JP4936119B2 - Multilayer balun transformer and high frequency components - Google Patents
Multilayer balun transformer and high frequency components Download PDFInfo
- Publication number
- JP4936119B2 JP4936119B2 JP2006353756A JP2006353756A JP4936119B2 JP 4936119 B2 JP4936119 B2 JP 4936119B2 JP 2006353756 A JP2006353756 A JP 2006353756A JP 2006353756 A JP2006353756 A JP 2006353756A JP 4936119 B2 JP4936119 B2 JP 4936119B2
- Authority
- JP
- Japan
- Prior art keywords
- transmission line
- terminal
- balun transformer
- transmission
- coupling portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 claims description 187
- 230000008878 coupling Effects 0.000 claims description 65
- 238000010168 coupling process Methods 0.000 claims description 65
- 238000005859 coupling reaction Methods 0.000 claims description 65
- 239000003990 capacitor Substances 0.000 claims description 28
- 238000004804 winding Methods 0.000 claims description 19
- 239000004020 conductor Substances 0.000 claims description 15
- 238000010030 laminating Methods 0.000 claims description 6
- 238000003475 lamination Methods 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 description 17
- 239000000758 substrate Substances 0.000 description 16
- 238000004891 communication Methods 0.000 description 14
- 102100037922 Disco-interacting protein 2 homolog A Human genes 0.000 description 4
- 101000805876 Homo sapiens Disco-interacting protein 2 homolog A Proteins 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 101000613615 Homo sapiens Protein mono-ADP-ribosyltransferase PARP14 Proteins 0.000 description 2
- 101000735459 Homo sapiens Protein mono-ADP-ribosyltransferase PARP9 Proteins 0.000 description 2
- 102100040848 Protein mono-ADP-ribosyltransferase PARP14 Human genes 0.000 description 2
- 102100034930 Protein mono-ADP-ribosyltransferase PARP9 Human genes 0.000 description 2
- 101100381996 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) BRO1 gene Proteins 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Coils Or Transformers For Communication (AREA)
- Transceivers (AREA)
Description
本発明は、例えば携帯電話などの移動体通信機器や電子電気機器間における無線伝送を行う無線LANなどの無線通信装置等に使用され、平衡回路と不平衡回路との接続を行い、インピーダンス変換にも用いられる積層型バラントランス及びそれを用いた高周波部品に関する。 The present invention is used in, for example, a wireless communication device such as a wireless LAN that performs wireless transmission between mobile communication devices such as mobile phones and electronic electric devices, and connects impedance circuits to unbalance circuits to perform impedance conversion. The present invention also relates to a laminated balun transformer that is also used and a high-frequency component using the same.
現在、IEEE802.11規格に代表される無線LANによるデータ通信が広く一般化している。例えばパーソナルコンピュータ(PC)、プリンタやハードディスク、ブロードバンドルーターなどのPCの周辺機器、FAX、冷蔵庫、標準テレビ(SDTV)、高品位テレビ(HDTV)、カメラ、ビデオ、携帯電話等々の電子機器、自動車内や航空機内での有線通信に代わる信号伝達手段として採用され、それぞれの電子電器機器間において無線データ伝送が行われている。 At present, data communication using a wireless LAN represented by the IEEE 802.11 standard is widely used. For example, personal computers (PCs), PC peripherals such as printers, hard disks, broadband routers, fax machines, refrigerators, standard televisions (SDTVs), high-definition televisions (HDTVs), electronic devices such as cameras, videos, mobile phones, etc. It is adopted as a signal transmission means that replaces wired communication in airplanes, and wireless data transmission is performed between each electronic appliance.
このような無線LANを用いたマルチバンド通信装置に用いられる高周波回路は、通信周波数帯が異なる二つの通信システム(IEEE802.11aとIEEE802.11bおよび/またはIEEE802.11g)で送受信が可能な1個のアンテナと、送信側回路、受信側回路との接続を切り替える高周波スイッチを備える。かかる高周波スイッチによって、二つの通信システムの送信側回路、受信側回路の切り替えを行う。無線装置の小型化・高機能化に伴い、前記高周波回路を具現した高周波部品にも、多くの機能部品を一体化しつつ、小型化を図ろうとする要求が強く、個々の機能部品の小型化も必須となっている。 A high-frequency circuit used in such a multiband communication apparatus using a wireless LAN is one that can be transmitted and received by two communication systems (IEEE802.11a and IEEE802.11b and / or IEEE802.11g) having different communication frequency bands. A high-frequency switch for switching the connection between the antenna, the transmission side circuit, and the reception side circuit. With such a high frequency switch, the transmission side circuit and the reception side circuit of the two communication systems are switched. Along with the downsizing and high functionality of wireless devices, there is a strong demand to reduce the size of individual functional parts while integrating many functional parts into the high frequency parts that implement the high frequency circuit. It is essential.
前記機能部品のうち、平衡−不平衡変換素子であるバラントランスは、例えば第1の伝送線路に不平衡端子を備え、第2、第3の伝送線路に二つの平衡端子を備えているものであり、不平衡端子に不平衡伝送線路を接続し、二つの平衡端子にそれぞれ平衡伝送線路の2つの信号線を接続して使用される。そして、第1の伝送線路の不平衡端子から入力された不平衡信号を変換して、第2、第3の伝送線路の二つの平衡端子から出力して、その位相差により平衡信号を出力したり、逆に平衡端子からの平衡信号を不平衡信号に変換して、不平衡端子から出力することを行う。例えば、特許文献1にはその図2に示すように、バランとして、誘電体基板の一方主面に第1のストリップライン、他方面に第2のストリップラインおよび第3のストリップラインを形成した構成のチップ型トランスが開示されている。
Among the functional components, a balun transformer, which is a balanced-unbalanced conversion element, has, for example, a first transmission line with an unbalanced terminal and a second and third transmission lines with two balanced terminals. Yes, an unbalanced transmission line is connected to the unbalanced terminal, and two signal lines of the balanced transmission line are connected to the two balanced terminals. Then, the unbalanced signal input from the unbalanced terminal of the first transmission line is converted, output from the two balanced terminals of the second and third transmission lines, and the balanced signal is output by the phase difference. Conversely, the balanced signal from the balanced terminal is converted into an unbalanced signal and output from the unbalanced terminal. For example, in
特許文献1に示す例では、効率よくノイズの相殺を図ることができるとされているものの、前記第1、第2、第3のストリップラインは同一の誘電体基板の主面に形成され、しかも第2、第3の伝送線路は誘電体層に並設されているので、バラントランスが占める実装面積が大きくなり、バラントランス、さらにはそれを用いた高周波部品の小型化の要求を満足するものとは言えなかった。
In the example shown in
そこで、本発明では、小型化が可能な積層型バラントランス及びそれを用いた高周波部品を提供することを目的とする。 Accordingly, an object of the present invention is to provide a multilayer balun transformer that can be miniaturized and a high-frequency component using the same.
