be contained. These components are dispersed as a solid solution or a fine intermetallic compound by a homogenization treatment, and contribute to improving the strength of the alloy. Therefore, the inclusion of one even without low. In order to sufficiently obtain the above action, the content of each element is preferably 0.05% or more. On the other hand, if it is contained excessively, the extrudability and the drawability are deteriorated, so the upper limit is determined as described above. These more preferable contents are 0.15 to 0.3% for Mg and 0.05 to 0.15% for Cr and Zr.
本発明の自動車熱交換器用アルミニウム合金配管材は、前記の組成を有するアルミニウム合金を次の工程によって加工することにより製造することができる。 The aluminum alloy piping material for an automobile heat exchanger according to the present invention can be manufactured by processing an aluminum alloy having the above composition by the following process.
本発明のアルミニウム合金は前記した成分を目標として常法により溶製することができ、その製造方法は特に限定されない。この合金を用いて押出素管を製造する際には、溶製されたアルミニウム合金に均質化処理を施すのが望ましい。
均質化処理はSiおよびMn系等の分散粒子をマトリックス中に均一かつ高密度に析出させる工程で、常法の例えば、550〜620℃、好ましくは590〜620℃の範囲で、1〜10時間、好ましくは2〜4時間保持する条件で実施する。その後は、少なくとも押出前に450〜550℃に加熱し、均熱化処理を施した後、熱間押出がなされる。なお、上記均質化処理および均熱化処理における加熱方法や加熱炉等についても特に限定されるものではない。
The aluminum alloy of the present invention can be melted by a conventional method with the aforementioned components as targets, and the production method is not particularly limited. When manufacturing an extrusion element pipe using this alloy, it is desirable to homogenize the molten aluminum alloy.
The homogenization treatment is a step in which dispersed particles such as Si and Mn are uniformly and densely precipitated in the matrix, and is a conventional method such as 550 to 620 ° C., preferably 590 to 620 ° C., and 1 to 10 hours. It is preferably carried out under the condition of holding for 2 to 4 hours. Thereafter, it is heated to 450 to 550 ° C. at least before extrusion and subjected to a soaking treatment, followed by hot extrusion. In addition, it does not specifically limit about the heating method, heating furnace, etc. in the said homogenization process and soaking process.
得られた押出素管をドローベンチ方式抽伸加工または連続抽伸加工により引伸ばし、製品サイズに加工した後、例えば300〜520℃、1〜10時間保持の焼鈍を行い、製品となる。
なお、上記押出材は熱交換器用の材料として使用されるものであり、通常は熱媒体を流通させる配管材やラジエータ、ヒーターコアなどのように水を流通させる配管材などに用いられる。また、熱交換器の使用場所も特に限定されるものではない。
The obtained extruded element tube is stretched by draw bench drawing or continuous drawing and processed into a product size, and then annealed at, for example, 300 to 520 ° C. for 1 to 10 hours to obtain a product.
The extruded material is used as a material for a heat exchanger, and is usually used for a piping material for circulating a heat medium, a piping material for circulating water such as a radiator and a heater core. Further, the use place of the heat exchanger is not particularly limited.
次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに制限されるものではない。
(実施例1)
表1に示す成分組成(数値は質量%を表す)のAl合金を溶解し、鋳造して直径:219mmのビレットを製造し、このビレットを610℃で4時間保持の条件で均質化処理を行い、長さ300mmに切断して押出しビレットとした。これを再度、450〜500℃に加熱して、マンドレルダイスにてφ36mm(外径),3mm(肉厚)の素管を押出しして作製した。その後、最終サイズφ17mm(外径),1mm(肉厚)まで連続抽伸加工を冷間で複数回行って、管材を得た。ついで、360℃で2時間保持の条件で焼鈍を行い、放冷して各No.の供試材を得た。
なお、従来例No.1は、JIS 3003合金である。
Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
Example 1
A billet having a diameter of 219 mm is manufactured by melting and casting an Al alloy having the component composition shown in Table 1 (the numerical value represents mass%), and this billet is homogenized under conditions of holding at 610 ° C. for 4 hours. The extruded billet was cut into a length of 300 mm. This was heated again to 450 to 500 ° C., and a tube with a diameter of 36 mm (outer diameter) and 3 mm (thickness) was extruded by a mandrel die. Thereafter, continuous drawing was performed several times in the cold to a final size of φ17 mm (outer diameter) and 1 mm (wall thickness) to obtain a tube material. Then, annealing was performed at 360 ° C. for 2 hours, and the product was allowed to cool and each No. 1 was cooled. The test material was obtained.
Conventional example No. 1 is a JIS 3003 alloy.
これらの供試材の内部耐食性を評価するために、供試材の配管を市販の水性クーラントに循環試験装置を用いて接続し、88℃で8h保持し、室温で16h保持するサイクル試験を1年間行った。各供試材の表面腐食生成物を除去して、材料の腐食状況を評価した。評価は光学顕微鏡により最大孔食深さを焦点深度法にて測定して、その結果を表1に示す。
なお、引張り強度は、供試材の配管を切断して円弧状のままJIS 11号試験片を作成し、JIS H4080に準拠して、引張速度10mm/minの条件で試験を行った。
In order to evaluate the internal corrosion resistance of these test materials, a cycle test in which the pipes of the test materials are connected to a commercially available aqueous coolant using a circulation test apparatus, held at 88 ° C. for 8 hours, and held at room temperature for 16 hours is 1 I went for a year. The surface corrosion products of each test material were removed, and the corrosion status of the material was evaluated. In the evaluation, the maximum pitting depth was measured by a focal depth method with an optical microscope, and the results are shown in Table 1.
In addition, the tensile strength cut | disconnected the pipe | tube of the test material, created the JIS No. 11 test piece with circular arc shape, and tested it on the conditions of the tensile speed of 10 mm / min based on JISH4080.
表1から判るように、比較例1、2の試料はTi、V、Mnの成分が、本発明の規定の範囲を逸脱している為に、押出しや抽伸しが出来ず製品として製造できなかった。比較例3の試料はTiとVが本発明の規定の範囲を下回っている為に、耐食性が向上せず、従来例より耐食性が劣っていた。比較例4、5の試料はCu又はFeが本発明の規定の範囲を超えている為に、従来例より耐食性が劣っていた。比較例6の試料はSiが本発明例の規定の範囲を超えている為に、従来例より耐食性が劣るとともに、押出性も悪化した。
本発明例は、比較例、従来例と比較して配管内部の耐食性がきわめて優れていることが判る。
また、本発明例は、引張り強度の点でも従来例とほぼ同等あるいはそれより良好であることが判る。
As can be seen from Table 1, the samples of Comparative Examples 1 and 2 cannot be manufactured as products because they cannot be extruded or drawn because the components of Ti, V, and Mn are out of the scope of the present invention. It was. In the sample of Comparative Example 3, since Ti and V were below the specified range of the present invention, the corrosion resistance was not improved and the corrosion resistance was inferior to the conventional example. The samples of Comparative Examples 4 and 5 were inferior in corrosion resistance to the conventional examples because Cu or Fe exceeded the specified range of the present invention. In the sample of Comparative Example 6, since Si exceeded the specified range of the inventive example, the corrosion resistance was inferior to that of the conventional example, and the extrudability was also deteriorated.
It can be seen that the examples of the present invention have extremely excellent corrosion resistance inside the piping as compared with the comparative example and the conventional example.
Further, it can be seen that the present invention example is substantially equal to or better than the conventional example in terms of tensile strength.
(実施例2)
表2に示す成分組成(数値は質量%を表す)のAl合金を溶解し、鋳造して直径:219mmのビレットを製造し、このビレットを610℃で4時間保持の条件で均質化処理を行い、長さ300mmに切断して押出しビレットとした。これを再度、450〜500℃に加熱して、マンドレルダイスにてφ36mm(外径),3mm(肉厚)の素管を押出しして作製した。その後、最終サイズφ17mm(外径),1mm(肉厚)まで連続抽伸加工を冷間で複数回行って、管材を得た。ついで、360℃で2時間保持の条件で焼鈍を行い、放冷して各No.の供試材を得た。
(Example 2)
A billet having a diameter of 219 mm is manufactured by melting and casting an Al alloy having the component composition shown in Table 2 (numerical values represent mass%), and this billet is homogenized under conditions of holding at 610 ° C. for 4 hours. The extruded billet was cut into a length of 300 mm. This was heated again to 450 to 500 ° C., and a tube with a diameter of 36 mm (outer diameter) and 3 mm (thickness) was extruded by a mandrel die. Thereafter, continuous drawing was performed several times in the cold to a final size of φ17 mm (outer diameter) and 1 mm (wall thickness) to obtain a tube material. Then, annealing was performed at 360 ° C. for 2 hours, and the product was allowed to cool and each No. 1 was cooled. The test material was obtained.
これらの供試材の外部耐食性を評価するために、各供試材についてJIS H8601に準じるCASS試験を1500時間行った。試験後、供試材の表面腐食生成物を除去して、材料の腐食状況を評価した。評価は光学顕微鏡により最大孔食深さを焦点深度法にて測定して、その結果を表2に示す。
なお、引張り強度は、実施例1と同様にして試験試料を作成し、JIS H4080に準拠して、実施例1と同じ条件で試験を行った。
In order to evaluate the external corrosion resistance of these test materials, a CASS test according to JIS H8601 was performed for 1500 hours on each test material. After the test, the surface corrosion products of the test material were removed, and the corrosion status of the material was evaluated. In the evaluation, the maximum pitting depth was measured by the depth of focus method using an optical microscope, and the results are shown in Table 2.
For the tensile strength, a test sample was prepared in the same manner as in Example 1, and the test was performed under the same conditions as in Example 1 in accordance with JIS H4080.
表2から判るように、比較例1、2の試料は、Ti、V、Mnの成分が本発明の規定の範囲を逸脱している為に、押出や抽伸が出来ずに製品として製造できなかった。比較例3の試料はTiとVが本発明の規定の範囲を下回っている為に、耐食性が向上せず、従来例より耐食性が劣っていた。比較例4、5の試料はCu又はFeが本発明の規定の範囲を超えている為に、従来例より耐食性が劣っていた。比較例6の試料はSiが本発明の規定の範囲を超えている為に、従来例より耐食性に劣るとともに、押出性も悪化した。
本発明例は、比較例、従来例と比較して配管外部の耐食性がきわめて優れていることが判る。そして、引張り強度の点でも従来例とほぼ同等あるいはそれより良好であることが判る。
As can be seen from Table 2, the samples of Comparative Examples 1 and 2 cannot be manufactured as products without extrusion or drawing because the components of Ti, V, and Mn deviate from the prescribed range of the present invention. It was. In the sample of Comparative Example 3, since Ti and V were below the specified range of the present invention, the corrosion resistance was not improved and the corrosion resistance was inferior to the conventional example. The samples of Comparative Examples 4 and 5 were inferior in corrosion resistance to the conventional examples because Cu or Fe exceeded the specified range of the present invention. In the sample of Comparative Example 6, since Si exceeded the specified range of the present invention, the corrosion resistance was inferior to that of the conventional example, and the extrudability was also deteriorated.
It can be seen that the examples of the present invention are extremely excellent in corrosion resistance outside the pipe as compared with the comparative example and the conventional example. It can be seen that the tensile strength is substantially the same as or better than that of the conventional example.
Claims (5)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006228383A JP5049536B2 (en) | 2006-08-24 | 2006-08-24 | Aluminum piping material for automotive heat exchangers |
US11/843,280 US20080050269A1 (en) | 2006-08-24 | 2007-08-22 | Aluminum piping material for automobile heat exchanger |
DE602007010872T DE602007010872D1 (en) | 2006-08-24 | 2007-08-23 | Aluminum material for pipes of automotive heat exchangers |
EP07016585A EP1892308B1 (en) | 2006-08-24 | 2007-08-23 | Aluminium piping material for automobile heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006228383A JP5049536B2 (en) | 2006-08-24 | 2006-08-24 | Aluminum piping material for automotive heat exchangers |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008050657A JP2008050657A (en) | 2008-03-06 |
JP5049536B2 true JP5049536B2 (en) | 2012-10-17 |
Family
ID=38529628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006228383A Expired - Fee Related JP5049536B2 (en) | 2006-08-24 | 2006-08-24 | Aluminum piping material for automotive heat exchangers |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080050269A1 (en) |
EP (1) | EP1892308B1 (en) |
JP (1) | JP5049536B2 (en) |
DE (1) | DE602007010872D1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5030276B2 (en) * | 2007-04-09 | 2012-09-19 | 古河スカイ株式会社 | Aluminum alloy piping material for heat exchanger and manufacturing method thereof |
JP5548411B2 (en) * | 2008-09-02 | 2014-07-16 | カルソニックカンセイ株式会社 | Aluminum alloy heat exchanger and method of manufacturing the same |
CN104722872B (en) | 2010-03-02 | 2016-08-03 | 三菱铝株式会社 | Aluminum alloy heat exchanger |
JP5653233B2 (en) * | 2011-01-20 | 2015-01-14 | 日本軽金属株式会社 | Aluminum alloy for microporous hollow material with excellent extrudability and intergranular corrosion resistance and method for producing the same |
EP2514555A1 (en) | 2011-04-21 | 2012-10-24 | Aleris Aluminum Koblenz GmbH | Extruded aluminium alloy tube product |
CN102312134A (en) * | 2011-10-20 | 2012-01-11 | 银邦金属复合材料股份有限公司 | Novel 3003 aluminium alloy |
KR101604206B1 (en) | 2012-04-05 | 2016-03-16 | 니폰게이긴조쿠가부시키가이샤 | Aluminum alloy for microporous hollow material which has excellent extrudability and grain boundary corrosion resistance, and method for producing same |
JP6066299B2 (en) * | 2013-02-14 | 2017-01-25 | 日本軽金属株式会社 | Aluminum heat exchanger |
US10557188B2 (en) * | 2014-03-19 | 2020-02-11 | Rio Tinto Alcan International Limited | Aluminum alloy composition and method |
CN112254563A (en) * | 2019-07-22 | 2021-01-22 | 海德鲁铝业(苏州)有限公司 | Long-life aluminum alloy having high corrosion resistance and spiral grooved tube produced from the alloy |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3938991A (en) * | 1974-07-15 | 1976-02-17 | Swiss Aluminium Limited | Refining recrystallized grain size in aluminum alloys |
JPS6038455B2 (en) * | 1979-02-16 | 1985-08-31 | 三菱アルミニウム株式会社 | High strength aluminum alloy with good brazing properties |
JPS63186847A (en) * | 1986-09-02 | 1988-08-02 | Sumitomo Light Metal Ind Ltd | Aluminum alloy for heat exchanger |
JPS63206444A (en) * | 1987-02-23 | 1988-08-25 | Sumitomo Light Metal Ind Ltd | Aluminum alloy for heat exchanger |
EP0691898B1 (en) * | 1993-04-06 | 2001-10-17 | Alcan International Limited | Aluminium alloy brazing sheet |
GB9523795D0 (en) * | 1995-11-21 | 1996-01-24 | Alcan Int Ltd | Heat exchanger |
JPH1112671A (en) * | 1997-06-26 | 1999-01-19 | Mitsubishi Alum Co Ltd | High strength aluminum alloy brazing sheet excellent in brazability and corrosion resistance |
PT1078108E (en) * | 1998-04-29 | 2003-06-30 | Corus Aluminium Walzprod Gmbh | ALUMINUM ALLOY TO USE ON A SOLDERED ASSEMBLY |
JP3858253B2 (en) * | 1998-09-08 | 2006-12-13 | 三菱アルミニウム株式会社 | Aluminum alloy clad material for automotive heat exchangers with excellent corrosion resistance in alkaline environments |
JP2000119784A (en) * | 1998-10-08 | 2000-04-25 | Sumitomo Light Metal Ind Ltd | Aluminum alloy material excellent in high temperature creep characteristic and its production |
US6503446B1 (en) * | 2000-07-13 | 2003-01-07 | Reynolds Metals Company | Corrosion and grain growth resistant aluminum alloy |
EP1158063A1 (en) * | 2000-05-22 | 2001-11-28 | Norsk Hydro A/S | Corrosion resistant aluminium alloy |
JP4286432B2 (en) * | 2000-06-01 | 2009-07-01 | 古河スカイ株式会社 | Method for producing aluminum alloy piping material for heat exchanger |
JP4286431B2 (en) * | 2000-06-01 | 2009-07-01 | 古河スカイ株式会社 | Manufacturing method of aluminum alloy piping material |
JP4837188B2 (en) * | 2000-10-02 | 2011-12-14 | 株式会社デンソー | Aluminum alloy material for piping with excellent corrosion resistance and workability |
GB0027706D0 (en) * | 2000-11-14 | 2000-12-27 | Alcan Int Ltd | Composite aluminium sheet |
US6555251B2 (en) * | 2000-12-21 | 2003-04-29 | Alcoa Inc. | Multi-layer, heat treatable brazing sheet with aluminum interlayer |
WO2003089237A1 (en) * | 2002-04-18 | 2003-10-30 | Alcoa Inc. | Ultra-longlife, high formability brazing sheet |
JP2005068557A (en) * | 2003-08-07 | 2005-03-17 | Showa Denko Kk | Aluminum alloy excellent in high-temperature strength, member for heat exchanger, heat exchange tube, and heat exchanger |
US7374827B2 (en) * | 2004-10-13 | 2008-05-20 | Alcoa Inc. | Recovered high strength multi-layer aluminum brazing sheet products |
JP4634854B2 (en) * | 2005-05-10 | 2011-02-16 | 古河スカイ株式会社 | Aluminum alloy extruded tube material for natural refrigerant heat exchangers |
-
2006
- 2006-08-24 JP JP2006228383A patent/JP5049536B2/en not_active Expired - Fee Related
-
2007
- 2007-08-22 US US11/843,280 patent/US20080050269A1/en not_active Abandoned
- 2007-08-23 DE DE602007010872T patent/DE602007010872D1/en active Active
- 2007-08-23 EP EP07016585A patent/EP1892308B1/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
JP2008050657A (en) | 2008-03-06 |
US20080050269A1 (en) | 2008-02-28 |
EP1892308A1 (en) | 2008-02-27 |
EP1892308B1 (en) | 2010-12-01 |
DE602007010872D1 (en) | 2011-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5049536B2 (en) | Aluminum piping material for automotive heat exchangers | |
JP5188115B2 (en) | High strength aluminum alloy brazing sheet | |
JP4955418B2 (en) | Aluminum alloy extrusions used in natural refrigerant heat exchangers | |
JP4563204B2 (en) | Aluminum alloy extruded material for heat exchanger and method for producing the same | |
JP3794971B2 (en) | Copper alloy tube for heat exchanger | |
JPH11172388A (en) | Aluminum alloy extruded pipe material for air conditioner piping and its production | |
JP5188116B2 (en) | High strength aluminum alloy brazing sheet and method for producing the same | |
JP5464659B2 (en) | Copper tube for heat exchanger with excellent fracture strength and bending workability | |
JP5836695B2 (en) | Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing | |
US6896749B2 (en) | Rolled or extruded aluminium Al-Mn alloy products with improved corrosion resistance | |
JP5653233B2 (en) | Aluminum alloy for microporous hollow material with excellent extrudability and intergranular corrosion resistance and method for producing the same | |
JP4996909B2 (en) | Aluminum alloy brazing sheet and method for producing the same | |
JP2019167581A (en) | Method for producing aluminum alloy extruded tube | |
JP2002348624A (en) | Aluminum alloy pipe material for piping of automobile with excellent corrosion resistance and workability | |
JP5107841B2 (en) | Copper alloy tube for heat exchangers with excellent bending workability | |
JP4286431B2 (en) | Manufacturing method of aluminum alloy piping material | |
JP4286432B2 (en) | Method for producing aluminum alloy piping material for heat exchanger | |
JP5792696B2 (en) | High strength copper alloy tube | |
JPH08218143A (en) | Aluminum alloy extruded material for heat exchanger connector and production thereof | |
JP2009046702A (en) | Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance | |
JP5965183B2 (en) | Aluminum alloy plate | |
JP2008179879A (en) | Method for manufacturing extruded alloy with excellent extrudability for heat exchanger, and flat perforated tube for heat exchanger | |
JP4318929B2 (en) | Aluminum alloy extruded tube and heat exchanger for heat exchanger | |
JP2002038232A (en) | Aluminum alloy piping material for heat exchanger | |
JP2005089788A (en) | Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090708 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110816 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111014 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20111019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120710 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120723 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150727 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5049536 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |