Nothing Special   »   [go: up one dir, main page]

JP5044924B2 - Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet - Google Patents

Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP5044924B2
JP5044924B2 JP2005332244A JP2005332244A JP5044924B2 JP 5044924 B2 JP5044924 B2 JP 5044924B2 JP 2005332244 A JP2005332244 A JP 2005332244A JP 2005332244 A JP2005332244 A JP 2005332244A JP 5044924 B2 JP5044924 B2 JP 5044924B2
Authority
JP
Japan
Prior art keywords
steel sheet
acidic solution
galvanized steel
dip galvanized
alloyed hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005332244A
Other languages
Japanese (ja)
Other versions
JP2007138231A (en
Inventor
弘之 増岡
章一郎 平
正泰 名越
芳春 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005332244A priority Critical patent/JP5044924B2/en
Publication of JP2007138231A publication Critical patent/JP2007138231A/en
Application granted granted Critical
Publication of JP5044924B2 publication Critical patent/JP5044924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot dip galvannealed steel sheet manufacturing method of a hot dip galvannealed steel sheet having excellent press-forming property even for a material such as a high-strength hot dip galvannealed steel sheet having high forming load and easy to generate die galling, and the hot dip galvannealed steel sheet. <P>SOLUTION: A steel sheet is subjected to the hot dip galvanizing, and further galvannealing by the heating, and brought into contact with an acid solution after temper rolling. After completing the contact, the steel sheet is naturally left for 1-30 seconds, and rinsed with water. When depositing a Zn-based oxide layer of the thickness of &ge;10 nm on the surface of the galvanized steel sheet, Zr ions are contained in the acid solution. Thus, the oxide layer having the mean thickness of &ge;10 nm and containing Zn and Zr as essential components is deposited on the surface of the galvanized steel sheet. The acid solution preferably contains at least one kind of sulfate, nitrate, chloride and phosphate of Zr with the Zr ion concentration in a range of 0.1-50 g/l. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、高強度合金化溶融亜鉛めっき鋼板などの成形荷重が高く型かじりを生じやすい材料においても、優れたプレス成形性を有する、合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板に関するものである。   The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel having excellent press formability even in a material having a high forming load such as a high-strength alloyed hot-dip galvanized steel sheet, It relates to steel plates.

合金化溶融亜鉛めっき鋼板は合金化処理を施さない亜鉛めっき鋼板と比較して溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で広く利用されている。そのような用途での合金化溶融亜鉛めっき鋼板は、プレス成形を施されて使用に供される。しかし、合金化溶融亜鉛めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での合金化溶融めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビードでの摺動抵抗が大きい部分で合金化溶融亜鉛めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。   An alloyed hot-dip galvanized steel sheet is widely used in a wide range of fields, mainly for automobile body applications, because it is superior in weldability and paintability compared to a galvanized steel sheet that is not subjected to alloying treatment. The alloyed hot-dip galvanized steel sheet for such applications is subjected to press forming and used. However, the alloyed hot-dip galvanized steel sheet has a disadvantage that its press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance of the alloyed hot-dip steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, the alloyed hot-dip galvanized steel sheet is less likely to flow into the press mold at the portion where the sliding resistance between the mold and the bead is large, and the steel sheet tends to break.

合金化溶融亜鉛めっき鋼板は、鋼板に亜鉛めっきを施した後、加熱処理を行い、鋼板中のFeとめっき層中のZnが拡散し合金化反応が生じることにより、Fe−Zn合金相を形成させたものである。このFe−Zn合金相は、通常、Γ相、δ1相、ζ相からなる皮膜であり、Fe濃度が低くなるに従い、すなわち、Γ相→δ1相→ζ相の順で、硬度ならびに融点が低下する傾向がある。このため、摺動性の観点からは、高硬度で、融点が高く凝着の起こりにくい高Fe濃度の皮膜が有効であり、プレス成形性を重視する合金化溶融亜鉛めっき鋼板は、皮膜中の平均Fe濃度を高めに製造されている。 An alloyed hot-dip galvanized steel sheet is formed by galvanizing the steel sheet and then heat-treating to form an Fe-Zn alloy phase by diffusion of Fe in the steel sheet and Zn in the plating layer to cause an alloying reaction. It has been made. This Fe-Zn alloy phase is usually a film composed of a Γ phase, a δ 1 phase, and a ζ phase, and as the Fe concentration decreases, that is, in the order of Γ phase → δ 1 phase → ζ phase, hardness and melting point Tends to decrease. For this reason, from the viewpoint of slidability, a coating with high hardness, high melting point and high Fe concentration is effective, and alloyed hot-dip galvanized steel sheet, which emphasizes press formability, Manufactured with high average Fe concentration.

しかしながら、高Fe濃度の皮膜では、めっき−鋼板界面に硬くて脆いΓ相が形成されやすく、加工時に、界面から剥離する現象、いわゆるパウダリングが生じ易い問題を有している。このため、特許文献1に示されているように、摺動性と耐パウダリング性を両立するために、上層に第二層として硬質のFe系合金を電気めっきなどの手法により付与する方法がとられている。   However, a high Fe concentration film tends to form a hard and brittle Γ phase at the plating-steel sheet interface, and has a problem that a phenomenon of peeling from the interface during processing, that is, so-called powdering is likely to occur. Therefore, as shown in Patent Document 1, in order to achieve both slidability and powdering resistance, there is a method of applying a hard Fe-based alloy as a second layer to the upper layer by a technique such as electroplating. It has been taken.

亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法としては、この他に、高粘度の潤滑油を塗布する方法が広く用いられる。しかし、この方法では、潤滑油の高粘性のために塗装工程で脱脂不良による塗装欠陥が発生したり、また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。従って、合金化溶融亜鉛めっき鋼板自身のプレス成形性が改善されることが強く要請されている。   In addition to this, as a method for improving the press formability when using a galvanized steel sheet, a method of applying a high-viscosity lubricating oil is widely used. However, this method has problems such as a coating defect due to poor degreasing in the painting process due to the high viscosity of the lubricating oil, and press performance becoming unstable due to oil shortage during pressing. Therefore, there is a strong demand for improving the press formability of the galvannealed steel sheet itself.

上記の問題を解決する方法として、特許文献2および特許文献3には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、ZnOを主体とする酸化膜を形成させて溶接性、加工性を向上させる技術が開示されている。   As a method for solving the above problems, Patent Document 2 and Patent Document 3 describe that the surface of a zinc-based plated steel sheet is subjected to electrolytic treatment, dipping treatment, coating oxidation treatment, or heat treatment to oxidize mainly ZnO. A technique for improving weldability and workability by forming a film is disclosed.

特許文献4には亜鉛系めっき鋼板表面に、リン酸ナトリウム5〜60g/lを含みpH2〜6の水溶液にめっき鋼板を浸漬するか、電解処理を行う、または上記水溶液を塗布することにより、P酸化物を主体とした酸化膜を形成して、プレス成形性および化成処理性を向上させる技術が開示されている。   Patent Document 4 discloses that by immersing a plated steel sheet in an aqueous solution containing 5 to 60 g / l of sodium phosphate and having a pH of 2 to 6 on the surface of the zinc-based plated steel sheet, performing electrolytic treatment, or applying the above aqueous solution, P A technique for improving press moldability and chemical conversion treatment by forming an oxide film mainly composed of oxides is disclosed.

特許文献5には、亜鉛めっき鋼板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処理、または加熱処理により、Ni酸化物を生成させることにより、プレス成形性および化成処理性を向上させる技術が開示されている。   Patent Document 5 discloses a technique for improving press formability and chemical conversion treatment by generating Ni oxide by electrolytic treatment, dipping treatment, coating treatment, coating oxidation treatment, or heat treatment on the surface of a galvanized steel sheet. Is disclosed.

特許文献6には、合金化溶融亜鉛めっき鋼板を酸性溶液に接触させることで鋼板表面にZnを主体とする酸化物を形成させ、めっき層とプレス金型の凝着を抑制し、摺動性を向上させる技術が開示されている。
特許平1−319661号公報 特開昭53-60332号公報 特開平2−190483号公報 特開平4−88196号公報 特開平3−191093号公報 特願2002−116026号公報
In Patent Document 6, an alloyed hot-dip galvanized steel sheet is brought into contact with an acidic solution to form an oxide mainly composed of Zn on the surface of the steel sheet, suppressing adhesion between the plating layer and the press mold, and slidability. A technique for improving the above is disclosed.
Japanese Patent No. 1-319661 JP-A-53-60332 Japanese Patent Laid-Open No. 2-190483 JP-A-4-88196 Japanese Patent Laid-Open No. 3-191093 Japanese Patent Application No. 2002-116026

しかしながら、特許文献1〜6は、自動車外板に多く使用される比較的強度の低い合金化溶融亜鉛めっき鋼板に対しては有効であるが、プレス成形時の荷重が高いがゆえに金型との接触面圧が上昇する高強度合金化溶融亜鉛めっき鋼板においては、必ずしもプレス成形性の改善効果を安定して得ることはできない。   However, Patent Documents 1 to 6 are effective for a relatively low-strength alloyed hot-dip galvanized steel sheet that is often used for an automobile outer plate, but because of the high load during press forming, In a high-strength galvannealed steel sheet with increased contact surface pressure, the effect of improving press formability cannot always be obtained stably.

本発明は、かかる事情に鑑み、高強度合金化溶融亜鉛めっき鋼板などの成形荷重が高く型かじりが生じやすい材料においても優れたプレス成形性を有する合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板を提供することを目的とする。   In view of such circumstances, the present invention provides a method for producing an alloyed hot-dip galvanized steel sheet having excellent press formability even in a material having a high forming load such as a high-strength alloyed hot-dip galvanized steel sheet, and alloying. An object is to provide a hot-dip galvanized steel sheet.

本発明者らは、上記の課題を解決すべく、さらに鋭意研究を重ねた。その結果、以下の知見を得た。
特許文献6の方法により製造される合金化溶融亜鉛めっき鋼板表面には、Znを主体とする酸化物層が形成されており、大半が調圧部に形成される。実際のプレス成形において、金型と優先的に接触する面はこの調圧部であり、接触面圧が低い場合には、調圧部表面のZn系酸化物が、金型とめっき層表面の直接接触を抑制することでプレス成形性の向上効果が得られる。しかし、接触面圧が上昇するにつれて、調圧部に加え、金型と未調圧部の直接接触を考える必要がある。特に高強度合金化溶融亜鉛めっき鋼板のような高強度鋼板を使用した場合には、より高硬度の酸化物を調圧部および未調圧部の双方に形成させることが必要である。そして、調圧部および未調圧部の双方にZn系酸化物を形成するためには、酸性溶液として、Zrイオンを含有した処理液を用いて処理を行うが有効であることを見出した。
The inventors of the present invention made further studies to solve the above problems. As a result, the following knowledge was obtained.
On the surface of the galvannealed steel sheet produced by the method of Patent Document 6, an oxide layer mainly composed of Zn is formed, and most of it is formed in the pressure adjusting portion. In actual press molding, the surface that preferentially contacts the mold is this pressure control part, and when the contact surface pressure is low, the Zn-based oxide on the surface of the pressure control part is The effect of improving press formability can be obtained by suppressing direct contact. However, as the contact surface pressure increases, it is necessary to consider direct contact between the mold and the unregulated portion in addition to the pressure regulating portion. In particular, when a high-strength steel sheet such as a high-strength galvannealed steel sheet is used, it is necessary to form a higher hardness oxide in both the pressure-regulating part and the unregulated part. The inventors have found that it is effective to use a treatment liquid containing Zr ions as an acidic solution in order to form a Zn-based oxide in both the pressure regulation part and the non-pressure regulation part.

本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1]鋼板に溶融亜鉛めっきを施し、さらに加熱処理により合金化し、調質圧延を施した後、酸性溶液に接触させ、接触終了後1〜30秒放置した後、水洗を行うことにより、亜鉛めっき鋼板表面に10nm以上のZn系酸化物層を形成する合金化溶融亜鉛めっき鋼板の製造方法において、前記酸性溶液中にZrイオンを含有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Hot dip galvanizing is applied to the steel sheet, further alloyed by heat treatment, temper rolling, contact with an acidic solution, left for 1 to 30 seconds after contact is completed, and then washed with water, In the manufacturing method of the galvannealed steel sheet in which a Zn-based oxide layer having a thickness of 10 nm or more is formed on the surface of the galvanized steel sheet, the method for manufacturing the galvannealed steel sheet characterized by containing Zr ions in the acidic solution .

[2]前記[1]において、前記酸性溶液中に、Zrの硫酸塩、硝酸塩、塩化物、リン酸塩のうち、少なくとも1種類以上をZrイオン濃度として0.1〜50g/lの範囲で含有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[3]前記[1]または[2]において、前記酸性溶液は、pH緩衝作用を有し、かつ、1リットルの酸性溶液のpHを2.0から5.0まで上昇させるのに必要な1.0mol/l水酸化ナトリウム溶液の量(l)で定義するpH上昇度が0.05〜0.5の範囲である特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[4]前記[1]〜[3]のいずれかにおいて、前記酸性溶液は、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、リン酸塩のうち少なくともを1種類以上を、成分含有量5〜50g/lの範囲で含有し、かつ、pHが0.5〜2.0、液温が20〜70℃であることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[5]前記[1]〜[4]のいずれかにおいて、前記酸性溶液に接触させた後の鋼板表面に形成する酸性溶液膜が3g/m2以下であり、かつ、前記酸性溶液膜が鋼板表面に形成された状態での保持時間が1〜30秒の範囲であることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[6]前記[1]〜[5]のいずれかに記載の合金化溶融亜鉛めっき鋼板の製造方法により生産されるめっき鋼板であり、該めっき鋼板表面における酸化物層の平均厚さが10nm以上であり、かつ、酸化物層がZnおよびZrを必須成分として含むことを特徴とする合金化溶融亜鉛めっき鋼板。
[2] In the above [1], the acidic solution contains at least one of Zr sulfate, nitrate, chloride, and phosphate in a range of 0.1 to 50 g / l as a Zr ion concentration. A method for producing an alloyed hot-dip galvanized steel sheet.
[3] In the above [1] or [2], the acidic solution has a pH buffering action, and 1.0 mol / l water necessary for increasing the pH of 1 liter of acidic solution from 2.0 to 5.0. A method for producing an alloyed hot-dip galvanized steel sheet, characterized in that the degree of increase in pH defined by the amount (l) of sodium oxide solution is in the range of 0.05 to 0.5.
[4] In any one of the above [1] to [3], the acidic solution includes acetate, phthalate, citrate, succinate, lactate, tartrate, borate, phosphate. An alloyed hot-dip galvanized steel sheet containing at least one of them in a component content of 5 to 50 g / l, a pH of 0.5 to 2.0, and a liquid temperature of 20 to 70 ° C. Manufacturing method.
[5] In any one of the above [1] to [4], the acidic solution film formed on the steel sheet surface after contact with the acidic solution is 3 g / m 2 or less, and the acidic solution film is a steel sheet A method for producing an alloyed hot-dip galvanized steel sheet, wherein the holding time in the state formed on the surface is in the range of 1 to 30 seconds.
[6] A plated steel sheet produced by the method for producing an galvannealed steel sheet according to any one of [1] to [5], wherein the average thickness of the oxide layer on the surface of the plated steel sheet is 10 nm or more An alloyed hot-dip galvanized steel sheet, wherein the oxide layer contains Zn and Zr as essential components.

本発明によれば、成形荷重が高く型かじりを生じやすい高強度合金化溶融亜鉛めっき鋼板において、プレス成形時の摺動抵抗が小さく、優れたプレス成形性を有することができる。そして、本発明においては、上記のプレス成形性に優れた合金化溶融亜鉛めっき鋼板を安定して製造できる。   According to the present invention, in a high-strength galvannealed steel sheet that has a high forming load and is likely to cause galling, the sliding resistance during press forming is small, and excellent press formability can be achieved. And in this invention, the above-mentioned galvannealed steel plate excellent in press formability can be manufactured stably.

合金化溶融亜鉛めっき鋼板製造の際には、鋼板に溶融亜鉛めっきを施した後に、さらに加熱し合金化処理が施されるが、この合金化処理時の鋼板−めっき界面の反応性の差により、合金化溶融亜鉛めっき鋼板表面には凹凸が存在する。しかしながら、合金化処理後には、通常、材料確保のために調質圧延が施され、この調質圧延時のロールとの接触により、めっき表面は平滑化され凹凸が緩和される。従って、プレス成形時には、金型がめっき表面凸部を押しつぶすのに必要な力が低下し、摺動特性を向上させることができる。   In the production of galvannealed steel sheet, after galvanizing the steel sheet, it is further heated and alloyed, and due to the difference in the reactivity of the steel sheet-plating interface during this alloying process. There are irregularities on the surface of the galvannealed steel sheet. However, after the alloying treatment, temper rolling is usually performed for securing the material, and the plating surface is smoothed and unevenness is alleviated by contact with the roll during the temper rolling. Therefore, at the time of press molding, the force required for the mold to crush the plating surface convex portion is reduced, and the sliding characteristics can be improved.

プレス成形時の荷重が低い場合には、金型が直接接触する部分は合金化溶融亜鉛めっき鋼板表面の調圧部であるが、プレス成形時の荷重が高くなる場合では、鋼板表面の未調圧部も調圧部と併せて金型との直接接触が起こることが予想される。よって、合金化溶融亜鉛めっき鋼板表面の調圧部および未調圧部には、金型との凝着を防止する硬質かつ高融点の物質が存在することが、摺動性の向上には重要である。この点で、鋼板表面に酸化物層を存在させることは、酸化物層が金型との凝着を防止するため、摺動特性の向上に有効である。   When the load at the time of press forming is low, the part where the mold is in direct contact is the pressure adjusting part on the surface of the galvannealed steel sheet, but when the load at the time of press forming is high, the surface of the steel sheet is not adjusted. It is expected that the pressure part also comes into direct contact with the mold together with the pressure adjusting part. Therefore, it is important to improve the slidability that hard and high melting point materials that prevent adhesion to the mold exist in the pressure-regulated and unregulated parts of the galvannealed steel sheet surface. It is. In this respect, the presence of the oxide layer on the surface of the steel sheet is effective in improving the sliding characteristics because the oxide layer prevents adhesion with the mold.

実際のプレス成形時には、表層の酸化物は摩耗し削り取られるため、金型と被加工材の接触面積が大きい場合には、十分厚い酸化物層の存在が必要である。また、めっき層表面には合金化処理時の加熱により酸化物が形成されているものの、調質圧延時のロールとの接触により大部分が破壊され、新生面が露出しているため、良好な摺動性を得るためには調質圧延以前に厚い酸化物層を形成しなければならない。しかし、これらを考慮に入れて、調質圧延前に厚い酸化物層を形成させたとしても、調質圧延時に生じる酸化物層の破壊を避けることはできないため、めっき層表面の酸化物層が不均一に存在し、良好な摺動性を安定して得ることはできない。   At the time of actual press molding, the oxide on the surface layer is worn away and scraped off. Therefore, when the contact area between the mold and the workpiece is large, it is necessary to have a sufficiently thick oxide layer. In addition, although oxide is formed on the surface of the plating layer by heating during the alloying treatment, most of the oxide layer is destroyed by contact with the roll during temper rolling, and the new surface is exposed. In order to obtain mobility, a thick oxide layer must be formed before temper rolling. However, taking these into consideration, even if a thick oxide layer is formed before temper rolling, it is not possible to avoid the destruction of the oxide layer that occurs during temper rolling. It exists unevenly and good slidability cannot be obtained stably.

このため、調質圧延が施された合金化溶融亜鉛めっき鋼板、特にめっき鋼板表面に、均一に酸化物層を形成する処理を施すことで良好な摺動性を安定的に得ることができるようになる。   For this reason, good slidability can be stably obtained by applying a treatment to uniformly form an oxide layer on the surface of the galvannealed steel sheet that has been subjected to temper rolling, particularly the surface of the plated steel sheet. become.

調質圧延後の合金化溶融亜鉛めっき鋼板を酸性溶液と接触させ、その後、鋼板表面に酸性液膜が形成された状態で所定時間保持した後、水洗、乾燥することによってめっき表層に酸化物層を形成することができるが、この際、形成される酸化物はZnを主体とする酸化物層が主にめっき鋼板表面の調圧部に形成される。自動車外板に多く使用されるような比較的強度の低い合金化溶融亜鉛めっき鋼板では、成形荷重が低いため、プレス成形時に金型と直接接触するのは、主としてめっき層表面の調圧部であることから、酸化物層をめっき層表面の調圧部に形成することで良好なプレス成形性が得られる。しかしながら、構造部材に使用されるような高強度合金化溶融亜鉛めっき鋼板では、成形荷重が高いために、プレス成形時に金型が調圧部のみならず、未調圧部とも直接接触することが考えられる。それゆえ、調圧部にのみに酸化物層を形成するだけでは、良好なプレス成形性を確保することができない。これに対し、Zrを含有する酸性溶液を使用すると、ZnとZrを含有する酸化物層が調圧部および未調圧部に形成することができ、かつ、ZrはZnと比べ硬質であることからZn単体の酸化物層と比較してより硬質化な酸化物層を形成することができる。このようにして形成された酸化物層は、金型との接触面圧が高い場合においても容易には破壊されず、かつ、金型とめっき層表面の直接接触を抑制する。その結果、成形荷重が高く型かじりを生じやすい高強度合金化溶融亜鉛めっき鋼板においても、良好なプレス成形性を示すことになる。   The alloyed hot-dip galvanized steel sheet after temper rolling is brought into contact with an acidic solution, and after that, the oxide liquid layer is formed on the plating surface layer by washing with water and drying after holding the acidic liquid film on the surface of the steel sheet for a predetermined time. In this case, an oxide layer mainly composed of Zn is formed mainly on the pressure regulating portion on the surface of the plated steel sheet. In the alloyed hot-dip galvanized steel sheet, which is often used for automobile outer plates, the forming load is low, so the direct contact with the mold during press forming is mainly at the pressure-regulating part on the surface of the plating layer. Therefore, good press formability can be obtained by forming the oxide layer on the pressure-regulating portion on the surface of the plating layer. However, in high-strength galvannealed steel sheets such as those used for structural members, the molding load is high, so that the mold may be in direct contact with not only the pressure-regulating part but also the non-pressure-regulating part during press molding. Conceivable. Therefore, good press formability cannot be ensured only by forming the oxide layer only on the pressure adjusting portion. In contrast, when an acidic solution containing Zr is used, an oxide layer containing Zn and Zr can be formed in the pressure-regulating part and the non-pressure-regulating part, and Zr is harder than Zn. Therefore, a harder oxide layer can be formed as compared with the oxide layer of Zn alone. The oxide layer thus formed is not easily broken even when the contact surface pressure with the mold is high, and suppresses direct contact between the mold and the plating layer surface. As a result, even in a high-strength galvannealed steel sheet that has a high forming load and is likely to cause mold galling, good press formability is exhibited.

この酸化物層形成メカニズムについては明確ではないが、次のように考えることができる。合金化溶融亜鉛めっき鋼板を酸性溶液に接触させると、鋼板側からは亜鉛の溶解が生じる。この亜鉛の溶解は、同時に水素発生を生じるため、亜鉛の溶解が進行すると、酸性溶液中の水素イオン濃度が減少し、その結果酸性溶液のpHが上昇し、酸化物(水酸化物)が安定となるpH領域に達すると、合金化溶融亜鉛めっき鋼板表面に酸化物層を形成すると考えられる。この際にZrを含有する酸性溶液を使用すると、Zr系酸化物の形成反応がZn系酸化物の形成反応よりも低いpH領域において生じ、その後さらにpHが上昇するとZn系酸化物の形成反応が生じるため、Zn単体時と比較して酸化物の形成反応が容易に起こることが考えられる。また、このZr系酸化物形成反応は低pH領域で起こっていることから、鋼板を強くエッチングすることが考えられ、調圧部に比べ反応性に劣る未調圧部においても酸化物形成反応が容易に起こると考えられる。また、このような酸化物の形成方法は、めっき層表面をわずかに溶解させながら進行するものであるため、酸化物を分散させた溶媒を用いた塗布処理などにより得られる層と比較して密着性も良好であり、水酸化物の沈殿反応を利用したものであるため、加熱処理などにより表面を完全被覆することで得られる皮膜と比較すると、厚い皮膜を形成できる。なお、酸性溶液に接触させ、接触終了後1〜30秒放置する際に、誘導加熱や輻射加熱等により鋼板を加熱しても良い。   Although the oxide layer formation mechanism is not clear, it can be considered as follows. When the galvannealed steel sheet is brought into contact with an acidic solution, zinc is dissolved from the steel sheet side. This dissolution of zinc causes hydrogen generation at the same time. As the dissolution of zinc proceeds, the hydrogen ion concentration in the acidic solution decreases, resulting in an increase in the pH of the acidic solution and the stabilization of the oxide (hydroxide). It is considered that an oxide layer is formed on the surface of the alloyed hot-dip galvanized steel sheet when reaching the pH range. At this time, when an acidic solution containing Zr is used, a Zr-based oxide formation reaction occurs in a pH range lower than that of the Zn-based oxide formation reaction, and when the pH further increases, the Zn-based oxide formation reaction occurs. Therefore, it is conceivable that the oxide formation reaction easily occurs as compared with the case of Zn alone. In addition, since this Zr-based oxide formation reaction occurs in the low pH region, it is considered that the steel sheet is strongly etched, and the oxide formation reaction also occurs in the unregulated portion that is inferior in reactivity to the pressure-regulated portion. It seems to happen easily. In addition, since such an oxide formation method proceeds while slightly dissolving the surface of the plating layer, it is more closely adhered to a layer obtained by a coating process using a solvent in which the oxide is dispersed. Since the property is good and the precipitation reaction of hydroxide is used, a thick film can be formed as compared with a film obtained by completely covering the surface by heat treatment or the like. In addition, when making it contact with an acidic solution and leaving it for 1 to 30 seconds after completion | finish of contact, you may heat a steel plate by induction heating, radiation heating, etc.

以上より、本発明においては、鋼板に溶融亜鉛めっきを施し、さらに加熱処理により合金化し、調質圧延を施した後、酸性溶液に接触させ、接触終了後1〜30秒放置した後、水洗を行うことにより、亜鉛めっき鋼板表面に10nm以上のZn系酸化物層を形成する際に、前記酸性溶液中にZrイオンを含有することとする。これは本発明において、最も重要な要件である。   As described above, in the present invention, hot dip galvanizing is applied to the steel sheet, further alloyed by heat treatment, subjected to temper rolling, contacted with an acidic solution, left for 1 to 30 seconds after completion of contact, and then washed with water. By carrying out, when forming a Zn-type oxide layer 10 nm or more in the surface of a galvanized steel plate, it shall contain Zr ion in the said acidic solution. This is the most important requirement in the present invention.

酸性溶液にZrイオンを含有させるためには、Zrの硫酸塩、硝酸塩、塩化物、リン酸塩のうち、少なくとも1種類以上をZrイオン濃度として0.1〜50g/lの範囲で含有することが好ましい。Zrイオン濃度が0.1g/l未満では、形成されるZr系酸化物量が少量でありZnが中心となる酸化物層となるため、面圧上昇時のプレス成形性改善効果が十分に得られない場合がある。一方、50g/lを超えると、形成されるZr系酸化物の割合が多く、摺動特性の改善には有効であるが、これらZr系酸化物は合金化溶融亜鉛めっき鋼板を対象に設計された接着剤との適合性を劣化させる傾向がある。   In order to contain Zr ions in the acidic solution, it is preferable to contain at least one of Zr sulfate, nitrate, chloride, and phosphate in the range of 0.1 to 50 g / l as the Zr ion concentration. . If the Zr ion concentration is less than 0.1 g / l, the amount of Zr-based oxide formed is small and the oxide layer is centered on Zn, so the effect of improving press formability when the surface pressure increases cannot be obtained sufficiently. There is a case. On the other hand, if it exceeds 50 g / l, the ratio of Zr-based oxides formed is large and effective in improving the sliding characteristics. However, these Zr-based oxides are designed for galvannealed steel sheets. There is a tendency to deteriorate the compatibility with the adhesive.

使用する酸性溶液は、pH2.0〜5.0の領域においてpH緩衝作用を有するものが好ましい。これは、pH2.0〜5.0の領域でpH緩衝作用を有する酸性溶液を使用すると、酸性溶液に接触後、所定時間保持することで、酸性溶液とめっき層の反応によるZnの溶解とZr系酸化物およびZn系酸化物の形成反応が十分に生じ、鋼板表面に酸化物層を安定して得ることができるためである。また、このようなpH緩衝作用の指標としては、1リットルの酸性溶液のpHを2.0〜5.0まで上昇させるのに要する1.0mol/l水酸化ナトリウム水溶液の量(l)で定義するpH上昇度で評価でき、この値が0.05〜0.5の範囲にあるとよい。PH上昇度が0.05未満であると、pHの上昇が速やかに起こって酸化物の形成に十分な亜鉛の溶解が得られないため、十分な酸化物層が形成されない場合がある。一方で、0.5を超えると、亜鉛の溶解が促進され、酸化物層の形成に長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失うことが考えられるためである。なお、pH上昇度は、pHが2.0〜5.0の範囲でほとんど緩衝性を有しない無機酸を、pHが2.0を超える酸性溶液に添加して、pHを一旦2.0に低下させてから評価することとする。   The acidic solution used preferably has a pH buffering action in the pH range of 2.0 to 5.0. This is because when an acidic solution having a pH buffering action in the pH 2.0 to 5.0 region is used, it is kept for a predetermined time after contact with the acidic solution, so that the dissolution of Zn and the Zr-based oxidation by the reaction between the acidic solution and the plating layer occur. This is because the formation reaction of the oxide and the Zn-based oxide occurs sufficiently, and an oxide layer can be stably obtained on the steel sheet surface. In addition, as an indicator of such pH buffering action, the degree of pH increase defined by the amount (l) of 1.0 mol / l aqueous sodium hydroxide solution required to increase the pH of a 1 liter acidic solution from 2.0 to 5.0. It can be evaluated and this value is preferably in the range of 0.05 to 0.5. If the pH increase is less than 0.05, the pH will increase rapidly and sufficient zinc dissolution for oxide formation may not be obtained, so that a sufficient oxide layer may not be formed. On the other hand, if it exceeds 0.5, dissolution of zinc is promoted, and not only does it take a long time to form an oxide layer, but the plating layer is also severely damaged, and it may be possible to lose its original role as a rust-proof steel plate. Because. The degree of pH increase is evaluated by adding an inorganic acid that has almost no buffering property in the pH range of 2.0 to 5.0 to an acidic solution having a pH value exceeding 2.0, and lowering the pH value to 2.0 once. To do.

このようなpH緩衝性を有する酸性溶液としては、酢酸ナトリウム(CH3COONa)などの酢酸塩やフタル酸水素カリウム((KOOC)2C6H4)などのフタル酸塩、クエン酸ナトリウム(Na3C6H5O7)やクエン酸二水素カリウム(KH2C6H5O7)などのクエン酸塩、コハク酸ナトリウム(Na2C4H4O4)などのコハク酸塩、乳酸ナトリウム(NaCH3CHOHCO2)などの乳酸塩、酒石酸ナトリウム(Na2C4H4O6)などの酒石酸塩、ホウ酸塩、リン酸塩が挙げられ、これらのうち少なくとも1種類以上を、前記各成分含有量で5〜50g/lの範囲となるように含有する水溶液を使用することが好ましい。前記濃度が5g/l未満では、亜鉛の溶解とともに溶液のpH上昇が比較的すばやく生じるため、摺動性の向上に十分な酸化物層を形成することができない。一方、50g/lを超えると、亜鉛の溶解が促進され、酸化物層の形成に長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失うことが考えられるためである。 Acidic solutions with such pH buffering properties include acetates such as sodium acetate (CH 3 COONa), phthalates such as potassium hydrogen phthalate ((KOOC) 2 C 6 H 4 ), sodium citrate (Na Citrates such as 3 C 6 H 5 O 7 ) and potassium dihydrogen citrate (KH 2 C 6 H 5 O 7 ), succinates such as sodium succinate (Na 2 C 4 H 4 O 4 ), and lactic acid Examples thereof include lactate salts such as sodium (NaCH 3 CHOHCO 2 ), tartrate salts such as sodium tartrate (Na 2 C 4 H 4 O 6 ), borate salts, and phosphate salts. It is preferable to use an aqueous solution containing each component in a range of 5 to 50 g / l. When the concentration is less than 5 g / l, the pH of the solution rises relatively quickly with the dissolution of zinc, so that an oxide layer sufficient for improving the slidability cannot be formed. On the other hand, if it exceeds 50 g / l, dissolution of zinc is promoted, and not only does it take a long time to form an oxide layer, but the plating layer is also severely damaged, and it may lose its original role as a rust-proof steel sheet. Because it is.

酸性溶液のpHは0.5〜2.0の範囲にあることが望ましい。これはpHが2.0を超えると、溶液中でZrイオンの沈殿(水酸化物の形成)が生じ、酸化物層中にZr系酸化物が取り込まれなくなるためである。一方、pHが低すぎると、亜鉛の溶解が促進され、めっき付着量の減少だけでなく、めっき皮膜に亀裂が生じ加工時に剥離が生じやすくなるため、pH0.5以上であることが望ましい。なお、酸性溶液のpHが0.5〜2.0の範囲より高い場合は硫酸等のpH緩衝性のない無機酸でpH調製することができる。   The pH of the acidic solution is desirably in the range of 0.5 to 2.0. This is because when the pH exceeds 2.0, precipitation of Zr ions (formation of hydroxide) occurs in the solution, and the Zr-based oxide is not taken into the oxide layer. On the other hand, if the pH is too low, dissolution of zinc is promoted and not only the amount of plating is reduced, but also the plating film is cracked and easily peeled during processing. Therefore, the pH is preferably 0.5 or more. When the pH of the acidic solution is higher than the range of 0.5 to 2.0, the pH can be adjusted with an inorganic acid having no pH buffering property such as sulfuric acid.

酸性溶液の温度は、20〜70℃の範囲であることが好ましい。20℃未満では、酸化物層の生成反応に長時間を有し、生産性の低下を招く場合がある。一方、温度が高い場合には、反応は比較的すばやく進行するが、逆に鋼板表面に処理ムラを発生しやすくなるため、70℃以下の温度に制御することが望ましい。   The temperature of the acidic solution is preferably in the range of 20 to 70 ° C. If it is less than 20 ° C., the production reaction of the oxide layer takes a long time, and the productivity may be lowered. On the other hand, when the temperature is high, the reaction proceeds relatively quickly, but conversely, processing unevenness is likely to occur on the surface of the steel sheet.

なお、本発明では、使用する酸性溶液中にZrイオンを含有していれば、摺動性に優れた酸化物層を安定して形成できるため、酸性溶液中にその他の金属イオンや無機化合物などを不純物として、あるいは故意に含有していても本発明の効果が損なわれるものではない。特にZnイオンは、鋼板と酸性溶液が接触する際に溶出するイオンであるため、操業中に酸性溶液中Zn濃度の増加が認められるが、このZnイオンの濃度の大小は本発明の効果には特に影響を及ぼさない。   In the present invention, if Zr ions are contained in the acidic solution to be used, an oxide layer excellent in slidability can be stably formed, so other metal ions, inorganic compounds, etc. in the acidic solution. Even if it is contained as an impurity or intentionally, the effect of the present invention is not impaired. In particular, since Zn ions are ions that elute when the steel sheet comes into contact with the acidic solution, an increase in the Zn concentration in the acidic solution is observed during operation. It has no particular effect.

以上より、本発明のめっき鋼板の表面にはZnおよびZrを必須成分として含む10nm以上の酸化物層が得られることになる。   As described above, an oxide layer of 10 nm or more containing Zn and Zr as essential components is obtained on the surface of the plated steel sheet of the present invention.

合金化溶融亜鉛めっき鋼板を酸性溶液に接触させる方法には特に制限はなく、めっき鋼板を酸性溶液に浸漬する方法、めっき鋼板に酸性溶液をスプレーする方法、塗布ロールを介して酸性溶液をめっき鋼板に塗布する方法等があり、最終的に薄い液膜状で鋼板表面に存在することが望ましい。これは、鋼板表面に存在する酸性溶液の量が多いと、亜鉛の溶解が生じても溶液のpHが上昇せず、次々と亜鉛の溶解が生じるのみであり、酸化物層を形成するまでに長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失うことが考えられるためである。この観点から、鋼板表面に形成する溶液膜量は、3g/m2以下に調製することが好ましく有効である。なお、溶液膜量の調整は、絞りロール、エアワイピング等で行うことができる。 There is no particular limitation on the method of bringing the alloyed hot-dip galvanized steel sheet into contact with the acidic solution. The method of immersing the plated steel sheet in the acidic solution, the method of spraying the acidic solution onto the plated steel sheet, and the steel sheet plated with the acidic solution through the coating roll It is desirable that the film is finally formed in a thin liquid film form on the surface of the steel sheet. This is because when the amount of acidic solution present on the steel sheet surface is large, the pH of the solution does not increase even if zinc dissolution occurs, and only zinc dissolution occurs one after another. This is because it not only has a long time but also severely damages the plating layer, and it is considered that the original role as a rust-proof steel sheet is lost. From this viewpoint, it is preferable and effective that the amount of the solution film formed on the steel sheet surface is adjusted to 3 g / m 2 or less. The amount of the solution film can be adjusted by a squeeze roll, air wiping or the like.

また、酸性溶液に接触後、水洗までの時間(水洗までの保持時間)は、1〜30秒間必要である。これは水洗までの時間が1秒未満であると、溶液のpHが上昇しZr系酸化物層およびZn系酸化物層が形成される前に、酸性溶液が洗い流されるために、摺動性の向上効果が得られず、また30秒を超えても、酸化物層の量に変化が見られないためである。   Moreover, after contacting an acidic solution, the time to water washing (holding time to water washing) needs 1 to 30 seconds. If the time until washing with water is less than 1 second, the acidic solution is washed away before the pH of the solution rises and the Zr-based oxide layer and Zn-based oxide layer are formed. This is because the improvement effect cannot be obtained, and even if it exceeds 30 seconds, the amount of the oxide layer is not changed.

なお、本発明における酸化物層とは、ZnとZrを必須として含んだ酸化物及び/又は水酸化物などからなる層のことである。このようなZnおよびZrを必須成分として含む酸化物層の平均厚さが調圧部表層および未調圧部表層において、10nm以上であることが必要である。酸化物層の平均厚さが調圧部および未調圧部において、10nm未満と薄くなると摺動抵抗を低下させる効果が不十分となる。一方、ZnおよびZrを必須成分として含む酸化物層の平均厚さが調圧部および未調圧部で100nmを越えると、プレス加工中に皮膜が破壊し摺動抵抗が上昇し、また溶接性が低下する傾向にあるため好ましくない。   The oxide layer in the present invention is a layer made of an oxide and / or hydroxide containing Zn and Zr as essential elements. The average thickness of such an oxide layer containing Zn and Zr as essential components needs to be 10 nm or more in the pressure-regulating portion surface layer and the unregulated portion surface layer. When the average thickness of the oxide layer is reduced to less than 10 nm in the pressure adjusting portion and the non-pressure adjusting portion, the effect of reducing the sliding resistance becomes insufficient. On the other hand, if the average thickness of the oxide layer containing Zn and Zr as an essential component exceeds 100 nm in the pressure-regulated part and the non-pressure-regulated part, the film breaks during press working and the sliding resistance increases, and the weldability Is not preferable because of a tendency to decrease.

また本発明に係る合金化溶融亜鉛めっき鋼板を製造するに関しては、めっき浴中にAlが添加されていることが必要であるが、Al以外の添加元素成分は特に限定されない。すなわち、Alの他にPb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。   In addition, for producing the galvannealed steel sheet according to the present invention, it is necessary that Al be added to the plating bath, but the additive element components other than Al are not particularly limited. That is, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu or the like is contained or added in addition to Al, the effect of the present invention is not impaired.

さらに、酸化処理などに使用する処理液中に不純物が含まれることによりS、N、Pb、Cl、Na、Mn、Ca、Mg、Ba、Sr、Siなどが酸化物層中に取り込まれても、本発明の効果が損なわれるものではない。   Furthermore, even if impurities are included in the treatment liquid used for oxidation treatment, etc., S, N, Pb, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si, etc. may be taken into the oxide layer. The effect of the present invention is not impaired.

次に、本発明を実施例により更に詳細に説明する。
板厚0.8mmの冷延鋼板上に、常法の合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延を行った。引き続き、酸化物形成処理として、酢酸ナトリウム40g/lの酸性水溶液にZrイオン濃度、溶液の温度を適宜変えた酸性溶液に3秒浸漬浸漬した。その後、ロール絞りを行い、液量を調整した後、1〜30秒間大気中、室温にて放置し、十分水洗を行った後、乾燥を実施した。
Next, the present invention will be described in more detail with reference to examples.
A conventional alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm, and further temper rolled. Subsequently, as an oxide forming treatment, the substrate was immersed for 3 seconds in an acidic solution in which the Zr ion concentration and the temperature of the solution were appropriately changed in an acidic aqueous solution of sodium acetate 40 g / l. Then, after carrying out roll squeezing and adjusting the amount of liquid, it was allowed to stand at room temperature in the atmosphere for 1 to 30 seconds, sufficiently washed with water, and then dried.

次に、以上のように作製した鋼板について、めっき表層の調圧部および未調圧部の酸化物層の膜厚を測定するとともに、プレス成形性を簡易的に評価する手法として摩擦係数の測定を行った。なお、測定方法は以下の通りである。
摺動性評価試験(摩擦係数測定試験)
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
Next, for the steel sheet produced as described above, the film thickness of the oxide layer of the pressure-regulating part and the non-pressure-regulating part of the plating surface layer is measured, and the friction coefficient is measured as a method for simply evaluating the press formability. Went. The measuring method is as follows.
Slidability evaluation test (Friction coefficient measurement test)
In order to evaluate the press formability, the friction coefficient of each test material was measured as follows.

図1は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取付けられている。上記押付力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取付けられている。なお、潤滑油として、スギムラ化学社製のプレス用洗浄油プレトンR352Lを試料11の表面に塗布して試験を行った。   FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measuring sample 1 collected from a test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a slide table 3 that can move horizontally. On the lower surface of the slide table 3, there is provided a slide table support base 5 having a roller 4 in contact therewith and capable of moving up and down, and by pushing it up, a pressing load N on the friction coefficient measurement sample 1 by the bead 6 is applied. A first load cell 7 for measuring is attached to the slide table support 5. A second load cell 8 for measuring a sliding resistance force F for moving the slide table 3 in the horizontal direction with the pressing force applied is attached to one end of the slide table 3. In addition, the cleaning oil Preton R352L for press made by Sugimura Chemical Co., Ltd. was applied to the surface of the sample 11 as a lubricating oil, and the test was performed.

図2は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が摩擦係数測定用試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。   FIG. 2 is a schematic perspective view showing the shape and dimensions of the beads used. The bead 6 slides with its lower surface pressed against the surface of the friction coefficient measurement sample 1. The shape of the bead 6 shown in FIG. 2 is 10 mm wide, 12 mm long in the sliding direction of the sample, the lower part of both ends of the sliding direction is a curved surface with a curvature of 4.5 mmR, and the bottom surface of the bead to which the sample is pressed is 10 mm wide and in the sliding direction It has a 3mm long plane.

摩擦係数の測定に行うに際しては、成形荷重が高く型かじりが生じやすい高強度合金化溶融亜鉛めっき鋼板での過酷なプレス環境を想定して、室温(25℃)において、押し付け荷重Nを400kgfおよび1500kgfに変化させて行った。なお試料の引抜き速度(スライドテーブル3の水平移動速度)は100cm/min。これらの条件で、押し付け荷重Nと引抜き荷重Fを測定し、供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
酸化膜厚の測定
オージェ電子分光(AES)によりめっき表層の調圧部および未調圧部について、各元素の含有率(at.%)を測定し、引き続いて所定の深さまで、Arスパッタリングした後、AESによりめっき皮膜中の各元素の含有率の測定を行い、これを繰り返すことにより、深さ方向の各元素の組成分布を測定した。酸化物、水酸化物に起因するOの含有率が、最大値より深い位置で、最大値と一定値との和の1/2となる深さを酸化物の厚さとし、調圧部および未調圧部に対してそれぞれ2箇所づつ酸化物の厚さを測定し、これらの平均値をそれぞれ調圧部および未調圧部の酸化物の厚さとした。なお、予備処理として30秒のArスパッタリングを行って、供試材表面のコンタミネーションレイヤーを除去した。
When measuring the friction coefficient, assuming a severe press environment with high strength alloyed hot dip galvanized steel sheet with high forming load and high galling, press load N is 400 kgf at room temperature (25 ° C). Changed to 1500 kgf. The sample drawing speed (the horizontal movement speed of the slide table 3) is 100 cm / min. Under these conditions, the pressing load N and the pulling load F were measured, and the coefficient of friction μ between the test material and the bead was calculated by the formula: μ = F / N.
Measurement of oxide thickness After measuring the content of each element (at.%) In the pressure-regulating part and non-regulating part of the plating surface layer by Auger electron spectroscopy (AES), and subsequently performing Ar sputtering to a predetermined depth The content ratio of each element in the plating film was measured by AES, and the composition distribution of each element in the depth direction was measured by repeating this. The depth at which the O content due to oxides and hydroxides is half the sum of the maximum value and the constant value at a position deeper than the maximum value is defined as the oxide thickness. The thicknesses of the oxides were measured at two locations for each of the pressure regulating portions, and the average values of these were the oxide thicknesses of the pressure regulating portion and the non-pressure regulating portion, respectively. As a pretreatment, Ar contamination was performed for 30 seconds to remove the contamination layer on the surface of the test material.

以上より得られた試験結果を表1に示す。なお、表1において、条件1は、押付荷重400kgf、試料温度25℃(室温)を、条件2は、押付荷重1500kgf、試料温度25℃(室温)をそれぞれ指す。   The test results obtained above are shown in Table 1. In Table 1, Condition 1 indicates a pressing load of 400 kgf and a sample temperature of 25 ° C. (room temperature), and Condition 2 indicates a pressing load of 1500 kgf and a sample temperature of 25 ° C. (room temperature).

Figure 0005044924
Figure 0005044924

表1に示す試験結果から下記事項が明らかとなった。
No.1の比較例は酸性溶液による処理を行っていないため、調圧部および未調圧部に摺動性を向上させるのに十分な酸化膜が形成されず、面圧の低い条件1においても摩擦係数が高い。また、面圧の高い条件2では、さらに摩擦係数が上昇しており、型かじりを生じていた。
No.2〜4の比較例は、酸性溶液での処理を行っているもののZrイオンを含まない浴を用いた比較例である。この場合、Znを主体とする酸化物層が主にめっき鋼板表面の調圧部に形成されているため、成形時に金型との接触が主として調圧部となる面圧の低い条件1の摩擦係数の改善効果は見られるものの、金型との接触が調圧部および未調圧部にわたるような面圧の高い条件2では高い摩擦係数を示している。
一方で、No.5〜31は、Zrイオンを含む浴を用いた例であり、この場合、保持することなく水洗を行ったNo.14を除く本発明例では、ZnとZrを含有する硬質な酸化物層がめっき鋼板表面の調圧部および未調圧部に形成することから、面圧の低い条件1に加えて、面圧の高い条件2においても、摩擦係数が低位で安定している。
No.5〜7は、Zrイオンを含有した酸性溶液での処理を行った本発明例であり、面圧の低い条件1に加えて、面圧の高い条件2の摩擦係数も低下している。また、No.8〜10、16〜18、29〜31は、No.5〜7と同一の処理条件で液中のZrイオン濃度を増加させた本発明例であるが、いずれの条件においてもの摩擦係数がいずれも低位安定している。
No.14〜19は、鋼板表面に酸性溶液膜を形成し、水洗を施すまでの時間を変化させた本発明例である。保持することなく水洗を行ったNo.14の比較例では、調圧部および未調圧部において摺動性を向上させるのに十分な酸化膜が形成されず、面圧の低い条件1に加えて、面圧の高い条件2も摩擦係数が上昇している。1秒以上の保持時間となるNo.15〜19は、いずれの条件においても摩擦係数は低位で安定している。
No.11〜13、23〜28は処理液温度を変化させた本発明例であり、面圧の低い条件1および面圧の高い条件2のいずれにおいても摩擦係数の向上効果は十分であるが、製造時にはより耐熱性の高い設備仕様とする必要性が生じ、また、製造時の液の蒸発量が多くなるために液膜量の制御がやや困難となる。
No.20〜22はNo.16〜18に対して、液膜形成量を変化させた本発明例であるが、水洗までの保持時間が同一のもので比較すると、溶液の少ない場合には液膜量が多い場合と比較して溶液のpHが上昇しづらく、酸化物層が形成されにくいために、面圧の低い条件1および面圧の高い条件2で摩擦係数がやや高くなっている。
From the test results shown in Table 1, the following matters were clarified.
In the comparative example of No.1, since the treatment with the acidic solution was not performed, an oxide film sufficient to improve the slidability was not formed in the pressure adjusting part and the non-pressure adjusting part. Also has a high coefficient of friction. Further, in condition 2 where the surface pressure was high, the coefficient of friction was further increased, and mold galling occurred.
The comparative examples of Nos. 2 to 4 are comparative examples using a bath that does not contain Zr ions although it is treated with an acidic solution. In this case, since the oxide layer mainly composed of Zn is formed mainly on the pressure-regulating part on the surface of the plated steel sheet, the friction under the condition 1 where the contact pressure with the mold mainly forms the pressure-adjusting part at the time of molding is low. Although an improvement effect of the coefficient is seen, a high friction coefficient is shown under condition 2 where the surface pressure is high such that the contact with the mold extends over the pressure-regulating part and the non-pressure-adjusting part.
On the other hand, Nos. 5 to 31 are examples using a bath containing Zr ions. In this case, in the present invention example except No. 14 which was washed without holding, a hard material containing Zn and Zr Since a simple oxide layer is formed on the pressure-regulated part and non-regulated part on the surface of the plated steel plate, the friction coefficient is stable at a low level not only under condition 1 with low surface pressure but also under condition 2 with high surface pressure. Yes.
Nos. 5 to 7 are examples of the present invention that were treated with an acidic solution containing Zr ions, and in addition to the low surface pressure condition 1, the friction coefficient of the high surface pressure condition 2 was also reduced. . Nos. 8-10, 16-18, 29-31 are examples of the present invention in which the Zr ion concentration in the liquid was increased under the same processing conditions as Nos. 5-7. The friction coefficient is low and stable.
Nos. 14 to 19 are examples of the present invention in which an acidic solution film was formed on the steel sheet surface and the time until washing with water was changed. In the comparative example of No. 14, which was washed with water without being retained, an oxide film sufficient to improve the slidability was not formed in the pressure-regulating part and the non-pressure-regulating part. Thus, the friction coefficient also increases under condition 2 where the surface pressure is high. Nos. 15 to 19 having a holding time of 1 second or more have a low coefficient of friction and are stable under any conditions.
Nos. 11-13 and 23-28 are examples of the present invention in which the treatment liquid temperature was changed, and the effect of improving the friction coefficient is sufficient in both conditions 1 where the surface pressure is low and conditions 2 where the surface pressure is high. When manufacturing, it becomes necessary to make the specification of equipment with higher heat resistance, and since the amount of evaporation of the liquid at the time of manufacturing increases, it becomes somewhat difficult to control the amount of liquid film.
No. 20 to 22 are examples of the present invention in which the amount of liquid film formation was changed as compared with No. 16 to 18, but compared with the same retention time until water washing, Since the pH of the solution is less likely to be increased and the oxide layer is not easily formed as compared with the case where the amount of film is large, the friction coefficient is slightly high under conditions 1 where the surface pressure is low and conditions 2 where the surface pressure is high.

プレス成形性に優れることから、自動車車体用途を中心に広範な分野で適用できる。   Since it is excellent in press formability, it can be applied in a wide range of fields, mainly for automobile body applications.

摩擦係数測定装置を示す概略正面図である。It is a schematic front view which shows a friction coefficient measuring apparatus. 図1中のビード形状・寸法を示す概略斜視図である。FIG. 2 is a schematic perspective view showing bead shapes and dimensions in FIG. 1.

符号の説明Explanation of symbols

1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第一ロードセル
8 第二ロードセル
N 押付荷重
F 摺動抵抗力
1 Sample for friction coefficient measurement
2 Sample stage
3 Slide table
4 Roller
5 Slide table support
6 Bead 7 First load cell
8 Second load cell
N Push load
F Sliding resistance force

Claims (6)

鋼板に溶融亜鉛めっきを施し、さらに加熱処理により合金化し、調質圧延を施した後、酸性溶液に接触させ、接触終了後1〜30秒放置した後、水洗を行うことにより、亜鉛めっき鋼板表面に10nm以上のZn系酸化物層を形成する合金化溶融亜鉛めっき鋼板の製造方法において、前記酸性溶液中にZrイオンを含有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。   The surface of the galvanized steel sheet is subjected to hot dip galvanizing on the steel sheet, alloyed by heat treatment, temper rolled, contacted with an acidic solution, left for 1 to 30 seconds after contact is completed, and then washed with water. A method for producing an alloyed hot-dip galvanized steel sheet, wherein a Zr ion is contained in the acidic solution in a method for producing an alloyed hot-dip galvanized steel sheet in which a Zn-based oxide layer having a thickness of 10 nm or more is formed. 前記酸性溶液中に、Zrの硫酸塩、硝酸塩、塩化物、リン酸塩のうち、少なくとも1種類以上をZrイオン濃度として0.1〜50g/lの範囲で含有することを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。   2. The acidic solution according to claim 1, wherein at least one of Zr sulfate, nitrate, chloride, and phosphate is contained in a range of 0.1 to 50 g / l as a Zr ion concentration. The manufacturing method of the galvannealed steel plate of description. 前記酸性溶液は、pH緩衝作用を有し、かつ、1リットルの酸性溶液のpHを2.0から5.0まで上昇させるのに必要な1.0mol/l水酸化ナトリウム溶液の量(l)で定義するpH上昇度が0.05〜0.5の範囲である特徴とする請求項1または2に記載の合金化溶融亜鉛めっき鋼板の製造方法。   The acidic solution has a pH buffering action and a pH increase defined by the amount (l) of 1.0 mol / l sodium hydroxide solution required to increase the pH of 1 liter acidic solution from 2.0 to 5.0 The method for producing an galvannealed steel sheet according to claim 1 or 2, wherein the degree is in a range of 0.05 to 0.5. 前記酸性溶液は、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、リン酸塩のうち少なくともを1種類以上を、成分含有量5〜50g/lの範囲で含有し、
かつ、pHが0.5〜2.0、液温が20〜70℃であることを特徴とする請求項1〜3のいずれかに記載の合金化溶融亜鉛めっき鋼板の製造方法。
The acidic solution contains at least one of acetate, phthalate, citrate, succinate, lactate, tartrate, borate and phosphate, and a component content of 5 to 50 g / l. In the range of
And the pH is 0.5-2.0, and liquid temperature is 20-70 degreeC, The manufacturing method of the galvannealed steel plate in any one of Claims 1-3 characterized by the above-mentioned.
前記酸性溶液に接触させた後の鋼板表面に形成する酸性溶液膜が3g/m2以下であり、
かつ、前記酸性溶液膜が鋼板表面に形成された状態での保持時間が1〜30秒の範囲であることを特徴とする請求項1〜4のいずれかに記載の合金化溶融亜鉛めっき鋼板の製造方法。
The acidic solution film formed on the steel sheet surface after contacting with the acidic solution is 3 g / m 2 or less,
And the retention time in the state in which the said acidic solution film was formed in the steel plate surface is the range of 1-30 seconds, The alloyed hot-dip galvanized steel plate in any one of Claims 1-4 characterized by the above-mentioned. Production method.
請求項1〜5のいずれかに記載の合金化溶融亜鉛めっき鋼板の製造方法により生産されるめっき鋼板であり、該めっき鋼板表面における酸化物層の平均厚さが10nm以上であり、かつ、酸化物層がZnおよびZrを必須成分として含むことを特徴とする合金化溶融亜鉛めっき鋼板。   A plated steel sheet produced by the method for producing an galvannealed steel sheet according to any one of claims 1 to 5, wherein the average thickness of the oxide layer on the surface of the plated steel sheet is 10 nm or more, and oxidation An alloyed hot-dip galvanized steel sheet characterized in that the material layer contains Zn and Zr as essential components.
JP2005332244A 2005-11-17 2005-11-17 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet Active JP5044924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332244A JP5044924B2 (en) 2005-11-17 2005-11-17 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332244A JP5044924B2 (en) 2005-11-17 2005-11-17 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2007138231A JP2007138231A (en) 2007-06-07
JP5044924B2 true JP5044924B2 (en) 2012-10-10

Family

ID=38201468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332244A Active JP5044924B2 (en) 2005-11-17 2005-11-17 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5044924B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077456A (en) * 2008-09-24 2010-04-08 Jfe Steel Corp Hot-dip galvanized steel sheet and method for manufacturing the same
JP5277852B2 (en) * 2008-10-10 2013-08-28 Jfeスチール株式会社 Plated steel sheet for hot press forming and manufacturing method thereof
JP5347434B2 (en) * 2008-11-05 2013-11-20 Jfeスチール株式会社 Method for producing galvanized steel sheet
CN105463338A (en) * 2015-12-09 2016-04-06 苏州爱盟机械有限公司 Bicycle flywheel with self-cleaning film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190483A (en) * 1989-01-19 1990-07-26 Nippon Steel Corp Galvanized steel sheet having superior press formability
JP3608519B2 (en) * 2001-03-05 2005-01-12 Jfeスチール株式会社 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3807341B2 (en) * 2002-04-18 2006-08-09 Jfeスチール株式会社 Method for producing galvannealed steel sheet
JP4139254B2 (en) * 2003-03-26 2008-08-27 日新製鋼株式会社 Post-treatment method for galvanized steel sheet
JP2005256042A (en) * 2004-03-10 2005-09-22 Jfe Steel Kk Galvannealed steel sheet, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2007138231A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP5044976B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3807341B2 (en) Method for producing galvannealed steel sheet
WO2007129678A1 (en) Process for producing alloyed hot-dip zinc-plated steel sheet and alloyed hot-dip zinc-plated steel sheet
JP5354165B2 (en) Method for producing galvanized steel sheet
JP3675313B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability
JP2010077456A (en) Hot-dip galvanized steel sheet and method for manufacturing the same
JP5044924B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2007016266A (en) Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet
JP5347295B2 (en) Zinc-based plated steel sheet and method for producing the same
JP4529592B2 (en) Process for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet.
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP2007231375A (en) Galvannealed steel sheet
JP2005139557A (en) Hot dip galvannealed steel sheet, and its production method
JP5540459B2 (en) Alloy hot-dip galvanized steel sheet
WO2010070942A1 (en) Galvanized steel sheet and method for manufacturing the same
JP4525252B2 (en) Method for producing galvannealed steel sheet
JP2006233280A (en) Hot dip galvanized steel sheet-manufacturing method, and hot dip galvanized steel sheet
JP5593601B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5386842B2 (en) Zinc-based plated steel sheet and method for producing the same
JP4998658B2 (en) Method for producing galvannealed steel sheet
JP3644402B2 (en) Alloy hot-dip galvanized steel sheet
JP4930182B2 (en) Alloy hot-dip galvanized steel sheet
WO2010070943A1 (en) Galvanized steel sheet and method for manufacturing the same
JP4604712B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP5354166B2 (en) Method for producing galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5044924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250