本発明の積層型バラントランスは、導体パターンが形成された複数の誘電体層を積層してなる積層体に、第1の伝送線路と、前記第1の伝送線路と電磁結合する第2の伝送線路および第3の伝送線路を備え、前記第1の伝送線路は一端が不平衡端子に接続され他端が開放端となり、前記第2の伝送線路は一端が接地され他端が第1の平衡端子に接続され、前記第3の伝送線路は一端が接地され他端が第2の平衡端子に接続された積層型バラントランスであって、前記第1の伝送線路は、複数の誘電体層に形成された導体パターンが接続され積層方向を軸方向とする螺旋状に巻回されて形成されているとともに、前記第2の伝送線路と電磁結合する第1の結合部と、前記第3の伝送線路と電磁結合するとともに前記第1の結合部とは逆方向に巻回する導体パターンで構成された第2の結合部を備え、 グランド電極を介さずに積層方向に隣り合って配置された第1の結合部の導体パターンと第2の結合部の導体パターンとは、それぞれの導体パターンによって囲まれる面積が、第1の伝送線路を構成する他の導体パターンにより囲まれる面積よりも小さく形成され、前記第2の伝送線路は、前記第1の伝送線路の、積層方向第1の結合部側に形成され、前記第3の伝送線路は、前記第1の伝送線路の、積層方向第2の結合部側に形成されていることを特徴とする。かかる構成では、積層型バラントランスを構成する第1の伝送線路、第2の伝送線路および第3の伝送線路が、第2の伝送線路、第1の伝送線路、第3の伝送線路の順に積層されるため、積層型バラントランスの積層方向に投影した面積を大幅に低減することができるため、積層型バラントランスの小型化に大きく寄与する。 The multilayer balun transformer of the present invention includes a first transmission line and a second transmission that electromagnetically couples to the first transmission line in a laminated body formed by laminating a plurality of dielectric layers on which a conductor pattern is formed. A first transmission line having one end connected to an unbalanced terminal and the other end being an open end, and the second transmission line having one end grounded and the other end being a first balanced line. The third transmission line is a laminated balun transformer having one end grounded and the other end connected to a second balanced terminal, wherein the first transmission line is connected to a plurality of dielectric layers. A first coupling portion that is formed by connecting the formed conductor pattern and spirally winding with the stacking direction as an axial direction, and electromagnetically coupling with the second transmission line, and the third transmission wound in a direction opposite to the said first coupling part while line electromagnetically coupled The second includes a coupling portion, of the first coupling portions arranged adjacent in the stacking direction without passing through the ground electrode conductor pattern and the second coupling portion of the conductor pattern made of a conductor pattern, An area surrounded by each conductor pattern is formed smaller than an area surrounded by other conductor patterns constituting the first transmission line, and the second transmission line is formed in the stacking direction of the first transmission line. It is formed on the first coupling part side, and the third transmission line is formed on the second coupling part side in the stacking direction of the first transmission line. In such a configuration, the first transmission line, the second transmission line, and the third transmission line that constitute the multilayer balun transformer are stacked in the order of the second transmission line, the first transmission line, and the third transmission line. Therefore, the area projected in the stacking direction of the multilayer balun transformer can be significantly reduced, which greatly contributes to the miniaturization of the multilayer balun transformer.
また、前記積層型バラントランスにおいて、前記第2の伝送線路、前記第1の結合部、前記第2の結合部および前記第3の伝送線路は、平面視で重なるように形成されていることが好ましい。該構成は、積層型バラントランスの面積を最小化し、さらに最適なバランス特性を実現するうえで、好適な構成である。 In the multilayer balun transformer, the second transmission line, the first coupling unit, the second coupling unit, and the third transmission line are formed to overlap in a plan view. preferable. This configuration is a preferable configuration for minimizing the area of the laminated balun transformer and further realizing an optimum balance characteristic.
前記第1の結合部と前記第2の結合部の、前記第1の伝送線路の一端からの巻回方向を、互いに平面視で逆方向とすれば、バラントランスに発生する高周波電流起因の磁界の影響を相殺して相互の干渉を防ぐことができるため、最適なバランス特性を得る事が可能となる。
また、前記第2の伝送線路の他端は、積層体に設けられたスルーホールを介して前記積層体の第1の端面に形成された第1の平衡端子と接続し、前記第3の伝送線路の他端は、積層体に設けられたスルーホールを介して前記第1の端面に前記第1の平衡端子と並んで形成された第2の平衡端子と接続されているのが好ましい。
The front Symbol first coupling portion and the second coupling portion, the winding direction of from one end of said first transmission line, if the reverse direction in a plan view with one another, the high frequency current caused to occur balun transformer Since the influence of the magnetic field can be canceled and mutual interference can be prevented, an optimum balance characteristic can be obtained.
Further, the other end of the second transmission line via a through hole provided in the laminated body is connected to the first balanced terminal formed on the first end face of the laminate, the third transmission other end of the line is preferably connected to the second balanced terminal formed alongside the first balanced terminal to the first end face through a through hole provided in the laminate.
さらに、前記積層型バラントランスにおいて、前記第1及び第2の伝送線路を積層方向に挟むグランド電極を有し、前記第2の伝送線路の一端が接地される第1のグランド電極は、積層方向に前記第1の伝送線路とは反対側に配置され、前記第3の伝送線路の一端が接地される第2のグランド電極は、積層方向に前記第1の伝送線路とは反対側に配置されていることが好ましい。かかる構成によれば、接地用のグランド電極を前記第1の結合部および前記第2の結合部との間に配置する必要がないため、積層型バラントランスの伝送線路に係る部分の高さの増加を抑えることが可能である。また、バラントランスからの漏れ信号あるいは外部からのノイズが前記グランド電極によりシールドできるため、耐ノイズ性能を向上できる。 Further, in the laminated balun transformer includes a ground electrode sandwiching the first and second transmission line in the stacking direction, the first ground electrode in which one end of said second transmission line is grounded, stacked disposed on the opposite side to the direction the first transmission line, a second ground electrode in which one end of said third transmission line is grounded, on the side opposite to the the stacking direction first transmission line It is preferable that they are arranged. According to such a configuration, since it is not necessary to arrange a grounding ground electrode between the first coupling portion and the second coupling portion, the height of the portion related to the transmission line of the multilayer balun transformer can be reduced. It is possible to suppress the increase. Further, since the leakage signal from the balun transformer or the noise from the outside can be shielded by the ground electrode, the noise resistance performance can be improved.
前記第2の伝送線路の一端は、積層体に設けられたスルーホールを介して第1の容量電極と接続し、前記第1の容量電極は前記第1のグランド電極と対向して第1の容量を構成し、前記第3の伝送線路の一端は、積層体に設けられたスルーホールを介して第2の容量電極と接続し、前記第2の容量電極は前記第2のグランド電極と対向して第2の容量を構成するのが好ましい。該容量によってバランス特性の調整を行うことができる。 The one end of the second transmission line is connected to the first capacitor electrode via a through hole provided in the laminate, the first capacitor electrode to the first opposite to the first ground electrode configure volume, the one end of the third transmission line via a through hole provided in the laminated body is connected to the second capacitor electrode, the second capacitor electrode and the second ground electrode It is preferable to constitute a second capacitor opposite to the first capacitor. The balance characteristic can be adjusted by the capacitance.
前記第1のグランド電極は前記第2の伝送線路と前記第1の容量電極との間に配置された誘電体層に設けられ、前記第2のグランド電極は前記第3の伝送線路と前記第2の容量電極との間に配置された誘電体層に設けられるのが好ましい。かかる構成は、容量を形成するための電極面積を低減でき、小型化に有利である。また、接地容量と第1の伝送線路、第2の伝送線路および第3の伝送線路との干渉の低減が可能になり、最適なバランス特性の実現が容易になる。 The first ground electrode is provided on a dielectric layer disposed between the second transmission line and the first capacitor electrode, and the second ground electrode is connected to the third transmission line and the first transmission line. It is preferable to be provided in a dielectric layer disposed between the two capacitor electrodes. Such a configuration can reduce the area of an electrode for forming a capacitor, and is advantageous for downsizing. In addition, it is possible to reduce interference between the ground capacitance and the first transmission line, the second transmission line, and the third transmission line, and it is easy to realize the optimum balance characteristic.
本発明の高周波部品は、アンテナと接続する少なくとも一つのアンテナ端子と、送信信号が入力される少なくとも一つの送信端子と、受信信号が出力される少なくとも一つの受信端子と、前記アンテナ端子と、前記送信端子又は前記受信端子との接続を切り替える少なくとも一つのスイッチ回路とを有する高周波部品であって、前記受信端子および送信端子のうち少なくとも一つには前記積層型バラントランスが接続されていることを特徴とする。積層型バラントランスとして、前記本発明に係る構成を用いることによって、それを用いる高周波部品の小型化に寄与する。 The high-frequency component of the present invention includes at least one antenna terminal connected to an antenna, at least one transmission terminal to which a transmission signal is input, at least one reception terminal to which a reception signal is output, the antenna terminal, A high-frequency component having at least one switch circuit for switching the connection with the transmission terminal or the reception terminal, wherein the multilayer balun transformer is connected to at least one of the reception terminal and the transmission terminal. Features. By using the configuration according to the present invention as the multilayer balun transformer, it contributes to the miniaturization of the high-frequency component using it.
本発明によれば、小型の、特に積層方向から見て面積の小さい積層型バラントランス、およびそれを用いることによって小型化された高周波部品を提供できる。 According to the present invention, it is possible to provide a small-sized laminated balun transformer having a small area as viewed from the lamination direction, and a high-frequency component miniaturized by using the same.
本発明の実施形態について、以下図面を参照しつつ詳細に説明するが、本発明がこれらに限定されるものではない。図4は本発明の一実施形態係る積層型バラントランスの各層の電極パターンを示した図であり、図1は図4で示された積層型バラントランスの電極配置を立体的に示すための分解斜視図である。該積層型バラントランスの等価回路を図2に示す。なお、等価回路図で示された回路素子の符号は、そのまま該回路素子の電極パターンの符号としても用いている。図2に示すバラントランスは、第1の伝送線路(L1a+L1b)と、前記第1の伝送線路と電磁結合する第2の伝送線路L2および第3の伝送線路L3を備え、前記第1の伝送線路は一端が不平衡端子INに接続され他端が開放端となり、前記第2の伝送線路L2は一端が接地され他端が第1の平衡端子Out1に接続され、前記第3の伝送線路L3は一端が接地され他端が第2の平衡端子Out2に接続された構成である。図2では、第2の伝送線路L2の一端と、第3の伝送線路L3の一端がそれぞれ容量C1、C2を介して接地されている構成を示してあるが、該容量を介さずに接地してもよい。容量を介する場合は、容量C1、容量C2を違う容量値に設定する事によりバランス特性を調整できる点で好ましい。 Embodiments of the present invention will be described below in detail with reference to the drawings, but the present invention is not limited thereto. FIG. 4 is a diagram showing electrode patterns of each layer of the multilayer balun transformer according to one embodiment of the present invention, and FIG. 1 is an exploded view for showing the electrode arrangement of the multilayer balun transformer shown in FIG. It is a perspective view. An equivalent circuit of the multilayer balun transformer is shown in FIG. The reference numerals of the circuit elements shown in the equivalent circuit diagram are also used as the reference numerals of the electrode patterns of the circuit elements as they are. The balun transformer shown in FIG. 2 includes a first transmission line (L1a + L1b), a second transmission line L2 and a third transmission line L3 that are electromagnetically coupled to the first transmission line, and the first transmission line. Has one end connected to the unbalanced terminal IN and the other end open. The second transmission line L2 has one end grounded and the other end connected to the first balanced terminal Out1, and the third transmission line L3 has One end is grounded and the other end is connected to the second balanced terminal Out2. FIG. 2 shows a configuration in which one end of the second transmission line L2 and one end of the third transmission line L3 are grounded via the capacitors C1 and C2, respectively. May be. In the case of using a capacitance, it is preferable in that the balance characteristic can be adjusted by setting the capacitance C1 and the capacitance C2 to different capacitance values.
図1に示したように、第1の伝送線路は、2つ以上の誘電体層にわたって形成され、積層方向を軸方向とする螺旋状に巻回されて形成されており、第2の伝送線路L2と電磁結合する第1の結合部L1aと、前記第3の伝送線路L3と電磁結合する第2の結合部L1bを有する。第1の伝送線路は、第1の結合部と第2の結合部を合わせて螺旋状に巻回していればよく、第1の結合部および第2の結合部は、それぞれ別の一層の誘電体層に形成してもよい。不平衡端子INに接続されている第1の伝送線路は、隣接する2層にわたって積層方向一方側(図の上側)に巻回してコイル状の第1の結合部L1aを形成している。この第1の結合部での、不平衡端子INに接続される第1の伝送線路の一端からの巻回方向は、積層方向一方側(図の上側)からの平面視で、反時計回りになっている。第1の伝送線路は、積層方向を軸として巻回する途中で巻回方向を逆転して巻回してコイル状の第2の結合部L1bを形成している。すなわち、第1の伝送線路は、この巻回方向が逆転する、積層方向に隣接する伝送線路部分を巻回方向反転部分として有する。第1の結合部L1aと第2の結合部L1bの、第1の伝送線路の一端からの巻回方向は、互いに平面視で逆方向になっているため、各結合部に発生する磁界は逆方向となり、磁界の影響を相殺して相互の干渉を防ぐことができる。また、第2の伝送線路L2の第1の平衡端子Out1からの巻回方向と、第3の伝送線路L3の第2の平衡端子Out12からの巻回方向とは、平面視で互いに逆方向になっている。本発明にかかる積層型バラントランスでは、巻回軸方向を積層方向とした第1の結合部L1aと第2の結合部L1bとが異なる層に形成され、積層方向に隣接し、好ましくは重なる構成となるため、結合部の相互干渉を起こしやすい。したがって、巻回方向を逆にする前記構成は、本発明に好適な構成となる。 As shown in FIG. 1, the first transmission line is formed over two or more dielectric layers and is formed by being spirally wound with the stacking direction as the axial direction. A first coupling portion L1a that electromagnetically couples to L2 and a second coupling portion L1b that electromagnetically couples to the third transmission line L3 are included. The first transmission line only has to be spirally wound together with the first coupling portion and the second coupling portion, and each of the first coupling portion and the second coupling portion is a separate layer of dielectric. You may form in a body layer. The first transmission line connected to the unbalanced terminal IN is wound on one side in the stacking direction (upper side in the figure) over two adjacent layers to form a coil-shaped first coupling portion L1a. The winding direction from one end of the first transmission line connected to the unbalanced terminal IN at the first coupling portion is counterclockwise in a plan view from one side (upper side in the drawing) of the stacking direction. It has become. The first transmission line is wound with the winding direction reversed while being wound around the stacking direction as an axis to form a coil-shaped second coupling portion L1b. That is, the first transmission line has a transmission line portion adjacent to the stacking direction in which the winding direction is reversed as a winding direction reversal portion. Since the winding directions from the one end of the first transmission line of the first coupling portion L1a and the second coupling portion L1b are opposite to each other in plan view, the magnetic fields generated in the respective coupling portions are reversed. It becomes a direction and the influence of a magnetic field can be canceled and mutual interference can be prevented. The winding direction of the second transmission line L2 from the first balanced terminal Out1 and the winding direction of the third transmission line L3 from the second balanced terminal Out12 are opposite to each other in plan view. It has become. In the laminated balun transformer according to the present invention, the first coupling portion L1a and the second coupling portion L1b whose winding axis direction is the laminating direction are formed in different layers and are adjacent to each other in the laminating direction, preferably overlapping. Therefore, it is easy to cause mutual interference of the coupling portion. Therefore, the said structure which reverses a winding direction turns into a suitable structure for this invention.
第1の結合部L1aと第2の結合部L1bは、上述のように異なる誘電体層に形成されている。第2の伝送線路L2は、第1の伝送線路の、積層方向第1の結合部L1a側(図1においてL1aの下側)に形成され、前記第3の伝送線路L3は、前記第1の伝送線路の、積層方向第2の結合部側(図1においてL1bの上側)に形成されている。すなわち第1の伝送線路の積層方向の片側に第2の伝送線路が、もう一方の片側に第3の伝送線路が配置され、第2、第3の伝送線路が第1の伝送線路を挟むように配置されている。第2の伝送線路L2および第3の伝送線路L3は2層にわたって巻回してコイル状をなしている。第2の伝送線路L2は、誘電体層を介して第1の結合部L1aに対向しており、該結合部との間で電磁結合する。一方、第3の伝送線路L3は誘電体層を介して第2の結合部L1bに対向しており、該結合部との間で電磁結合する。 As described above, the first coupling portion L1a and the second coupling portion L1b are formed in different dielectric layers. The second transmission line L2 is formed on the first coupling line on the first coupling portion L1a side in the stacking direction (below L1a in FIG. 1), and the third transmission line L3 is the first transmission line L3. The transmission line is formed on the second coupling portion side (upper side of L1b in FIG. 1) in the stacking direction. That is, the second transmission line is disposed on one side of the first transmission line in the stacking direction, the third transmission line is disposed on the other side, and the second and third transmission lines sandwich the first transmission line. Is arranged. The second transmission line L2 and the third transmission line L3 are wound in two layers to form a coil shape. The second transmission line L2 faces the first coupling portion L1a via the dielectric layer, and is electromagnetically coupled with the coupling portion. On the other hand, the third transmission line L3 faces the second coupling portion L1b via the dielectric layer, and is electromagnetically coupled to the coupling portion.
上述のように、第2の伝送線路L2、前記第1の結合部L1a、前記第2の結合部L1bおよび前記第3の伝送線路L3の順に積層方向に配置することによって、積層方向からバラントランスを投影した面積を顕著に低減し、積層型バラントランスを大幅に小型化することが可能である。特に、図1に示すように、第2の伝送線路L2、前記第1の結合部L1a、前記第2の結合部L1bおよび前記第3の伝送線路L3は、平面視で重なるように形成されていることが好ましい。この場合、電磁結合に実質的に関与する、第2の伝送線路L2、第1の結合部L1a、第2の結合部L1bおよび第3の伝送線路L3の外形が平面視で重なるようになっていればよく、該外形よりも内側に位置する小さい電極パターンを形成した層があってもよい。かかる構成によれば第2の伝送線路および第3の伝送線路を積層方向に垂直な平面方向に並べて配置した場合に比べて、占有面積を実質的に1/2にすることも可能である。 As described above, by arranging the second transmission line L2, the first coupling portion L1a, the second coupling portion L1b, and the third transmission line L3 in this order in the laminating direction, the balun transformer from the laminating direction. It is possible to remarkably reduce the projected area, and to significantly reduce the size of the laminated balun transformer. In particular, as shown in FIG. 1, the second transmission line L2, the first coupling portion L1a, the second coupling portion L1b, and the third transmission line L3 are formed so as to overlap in plan view. Preferably it is. In this case, the outer shapes of the second transmission line L2, the first coupling portion L1a, the second coupling portion L1b, and the third transmission line L3 that are substantially involved in electromagnetic coupling overlap in plan view. There may be a layer formed with a small electrode pattern located inside the outer shape. According to such a configuration, the occupied area can be substantially halved as compared with the case where the second transmission line and the third transmission line are arranged side by side in a plane direction perpendicular to the stacking direction.
第2の伝送線路L2の一端は、積層方向、第1の伝送線路とは反対側に形成された容量C1の容量電極に接続されており、容量C1を介して接地されている。グランド電極は、容量電極の積層方向両側に設けられており、容量電極は積層方向に対向したグランド電極に挟まれている構成となっている。グランド電極の一方は、積層型バラントランスの第1の端面に形成されている。第2の伝送線路L2の他端は、スルーホールを通じて第1の端面に形成された第1の平衡端子Out1に接続されている。同様に、第3の伝送線路L3の一端は、積層方向、第1の伝送線路とは反対側に形成された容量C2の容量電極に接続されており、容量C2を介して接地されている。グランド電極は、容量電極の積層方向両側に設けられており、容量電極は積層方向に対向したグランド電極に挟まれている構成となっている。グランド電極の一方は、積層型バラントランスの第2の端面に形成されている。第3の伝送線路L3の他端は、スルーホールを通じて第1の端面に形成された第2の平衡端子Out2に接続されている。上記構成では、第2の伝送線路L2の一端が接地されるグランド電極は、積層方向において第2の伝送線路L2から見て第1の伝送線路とは反対側に配置され、第3の伝送線路L3の一端が接地されるグランド電極は、積層方向において第3の伝送線路L3から見て前記第1の伝送線路とは反対側に配置されているため、接地用のグランド電極を結合部を構成する伝送線路L1aと伝送線路L1bの間に配置する必要がない。また同時にバラントランスからの漏れ信号あるいは外部からのノイズが前記グランド電極によりシールドできるため、耐ノイズ性能を向上できる。上述のように第1の平衡端子Out1および第2の平衡端子Out2は同じ端面に形成されている。この場合、第2の平衡端子Out2と第3の伝送線路の他端の距離は、第1の平衡端子Out1と第2の伝送線路の他端との距離に比べて大きくなるため、第1の平衡端子Out1に近い側の伝送線路L2の引き出し配線を長くする事により調整してある。すなわち、第2の伝送線路L2のうち誘電体層面に形成された分の配線長の合計は、第3の伝送線路L3のうち、誘電体層面に形成された分の配線長の合計よりも大きくしてある。 One end of the second transmission line L2 is connected to the capacitor electrode of the capacitor C1 formed on the side opposite to the first transmission line in the stacking direction, and is grounded via the capacitor C1. The ground electrode is provided on both sides of the capacitor electrode in the stacking direction, and the capacitor electrode is sandwiched between ground electrodes facing in the stacking direction. One of the ground electrodes is formed on the first end face of the multilayer balun transformer. The other end of the second transmission line L2 is connected to a first balanced terminal Out1 formed on the first end face through a through hole. Similarly, one end of the third transmission line L3 is connected to the capacitor electrode of the capacitor C2 formed on the opposite side of the stacking direction and the first transmission line, and is grounded via the capacitor C2. The ground electrode is provided on both sides of the capacitor electrode in the stacking direction, and the capacitor electrode is sandwiched between ground electrodes facing in the stacking direction. One of the ground electrodes is formed on the second end face of the multilayer balun transformer. The other end of the third transmission line L3 is connected to a second balanced terminal Out2 formed on the first end face through a through hole. In the above configuration, the ground electrode whose one end of the second transmission line L2 is grounded is disposed on the opposite side to the first transmission line when viewed from the second transmission line L2 in the stacking direction. Since the ground electrode having one end of L3 grounded is arranged on the side opposite to the first transmission line when viewed from the third transmission line L3 in the stacking direction, the grounding ground electrode constitutes a coupling portion. There is no need to arrange between the transmission line L1a and the transmission line L1b. At the same time, a leakage signal from the balun transformer or noise from the outside can be shielded by the ground electrode, so that noise resistance can be improved. As described above, the first balanced terminal Out1 and the second balanced terminal Out2 are formed on the same end face. In this case, the distance between the second balanced terminal Out2 and the other end of the third transmission line is larger than the distance between the first balanced terminal Out1 and the other end of the second transmission line. Adjustment is made by lengthening the lead-out wiring of the transmission line L2 on the side closer to the balanced terminal Out1. That is, the total wiring length formed on the dielectric layer surface of the second transmission line L2 is larger than the total wiring length formed on the dielectric layer surface of the third transmission line L3. It is.
図1に示す構成では、複数層にわたって形成された第1の結合部L1aを構成するコイル状の伝送線路パターンにおいて、第2の伝送線路L2に対向する伝送線路パターンによって囲まれる面積よりも、第2の結合部L1bに隣接する伝送線路パターンによって囲まれる面積の方が小さくなるようにしてある。同様に、複数層にわたって形成された第2の結合部L1bを構成するコイル状の伝送線路パターンにおいて、第3の伝送線路L3に対向する伝送線路パターンによって囲まれる面積よりも、第1の結合部L1aに隣接する伝送線路パターンによって囲まれる面積の方が小さくなるようにしてある。すなわち、第1の伝送線路のコイル状のパターンのうち、第2の伝送線路および第3の伝送線路に対向するコイル状パターンよりも、第1の結合部L1aと第2の結合部L1bが隣接する巻回方向反転部分のコイル状パターンの方が小さくなっている。これにより伝送線路間の寄生容量の低減が可能であり、バラントランスのインピーダンス変換比を大きくする事が可能となる。 In the configuration shown in FIG. 1, in the coiled transmission line pattern constituting the first coupling portion L1a formed over a plurality of layers, the first is greater than the area surrounded by the transmission line pattern facing the second transmission line L2. The area surrounded by the transmission line pattern adjacent to the two coupling portions L1b is made smaller. Similarly, in the coiled transmission line pattern constituting the second coupling portion L1b formed over a plurality of layers, the first coupling portion is larger than the area surrounded by the transmission line pattern facing the third transmission line L3. The area surrounded by the transmission line pattern adjacent to L1a is made smaller. That is, among the coil-shaped patterns of the first transmission line, the first coupling portion L1a and the second coupling portion L1b are adjacent to each other than the coil-shaped pattern facing the second transmission line and the third transmission line. The coiled pattern in the winding direction reversal portion is smaller. Thereby, the parasitic capacitance between the transmission lines can be reduced, and the impedance conversion ratio of the balun transformer can be increased.
図4には、積層型バラントランスを構成した積層体の具体的なパターンを示してある。
本実施例では14層の誘電体シート上に電極パターンを形成し、バラントランスを構成した。ここで第1の伝送線路を構成するL1b1、L1a1、L1b2、L1a2は6〜9層目の4層にわたって形成されており、L1b1とL1a1およびL1b2とL1a2は平面的にはほぼ同じパターンで形成した。第2の伝送線路を構成するL2a、L2bは10、11層目の2層にわたって形成され、第3の伝送線路を構成するL3a、L3bは4、5層目の2層にわたって形成されている。ここで、L2aとL3aおよびL2bとL3bは平面的にはほぼ同じパターンで形成した。なお、第1、第2および第3の各伝送線路の略矩形の巻回パターンの巻回中心軸は、第1、第2および第3の他の伝送線路の略矩形の巻回パターンの内側に位置するように配置することが好ましい。図4の構成では、第1の伝送線路の少なくとも一部、第2の伝送線路の少なくとも一部および第3の伝送線路の少なくとも一部は、積層方向に対して略同一の軸を軸として螺旋状に巻回されて形成されている。第1の伝送線路はL1b2とL1a2の部分で巻回方向が逆転し、該部分が巻回方向反転部分を構成している。第1、第2および第3の伝送線路の略矩形の巻回パターン部分は、前記巻回方向反転部分の中心面に対して対称になるように形成されている。さらに、第1の伝送線路を構成するL1b1、L1a1、L1b2、L1a2と第2の伝送線路を構成するL2a、L2bおよび第3の伝送線路を構成するL3a、L3bは、平面視で、略矩形のL1b1およびL1a1のパターンが構成する領域内に構成され、平面視で重なるように形成されている。すなわち、第2の伝送線路、第1の結合部、第2の結合部および第3の伝送線路は、平面視で重なるように形成されている。この構成により、積層型バラントランスの面積を最小化にし、さらに最適なバランス特性を実現可能となる。
FIG. 4 shows a specific pattern of the laminated body constituting the laminated balun transformer.
In this example, an electrode pattern was formed on a 14-layer dielectric sheet to constitute a balun transformer. Here, L1b1, L1a1, L1b2, and L1a2 constituting the first transmission line are formed over four layers of the sixth to ninth layers, and L1b1 and L1a1 and L1b2 and L1a2 are formed in substantially the same pattern in plan view. . L2a and L2b constituting the second transmission line are formed over two layers of the 10th and 11th layers, and L3a and L3b constituting the third transmission line are formed over the second and fourth layers. Here, L2a and L3a and L2b and L3b were formed in substantially the same pattern in plan view. The winding center axis of the substantially rectangular winding pattern of each of the first, second, and third transmission lines is the inner side of the substantially rectangular winding pattern of the first, second, and third other transmission lines. It is preferable to arrange so that it is located in. In the configuration of FIG. 4, at least a part of the first transmission line, at least a part of the second transmission line, and at least a part of the third transmission line are spiral with the substantially same axis as the axis in the stacking direction. It is formed by being wound into a shape. In the first transmission line, the winding direction is reversed at portions L1b2 and L1a2, and this portion constitutes a winding direction reversal portion. The substantially rectangular winding pattern portions of the first, second and third transmission lines are formed so as to be symmetric with respect to the center plane of the winding direction inversion portion. Further, L1b1, L1a1, L1b2, and L1a2 constituting the first transmission line, L2a and L2b constituting the second transmission line, and L3a and L3b constituting the third transmission line are substantially rectangular in plan view. It is formed in a region formed by the patterns of L1b1 and L1a1, and is formed so as to overlap in plan view. That is, the second transmission line, the first coupling portion, the second coupling portion, and the third transmission line are formed so as to overlap in plan view. With this configuration, it is possible to minimize the area of the laminated balun transformer and to realize an optimum balance characteristic.
本発明に係る積層型バラントランスは、バラントランス単体として構成してもよいが、平衡・不平衡の信号変換が必要な高周波部品の中に他の回路素子と一体化して形成してもよい。高周波部品としては、例えば、無線LANなどの無線通信の送受信を切り替えるアンテナスイッチモジュールやアンテナスイッチモジュールと高周波増幅器モジュールを一体化した複合モジュールなどが挙げられる。かかる高周波部品の代表的な構成は、アンテナと接続する少なくとも一つのアンテナ端子と、送信信号が入力される少なくとも一つの送信端子と、受信信号が出力される少なくとも一つの受信端子と、前記アンテナ端子と、前記送信端子又は前記受信端子との接続を切り替える少なくとも一つのスイッチ回路とを有する高周波部品である。積層型バラントランスは、例えば記受信端子の少なくとも一つに接続して用いる。前記無線通信は、一つの通信システムを扱うシングルバンド通信でもよいし、二つ以上の通信システムを扱うマルチバンド通信でもよく、無線通信の種類や必要とされる特性に応じて、アンテナ端子、受信端子、送信端子およびスイッチ回路、さらには必要とされるフィルタ回路等の回路素子の数や接続構成を変えればよい。積層型バラントランスを接続して一体化した高周波部品の例として、無線LAN用のデュアルバンドのフロントエンドモジュールの回路ブロックを図3に示す。図3の構成では、アンテナと接続するアンテナ端子Antと、第1、第2の周波数帯域の送信信号が入力される送信端子Tx1、Tx2と、第1、第2の周波数帯域の受信信号が出力される受信端子Rx1、Rx2と、前記アンテナ端子Antと、前記送信端子Tx又は前記受信端子Rxとの接続を切り替えるスイッチ回路SWとを有する。スイッチ回路の送信端子側には、検波回路DETを介して、第1の周波数帯域と第2の周波数帯域の信号経路を分岐する第1の分波器Dip1が接続され、該第1の分波器Dip1の第1の周波数帯域側には第1の送信端子Tx1が接続されている。該第1の分波器Dip1と第1の送信端子Tx1との間に経路には、第1の送信端子Tx1に入力される信号を増幅する第1の増幅回路PA1と、該増幅回路PA1の入力側に設けられた第1のバンドパスフィルタ回路BPF1と、該増幅回路PA1の出力側に設けられた第1のローパスフィルタ回路LPF1を備える。同様に、該第1の分波器Dip1と第2の送信端子Tx2との間に経路には、第2の送信端子Tx2に入力される信号を増幅する第2の増幅回路PA2と、該増幅回路PA2の入力側に設けられた第2のバンドパスフィルタ回路BPF2と、該増幅回路PA2の出力側に設けられた第2のローパスフィルタ回路LPF2を備える。一方、スイッチ回路の受信端子側には、低雑音増幅器回路LNA1を介して、第1の周波数帯域と第2の周波数帯域の信号経路を分岐する第2の分波器Dip2が接続され、該第2の分波器Dip2の第1の周波数帯域側には第3のバンドパスフィルタ回路BPF3を介して第1の受信端子Rx1が接続されている。同様に、該第2の分波器Dip2の第2の周波数帯域側には第4のバンドパスフィルタ回路BPF4を介して第2の受信端子Rx2が接続されている。バラントランスBAL1は第1の送信端子Tx1に接続されて、平衡端子Tx1+とTx1−に入力される平衡信号を不平衡信号に変換してTx1に出力する。同様にバラントランスBAL2は第2の送信端子Tx2に接続されて、平衡端子Tx2+とTx2−に入力される平衡信号を不平衡信号に変換してTx2に出力する。なお、高周波部品の回路構成は図3のものに限定するものではない。 The laminated balun transformer according to the present invention may be configured as a single balun transformer, or may be formed integrally with other circuit elements in a high-frequency component that requires balanced / unbalanced signal conversion. Examples of the high-frequency component include an antenna switch module that switches between transmission and reception of wireless communication such as a wireless LAN, and a composite module that integrates an antenna switch module and a high-frequency amplifier module. A typical configuration of such a high-frequency component includes at least one antenna terminal connected to an antenna, at least one transmission terminal to which a transmission signal is input, at least one reception terminal to which a reception signal is output, and the antenna terminal. And at least one switch circuit that switches connection with the transmission terminal or the reception terminal. For example, the laminated balun transformer is connected to at least one of the receiving terminals. The wireless communication may be single-band communication that handles one communication system or multi-band communication that handles two or more communication systems, depending on the type of wireless communication and the required characteristics, What is necessary is just to change the number of circuit elements, such as a terminal, a transmission terminal, a switch circuit, and a required filter circuit, and a connection structure. FIG. 3 shows a circuit block of a dual-band front-end module for a wireless LAN as an example of a high-frequency component integrated by connecting stacked balun transformers. In the configuration of FIG. 3, an antenna terminal Ant connected to the antenna, transmission terminals Tx1 and Tx2 to which transmission signals of the first and second frequency bands are input, and reception signals of the first and second frequency bands are output. Receiving terminals Rx1, Rx2, the antenna terminal Ant, and a switch circuit SW for switching connection between the transmitting terminal Tx or the receiving terminal Rx. A first demultiplexer Dip1 that branches the signal path of the first frequency band and the second frequency band is connected to the transmission terminal side of the switch circuit via the detection circuit DET. A first transmission terminal Tx1 is connected to the first frequency band side of the device Dip1. A path between the first duplexer Dip1 and the first transmission terminal Tx1 has a first amplification circuit PA1 for amplifying a signal input to the first transmission terminal Tx1, and the amplification circuit PA1. A first band-pass filter circuit BPF1 provided on the input side and a first low-pass filter circuit LPF1 provided on the output side of the amplifier circuit PA1 are provided. Similarly, on the path between the first duplexer Dip1 and the second transmission terminal Tx2, there is a second amplifier circuit PA2 for amplifying a signal input to the second transmission terminal Tx2, and the amplification A second band-pass filter circuit BPF2 provided on the input side of the circuit PA2 and a second low-pass filter circuit LPF2 provided on the output side of the amplifier circuit PA2 are provided. On the other hand, the second demultiplexer Dip2 for branching the signal path of the first frequency band and the second frequency band is connected to the receiving terminal side of the switch circuit via the low noise amplifier circuit LNA1. A first receiving terminal Rx1 is connected to the first frequency band side of the second duplexer Dip2 via a third bandpass filter circuit BPF3. Similarly, a second reception terminal Rx2 is connected to the second frequency band side of the second duplexer Dip2 via a fourth bandpass filter circuit BPF4. The balun transformer BAL1 is connected to the first transmission terminal Tx1, converts the balanced signal input to the balanced terminals Tx1 + and Tx1- to an unbalanced signal, and outputs the unbalanced signal to the Tx1. Similarly, the balun transformer BAL2 is connected to the second transmission terminal Tx2, converts the balanced signal input to the balanced terminals Tx2 + and Tx2- into an unbalanced signal, and outputs it to Tx2. The circuit configuration of the high frequency component is not limited to that shown in FIG.
次に、本発明に係る積層型バラントランスおよび高周波部品を積層体部品(セラミック積層基板を用いた部品)として構成する例を説明する。各誘電体層に図4のようなパターンを有する積層型バラントランスを構成したセラミック積層基板は、例えば1000℃以下で低温焼結が可能なセラミック誘電体材料LTCC(Low Temperature Co-fired Ceramics)からなり、厚さが10μm〜200μmのグリーンシートに、低抵抗率のAgやCu等の導電ペーストを印刷して所定の電極パターンを形成し、複数のグリーンシートを適宜一体的に積層し、焼結することにより製造することが出来る。前記誘電体材料としては、例えばAl、Si、Srを主成分として、Ti、Bi、Cu、Mn、Na、Kを副成分とする材料や、Al、Si、Srを主成分としてCa、Pb、Na、Kを複成分とする材料や、Al、Mg、Si、Gdを含む材料や、Al、Si、Zr、Mgを含む材料が用いられ、誘電率は5〜15程度の材料を用いる。なお、セラミック誘電体材料の他に、樹脂積層基板や樹脂とセラミック誘電体粉末を混合してなる複合材料を用いてなる積層基板を用いることも可能である。また、前記セラミック基板をHTCC(高温同時焼成セラミック)技術を用いて、誘電体材料をAl2O3を主体とするものとし、伝送線路等をタングステンやモリブデン等の高温で焼結可能な金属導体として構成しても良い。 Next, an example in which the multilayer balun transformer and the high-frequency component according to the present invention are configured as multilayer components (components using a ceramic multilayer substrate) will be described. A ceramic laminated substrate having a laminated balun transformer having a pattern as shown in FIG. 4 in each dielectric layer is made of, for example, ceramic dielectric material LTCC (Low Temperature Co-fired Ceramics) that can be sintered at a low temperature of 1000 ° C. or lower. A predetermined electrode pattern is formed on a green sheet having a thickness of 10 μm to 200 μm by printing a conductive paste such as Ag or Cu having a low resistivity, and a plurality of green sheets are laminated appropriately and sintered. Can be manufactured. As the dielectric material, for example, Al, Si, Sr as a main component, Ti, Bi, Cu, Mn, Na, K as a subcomponent, Al, Si, Sr as a main component, Ca, Pb, A material containing Na and K as a multicomponent, a material containing Al, Mg, Si, and Gd, and a material containing Al, Si, Zr, and Mg are used, and a material having a dielectric constant of about 5 to 15 is used. In addition to the ceramic dielectric material, it is also possible to use a resin multilayer substrate or a multilayer substrate made of a composite material obtained by mixing a resin and ceramic dielectric powder. Further, the ceramic substrate is made of HTCC (high temperature co-fired ceramic) technology, the dielectric material is mainly Al 2 O 3 , and the transmission line is a metal conductor that can be sintered at a high temperature such as tungsten or molybdenum. You may comprise as.
このセラミック積層基板でアンテナスイッチモジュールなどの高周波部品を構成する場合は、各層には、インダクタンス素子用、容量素子用、配線ライン用、及びグランド電極用のパターン電極が適宜構成されて、層間にはビアホール電極が形成されて、所望の回路が構成される。主に、LC回路で構成可能な回路部分が構成される。分波回路、バンドパスフィルタ回路、ローパスフィルタ回路、ハイパスフィルタ回路を主にセラミック多層基板の内部に構成する。又、各回路の一部の素子は、セラミック多層基板の上面に搭載したチップ素子を用いてもよい。 When this ceramic multilayer substrate constitutes a high-frequency component such as an antenna switch module, pattern electrodes for inductance elements, capacitor elements, wiring lines, and ground electrodes are appropriately configured in each layer. A via hole electrode is formed to form a desired circuit. Mainly, a circuit portion that can be configured by an LC circuit is configured. A demultiplexing circuit, a band-pass filter circuit, a low-pass filter circuit, and a high-pass filter circuit are mainly configured inside a ceramic multilayer substrate. Moreover, a chip element mounted on the upper surface of the ceramic multilayer substrate may be used as a part of the elements of each circuit.
また、セラミック積層基板には、単極双投型のSPDTスイッチやダイオードスイッチ、送信側の増幅回路用、受信側の低雑音増幅器回路LNA用の半導体素子などを搭載する。そして、ワイヤボンダ、LGA、BGA等でセラミック積層基板に接続し、本発明の高周波回路を小型の高周波部品として構成することができる。もちろん、セラミック積層基板の搭載部品及びセラミック積層基板の内蔵素子とは所定回路になるように接続され、高周波回路が構成される。なお、セラミック積層基板上には、上記した半導体素子以外に、チップコンデンサ、チップ抵抗、チップインダクタ等の素子を適宜搭載する。これらの搭載素子は、セラミック積層基板に内蔵する素子との関係から適宜選択することができる。 The ceramic multilayer substrate is mounted with a single-pole double-throw SPDT switch or diode switch, a semiconductor element for a transmission-side amplifier circuit, a reception-side low-noise amplifier circuit LNA, or the like. And it connects to a ceramic laminated substrate with a wire bonder, LGA, BGA, etc., and the high frequency circuit of this invention can be comprised as a small high frequency component. Of course, the component mounted on the ceramic multilayer substrate and the built-in element of the ceramic multilayer substrate are connected to form a predetermined circuit, and a high frequency circuit is configured. In addition to the semiconductor elements described above, elements such as a chip capacitor, a chip resistor, and a chip inductor are appropriately mounted on the ceramic multilayer substrate. These mounting elements can be appropriately selected from the relationship with the elements incorporated in the ceramic laminated substrate.
IN:不平衡端子
OUT1:第1の平衡端子、OUT2:第2の平衡端子
L1a、L1a1、L1a2:第1の結合部
L1b、L1b1、L1b2:第2の結合部
L2、L2a、L2b:第2の伝送線路
L3、L3a、L3b:第3の伝送線路
C1、C2:容量
GND:グランド電極
Ant:アンテナ端子
Tx1、Tx2:送信端子
Rx1、Rx2:受信端子
Tx1+、Tx1−、Tx2+、Tx2−:平衡受信端子
DET:検波回路
Dip1、Dip2:分波回路
BPF1〜4:バンドパスフィルタ回路
LPF1、LPF2:ローパスフィルタ回路
PA1、PA2:増幅回路
LNA1:低雑音増幅器回路
BAL1、BAL2:バラントランス
SW:スイッチ回路
IN: unbalanced terminal OUT1: first balanced terminal, OUT2: second balanced terminals L1a, L1a1, L1a2: first coupling portions L1b, L1b1, L1b2: second coupling portions L2, L2a, L2b: second Transmission line L3, L3a, L3b: third transmission line C1, C2: capacitance GND: ground electrode Ant: antenna terminal Tx1, Tx2: transmission terminal Rx1, Rx2: reception terminal Tx1 +, Tx2 +, Tx2 +, Tx2-: balanced Reception terminals DET: Detection circuits Dip1, Dip2: Demultiplexing circuits BPF1-4: Band pass filter circuits LPF1, LPF2: Low pass filter circuits PA1, PA2: Amplifier circuits LNA1: Low noise amplifier circuits BAL1, BAL2: Balun transformer SW: Switch circuit
Claims (7)
前記第1の伝送線路は、複数の誘電体層に形成された導体パターンが接続され積層方向を軸方向とする螺旋状に巻回されて形成されているとともに、前記第2の伝送線路と電磁結合する第1の結合部と、前記第3の伝送線路と電磁結合するとともに前記第1の結合部とは逆方向に巻回する導体パターンで構成された第2の結合部を備え、
グランド電極を介さずに積層方向に隣り合って配置された第1の結合部の導体パターンと第2の結合部の導体パターンとは、それぞれの導体パターンによって囲まれる面積が、第1の伝送線路を構成する他の導体パターンにより囲まれる面積よりも小さく形成され、
前記第2の伝送線路は、前記第1の伝送線路の、積層方向第1の結合部側に形成され、前記第3の伝送線路は、前記第1の伝送線路の、積層方向第2の結合部側に形成されていることを特徴とする積層型バラントランス。 A laminate formed by laminating a plurality of dielectric layers on which conductor patterns are formed includes a first transmission line, a second transmission line and a third transmission line that are electromagnetically coupled to the first transmission line. The first transmission line has one end connected to the unbalanced terminal and the other end open. The second transmission line has one end grounded and the other end connected to the first balanced terminal. The transmission line is a laminated balun transformer having one end grounded and the other end connected to the second balanced terminal,
The first transmission line is formed by connecting a conductor pattern formed in a plurality of dielectric layers and spirally winding the lamination direction as an axial direction. A first coupling portion to be coupled, and a second coupling portion configured by a conductor pattern that is electromagnetically coupled to the third transmission line and wound in a direction opposite to the first coupling portion,
The conductor pattern of the first coupling part and the conductor pattern of the second coupling part arranged adjacent to each other in the stacking direction without the ground electrode are such that the area surrounded by the respective conductor patterns is the first transmission line. Formed smaller than the area surrounded by other conductor patterns constituting
The second transmission line is formed on the first coupling portion side of the first transmission line in the stacking direction, and the third transmission line is a second coupling of the first transmission line in the stacking direction. A laminated balun transformer characterized in that it is formed on the part side.
前記第3の伝送線路の一端が接地される第2のグランド電極とを備えたことを特徴とする請求項1〜3のいずれかに記載の積層型バラントランス。 A first ground electrode in which one end of said second transmission line is grounded,
The third laminated balun transformer according to claim 1 in which one end of the transmission line, characterized in that a second ground electrode being grounded.
前記第3の伝送線路の一端は、積層体に設けられたスルーホールを介して第2の容量電極と接続し、前記第2の容量電極は前記第2のグランド電極と対向して第2の容量を構成することを特徴とする請求項4に記載の積層型バラントランス。 The one end of the second transmission line is connected to the first capacitor electrode via a through hole provided in the laminate, the first capacitor electrode to the first opposite to the first ground electrode Configure the capacity of
One end of said third transmission line via a through hole provided in the laminated body is connected to the second capacitor electrode, the second capacitor electrode and the second opposite to the second ground electrode The laminated balun transformer according to claim 4, wherein the laminated balun transformer is configured as follows.
前記第2のグランド電極は前記第3の伝送線路と前記第2の容量電極との間に配置された誘電体層に設けられたことを特徴とする請求項5に記載の積層型バラントランス。 The first ground electrode is provided on a dielectric layer disposed between the second transmission line and the first capacitor electrode;
6. The multilayer balun transformer according to claim 5, wherein the second ground electrode is provided on a dielectric layer disposed between the third transmission line and the second capacitor electrode.
前記受信端子および送信端子のうち少なくとも一つには請求項1〜6のいずれかに記載の積層型バラントランスが接続されていることを特徴とする高周波部品。 At least one antenna terminal connected to the antenna; at least one transmission terminal to which a transmission signal is input; at least one reception terminal to which a reception signal is output; the antenna terminal; and the transmission terminal or the reception terminal; A high frequency component having at least one switch circuit for switching the connection of
A high-frequency component, wherein the multilayer balun transformer according to any one of claims 1 to 6 is connected to at least one of the reception terminal and the transmission terminal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006353756A JP4936119B2 (en) | 2006-12-28 | 2006-12-28 | Multilayer balun transformer and high frequency components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006353756A JP4936119B2 (en) | 2006-12-28 | 2006-12-28 | Multilayer balun transformer and high frequency components |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008167105A JP2008167105A (en) | 2008-07-17 |
JP4936119B2 true JP4936119B2 (en) | 2012-05-23 |
Family
ID=39695948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006353756A Expired - Fee Related JP4936119B2 (en) | 2006-12-28 | 2006-12-28 | Multilayer balun transformer and high frequency components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4936119B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012108254A1 (en) | 2011-02-09 | 2012-08-16 | 株式会社村田製作所 | High-frequency module |
KR101592804B1 (en) | 2012-02-06 | 2016-02-05 | 다이요 유덴 가부시키가이샤 | Filter circuit and module |
JPWO2013118240A1 (en) * | 2012-02-06 | 2015-05-11 | 太陽誘電株式会社 | Filter circuit and module |
JP2014112907A (en) * | 2014-01-22 | 2014-06-19 | Nec Corp | Antenna switch circuit and communication terminal |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11219825A (en) * | 1998-02-03 | 1999-08-10 | Ngk Spark Plug Co Ltd | Surface mounting type balun transformer |
JP4306849B2 (en) * | 1998-12-22 | 2009-08-05 | Tdk株式会社 | Stacked balun transformer |
JP4586282B2 (en) * | 2001-03-14 | 2010-11-24 | 株式会社村田製作所 | Multilayer balun transformer |
TW535322B (en) * | 2001-06-27 | 2003-06-01 | Ind Tech Res Inst | Multi-layer radio frequency chip balun |
JP2004056745A (en) * | 2001-08-03 | 2004-02-19 | Matsushita Electric Ind Co Ltd | Compposite high frequency component |
JP2004304615A (en) * | 2003-03-31 | 2004-10-28 | Tdk Corp | High frequency composite part |
JP3770883B2 (en) * | 2003-04-17 | 2006-04-26 | 双信電機株式会社 | Passive components |
JP2005005595A (en) * | 2003-06-13 | 2005-01-06 | Murata Mfg Co Ltd | Coil component |
JP3944193B2 (en) * | 2004-02-09 | 2007-07-11 | 太陽誘電株式会社 | Balun and balance filter and wireless communication equipment |
-
2006
- 2006-12-28 JP JP2006353756A patent/JP4936119B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008167105A (en) | 2008-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5418516B2 (en) | Demultiplexing circuit, high frequency circuit, high frequency component, and communication device | |
JP5532604B2 (en) | Multilayer bandpass filter, high-frequency component, and communication device using them | |
JP5402932B2 (en) | Band-pass filter, high-frequency component, and communication device | |
WO2009157357A1 (en) | High-frequency circuit, high-frequency component, and communication device | |
JP4134129B2 (en) | High frequency module | |
CN101447595B (en) | Band-pass filter, high-frequency component, and communication apparatus | |
JP5645143B2 (en) | High frequency components and communication devices | |
WO2018079614A1 (en) | Substrate with built-in directional coupler, high-frequency front-end circuit, and communication device | |
KR20120107965A (en) | High frequency circuit, high frequency circuit component, and communication apparatus | |
JP4134004B2 (en) | High frequency module | |
JP5796579B2 (en) | Laminated electronic component with filter and balun | |
JP5041285B2 (en) | High frequency components | |
JP2012089590A (en) | Electronic component | |
JP2010147589A (en) | High frequency circuit, high frequency component, and communication device | |
JP2008193739A (en) | High frequency module | |
JP4936119B2 (en) | Multilayer balun transformer and high frequency components | |
JP7131711B2 (en) | balun | |
JP2010041316A (en) | High-pass filter, high frequency module, and communication equipment using the same | |
EP2065966B1 (en) | Band-pass filter, high-frequency component, and communication apparatus | |
JP2009027319A (en) | High-frequency circuit, high-frequency component, and communication device | |
JP2010212962A (en) | High frequency component, and communication device employing the same | |
JP2006246234A (en) | High frequency switching module and radio communications device using the same | |
JP4794247B2 (en) | High frequency module | |
JP2010136288A (en) | Band pass filter, radio frequency component, and communication device | |
JP2009159412A (en) | High-frequency, component and communication device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120127 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120209 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4936119 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |