JP4936064B2 - Gas barrier film and method for producing the same - Google Patents
Gas barrier film and method for producing the same Download PDFInfo
- Publication number
- JP4936064B2 JP4936064B2 JP2007233678A JP2007233678A JP4936064B2 JP 4936064 B2 JP4936064 B2 JP 4936064B2 JP 2007233678 A JP2007233678 A JP 2007233678A JP 2007233678 A JP2007233678 A JP 2007233678A JP 4936064 B2 JP4936064 B2 JP 4936064B2
- Authority
- JP
- Japan
- Prior art keywords
- siox
- film
- gas barrier
- vapor deposition
- barrier film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004888 barrier function Effects 0.000 title claims description 43
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 56
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 56
- 238000007740 vapor deposition Methods 0.000 claims description 38
- 239000000463 material Substances 0.000 claims description 36
- 239000007789 gas Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 23
- 238000010894 electron beam technology Methods 0.000 claims description 21
- 238000002834 transmittance Methods 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- 239000012495 reaction gas Substances 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- 239000012298 atmosphere Substances 0.000 claims description 5
- 229910021488 crystalline silicon dioxide Inorganic materials 0.000 claims description 3
- 239000010408 film Substances 0.000 description 66
- 238000010438 heat treatment Methods 0.000 description 18
- 238000000151 deposition Methods 0.000 description 16
- 230000008021 deposition Effects 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- -1 polyethylene terephthalate Polymers 0.000 description 5
- 238000001771 vacuum deposition Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000002952 polymeric resin Substances 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000005003 food packaging material Substances 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000011129 pharmaceutical packaging material Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010227 cup method (microbiological evaluation) Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
Description
本発明は、優れたガスバリア性および透明性を兼ね備えたガスバリア性フィルムおよびその製造方法に関するものである。本発明のガスバリア性フィルムは、食品や医薬品の包装材料をはじめ、ディスプレイなどの表示媒体の保護膜などに好適に用いられる。 The present invention relates to a gas barrier film having excellent gas barrier properties and transparency and a method for producing the same. The gas barrier film of the present invention is suitably used for protective films for display media such as displays, as well as food and pharmaceutical packaging materials.
食品や医薬品の包装材料に要求される性能に、内容物の劣化の原因となる酸素、水蒸気の透過を防ぐガスバリア性が挙げられる。そのため、安全性に優れたアルミニウム箔やポリエチレンテレフタレートなどの高分子樹脂フィルムにアルミニウムを蒸着したガスバリア性フィルムが用いられてきた。しかし、これらのアルミニウム箔やアルミニウムを蒸着したフィルムでは、金属を用いているため透明性に欠き内容物を確認することができない点や、金属探知機、電子レンジ加熱の利用不可、廃棄時の環境負荷などの問題があった。 The performance required for food and pharmaceutical packaging materials includes gas barrier properties that prevent permeation of oxygen and water vapor, which cause deterioration of contents. Therefore, a gas barrier film obtained by depositing aluminum on a polymer resin film such as aluminum foil or polyethylene terephthalate having excellent safety has been used. However, these aluminum foils and aluminum-deposited films use metal, so they lack transparency and cannot be used to confirm the contents. Also, metal detectors, microwave heating cannot be used, and the environment during disposal. There was a problem such as load.
これら問題点を解決するため提案されたのが、無機酸化物を蒸着した透明蒸着フィルムである。蒸着材料の無機酸化物としては、Al2O3、SiO、MgO等が挙げられる。これらを用いた透明蒸着フィルムは、ガスバリア性に加えて透明性を有することが知られている。 In order to solve these problems, a transparent deposited film on which an inorganic oxide is deposited is proposed. Examples of the inorganic oxide of the vapor deposition material include Al 2 O 3 , SiO, and MgO. It is known that transparent vapor deposition films using these have transparency in addition to gas barrier properties.
しかし、SiOを蒸着したSiOx蒸着フィルムは黄色を呈してしまい、包装材料や表示媒体の保護膜として用いた場合に正しい色の把握が困難なものとなってしまう(特許文献1および2参照)。
従来のSiO蒸着材料を用いて、厚さ25μmのポリエチレンテレフタレートを基材フィルムとして例えば厚さ300nmのSiOxを蒸着したガスバリア性フィルムの水蒸気透過度と透明性を評価した場合、1.4 g/m2/day程度のバリア性を持つのに対し、光線透過率は45%と低く、高ガスバリア性と透明性維持の両立が困難である。 When using a conventional SiO vapor deposition material and evaluating the water vapor permeability and transparency of a gas barrier film in which, for example, 300 nm thick SiOx is deposited using a polyethylene terephthalate having a thickness of 25 μm as a base film, 1.4 g / m 2 / While it has a barrier property of about a day, its light transmittance is as low as 45%, making it difficult to achieve both high gas barrier properties and transparency maintenance.
SiOを蒸着したSiOx蒸着フィルムにおいて、酸化度合いを示すxの値が特に透明性とバリア性に影響することが知られている。蒸着したSiOx蒸着フィルムにおいてはこの限りではないが、存在するSiOxでは、SiO(黒色)、Si3O4(褐色)、Si2O3(黄色)SiO2(無色)があり、酸化度合いによって色が異なっている。つまりxの値が大きくなるほど透明になるため、SiOを蒸着材料とした透明ガスバリア性フィルムを作成するには酸素を導入して蒸発させたSiOと反応させることで基材フィルム上にSiOxとして成膜する必要があり、酸素分圧のコントロールなどに問題があった。 It is known that the value of x indicating the degree of oxidation particularly affects the transparency and barrier properties of SiOx deposited films deposited with SiO. This does not apply to the deposited SiOx film, but the existing SiOx includes SiO (black), Si 3 O 4 (brown), Si 2 O 3 (yellow) SiO 2 (colorless). Is different. In other words, the larger the value of x, the more transparent it becomes. To create a transparent gas barrier film using SiO as the deposition material, oxygen is introduced and reacted with the evaporated SiO to form SiOx on the base film. There was a problem in controlling the oxygen partial pressure.
したがって本発明の目的は、SiOxを蒸着材料としたガスバリア性フィルムにおいて、反応ガスを導入しなくても、黄色を呈さず高い透明性を備えながら、優れたガスバリア性を有するガスバリア性フィルムおよびその製造方法の提供にある。 Accordingly, an object of the present invention is to provide a gas barrier film having excellent gas barrier properties while exhibiting high transparency without exhibiting yellow without introducing a reaction gas in a gas barrier film using SiOx as an evaporation material, and its production In providing a method.
本発明は前記課題を解決するためになされたものであり、請求項1に記載の発明は、基材フィルムの少なくとも一方の面に、SiOx蒸着材料を用い、反応ガスを導入しない雰囲気下でエレクトロンビーム(EB)蒸着方法によりSiOx膜を形成するガスバリア性フィルムの製造方法であって、
前記SiOx蒸着材料中に嵩密度を調整するためのSiO 2 が混在しており、
前記SiOx蒸着材料が結晶質のSiO2の回折パターンを有するものであり、
かつ、前記SiOx蒸着材料の真密度に対する嵩密度が71%以上80%未満である、
ことを特徴とするガスバリア性フィルムの製造方法である。
請求項2に記載の発明は、請求項1に記載の製造方法を用いて製造されたガスバリア性フィルムであって、
前記SiOx膜の膜厚が200nm以下であることを特徴とするガスバリア性フィルムである。
請求項3に記載の発明は、波長範囲350〜800nmにおける光線透過率が73%以上であり、水蒸気透過度が2.0g/m2/day以下であることを特徴とする請求項2に記載のガスバリア性フィルムである。
The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 uses an SiOx vapor deposition material on at least one surface of a base film, and an electron in an atmosphere in which no reaction gas is introduced. A gas barrier film manufacturing method for forming a SiOx film by a beam (EB) vapor deposition method,
SiO 2 for adjusting the bulk density is mixed in the SiOx vapor deposition material ,
The SiOx vapor deposition material has a diffraction pattern of crystalline SiO 2 ;
And the bulk density with respect to the true density of the SiOx vapor deposition material is 71 % or more and less than 80%.
This is a method for producing a gas barrier film.
Invention of Claim 2 is a gas barrier film manufactured using the manufacturing method of Claim 1,
The SiOx film has a thickness of 200 nm or less.
The invention described in claim 3 is characterized in that the light transmittance in the wavelength range of 350 to 800 nm is 73% or more, and the water vapor transmission rate is 2.0 g / m 2 / day or less. This is a gas barrier film.
本発明によれば、SiOxを蒸着材料としたガスバリア性フィルムにおいて、反応ガスを導入しなくても、黄色を呈さず高い透明性を備えながら、優れたガスバリア性を有するガスバリア性フィルムおよびその製造方法が提供される。 According to the present invention, in a gas barrier film using SiOx as an evaporation material, a gas barrier film having excellent gas barrier properties while exhibiting high transparency without exhibiting yellow without introducing a reaction gas and a method for producing the same Is provided.
SiOをはじめとする無機酸化物の蒸着方式には、アルミニウム蒸着と同様の真空蒸着方式やスパッタリング方式などの物理的蒸着(PVD)とプラズマCVD方式などの化学的蒸着(CVD)が知られている。基材フィルムが高分子樹脂フィルムである場合や、コストダウンのため巻取りで連続蒸着を行う必要があることを考慮すると真空蒸着方式が適しており、またSiOの融点は1700℃とアルミニウムと比較して高融点であるため、効率よくSiOx蒸着材料を蒸発させるには真空蒸着方式のうち電子銃を用いたエレクトロンビーム(EB)方式が好ましい。また、この方式によれば抵抗加熱方式で必要な蒸着の前段階としての坩堝や蒸着材料の加熱を省くことが可能となり、蒸着材料を局部的かつ急速に加熱することができ生産性を高めることも期待できる。 As vapor deposition methods for inorganic oxides such as SiO, physical vapor deposition (PVD) such as vacuum vapor deposition and sputtering method similar to aluminum vapor deposition and chemical vapor deposition (CVD) such as plasma CVD method are known. . Considering that the base film is a polymer resin film and that it is necessary to perform continuous deposition by winding for cost reduction, the vacuum deposition method is suitable, and the melting point of SiO is 1700 ° C compared with aluminum Since it has a high melting point, an electron beam (EB) method using an electron gun is preferable among the vacuum evaporation methods in order to efficiently evaporate the SiOx evaporation material. In addition, according to this method, it becomes possible to omit the heating of the crucible and the vapor deposition material as a pre-deposition step necessary for the resistance heating method, and the vapor deposition material can be heated locally and rapidly, thereby increasing the productivity. Can also be expected.
本発明で使用される基材フィルムは、高分子樹脂フィルムが挙げられ、これは透明でSiOx蒸着膜を保持できれば特に限定されない。例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル系樹脂、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン系樹脂、ナイロン−6、ナイロン66などのポリアミド系樹脂などである。これら高分子樹脂フィルムの厚さは特に制限を受けないが、3〜200μmの厚さで用いることができ、特に12〜30μmの厚さが好ましい。 Examples of the base film used in the present invention include a polymer resin film, which is not particularly limited as long as it is transparent and can hold a SiOx deposited film. Examples thereof include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin resins such as polyethylene (PE) and polypropylene (PP), and polyamide resins such as nylon-6 and nylon 66. Although the thickness of these polymer resin films is not particularly limited, it can be used in a thickness of 3 to 200 μm, and a thickness of 12 to 30 μm is particularly preferable.
本発明で使用するSiOx蒸着材料の形状としては、粉状、粒状であるとEB照射時に蒸着材料粒子が飛散(スプラッシュ)しやすく基材フィルムに衝突して貫通孔(ピンホール)を生じさせてしまう。また、型に入れて成型するだけではハンドリング性が悪く、また蒸着中に材料が割れた場合、その割れ目からスプラッシュが発生しやすいので好ましくない。そこで、成型と同時に焼結、もしくは成型後に焼結することによって蒸着材料の形状を保つことができ、嵩密度、粒径などの材料特性を変化させることでスプラッシュの抑制をも期待することができる。また、ハンドリング性に優れるので大量生産することも可能である。 As the shape of the SiOx vapor deposition material used in the present invention, if it is powdery or granular, the vapor deposition material particles easily scatter (splash) at the time of EB irradiation and collide with the base film to cause a through hole (pinhole). End up. Further, it is not preferable to simply mold in a mold because handling properties are poor, and when a material is cracked during vapor deposition, splash is likely to occur from the crack. Therefore, it is possible to maintain the shape of the vapor deposition material by sintering at the same time as molding, or sintering after molding, and it can be expected to suppress splash by changing material properties such as bulk density and particle size. . Moreover, since it is excellent in handling property, it can be mass-produced.
本発明で使用するSiOx蒸着材料は、結晶質のSiO2の回折パターンを有する必要がある。SiO2の回折パターンは、SiOx蒸着材料中に結晶質であるSiO2が混在している有無を判断するために行われる。SiO蒸着材料中にSiO2が混在していることで、反応ガスを導入することなくSiOx膜を形成することができるためである。 The SiOx vapor deposition material used in the present invention needs to have a crystalline SiO 2 diffraction pattern. Diffraction pattern of the SiO 2 is made to determine whether the SiO 2 are mixed is crystalline in SiOx deposition material. By SiO 2 are mixed in the SiO vapor deposition material is because it is possible to form the SiOx film without introducing a reaction gas.
蒸着材料の成型法としては、流し込み法、ラバープレス法などの成型のみを行う方法と、ホットプレス法、熱間静水圧加圧法(HIP法)など成型と同時に加圧焼結を行う方法があり、後者の方法を用いると緻密化の起こる温度が下がり異常粒成長のない均一な粒径からなる高密度な焼結体を得ることができるが、本発明では特に限定しない。焼結時の雰囲気としては真空雰囲気、窒素雰囲気、大気雰囲気などがあるが、本発明では特に限定しない。 There are two methods for forming the vapor deposition material, such as the casting method and rubber pressing method, and the hot pressing method and hot isostatic pressing method (HIP method). When the latter method is used, a high-density sintered body having a uniform particle size with no abnormal grain growth can be obtained because the temperature at which densification occurs, but the present invention is not particularly limited. The atmosphere during sintering includes a vacuum atmosphere, a nitrogen atmosphere, an air atmosphere, and the like, but is not particularly limited in the present invention.
本発明で使用されるSiOx蒸着材料は、真密度に対する嵩密度が70%以上80%未満である必要がある。該嵩密度は、大小異なる粒径の粒子を組み合わせたり、非晶質のSiO2粒子を含むシリカゾルを混合することによって調整できる。嵩密度が小さすぎるとSiOx蒸着材料のサイズが大きくなり、坩堝のサイズが限定されることが考えられ、また、嵩密度が大きすぎるとEB照射時の熱衝撃によって材料の割れを招く恐れがある。したがって、本発明でのSiOx蒸着材料の真密度に対する嵩密度は、上記のように規定する必要がある。
なお、本発明でいう真密度に対する嵩密度とは、アルキメデス法により測定された値である。
The SiOx vapor deposition material used in the present invention needs to have a bulk density of 70% or more and less than 80% with respect to the true density. The bulk density can be adjusted by combining particles having different particle sizes and mixing silica sol containing amorphous SiO 2 particles. If the bulk density is too small, the size of the SiOx vapor deposition material becomes large and the crucible size may be limited. If the bulk density is too large, the material may be cracked by thermal shock during EB irradiation. . Therefore, the bulk density relative to the true density of the SiOx vapor deposition material in the present invention needs to be specified as described above.
The bulk density relative to the true density in the present invention is a value measured by the Archimedes method.
CVD法により作成したSiOx蒸着フィルムは、透明かつ高バリアの特性を有しているが、真空蒸着法により作成したものついては、xの値が1に近づくにつれてバリア性は上がるものの黄色を呈して透明性が下がり、またxの値が2に近づくにつれて透明性はあがるもののバリア性が悪くなってしまうという相反する関係がある。これは、蒸着法の原理が加熱されて蒸発したSiOxが基材フィルム上に物理的に堆積するためであり、その結果堆積時の隙間がバリア性能を決定する因子となる。そのため、xの値が小さいとフィルム上のSiOxの原子間ネットワークが密になってバリア性が発現し、反対にxの値が大きいと原子間ネットワークが疎になりバリア性が発現しないと推察される。本発明では、SiO蒸着材料に嵩密度調整剤として混ぜ込んだSiO2のO成分が結果としてxの値を大きくさせ、反応ガスを導入せずに透明性を得るというものである。 The SiOx vapor-deposited film produced by the CVD method has a transparent and high barrier property, but the one produced by the vacuum vapor-deposition method exhibits a yellow color but becomes more transparent as the x value approaches 1 However, as the value of x decreases to 2 and the transparency increases, the barrier property deteriorates. This is because the SiOx evaporated by heating due to the principle of the vapor deposition method is physically deposited on the base film, and as a result, the gap during the deposition becomes a factor determining the barrier performance. Therefore, if the value of x is small, the interatomic network of SiOx on the film becomes dense and expresses a barrier property. Conversely, if the value of x is large, the interatomic network becomes sparse and the barrier property does not appear. The In the present invention, the SiO 2 O component mixed into the SiO vapor deposition material as a bulk density adjusting agent results in an increase in the value of x, and transparency is obtained without introducing a reaction gas.
ガスバリア性にはSiOx膜の膜厚の寄与する部分が大きく、薄すぎると基材フィルム全体に成膜されないなどの理由でバリア性が発現しない。また膜厚を極度に厚くすると蒸着膜表面に割れ(クラック)が生じバリア性の低下や、カールが大きくなりハンドリング性が悪くなる。したがって、これらの点を考慮してSiOx膜の膜厚は300nm以下が好ましく、200nm以下がさらに好ましく、特に10〜200nmがより好ましい。 The portion of the SiOx film that contributes to the film thickness is large for the gas barrier property, and if it is too thin, the barrier property is not exhibited because it is not formed on the entire substrate film. On the other hand, if the film thickness is extremely thick, cracks are generated on the surface of the deposited film, resulting in a decrease in barrier properties and an increase in curl, resulting in poor handling properties. Therefore, considering these points, the thickness of the SiOx film is preferably 300 nm or less, more preferably 200 nm or less, and particularly preferably 10 to 200 nm.
本発明におけるガスバリア性フィルムは、波長範囲350〜800nmにおける光線透過率が73%以上であり、水蒸気透過度が2.0g/m2/day以下である。 The gas barrier film of the present invention has a light transmittance of 73% or more in a wavelength range of 350 to 800 nm and a water vapor transmission rate of 2.0 g / m 2 / day or less.
以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されない。 EXAMPLES Hereinafter, although an Example and a comparative example further demonstrate this invention, this invention is not restrict | limited to the following example.
<実施例1>
電子ビーム加熱方式のバッチ式真空蒸着装置を用いて、嵩密度調整剤としてSiO2を混ぜ込み、真密度に対する嵩密度の割合が71%であるSiOx蒸着材料を電子ビーム加熱によって蒸発させ、成膜中の圧力が1.0×10−3Paにおいて厚さ189mのSiOx膜を成膜した。ただし、このときの蒸着条件は以下の通りである。
加速電圧:5.9kV
エミッション電流:0.15 A
基材フィルム:PETフィルム 厚さ25μm(東レ社製T60)
<Example 1>
Using a batch-type vacuum vapor deposition system with an electron beam heating method, SiO 2 is mixed as a bulk density adjusting agent, and the SiOx vapor deposition material with a bulk density ratio of 71% to the true density is evaporated by electron beam heating to form a film. A SiOx film having a thickness of 189 m was formed at an internal pressure of 1.0 × 10 −3 Pa. However, the deposition conditions at this time are as follows.
Acceleration voltage: 5.9kV
Emission current: 0.15 A
Base film: PET film thickness 25μm (T60 manufactured by Toray Industries, Inc.)
<実施例2>
電子ビーム加熱方式のバッチ式真空蒸着装置を用いて、嵩密度調整剤としてSiO2を混ぜ込み、真密度に対する嵩密度の割合が78%であるSiOx蒸着材料を電子ビーム加熱によって蒸発させ、成膜中の圧力が1.0×10−3Paにおいて厚さ192nmのSiOx膜を成膜した。SiOxの蒸着条件は、実施例1と同様とする。
<Example 2>
Using a batch-type vacuum vapor deposition system with an electron beam heating method, SiO 2 is mixed as a bulk density adjusting agent, and the SiOx vapor deposition material with a bulk density ratio of 78% to the true density is evaporated by electron beam heating to form a film. A SiOx film having a thickness of 192 nm was formed at an internal pressure of 1.0 × 10 −3 Pa. The deposition conditions for SiOx are the same as in Example 1.
<実施例3>
電子ビーム加熱方式のバッチ式真空蒸着装置を用いて、嵩密度調整剤としてSiO2を混ぜ込み、真密度に対する嵩密度の割合が78%であるSiOx蒸着材料を電子ビーム加熱によって蒸発させ、成膜中の圧力が1.0×10−3Paにおいて厚さ62nmのSiOx膜を成膜した。SiOxの蒸着条件は、実施例1と同様とする。
<Example 3>
Using a batch-type vacuum vapor deposition system with an electron beam heating method, SiO 2 is mixed as a bulk density adjusting agent, and the SiOx vapor deposition material with a bulk density ratio of 78% to the true density is evaporated by electron beam heating to form a film. A SiOx film having a thickness of 62 nm was formed at an internal pressure of 1.0 × 10 −3 Pa. The deposition conditions for SiOx are the same as in Example 1.
<比較例1>
電子ビーム加熱方式のバッチ式真空蒸着装置を用いて、嵩密度調整剤としてSiO2を混ぜ込み、真密度に対する嵩密度の割合が78%であるSiOx蒸着材料を電子ビーム加熱によって蒸発させ、成膜中の圧力が1.0×10−3Paにおいて厚さ310nmのSiOx膜を成膜した。SiOxの蒸着条件は、実施例1と同様とする。
<Comparative Example 1>
Using a batch-type vacuum vapor deposition system with an electron beam heating method, SiO 2 is mixed as a bulk density adjusting agent, and the SiOx vapor deposition material with a bulk density ratio of 78% to the true density is evaporated by electron beam heating to form a film. A SiOx film having a thickness of 310 nm was formed at an internal pressure of 1.0 × 10 −3 Pa. The deposition conditions for SiOx are the same as in Example 1.
<比較例2>
電子ビーム加熱方式のバッチ式真空蒸着装置を用いて、嵩密度調整剤としてSiO2を混ぜ込み真密度に対する嵩密度の割合が80%であるSiOx蒸着材料を電子ビーム加熱によって蒸発させ、成膜中の圧力が1.0×10−3Paにおいて厚さ228nmのSiOx膜を成膜した。SiOxの蒸着条件は、実施例1と同様とする。
<Comparative example 2>
Using an electron beam heating batch-type vacuum deposition apparatus, SiO 2 is mixed as a bulk density adjusting agent, and the SiOx deposition material with a bulk density ratio of 80% to the true density is evaporated by electron beam heating. A SiOx film having a thickness of 228 nm was formed at a pressure of 1.0 × 10 −3 Pa. The deposition conditions for SiOx are the same as in Example 1.
<比較例3>
電子ビーム加熱方式のバッチ式真空蒸着装置を用いて、市販されている真密度に対する嵩密度の割合が72%であるSiOx蒸着材料を電子ビーム加熱によって蒸発させ、成膜中の圧力が1.0×10−3Paにおいて厚さ197nmのSiOx膜を成膜した。SiOxの蒸着条件は、実施例1と同様とする。
<Comparative Example 3>
Using a batch-type vacuum deposition apparatus of the electron beam heating method, a SiOx deposition material having a bulk density ratio of 72% to the true density is evaporated by electron beam heating, and the pressure during film formation is 1.0 × 10 A SiOx film having a thickness of 197 nm was formed at −3 Pa. The deposition conditions for SiOx are the same as in Example 1.
<比較例4>
電子ビーム加熱方式のバッチ式真空蒸着装置を用いて、市販されている真密度に対する嵩密度の割合が72%であるSiOx蒸着材料を電子ビーム加熱によって蒸発させ、成膜中の圧力が1.0×10−3Paにおいて厚さ44nmのSiOx膜を成膜した。SiOxの蒸着条件は、実施例1と同様とする。
<Comparative example 4>
Using a batch-type vacuum deposition apparatus of the electron beam heating method, a SiOx deposition material having a bulk density ratio of 72% to the true density is evaporated by electron beam heating, and the pressure during film formation is 1.0 × 10 A SiOx film having a thickness of 44 nm was formed at −3 Pa. The deposition conditions for SiOx are the same as in Example 1.
以下に実施例、比較例で作成したSiOx膜の評価方法を示す。
光線透過率・・・分光光度計U-4000(日立製作所製、測定波長350nm)を用いて測定した。
水蒸気透過度・・・JISZ0208法に基づき、40℃、90%の条件でカップ法により測定した。
膜厚・・・蛍光X線分析装置(リガク社製)を用いて、事前に同様のサンプルをTEMにて測定し得た検量線の結果からSiOxの膜厚を求めた。
結晶構造・・・X線回折装置RINT−ULTIMA3(リガク社製)を用いて測定した。
色・・・目視による判断。
結果を表1に示す。
The evaluation method of the SiOx film produced by the Example and the comparative example is shown below.
Light transmittance: Measured using a spectrophotometer U-4000 (manufactured by Hitachi, Ltd., measurement wavelength 350 nm).
Water vapor permeability: Measured by the cup method at 40 ° C. and 90% based on the JISZ0208 method.
Film thickness: Using a fluorescent X-ray analyzer (manufactured by Rigaku Corporation), the film thickness of SiOx was determined from the result of a calibration curve obtained by measuring a similar sample with TEM in advance.
Crystal structure: Measured using an X-ray diffractometer RINT-ULTIMA3 (manufactured by Rigaku Corporation).
Color: Visual judgment.
The results are shown in Table 1.
光線透過率:25μm厚のPETフィルムを含めた波長350nmにおける光線透過率[%]
波長範囲350〜800nmにおいて350nmで最も低い光線透過率を示す(図1)
Light transmittance: Light transmittance [%] at 350nm wavelength including PET film with 25μm thickness
Shows the lowest light transmittance at 350 nm in the wavelength range of 350 to 800 nm (Figure 1)
表1に示す通り、水蒸気バリア性に関しては実施例1〜3および比較例1、2、4においてほぼ同等な値を示し、中でも実施例1〜3では光線透過率が波長350〜800nmの範囲で73%以上と高く、水蒸気バリア性と透明性を両立させることができた。しかし、比較例2では光線透過率が20%以下と低い結果となり、また比較例4では膜厚が薄いにも関わらず他のサンプルとほぼ同じ性質を得たが、光線透過率が52.8%と薄黄色を呈したため高ガスバリア性と透明性維持の両立が困難であった。 As shown in Table 1, with respect to water vapor barrier properties, Examples 1 to 3 and Comparative Examples 1, 2, and 4 show almost the same values. In Examples 1 to 3, the light transmittance is in a wavelength range of 350 to 800 nm. It was as high as 73% or more, and it was possible to achieve both water vapor barrier properties and transparency. However, Comparative Example 2 resulted in a low light transmittance of 20% or less, and Comparative Example 4 obtained almost the same properties as the other samples despite the thin film thickness, but the light transmittance was 52.8%. Because of its pale yellow color, it was difficult to maintain both high gas barrier properties and transparency.
実施例2では、真密度に対する嵩密度の割合が78%のとき、水蒸気透過度が1.8g/m2/dayでありながら光線透過率が73.9%と高い透明性を示すことができたが、比較例2では、真密度に対する嵩密度の割合が80%のとき、水蒸気透過度が2.0g/m2/dayでありながら光線透過率は14.8%と低い結果となった。また、SiO2回折パターンを含まない比較例3では、真密度に対する嵩密度の割合が72%のとき水蒸気透過度が1.3g/m2/dayであるのに対し、光線透過率が15.6%と低い結果となった。 In Example 2, when the ratio of the bulk density to the true density was 78%, the water transmittance was 1.8 g / m 2 / day, but the light transmittance was 73.9% and high transparency was able to be exhibited. In Comparative Example 2, when the ratio of the bulk density to the true density was 80%, the light transmittance was as low as 14.8% while the water vapor transmission rate was 2.0 g / m 2 / day. Further, in Comparative Example 3 not including the SiO 2 diffraction pattern, the water vapor transmission rate is 1.3 g / m 2 / day when the ratio of the bulk density to the true density is 72%, whereas the light transmittance is 15.6%. The result was low.
実施例2と比較例1を比べると、比較例1ではSiOx厚310nmのとき膜厚が増加した分水蒸気透過度が1.8g/m2/dayから1.6g/m2/dayと水蒸気バリア性が上がり、光線透過率も73.9%から72.6%と高い透明性を維持したが、カールが強くなりハンドリング性が悪くなったため、膜厚は200nm以下が好ましい。 Comparing Example 2 and Comparative Example 1, in Comparative Example 1, when the SiOx thickness was 310 nm, the water vapor permeability increased from 1.8 g / m 2 / day to 1.6 g / m 2 / day as the water vapor barrier property increased. The light transmittance increased from 73.9% to 72.6%, but the transparency was maintained. However, the curl was strong and the handling property was poor, so the film thickness is preferably 200 nm or less.
本発明により、反応ガスを用いた場合に必要な酸素分圧のコントロール操作が不要で、高い光線透過率を持ち、かつ水蒸気の透過を抑えバリア性を備えた均一な透明ガスバリア性フィルムを提供することが可能となる。本発明のガスバリア性フィルムは、食品や医薬品の包装材料をはじめ、ディスプレイなどの表示媒体の保護膜などに好適に用いられる。 According to the present invention, there is provided a uniform transparent gas barrier film that does not require a control operation of an oxygen partial pressure required when a reaction gas is used, has a high light transmittance, and suppresses the transmission of water vapor and has a barrier property. It becomes possible. The gas barrier film of the present invention is suitably used for protective films for display media such as displays, as well as food and pharmaceutical packaging materials.
Claims (3)
前記SiOx蒸着材料中に嵩密度を調整するためのSiO 2 が混在しており、
前記SiOx蒸着材料が結晶質のSiO2の回折パターンを有するものであり、
かつ、前記SiOx蒸着材料の真密度に対する嵩密度が71%以上80%未満である、
ことを特徴とするガスバリア性フィルムの製造方法。 A method for producing a gas barrier film in which an SiOx film is formed by an electron beam (EB) vapor deposition method in an atmosphere in which a reaction gas is not introduced on at least one surface of a base film,
SiO 2 for adjusting the bulk density is mixed in the SiOx vapor deposition material ,
The SiOx vapor deposition material has a diffraction pattern of crystalline SiO 2 ;
And the bulk density with respect to the true density of the SiOx vapor deposition material is 71 % or more and less than 80%.
A method for producing a gas barrier film, comprising:
前記SiOx膜の膜厚が200nm以下であることを特徴とするガスバリア性フィルム。 A gas barrier film produced using the production method according to claim 1,
A gas barrier film, wherein the SiOx film has a thickness of 200 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007233678A JP4936064B2 (en) | 2007-09-10 | 2007-09-10 | Gas barrier film and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007233678A JP4936064B2 (en) | 2007-09-10 | 2007-09-10 | Gas barrier film and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009062602A JP2009062602A (en) | 2009-03-26 |
JP4936064B2 true JP4936064B2 (en) | 2012-05-23 |
Family
ID=40557444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007233678A Active JP4936064B2 (en) | 2007-09-10 | 2007-09-10 | Gas barrier film and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4936064B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101768833B1 (en) * | 2009-08-05 | 2017-08-16 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Oxide sinter, method for producing same, target and transparent conductive film |
WO2022118711A1 (en) * | 2020-12-02 | 2022-06-09 | 東洋紡株式会社 | Method and apparatus for producing transparent gas barrier film |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3230370B2 (en) * | 1994-06-10 | 2001-11-19 | 東洋インキ製造株式会社 | Molded product for vapor deposition and vacuum vapor deposition method using the same |
JP3747498B2 (en) * | 1995-11-27 | 2006-02-22 | 凸版印刷株式会社 | Porous vapor deposition material and method for producing the same |
-
2007
- 2007-09-10 JP JP2007233678A patent/JP4936064B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009062602A (en) | 2009-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05311412A (en) | Production of feed material for vapor deposition and transparent barrier film | |
JP5050879B2 (en) | Method for producing transparent gas barrier film | |
JP4936064B2 (en) | Gas barrier film and method for producing the same | |
KR20200039717A (en) | Manufacturing method of gas barrier film | |
JP4873168B2 (en) | Method for producing gas barrier film | |
JP5104273B2 (en) | Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and manufacturing method thereof, gas barrier sheet and manufacturing method thereof | |
JP5510248B2 (en) | Vapor deposition material | |
Lee et al. | Microstructure and density of sintered ZnO ceramics prepared by magnetic pulsed compaction | |
JP5720315B2 (en) | Evaluation method of vapor deposition film | |
JP6047997B2 (en) | Gas barrier film | |
JP6171542B2 (en) | Gas barrier film and method for producing gas barrier film | |
JP2011202268A (en) | Vapor deposition material for forming thin film, thin film sheet having the thin film and laminated sheet | |
JP2009143759A (en) | Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method and gas barrier sheet and its manufacturing method | |
JP2012052154A (en) | Vapor deposition material, and gas barrier vapor deposition film | |
JP2013233744A (en) | Gas barrier film and method of manufacturing the same | |
JP2012136734A (en) | Vapor deposition material, and gas-barrier vapor deposition film | |
JP5206112B2 (en) | Raw material powder for ion plating evaporation source material, ion plating evaporation source material and manufacturing method thereof, and gas barrier sheet manufacturing method | |
KR102187542B1 (en) | Gas barrier film | |
JP2004174879A (en) | Barrier film with converting suitability | |
JP2011214136A (en) | Vapor deposition material for forming thin film, thin film sheet having the thin film, and laminated sheet | |
WO2015037462A1 (en) | Production method for silicon oxide sintered body, and silicon oxide sintered body | |
KR101192965B1 (en) | Method of manufacturing protecting film for plasma display panel | |
JP2011214133A (en) | Vapor deposition material for forming thin film, thin film sheet having the thin film, and laminated sheet | |
JP6102375B2 (en) | Gas barrier vapor deposition film and method for producing gas barrier vapor deposition film | |
JP2011256419A (en) | Vapor deposited film and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110818 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120126 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120208 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4936064 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |