JP4926811B2 - Resin composition, prepreg, laminate and wiring board - Google Patents
Resin composition, prepreg, laminate and wiring board Download PDFInfo
- Publication number
- JP4926811B2 JP4926811B2 JP2007116605A JP2007116605A JP4926811B2 JP 4926811 B2 JP4926811 B2 JP 4926811B2 JP 2007116605 A JP2007116605 A JP 2007116605A JP 2007116605 A JP2007116605 A JP 2007116605A JP 4926811 B2 JP4926811 B2 JP 4926811B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- thermal expansion
- manufactured
- elastic modulus
- epoxy resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011342 resin composition Substances 0.000 title claims description 45
- 229920005989 resin Polymers 0.000 claims description 114
- 239000011347 resin Substances 0.000 claims description 114
- 229920000647 polyepoxide Polymers 0.000 claims description 84
- 239000003822 epoxy resin Substances 0.000 claims description 76
- 238000004132 cross linking Methods 0.000 claims description 38
- 229920003986 novolac Polymers 0.000 claims description 38
- 239000003795 chemical substances by application Substances 0.000 claims description 22
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 20
- QQOWHRYOXYEMTL-UHFFFAOYSA-N triazin-4-amine Chemical group N=C1C=CN=NN1 QQOWHRYOXYEMTL-UHFFFAOYSA-N 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 230000001588 bifunctional effect Effects 0.000 claims description 5
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 claims description 4
- 229920003192 poly(bis maleimide) Polymers 0.000 claims description 4
- 230000000052 comparative effect Effects 0.000 description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 32
- 125000003118 aryl group Chemical group 0.000 description 25
- 239000000463 material Substances 0.000 description 23
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 22
- 238000005259 measurement Methods 0.000 description 21
- 239000000126 substance Substances 0.000 description 21
- 238000003860 storage Methods 0.000 description 20
- 239000011521 glass Substances 0.000 description 19
- 239000011256 inorganic filler Substances 0.000 description 18
- 229910003475 inorganic filler Inorganic materials 0.000 description 18
- 239000000758 substrate Substances 0.000 description 17
- 239000000377 silicon dioxide Substances 0.000 description 16
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 239000011889 copper foil Substances 0.000 description 13
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 12
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 12
- 239000002759 woven fabric Substances 0.000 description 12
- 239000004305 biphenyl Chemical group 0.000 description 11
- 235000010290 biphenyl Nutrition 0.000 description 11
- 239000002904 solvent Substances 0.000 description 10
- 239000002966 varnish Substances 0.000 description 10
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 9
- 230000005484 gravity Effects 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 7
- MEVBAGCIOOTPLF-UHFFFAOYSA-N 2-[[5-(oxiran-2-ylmethoxy)naphthalen-2-yl]oxymethyl]oxirane Chemical compound C1OC1COC(C=C1C=CC=2)=CC=C1C=2OCC1CO1 MEVBAGCIOOTPLF-UHFFFAOYSA-N 0.000 description 6
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 229930003836 cresol Natural products 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- -1 polycyclic compound Chemical class 0.000 description 4
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 3
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910016847 F2-WS Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 125000005577 anthracene group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- BVYPJEBKDLFIDL-UHFFFAOYSA-N 3-(2-phenylimidazol-1-yl)propanenitrile Chemical compound N#CCCN1C=CN=C1C1=CC=CC=C1 BVYPJEBKDLFIDL-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 241001274658 Modulus modulus Species 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- JHYNXXDQQHTCHJ-UHFFFAOYSA-M ethyl(triphenyl)phosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(CC)C1=CC=CC=C1 JHYNXXDQQHTCHJ-UHFFFAOYSA-M 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004843 novolac epoxy resin Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Epoxy Resins (AREA)
Description
本発明は、樹脂組成物、プリプレグ、積層板及び配線板に関する。 The present invention relates to a resin composition, a prepreg, a laminated board, and a wiring board.
近年の電子機器の小型化・高性能化の流れに伴い、プリント配線板では配線ピッチが狭小化した、高密度の配線が要求されている。高密度配線に対応する半導体の実装方法としては、従来のワイヤボンディング方式に代わり、フリップチップ接続方式が広く用いられている。フリップチップ接続方式は、ワイヤに代えてはんだボールにより、配線板と半導体とを接続させる方法である。互いに向き合わせにした配線板と半導体との間にはんだボールを配置させ、全体に加熱して、はんだをリフロー(溶融接続)させて、配線板と半導体を接続させて実装している。この方法では、はんだリフロー時に300℃近い熱が配線板等にかかる。この際、従来の樹脂組成物を材料として形成された配線板では、配線板が熱収縮して、配線板と半導体を接続するはんだボールに大きな応力が発生し、配線の接続不良を起こす場合があった。 With recent trend toward downsizing and higher performance of electronic devices, printed wiring boards are required to have high-density wiring with narrowed wiring pitch. As a semiconductor mounting method corresponding to high-density wiring, a flip chip connection method is widely used instead of the conventional wire bonding method. The flip chip connection method is a method of connecting a wiring board and a semiconductor by solder balls instead of wires. Solder balls are arranged between the wiring board and the semiconductor that face each other, and the whole is heated to reflow (melt connection) the solder, and the wiring board and the semiconductor are connected and mounted. In this method, heat close to 300 ° C. is applied to the wiring board and the like during solder reflow. At this time, in the wiring board formed using the conventional resin composition as the material, the wiring board may be thermally contracted, and a large stress is generated in the solder ball connecting the wiring board and the semiconductor, which may cause poor connection of the wiring. there were.
上述の状況を背景として、低熱膨張率の積層板が求められている。従来、積層板としては、エポキシ樹脂を主剤とした樹脂組成物とガラス織布とを硬化・一体成形したものが一般的である。エポキシ樹脂は、絶縁性や耐熱性、コスト等のバランスに優れるが、熱膨張率が大きいため、シリカ等の無機充填材を添加して熱膨張を抑制するのが一般的である(特許文献1参照)。無機充填材を高い割合で充填することにより、さらなる低熱膨張を図ることも可能であるが、充填量を増やすことは吸湿による絶縁信頼性の低下や樹脂−配線層の密着不足、プレス成形不良を起こすことが知られている。そのため、多層配線板における用途では、無機充填材の高充填には限界がある。 Against the background described above, a laminate having a low coefficient of thermal expansion is required. Conventionally, a laminate is generally obtained by curing and integrally molding a resin composition mainly composed of an epoxy resin and a glass woven fabric. Epoxy resins have an excellent balance of insulation, heat resistance, cost, and the like, but since they have a large coefficient of thermal expansion, it is common to suppress thermal expansion by adding an inorganic filler such as silica (Patent Document 1). reference). It is possible to achieve further low thermal expansion by filling the inorganic filler at a high rate, but increasing the filling amount reduces the insulation reliability due to moisture absorption, insufficient adhesion of the resin-wiring layer, and poor press molding. It is known to wake up. For this reason, there is a limit to the high filling of inorganic fillers in applications in multilayer wiring boards.
また、樹脂の選択或いは改良により、低熱膨張を達成することが試みられている。例えば、芳香環を有するエポキシ樹脂の公知例としては、2官能のナフタレン骨格、あるいはビフェニル骨格を有するエポキシ樹脂を用いた低熱膨張性加圧成形用樹脂組成物(特許文献2)があるが、充填材を80〜92.5vol%配合している。また、従来、配線板用の樹脂組成物の低熱膨張率化は特許文献3、及び4に示すように架橋密度を高める、すなわち本願出願の架橋点間分子量を小さくし、Tgを高くして熱膨張率を低減する方法が一般的である。しかしながら、架橋密度を高める、すなわち架橋点間分子量を小さくすることは官能基間の分子鎖を短くすることであるが、一定以上分子鎖を短くすることは反応性や樹脂強度等の点で不可能である。このため、架橋密度を高める手法での低熱膨張率化は限界となっていた。 In addition, attempts have been made to achieve low thermal expansion by selecting or improving the resin. For example, as a known example of an epoxy resin having an aromatic ring, there is a resin composition for low thermal expansion pressure molding using an epoxy resin having a bifunctional naphthalene skeleton or a biphenyl skeleton (Patent Document 2). 80-92.5 vol% of the material is blended. Conventionally, the reduction in the coefficient of thermal expansion of a resin composition for a wiring board is to increase the crosslink density as shown in Patent Documents 3 and 4, that is, to reduce the molecular weight between crosslink points in the present application and increase the Tg to increase the heat. A method for reducing the expansion coefficient is common. However, increasing the crosslink density, that is, reducing the molecular weight between crosslink points is to shorten the molecular chain between functional groups, but shortening the molecular chain beyond a certain level is not possible in terms of reactivity and resin strength. Is possible. For this reason, the low thermal expansion coefficient by the method of increasing the crosslinking density has been a limit.
熱膨張の小さい樹脂としてはポリイミドが広く知られているが、成形に高温を要する、コストが高いといった問題がある。また、フィルム状の形態であるためフレキシブル基板用の材料として適している反面、剛性を必要とする多層配線板用途には適さなかった。
本発明は、低コストで低熱膨張な樹脂組成物、プリプレグ、積層板及び配線板を提供することを目的とする。
Polyimide is widely known as a resin having low thermal expansion, but there are problems such as high temperature required for molding and high cost. Further, since it is in the form of a film, it is suitable as a material for a flexible substrate, but it is not suitable for multilayer wiring board applications that require rigidity.
An object of this invention is to provide the resin composition, prepreg, laminated board, and wiring board which are low-cost and low thermal expansion.
本発明は、次の態様を有する。
積層板の製造に用いられる樹脂組成物であって、樹脂組成物が芳香環を有する絶縁性樹脂を含み、かつ芳香環を有する絶縁性樹脂のTg以上のせん断弾性率から求めた、絶縁性樹脂の架橋点間分子量が、積層板製造後の段階で300〜1000であることを特徴とする樹脂組成物。
The present invention has the following aspects.
A resin composition for use in the production of a laminate, wherein the resin composition contains an insulating resin having an aromatic ring, and the insulating resin is obtained from a shear elastic modulus of Tg or higher of the insulating resin having an aromatic ring The resin composition characterized in that the molecular weight between cross-linking points is 300 to 1000 at the stage after the production of the laminate.
芳香環を有する絶縁性樹脂が、多環式化合物を含むことを特徴とする樹脂組成物。
絶縁性樹脂が、ビフェニル構造、ナフタレン構造、アントラセン構造、及びジヒドロアントラセン構造のいずれか1つを有することを特徴とする樹脂組成物。
絶縁性樹脂が、エポキシ樹脂であることを特徴とする樹脂組成物。
エポキシ樹脂が結晶性エポキシ樹脂を1つ以上含むことを特徴とする樹脂組成物。
A resin composition, wherein the insulating resin having an aromatic ring contains a polycyclic compound.
A resin composition, wherein the insulating resin has any one of a biphenyl structure, a naphthalene structure, an anthracene structure, and a dihydroanthracene structure.
A resin composition, wherein the insulating resin is an epoxy resin.
A resin composition, wherein the epoxy resin contains one or more crystalline epoxy resins.
エポキシ樹脂が、下記の一般式(1): The epoxy resin has the following general formula (1):
(式中、R1〜R4は同一、又は互いに異なるCmH2m+1基を表し、ここでmは0又は1以上の整数を表し、nは0又は1以上の整数を表す)
のビフェニルノボラック型エポキシ樹脂、一般式(2):
(Wherein R 1 to R 4 represent the same or different C m H 2m + 1 groups, where m represents 0 or an integer of 1 or more, and n represents 0 or an integer of 1 or more)
Biphenyl novolac epoxy resin, general formula (2):
(式中、R5〜R8は同一、又は互いに異なるCpH2p+1基を表し、ここでpは0又は1以上の整数を表す)
のアントラセン型エポキシ樹脂、一般式(3):
(Wherein R 5 to R 8 represent the same or different C p H 2p + 1 groups, where p represents 0 or an integer of 1 or more)
Anthracene type epoxy resin, general formula (3):
(式中、R9は同一、又は互いに異なるCtH2t+1基を表し(ここでtは0又は1以上の整数を表す)、rは0〜4の整数を表し、R10は同一、又は互いに異なるCuH2u+1基を表し(ここでuは0又は1以上の整数を表す)、sは0〜6の整数を示す)
のジヒドロアントラセン型エポキシ樹脂のいずれか1つ以上含むことを特徴とする請求項1〜5のいずれか1項記載の樹脂組成物。
(Wherein R 9 represents the same or different C t H 2t + 1 groups (where t represents 0 or an integer of 1 or more), r represents an integer of 0 to 4, and R 10 is the same, or Represents different C u H 2u + 1 groups (where u represents an integer of 0 or 1 or more, and s represents an integer of 0 to 6)
The resin composition according to any one of claims 1 to 5, comprising any one or more of dihydroanthracene type epoxy resins.
エポキシ樹脂の硬化剤が、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂、アミノトリアジンノボラック樹脂、ビスマレイミド含有アミノトリアジンノボラック樹脂、ジシアンジアミド、ベンゾグアナミンのいずれか1つ以上含むことを特徴とする樹脂組成物。
上述の樹脂組成物を基材に塗布して含浸させ、次いで乾燥させて成るプリプレグ。
基材が、ガラス織布、ガラス不織布、アラミド不織布のいずれかであることを特徴とするプリプレグ。
本発明のプリプレグを、積層成形して成る積層板。
本発明の積層板を回路加工して成る配線板。
A resin characterized in that the epoxy resin curing agent includes at least one of phenol novolak resin, cresol novolak resin, bisphenol A type novolak resin, aminotriazine novolak resin, bismaleimide-containing aminotriazine novolak resin, dicyandiamide, and benzoguanamine. Composition.
A prepreg obtained by applying the above-described resin composition to a substrate, impregnating the substrate, and then drying.
A prepreg characterized in that the substrate is one of a glass woven fabric, a glass nonwoven fabric, and an aramid nonwoven fabric.
A laminate obtained by laminating the prepreg of the present invention.
A wiring board formed by subjecting the laminate of the present invention to circuit processing.
従来手法のように架橋密度を高めるのではなく、芳香環を有する樹脂組成物の架橋点間分子量が300〜1000になるように樹脂組成を調整し、適正な架橋密度にすることで、低コストで低熱膨張率の樹脂組成物、プリプレグ、積層板及び配線板を提供することが可能となった。 Low cost by adjusting the resin composition so that the molecular weight between cross-linking points of the resin composition having an aromatic ring is 300 to 1000 instead of increasing the cross-linking density as in the conventional method, thereby achieving an appropriate cross-linking density. Thus, it has become possible to provide a resin composition, a prepreg, a laminate and a wiring board having a low thermal expansion coefficient.
本発明者らが研究した結果、従来のように架橋密度を高める、すなわち本願出願の架橋点間分子量を小さくする手法は、熱膨張率の低減には不向きであるという意外な事実がわかった。さらに鋭意研究を進めた結果、芳香環を有する樹脂組成物の架橋密度を架橋点間分子量に換算して300〜1000の範囲になるように樹脂組成を適正化することが、熱膨張率の低減に効果が大きいという意外な事実を知見するに至った。本発明の樹脂組成物は、積層板の製造に用いられ、芳香環を有する絶縁性樹脂を含む。本発明に用いる芳香環を有する絶縁性樹脂は、積層板製造後の段階で、Tg以上のせん断弾性率から求めた架橋点間分子量が300〜1000である。絶縁性樹脂の架橋点間分子量を300〜1000にすることで芳香環同士の相互作用を強く発現でき、熱膨張率が低い樹脂組成物と多層配線板材料(プリプレグ、積層板)を得ることができる。また、架橋点間分子量が300以下の場合は、芳香環を有する官能基数の少ない材料(ただし、単官能の材料を含まない)を配合して架橋点間分子量を300以上にすることができる。また、官能基当量の大きな材料の配合も有効である。この際、芳香環が、多環式化合物を含むことが好ましく、ビフェニル構造、ナフタレン構造、アントラセン構造、及びジヒドロアントラセン構造のいずれかを有することがさらに好ましい。一方、架橋点間分子量が1000以上の場合は、芳香環を有する官能基数の多い材料を配合して架橋点分子量を1000以下にすることができる。また、官能基当量の少ない材料の配合も有効である。この場合も芳香環が前記多環式化合物を含むことが好ましい。なお積層板製造後の段階とは、例えば、積層板製造時、あるいは積層板を用い多層配線板等を製造した際、熱履歴工程が施された後である。また絶縁性樹脂のせん断弾性率は、一般的に動的粘弾性装置で測定される。 As a result of studies by the present inventors, it has been found that the conventional method of increasing the crosslinking density, that is, reducing the molecular weight between crosslinking points of the present application is not suitable for reducing the thermal expansion coefficient. As a result of further diligent research, it is possible to reduce the thermal expansion coefficient by optimizing the resin composition so that the crosslink density of the resin composition having an aromatic ring is in the range of 300 to 1000 in terms of the molecular weight between crosslinks. It came to discover the unexpected fact that it is effective. The resin composition of the present invention is used for production of a laminate and includes an insulating resin having an aromatic ring. The insulating resin having an aromatic ring used in the present invention has a molecular weight between crosslinking points of 300 to 1000 determined from a shear elastic modulus of Tg or more at the stage after the production of the laminate. By making the molecular weight between cross-linking points of the insulating resin 300 to 1000, the interaction between aromatic rings can be strongly expressed, and a resin composition and a multilayer wiring board material (prepreg, laminated board) having a low coefficient of thermal expansion can be obtained. it can. When the molecular weight between crosslinking points is 300 or less, a material having a small number of functional groups having an aromatic ring (but not including a monofunctional material) can be blended to increase the molecular weight between crosslinking points to 300 or more. It is also effective to mix a material having a large functional group equivalent. In this case, the aromatic ring preferably contains a polycyclic compound, and more preferably has any of a biphenyl structure, a naphthalene structure, an anthracene structure, and a dihydroanthracene structure. On the other hand, when the molecular weight between crosslinking points is 1000 or more, a crosslinking point molecular weight can be made 1000 or less by blending a material having a large number of functional groups having an aromatic ring. In addition, blending of materials having a small functional group equivalent is also effective. Also in this case, it is preferable that the aromatic ring contains the polycyclic compound. The stage after the production of the laminated board is, for example, after the thermal history process is performed when the laminated board is produced or when a multilayer wiring board or the like is produced using the laminated board. The shear modulus of the insulating resin is generally measured with a dynamic viscoelastic device.
ここで、動的粘弾性装置で測定し、Tg以上のせん弾性率弾性率から求められた架橋点間分子量とは、例えば、(株)化学同人社発行の高分子と複合材料の力学的性質(著者:L.E.Nielsen、訳者:小野木 重治)に記載され、その本文中の記載から架橋点間分子量が求められる。すなわち、 Here, the molecular weight between crosslink points measured by a dynamic viscoelasticity device and obtained from the elastic modulus modulus of elasticity of Tg or more is, for example, the mechanical properties of the polymer and composite material issued by Chemical Dojin Co., Ltd. (Author: LE Nielsen, translator: Shigeharu Onoki), and the molecular weight between crosslinking points is determined from the description in the text. That is,
logG≒7.0+293ρ/Mc(G:せん断弾性率、ρ:材料の密度、Mc:架橋点間分子量)…式(1) log G≈7.0 + 293ρ / Mc (G: shear modulus, ρ: material density, Mc: molecular weight between cross-linking points) Formula (1)
が実験結果と良く一致する経験式を利用し計算されたものである。本式において、せん断弾性率の単位はdynを用いる。
なお、式(1)中のG(せん断弾性率)は、一般的に動的粘弾性装置から算出された貯蔵弾性率EのTg以上の値を下記式(2)の変換式から求められる。
Is calculated using an empirical formula that agrees well with the experimental results. In this formula, dyn is used as the unit of shear modulus.
In addition, G (shear elastic modulus) in Formula (1) is calculated | required from the conversion formula of following formula (2) the value more than Tg of the storage elastic modulus E generally calculated from the dynamic viscoelasticity apparatus.
E=2G(1+σ) (σ:ポアソン比)…式(2) E = 2G (1 + σ) (σ: Poisson's ratio) Equation (2)
動的粘弾性測定装置とは、一般的に試料に強制振動非共振法により引っ張り、圧縮、曲げ又はせん断方向に正弦波振動又は合成波振動を加えて動的粘弾性を測定するものである。市販されているものとして、(株)UBM社製のRheosol−E−4000がある。測定方法は、恒温槽中の試料に正弦波又は合成波振動を設定された周波数と振幅で加えて、その時に発生する応力レスポンスを検出器でとらえ、貯蔵弾性率等に測定演算式から算出され求めることができる。 The dynamic viscoelasticity measuring apparatus generally measures dynamic viscoelasticity by applying a sinusoidal vibration or a synthetic wave vibration to a sample by a forced vibration non-resonance method, and applying a sinusoidal vibration or a synthetic wave vibration in a compression, bending or shear direction. As a commercially available product, there is Rheosol-E-4000 manufactured by UBM. In the measurement method, a sinusoidal wave or synthetic wave vibration is added to the sample in the thermostatic chamber with the set frequency and amplitude, the stress response generated at that time is captured by the detector, and the storage modulus is calculated from the measurement formula. Can be sought.
上記の測定装置により芳香環を有する絶縁性樹脂が、Tg以上のせん断弾性率から求めた架橋点間分子量は、300〜1000であり、310〜900であることが好ましく、310〜800であるとさらに好ましい。架橋点間分子量が300未満では、芳香環の相互作用が弱く熱膨張率の低減効果が小さい。一方、架橋点間分子量が1000より大きい場合、芳香環の相互作用は発現できるが、架橋密度が低下して熱膨張率の低減効果が小さくなる。 When the insulating resin having an aromatic ring by the above-described measuring apparatus has a molecular weight between crosslinking points determined from a shear modulus of Tg or more is 300 to 1,000, preferably 310 to 900, and 310 to 800. Further preferred. When the molecular weight between cross-linking points is less than 300, the aromatic ring interaction is weak and the effect of reducing the thermal expansion coefficient is small. On the other hand, when the molecular weight between cross-linking points is larger than 1000, the interaction of the aromatic ring can be expressed, but the cross-linking density is lowered and the effect of reducing the thermal expansion coefficient is reduced.
本発明で用いる絶縁性樹脂は芳香環を有していれば特に限定するものではないが、多層配線板用途では絶縁性や吸湿性の面で優れているエポキシ樹脂が好適に用いられる。用いるエポキシ樹脂は、分子内に2個以上のエポキシ基をもつ化合物であれば、限定されない。例えば、ナフタレン型エポキシ樹脂(特に2官能ナフタレン型エポキシ樹脂)、アントラセン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等が例示される。これらのうち、結晶性エポキシ樹脂とは、結晶性の強いエポキシ樹脂であり、融点以下の温度では、高分子鎖が規則正しく配列する性質があり、固形樹脂でありながらも、溶融時には液状樹脂並みの低粘度となる熱硬化性のエポキシ樹脂である。結晶性エポキシ樹脂としては、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂及びビフェニル型エポキシ樹脂等が挙げられ、これらは芳香環の相互作用を強める上で好ましく用いられる。これらの化合物の分子量はどのようなものでもよく、何種類かを併用することもできる。 The insulating resin used in the present invention is not particularly limited as long as it has an aromatic ring, but an epoxy resin excellent in insulation and moisture absorption is suitably used for multilayer wiring board applications. The epoxy resin to be used is not limited as long as it is a compound having two or more epoxy groups in the molecule. For example, naphthalene type epoxy resin (especially bifunctional naphthalene type epoxy resin), anthracene type epoxy resin, dihydroanthracene type epoxy resin, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, Examples include biphenyl novolac type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins and the like. Among these, the crystalline epoxy resin is an epoxy resin having strong crystallinity, and has a property that the polymer chains are regularly arranged at a temperature below the melting point. It is a thermosetting epoxy resin with low viscosity. Examples of crystalline epoxy resins include naphthalene-type epoxy resins, anthracene-type epoxy resins, dihydroanthracene-type epoxy resins, biphenyl novolac-type epoxy resins, and biphenyl-type epoxy resins, which are preferable for enhancing the interaction of aromatic rings. Used. These compounds may have any molecular weight, and several types may be used in combination.
本発明の樹脂組成物においてエポキシ樹脂を用いる場合には、硬化剤を含むことが好ましい。硬化剤はエポキシ樹脂の硬化作用があれば特に限定されるものではないが、各種アミン類、酸無水物類、ノボラック樹脂類等が挙げられる。この中でも特に、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂、アミノトリアジンノボラック樹脂、ビスマレイミド含有アミノトリアジンノボラック樹脂、ジシアンジアミド、ベンゾグアナミンが好ましく、単独又は二種以上で用いることができる。
また、本発明の樹脂組成物は、硬化促進剤を含むことができ、硬化促進剤は硬化促進作用があれば特に限定されるものではないが、エポキシ樹脂を用いる場合には、潜在性のある各種イミダゾールやイミダゾール誘導体、BF3アミン錯体、トリフェニルホスフィン、1,8−ジアザビシクロ−(5.4.0)ウンデセン−7、エチルトリフェニルホスホニウムブロミド、テトラメチルアンモニウムクロリド等が挙げられ、特にイミダゾールやイミダゾール誘導体が好ましい。
When using an epoxy resin in the resin composition of the present invention, it is preferable to include a curing agent. The curing agent is not particularly limited as long as it has an epoxy resin curing action, and includes various amines, acid anhydrides, novolak resins, and the like. Of these, phenol novolak resin, cresol novolak resin, bisphenol A type novolak resin, aminotriazine novolak resin, bismaleimide-containing aminotriazine novolak resin, dicyandiamide, and benzoguanamine are particularly preferable and can be used alone or in combination of two or more.
Further, the resin composition of the present invention can contain a curing accelerator, and the curing accelerator is not particularly limited as long as it has a curing accelerating action. However, when an epoxy resin is used, there is a potential. Examples include various imidazoles and imidazole derivatives, BF3 amine complexes, triphenylphosphine, 1,8-diazabicyclo- (5.4.0) undecene-7, ethyltriphenylphosphonium bromide, tetramethylammonium chloride, and the like. Derivatives are preferred.
また、本発明の樹脂組成物を混合するため、溶剤を加えることが好ましい。溶剤は、絶縁性樹脂と、これを硬化反応させる硬化剤等を溶解・混合させる性質を有する剤であれば限定されない。溶剤として、アセトン、メチルエチルケトン、メチルブチルケトン、トルエン、キシレン、酢酸エチル、N、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド、エタノール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、シクロペンタノン等が樹脂組成物の溶解性に優れ、比較的沸点が低いため、好ましい。これらの溶剤の配合量は、絶縁性樹脂が溶解できればどのような量でもよいが、絶縁性樹脂と硬化剤の総量100重量部に対して、20〜300重量部の範囲が好ましく、30〜200重量部の範囲がさらに好ましい。また、上記の溶剤は、組み合わせて用いても構わない。 Moreover, in order to mix the resin composition of this invention, it is preferable to add a solvent. A solvent will not be limited if it is an agent which has the property to melt | dissolve and mix insulating resin and the hardening | curing agent etc. which carry out a hardening reaction of this. As solvents, acetone, methyl ethyl ketone, methyl butyl ketone, toluene, xylene, ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, ethanol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Cyclohexanone, cyclopentanone, and the like are preferable because of their excellent solubility in the resin composition and relatively low boiling point. The amount of these solvents may be any amount as long as the insulating resin can be dissolved, but is preferably in the range of 20 to 300 parts by weight with respect to 100 parts by weight of the total amount of the insulating resin and the curing agent, and 30 to 200. A range of parts by weight is more preferred. Moreover, you may use said solvent in combination.
樹脂組成物に、無機充填材を配合することができる。無機充填材としては、シリカ、アルミナ、水酸化アルミニウム、炭酸カルシウム、クレイ、タルク、窒化珪素、窒化ホウ素、酸化チタン、チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウム等を使用することができる。この無機充填材の配合量としては、本発明の樹脂組成物の絶縁性樹脂と硬化剤の総量100重量部に対して、300重量部以下とすることが好ましく、さらに250重量部以下にすることが本発明の多層配線板用材料(プリプレグ、積層板)が均一でかつ良好な取扱性を得るために好ましい。無機充填材を配合する場合は、均一に分散させるため、らいかい機、ホモジナイザー等を用いることが有効である。 An inorganic filler can be mix | blended with a resin composition. As the inorganic filler, silica, alumina, aluminum hydroxide, calcium carbonate, clay, talc, silicon nitride, boron nitride, titanium oxide, barium titanate, lead titanate, strontium titanate, or the like can be used. The blending amount of the inorganic filler is preferably 300 parts by weight or less, more preferably 250 parts by weight or less with respect to 100 parts by weight of the total amount of the insulating resin and the curing agent of the resin composition of the present invention. However, the multilayer wiring board material (prepreg, laminated board) of the present invention is preferable for obtaining uniform and good handling properties. When an inorganic filler is blended, it is effective to use a raking machine, a homogenizer, or the like in order to disperse uniformly.
本発明の樹脂組成物には、本発明の目的の範囲内において、更に、添加剤を含ませることができる。添加剤としては、各種シランカップリング剤、消泡剤等を使用できる。この配合量としては、絶縁性樹脂と硬化剤の総量100重量部に対して、5重量部以下とすることが好ましく、さらに3重量部以下にすることが樹脂組成物の特性を維持する上で好ましい。 The resin composition of the present invention may further contain an additive within the scope of the object of the present invention. As the additive, various silane coupling agents, antifoaming agents and the like can be used. The blending amount is preferably 5 parts by weight or less with respect to 100 parts by weight of the total amount of the insulating resin and the curing agent, and further 3 parts by weight or less is necessary for maintaining the characteristics of the resin composition. preferable.
また、一般的に絶縁性樹脂に無機充填材を配合した場合の架橋点間分子量は、無機充填材の弾性率の影響で、樹脂組成物の弾性率が大きくなり、絶縁性樹脂単独の架橋点間分子量の値よりも見かけ上小さくなる。このため、無機充填材を除いた状態で弾性率を測定し、架橋点間分子量を計算することが好ましいが、無機充填材を除去できない場合、式(3)を用いて弾性率の修正を行い、前記式(1)及び式(2)を用いて計算された架橋点間分子量を、本発明の架橋点間分子量として適用することができる。ただし、式(3)を用いた弾性率の修正は、弾性率の単位としてPaを用いて行い、式(1)でdynに修正し、式(2)のポアソン比及び比重は樹脂のみの値を用いる必要がある。実際に、測定できない場合には、ポアソン比0.5、比重1.2を代入して算出する。 In general, the molecular weight between cross-linking points when an inorganic filler is blended with an insulating resin is that the elastic modulus of the resin composition increases due to the effect of the elastic modulus of the inorganic filler. Apparently smaller than the value of intermolecular weight. For this reason, it is preferable to measure the elastic modulus without the inorganic filler and calculate the molecular weight between cross-linking points. However, if the inorganic filler cannot be removed, the elastic modulus is corrected using Equation (3). The molecular weight between crosslinking points calculated using the above formulas (1) and (2) can be applied as the molecular weight between crosslinking points of the present invention. However, the correction of the elastic modulus using the equation (3) is performed using Pa as a unit of the elastic modulus, corrected to dyn by the equation (1), and the Poisson's ratio and specific gravity of the equation (2) are values only for the resin. Must be used. Actually, when the measurement is impossible, the calculation is performed by substituting the Poisson's ratio 0.5 and the specific gravity 1.2.
Eb=Ea−(0.065×Vf×Vf+0.023×Vf+0.001)×Vf×Ef/8…式(3)
(Vf:無機充填材の体積分率、Ea:無機充填材を配合した状態の貯蔵弾性率、Eb:修正した貯蔵弾性率、Ef:無機充填材の弾性率)
Eb = Ea- (0.065 * Vf * Vf + 0.023 * Vf + 0.001) * Vf * Ef / 8 ... Formula (3)
(Vf: volume fraction of inorganic filler, Ea: storage elastic modulus in a state where inorganic filler is blended, Eb: corrected storage elastic modulus, Ef: elastic modulus of inorganic filler)
本発明のプリプレグは、上述の樹脂組成物を基材に塗布乾燥させて得られる。また本発明の積層板は、プリプレグを、積層成形して得られる。積層成形条件は特に限定されず、また、積層成形の際、金属箔を配し、金属張積層板としてもよい。また本発明の配線板は、上述の積層板に一般的な回路加工を施して得られる。 The prepreg of the present invention is obtained by applying and drying the above resin composition on a substrate. The laminate of the present invention can be obtained by laminating a prepreg. Lamination molding conditions are not particularly limited, and a metal foil may be provided at the time of lamination molding to form a metal-clad laminate. The wiring board of the present invention is obtained by subjecting the above-mentioned laminated board to general circuit processing.
基材は、樹脂組成物を含浸させて、熱硬化・一体化できるものであればよく、ガラス織布、ガラス不織布、アラミド不織布が好適に用いられる。例えば、合成繊維の不織布、又は織布、紙等用いることができる。また、樹脂組成物と基材とを熱硬化・一体化させた場合、基材の弾性率の影響で、樹脂組成物の弾性率が大きくなり、絶縁性樹脂単独の架橋点間分子量の値よりも見かけ上小さくなる。このため、基材から分離させた樹脂単独の弾性率から架橋点間分子量を計算することが好ましいが、基材と分離できない場合、式(4)を用いて基材と一体化した状態で測定した弾性率の修正を行うことができる。修正した貯蔵弾性率を用いて、式(1)、式(2)を用いて算出した架橋点間分子量を本発明の架橋点間分子量として適用することができ、式(2)のポアソン比及び比重は樹脂のみの値を用いる必要がある。実際に、測定できない場合には、ポアソン比0.5、比重1.2を代入して算出する。 The base material only needs to be impregnated with the resin composition and can be thermoset and integrated, and glass woven fabric, glass nonwoven fabric, and aramid nonwoven fabric are preferably used. For example, synthetic nonwoven fabric, woven fabric, paper, or the like can be used. In addition, when the resin composition and the substrate are thermoset and integrated, the elastic modulus of the resin composition increases due to the influence of the elastic modulus of the substrate, and the molecular weight value between the crosslinking points of the insulating resin alone Is also apparently smaller. For this reason, it is preferable to calculate the molecular weight between crosslinking points from the elastic modulus of the resin alone separated from the base material, but when it cannot be separated from the base material, it is measured in the state integrated with the base material using Equation (4). It is possible to correct the elastic modulus. Using the corrected storage elastic modulus, the molecular weight between cross-linking points calculated using the formula (1) and the formula (2) can be applied as the molecular weight between cross-linking points of the present invention, and the Poisson's ratio of the formula (2) and It is necessary to use a specific gravity value only for the resin. Actually, when the measurement is impossible, the calculation is performed by substituting the Poisson's ratio 0.5 and the specific gravity 1.2.
Ea=0.11×Eb−6.25×108・・・式(4)
(Ea:修正後の貯蔵弾性率、Eb:基材と一体化した状態の貯蔵弾性率)
なお無機充填材が配合されている場合は、式(4)で計算された弾性率を、前記の式(3)でさらに弾性率の修正を行う必要がある。
Ea = 0.11 × Eb−6.25 × 10 8 Formula (4)
(Ea: storage elastic modulus after correction, Eb: storage elastic modulus in an integrated state with the base material)
In addition, when the inorganic filler is mix | blended, it is necessary to correct the elasticity modulus calculated by Formula (4) further by said Formula (3).
以下に、本発明を実施例に基づいて詳細に説明するが、本発明は実施例に示される態様に限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to the embodiments shown in the examples.
実施例1
下記組成の絶縁性樹脂ワニスを作製した。この時のエポキシに対する熱硬化剤の当量は1.0当量とした。この絶縁性樹脂ワニスをPETフィルム上に塗工し、120℃で10分間乾燥させて、半硬化状態とし、膜厚70±5μmの絶縁性樹脂付フィルムを作製した。絶縁性樹脂付フィルムから半硬化した樹脂を採取して粉末にした。半硬化樹脂の粉末から、次の手順で樹脂板を作製した。スペーサ及び離型シートとして、樹脂板の型として50mm角に穴明をしたフッ素樹脂シートを配置し、この中に樹脂粉を入れ、この上下に銅箔を配置して、175℃、90分、2.5MPaのプレス条件で硬化させた。その後銅箔をエッチング除去し、樹脂板はフッ素樹脂シートから剥がして、厚さ0.2mmの熱膨張率・弾性率測定用樹脂板を作製した。
・2官能ナフタレン型エポキシ樹脂:HP−4032D:100g(商品名、大日本インキ化学工業株式会社製)
・アミノトリアジンノボラック樹脂:LA−3018:52.9g(商品名、大日本インキ化学工業株式会社製)
・硬化促進剤:1−シアノエチル−2−フェニルイミダゾール:2PZ−CN:0.5g(商品名、四国化成工業株式会社製)
・溶剤:メチルエチルケトン:250g
Example 1
An insulating resin varnish having the following composition was prepared. The equivalent of the thermosetting agent to the epoxy at this time was 1.0 equivalent. This insulating resin varnish was applied onto a PET film and dried at 120 ° C. for 10 minutes to obtain a semi-cured state, whereby a film with an insulating resin film thickness of 70 ± 5 μm was produced. The semi-cured resin was collected from the film with insulating resin and powdered. A resin plate was prepared from the semi-cured resin powder by the following procedure. As a spacer and a release sheet, a fluororesin sheet having a hole of 50 mm square is disposed as a mold of a resin plate, resin powder is put therein, copper foil is disposed above and below, and 175 ° C., 90 minutes, Curing was performed under a press condition of 2.5 MPa. Thereafter, the copper foil was removed by etching, and the resin plate was peeled off from the fluororesin sheet to produce a 0.2 mm thick resin plate for measuring the thermal expansion coefficient and elastic modulus.
-Bifunctional naphthalene type epoxy resin: HP-4032D: 100 g (trade name, manufactured by Dainippon Ink & Chemicals, Inc.)
Aminotriazine novolak resin: LA-3018: 52.9 g (trade name, manufactured by Dainippon Ink & Chemicals, Inc.)
Curing accelerator: 1-cyanoethyl-2-phenylimidazole: 2PZ-CN: 0.5 g (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
・ Solvent: Methyl ethyl ketone: 250 g
実施例2
エポキシ樹脂を、ジヒドロアントラセン型エポキシ樹脂:YX−8800(商品名、ジャパンエポキシレジン株式会社製)100gに代え、硬化剤であるアミノトリアジンノボラック樹脂LA−3018を、52.9gから39.8gにした以外は、実施例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Example 2
The epoxy resin was replaced with 100 g of dihydroanthracene type epoxy resin: YX-8800 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), and the aminotriazine novolak resin LA-3018 as a curing agent was changed from 52.9 g to 39.8 g. Except for the above, a resin plate for measuring thermal expansion coefficient and elastic modulus was obtained in the same manner as in Example 1.
実施例3
エポキシ樹脂をビフェニルノボラック型エポキシ樹脂:NC−3000−H(商品名、日本化薬株式会社製)100gに代え、硬化剤であるアミノトリアジンノボラック樹脂LA−3018を24.9gにした以外は、実施例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Example 3
Except that the epoxy resin was replaced with 100 g of biphenyl novolac type epoxy resin: NC-3000-H (trade name, manufactured by Nippon Kayaku Co., Ltd.), and the aminotriazine novolak resin LA-3018 as a curing agent was changed to 24.9 g. In the same manner as in Example 1, a resin plate for measuring the thermal expansion coefficient and elastic modulus was obtained.
実施例4
実施例1の組成に、シリカ:SO−G1(商品名、株式会社アドマテックス製、平均粒径0.2〜0.4μm)を187.5g加えた以外は、実施例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Example 4
Heat was applied in the same manner as in Example 1 except that 187.5 g of silica: SO-G1 (trade name, manufactured by Admatechs Co., Ltd., average particle size: 0.2 to 0.4 μm) was added to the composition of Example 1. A resin plate for measuring expansion coefficient and elastic modulus was obtained.
実施例5
(1)ガラス織布含浸用樹脂の作製
以下に示す組成のガラス織布含浸用樹脂ワニスを作製した。
・2官能ナフタレン型エポキシ樹脂:HP−4032D:100g(商品名、大日本インキ化学工業株式会社製)
・アミノトリアジンノボラック樹脂:LA−3018:52.9g(商品名、大日本インキ化学工業株式会社製)
・硬化促進剤:2PZ−CN:0.5g(商品名、四国化成工業株式会社製)
・シリカ:SO−G1:187.5g(商品名、株式会社アドマテックス製、平均粒径0.2〜0.4μm)
・溶剤:メチルエチルケトン:400g
Example 5
(1) Preparation of resin for impregnating glass woven fabric A resin varnish for impregnating glass woven fabric having the composition shown below was prepared.
-Bifunctional naphthalene type epoxy resin: HP-4032D: 100 g (trade name, manufactured by Dainippon Ink & Chemicals, Inc.)
Aminotriazine novolak resin: LA-3018: 52.9 g (trade name, manufactured by Dainippon Ink & Chemicals, Inc.)
Curing accelerator: 2PZ-CN: 0.5 g (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
Silica: SO-G1: 187.5 g (trade name, manufactured by Admatechs Co., Ltd., average particle size 0.2 to 0.4 μm)
・ Solvent: Methyl ethyl ketone: 400g
(2)熱膨張率測定基板の作製
(1)で作製したガラス織布含浸用樹脂ワニスを厚みが0.2mmのガラス織布(坪量210g/m2)に含浸し、160℃で3分間加熱して半硬化(Bステージ状態)のプリプレグを得た。このプリプレグを4枚重ね、その両側に金属箔として厚さ18μmの商品名F2−WS銅箔(Rz:2.0μm、Ra:0.3μm)を重ね、175℃、90分、2.5MPaのプレス条件で両面銅張積層板を作製した。この銅張り積層板を過硫酸アンモニウム150g/lの水溶液に40℃−20分間浸漬して銅箔をエッチング除去し、熱膨張率・弾性率測定用基板を得た。
(2) Production of thermal expansion coefficient measurement substrate The glass woven fabric impregnating resin varnish produced in (1) was impregnated into a glass woven fabric having a thickness of 0.2 mm (basis weight 210 g / m 2 ), and at 160 ° C. for 3 minutes. A semi-cured (B stage state) prepreg was obtained by heating. Four sheets of this prepreg are stacked, and a product name F2-WS copper foil (Rz: 2.0 μm, Ra: 0.3 μm) having a thickness of 18 μm is stacked on both sides of the prepreg as 175 ° C., 90 minutes, 2.5 MPa. A double-sided copper-clad laminate was produced under pressing conditions. This copper-clad laminate was immersed in an aqueous solution of 150 g / l ammonium persulfate at 40 ° C. for 20 minutes to remove the copper foil by etching to obtain a substrate for measuring thermal expansion coefficient / elastic modulus.
実施例6
エポキシ樹脂としてジヒドロアントラセン型エポキシ樹脂:YX−8800(商品名、ジャパンエポキシレジン株式会社製)を100g、ビフェニルノボラック型エポキシ樹脂:NC−3000−H(商品名、日本化薬株式会社製)65.8g、クレゾールノボラック樹脂:KA−1165(商品名、大日本インキ化学工業株式会社製)を84.5g、プロピレングリコールモノメチルエーテルに2重量%溶解したジシアンジアミド(関東化学株式会社製)をジシアンジアミド換算で1.66gにした以外は、実施例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Example 6
As an epoxy resin, 100 g of dihydroanthracene type epoxy resin: YX-8800 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), biphenyl novolac type epoxy resin: NC-3000-H (trade name, manufactured by Nippon Kayaku Co., Ltd.) 8 g, cresol novolak resin: 84.5 g of KA-1165 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), dicyandiamide (manufactured by Kanto Chemical Co., Ltd.) dissolved in 2% by weight in propylene glycol monomethyl ether is 1 in terms of dicyandiamide. A resin plate for measuring the coefficient of thermal expansion / elastic modulus was obtained in the same manner as in Example 1 except that the amount was changed to .66 g.
実施例7
エポキシ樹脂としてジヒドロアントラセン型エポキシ樹脂:YX−8800(商品名、ジャパンエポキシレジン株式会社製)を100g、ビフェニルノボラック型エポキシ樹脂:NC−3000−H(商品名、日本化薬株式会社製)65.8g、クレゾールノボラック樹脂:KA−1165(商品名、大日本インキ化学工業株式会社製)を75.1g、ベンゾグアナミン(関東化学株式会社製)9.9gにした以外は、実施例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Example 7
As an epoxy resin, 100 g of dihydroanthracene type epoxy resin: YX-8800 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), biphenyl novolac type epoxy resin: NC-3000-H (trade name, manufactured by Nippon Kayaku Co., Ltd.) 8 g, cresol novolak resin: KA-1165 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) was changed to 75.1 g, and benzoguanamine (manufactured by Kanto Chemical Co., Ltd.) was changed to 9.9 g. A resin plate for measuring thermal expansion coefficient and elastic modulus was obtained.
実施例8
エポキシ樹脂として2官能ナフタレン型エポキシ樹脂:HP−4032D(商品名、大日本インキ化学工業株式会社製)を100g、ビスマレイミド含有アミノトリアジンノボラック樹脂:IZ−9872(商品名、大日本インキ化学工業株式会社製)を478gにした以外は、実施例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Example 8
100 g of bifunctional naphthalene-type epoxy resin: HP-4032D (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) as an epoxy resin, bismaleimide-containing aminotriazine novolak resin: IZ-9872 (trade name, Dainippon Ink & Chemicals, Inc.) A resin plate for measuring the coefficient of thermal expansion / elastic modulus was obtained in the same manner as in Example 1 except that the product was 478 g.
実施例9
エポキシ樹脂としてジヒドロアントラセン型エポキシ樹脂:YX−8800(商品名、ジャパンエポキシレジン株式会社製)を100g、フェノールノボラック型エポキシ樹脂:N−770(商品名、大日本インキ化学工業株式会社製)44.8g、LA−3018を59.6gに代え、更に、シリカ:SO−G1(商品名、株式会社アドマテックス製、平均粒径0.2〜0.4μm)を249.8g加えた以外は、実施例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Example 9
100 g of dihydroanthracene type epoxy resin: YX-8800 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.) as an epoxy resin, phenol novolac type epoxy resin: N-770 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) 44. 8 g, LA-3018 was replaced with 59.6 g, and silica: SO-G1 (trade name, manufactured by Admatechs Co., Ltd., average particle size 0.2 to 0.4 μm) was added, except that 249.8 g was added. In the same manner as in Example 1, a resin plate for measuring the thermal expansion coefficient and elastic modulus was obtained.
実施例10
エポキシ樹脂としてジヒドロアントラセン型エポキシ樹脂:YX−8800(商品名、ジャパンエポキシレジン株式会社製)を100g、フェノールノボラック型エポキシ樹脂:N−740(商品名、大日本インキ化学工業株式会社製)42.6g、硬化剤としてのLA−3018を59.6gに代え、更に、シリカ:SO−G1(商品名、株式会社アドマテックス製、平均粒径0.2〜0.4μm)を247.1g加えた以外は、実施例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Example 10
100 g of dihydroanthracene type epoxy resin: YX-8800 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.) as an epoxy resin, phenol novolac type epoxy resin: N-740 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) 6g, LA-3018 as a curing agent was replaced with 59.6 g, and 247.1 g of silica: SO-G1 (trade name, manufactured by Admatechs Co., Ltd., average particle size 0.2 to 0.4 μm) was further added. Except for the above, a resin plate for measuring thermal expansion coefficient and elastic modulus was obtained in the same manner as in Example 1.
実施例11
エポキシ樹脂としてジヒドロアントラセン型エポキシ樹脂:YX−8800(商品名、ジャパンエポキシレジン株式会社製)を100g、ビスフェノールA型エポキシ樹脂:N−865(商品名、大日本インキ化学工業株式会社製)49.5g、硬化剤としてのLA−3018を59.6gに代え、更に、シリカ:SO−G1(商品名、株式会社アドマテックス製、平均粒径0.2〜0.4μm)を255.6g加えた以外は、実施例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Example 11
As an epoxy resin, 100 g of dihydroanthracene type epoxy resin: YX-8800 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), bisphenol A type epoxy resin: N-865 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) 49. 55.6 g, LA-3018 as a curing agent was replaced with 59.6 g, and further, 255.6 g of silica: SO-G1 (trade name, manufactured by Admatechs Co., Ltd., average particle size 0.2 to 0.4 μm) was added. Except for the above, a resin plate for measuring thermal expansion coefficient and elastic modulus was obtained in the same manner as in Example 1.
実施例12
エポキシ樹脂としてジヒドロアントラセン型エポキシ樹脂:YX−8800(商品名、ジャパンエポキシレジン株式会社製)を100g、及びビフェニルノボラック型エポキシ樹脂:NC−3000−H(商品名、日本化薬株式会社製)65.8g、硬化剤としてのクレゾールノボラック樹脂:KA−1165(商品名、大日本インキ化学工業株式会社製)を84.5g、及びプロピレングリコールモノメチルエーテルに2重量%溶解したジシアンジアミド(関東化学株式会社製)をジシアンジアミド換算で1.66gにし、シリカ:SO−G1(商品名、株式会社アドマテックス製、平均粒径0.2〜0.4μm)を、308.0gとした以外は、実施例5と同様にして熱膨張率・弾性率測定用基板を得た。
Example 12
100 g of dihydroanthracene type epoxy resin: YX-8800 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.) as an epoxy resin, and biphenyl novolac type epoxy resin: NC-3000-H (trade name, manufactured by Nippon Kayaku Co., Ltd.) 65 .8 g, cresol novolak resin as a curing agent: 84.5 g of KA-1165 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) and dicyandiamide (manufactured by Kanto Chemical Co., Ltd.) dissolved in 2% by weight in propylene glycol monomethyl ether ) To 1.66 g in terms of dicyandiamide, and Example 5 except that the silica: SO-G1 (trade name, manufactured by Admatechs Co., Ltd., average particle size 0.2 to 0.4 μm) was 308.0 g. Similarly, a thermal expansion coefficient / elastic modulus measurement substrate was obtained.
比較例1
下記組成の絶縁性樹脂ワニスを作製した。この時のエポキシに対する熱硬化剤の当量は1.0当量とした。この絶縁性樹脂ワニスをPETフィルム上に塗工し、120℃−10分乾燥させて、膜厚70±5μmの絶縁性樹脂付フィルムを作製した。絶縁性樹脂付フィルムから半硬化樹脂を採取して粉末にした。半硬化樹脂の粉末から、次の手順で樹脂板を作製した。スペーサ及び離型シートとして、樹脂板の型として50mm角に穴明をしたフッ素樹脂シートを配置し、この中に樹脂粉を入れ、この上下に銅箔を配置して、175℃、90分、2.5MPaのプレス条件で硬化させた。その後銅箔をエッチング除去し、樹脂板はフッ素樹脂シートから剥がして、厚さ0.2mmの熱膨張率・弾性率測定用樹脂板を作製した。
・フェノールノボラック型エポキシ樹脂:N−770:100g(商品名、大日本インキ化学工業株式会社製)
・フェノールノボラック樹脂:HP−850:53.3g(商品名、日立化成工業株式会社製)
・ジシアンジアミド:0.13g(商品名、関東化学株式会社製)
・硬化促進剤:2PZ−CN:0.5g(商品名、四国化成工業株式会社製)
・溶剤:メチルエチルケトン:250g
Comparative Example 1
An insulating resin varnish having the following composition was prepared. The equivalent of the thermosetting agent to the epoxy at this time was 1.0 equivalent. This insulating resin varnish was applied onto a PET film and dried at 120 ° C. for 10 minutes to produce a film with an insulating resin having a thickness of 70 ± 5 μm. Semi-cured resin was collected from the film with insulating resin and powdered. A resin plate was prepared from the semi-cured resin powder by the following procedure. As a spacer and a release sheet, a fluororesin sheet having a hole of 50 mm square is disposed as a mold of a resin plate, resin powder is put therein, copper foil is disposed above and below, and 175 ° C., 90 minutes, Curing was performed under a press condition of 2.5 MPa. Thereafter, the copper foil was removed by etching, and the resin plate was peeled off from the fluororesin sheet to produce a 0.2 mm thick resin plate for measuring the thermal expansion coefficient and elastic modulus.
-Phenol novolac type epoxy resin: N-770: 100 g (trade name, manufactured by Dainippon Ink & Chemicals, Inc.)
-Phenol novolac resin: HP-850: 53.3 g (trade name, manufactured by Hitachi Chemical Co., Ltd.)
・ Dicyandiamide: 0.13 g (trade name, manufactured by Kanto Chemical Co., Inc.)
Curing accelerator: 2PZ-CN: 0.5 g (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
・ Solvent: Methyl ethyl ketone: 250 g
比較例2
エポキシ樹脂として4官能ナフタレン型エポキシ樹脂:HP−4700(商品名、大日本インキ化学工業株式会社製)を100g、硬化剤としてアミノトリアジンノボラック樹脂:LA−3018(商品名、大日本インキ化学工業株式会社製)を43.4gにした以外は、比較例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Comparative Example 2
100 g of tetrafunctional naphthalene type epoxy resin: HP-4700 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) as an epoxy resin, and aminotriazine novolak resin: LA-3018 (trade name, Dainippon Ink & Chemicals, Inc.) as a curing agent A resin plate for measuring the coefficient of thermal expansion / elastic modulus was obtained in the same manner as in Comparative Example 1 except that the product was 43.4 g.
比較例3
(HP−4032反応物の作製)
温度計、冷却管、攪拌装置を備えた1リットルの4つ口セパラブルフラスコに、下記の組成1を投入し、100℃で2時間反応させた。室温(25℃)まで冷却し、下記の組成2を投入して絶縁性樹脂ワニスを作製した。この絶縁性樹脂ワニスをPETフィルム上に塗工し、160℃−10分乾燥させて、膜厚70±5μmの絶縁性樹脂付フィルムを作製した。絶縁性樹脂付フィルムから半硬化樹脂を採取して粉末にした。半硬化樹脂の粉末から、次の手順で樹脂板を作製した。スペーサ及び離型シートとして、樹脂板の型として50mm角に穴明をしたフッ素樹脂シートを配置し、この中に樹脂粉を入れ、この上下に銅箔を配置して、175℃、90分、2.5MPaのプレス条件で硬化させた。その後銅箔をエッチング除去し、樹脂板はフッ素樹脂シートから剥がして、厚さ0.2mmの熱膨張率・弾性率測定用樹脂板を作製した。
「組成1」
・2官能ナフタレン型エポキシ樹脂:HP−4032D:83.2g(商品名、大日本インキ化学工業株式会社製)
・ビスフェノールA:69.8g(試薬、関東化学株式会社製)
・硬化促進剤:2PZ−CN:0.4g(商品名、四国化成工業株式会社製)
「組成2」
・2官能ナフタレン型エポキシ樹脂:HP−4032D:100g(商品名、大日本インキ化学工業株式会社製)
・アミノトリアジンノボラック樹脂:LA−3018:52.9g(商品名、大日本インキ化学工業株式会社製)
・硬化促進剤:2PZ−CN:0.5g(商品名、四国化成工業株式会社製)
・溶剤:シクロヘキサノン:250g
Comparative Example 3
(Preparation of HP-4032 reactant)
The following composition 1 was put into a 1 liter four-necked separable flask equipped with a thermometer, a condenser, and a stirrer, and reacted at 100 ° C. for 2 hours. It cooled to room temperature (25 degreeC), the following composition 2 was thrown in, and the insulating resin varnish was produced. This insulating resin varnish was coated on a PET film and dried at 160 ° C. for 10 minutes to produce a film with an insulating resin having a film thickness of 70 ± 5 μm. Semi-cured resin was collected from the film with insulating resin and powdered. A resin plate was prepared from the semi-cured resin powder by the following procedure. As a spacer and a release sheet, a fluororesin sheet having a hole of 50 mm square is disposed as a mold of a resin plate, resin powder is put therein, copper foil is disposed above and below, and 175 ° C., 90 minutes, Curing was performed under a press condition of 2.5 MPa. Thereafter, the copper foil was removed by etching, and the resin plate was peeled off from the fluororesin sheet to produce a 0.2 mm thick resin plate for measuring the thermal expansion coefficient and elastic modulus.
“Composition 1”
-Bifunctional naphthalene type epoxy resin: HP-4032D: 83.2 g (trade name, manufactured by Dainippon Ink & Chemicals, Inc.)
-Bisphenol A: 69.8 g (reagent, manufactured by Kanto Chemical Co., Inc.)
Curing accelerator: 2PZ-CN: 0.4 g (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
“Composition 2”
-Bifunctional naphthalene type epoxy resin: HP-4032D: 100 g (trade name, manufactured by Dainippon Ink & Chemicals, Inc.)
Aminotriazine novolak resin: LA-3018: 52.9 g (trade name, manufactured by Dainippon Ink & Chemicals, Inc.)
Curing accelerator: 2PZ-CN: 0.5 g (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
・ Solvent: Cyclohexanone: 250 g
比較例4
シリカ:SO−G1(商品名、株式会社アドマテックス製、平均粒径0.2〜0.4μm)を188.2g加えた以外は、比較例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Comparative Example 4
Silica: Same as Comparative Example 1 except that 188.2 g of SO-G1 (trade name, manufactured by Admatechs Co., Ltd., average particle size 0.2 to 0.4 μm) was added. A resin plate was obtained.
比較例5
(1)ガラス織布含浸用樹脂の作製
以下に示す組成のガラス織布含浸用樹脂ワニスを作製した。
・フェノールノボラック型エポキシ樹脂:N−770:100g(商品名、大日本インキ化学工業株式会社製)
・フェノールノボラック樹脂:HP−850:53.3g(商品名、日立化成工業株式会社製)
・ジシアンジアミド:0.13g(商品名、関東化学株式会社製)
・硬化促進剤:2PZ−CN:0.5g(商品名、四国化成工業株式会社製)
・シリカ:SO−G1:188.2g(商品名、株式会社アドマテックス製、平均粒径0.2〜0.4μm)
・溶剤:メチルエチルケトン:400g
Comparative Example 5
(1) Preparation of resin for impregnating glass woven fabric A resin varnish for impregnating glass woven fabric having the composition shown below was prepared.
-Phenol novolac type epoxy resin: N-770: 100 g (trade name, manufactured by Dainippon Ink & Chemicals, Inc.)
-Phenol novolac resin: HP-850: 53.3 g (trade name, manufactured by Hitachi Chemical Co., Ltd.)
・ Dicyandiamide: 0.13 g (trade name, manufactured by Kanto Chemical Co., Inc.)
Curing accelerator: 2PZ-CN: 0.5 g (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
Silica: SO-G1: 188.2 g (trade name, manufactured by Admatechs Co., Ltd., average particle size: 0.2 to 0.4 μm)
・ Solvent: Methyl ethyl ketone: 400g
(2)熱膨張率測定基板の作製
(1)で作製したガラス織布含浸用樹脂ワニスを厚みが0.2mmのガラス織布(坪量210g/m2)に含浸し、160℃で3分間加熱して半硬化(Bステージ状態)のプリプレグを得た。このプリプレグを4枚重ね、その両側に18μmの商品名F2−WS銅箔(Rz:2.0μm、Ra:0.3μm)を重ね、175℃、90分、2.5MPaのプレス条件で両面銅張積層板を作製した。この銅張り積層板を過硫酸アンモニウム150g/lの水溶液に40℃−20分間浸漬して銅箔をエッチング除去し、熱膨張率・弾性率測定用基板を得た。
(2) Production of thermal expansion coefficient measurement substrate The glass woven fabric impregnating resin varnish produced in (1) was impregnated into a glass woven fabric having a thickness of 0.2 mm (basis weight 210 g / m 2 ), and at 160 ° C. for 3 minutes. A semi-cured (B stage state) prepreg was obtained by heating. Four prepregs are stacked, and 18 μm product name F2-WS copper foil (Rz: 2.0 μm, Ra: 0.3 μm) is stacked on both sides of the prepreg, and copper is coated on both sides under a pressing condition of 175 ° C., 90 minutes, 2.5 MPa. A tension laminate was produced. This copper-clad laminate was immersed in an aqueous solution of 150 g / l ammonium persulfate at 40 ° C. for 20 minutes to remove the copper foil by etching to obtain a substrate for measuring thermal expansion coefficient / elastic modulus.
比較例6
シリカSO−G1配合量を282.3gにした以外は比較例5と同様にして熱膨張率・弾性率測定用基板を得た。
Comparative Example 6
A thermal expansion coefficient / elastic modulus measurement substrate was obtained in the same manner as in Comparative Example 5 except that the amount of silica SO-G1 was changed to 282.3 g.
比較例7
シリカSO−G1配合量を422.0gにした以外は比較例5と同様にしてサンプル作製を行ったが、プレス成形性が悪く、サンプルが作製できなかった。
Comparative Example 7
A sample was prepared in the same manner as in Comparative Example 5 except that the amount of silica SO-G1 was changed to 422.0 g, but the press moldability was poor and the sample could not be prepared.
比較例8
エポキシ樹脂として2官能ナフタレン型エポキシ樹脂:HP−4032D(商品名、大日本インキ化学工業株式会社製)を100g、硬化剤としてビスフェノールA(関東化学株式会社製)を83.8gにし、ジシアンジアミドを添加しない以外は、比較例1と同様にしてサンプル作製を行ったが、Tg以上では測定装置の荷重でサンプルが伸びてしまい、Tg以上での貯蔵弾性率を測定できなかった。
Comparative Example 8
100 g of bifunctional naphthalene type epoxy resin: HP-4032D (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) as an epoxy resin, 83.8 g of bisphenol A (manufactured by Kanto Chemical Co., Ltd.) as a curing agent, and dicyandiamide added A sample was prepared in the same manner as in Comparative Example 1 except that the sample was stretched by the load of the measuring device above Tg, and the storage elastic modulus above Tg could not be measured.
比較例9
硬化剤としてトリフェノールメタン:MEH−7500(商品名、明和化成株式会社製)を58.6gにした以外は、比較例2と同様にして、熱膨張率・弾性率測定用樹脂板を得た。
Comparative Example 9
A thermal expansion coefficient / elastic modulus measurement resin plate was obtained in the same manner as in Comparative Example 2 except that 58.6 g of triphenolmethane: MEH-7500 (trade name, manufactured by Meiwa Kasei Co., Ltd.) was used as the curing agent. .
比較例10
エポキシ樹脂としてジヒドロアントラセン型エポキシ樹脂:YX−8800(商品名、ジャパンエポキシレジン株式会社製)を100g、硬化剤としてビスフェノールA(関東化学株式会社製)を63.0gにした以外は、比較例1と同様にしてサンプル作製を行ったが、Tg以上では測定装置の荷重でサンプルが伸びてしまい、Tg以上での貯蔵弾性率を測定できなかった。
Comparative Example 10
Comparative Example 1 except that 100 g of dihydroanthracene type epoxy resin: YX-8800 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.) was used as the epoxy resin and 63.0 g of bisphenol A (manufactured by Kanto Chemical Co., Ltd.) was used as the curing agent. Samples were prepared in the same manner as described above, but the sample was stretched by the load of the measuring device above Tg, and the storage elastic modulus above Tg could not be measured.
比較例11
エポキシ樹脂としてナフタレンノボラック型エポキシ樹脂:NC−7000L(商品名、日本化薬株式会社製)を100g、硬化剤としてフェノールノボラック樹脂:HP−850(商品名、日立化成工業株式会社製)を45.5gにした以外は、比較例1と同様にして熱膨張率・弾性率測定用樹脂板を得た。
Comparative Example 11
100 g of naphthalene novolac type epoxy resin: NC-7000L (trade name, manufactured by Nippon Kayaku Co., Ltd.) as the epoxy resin, and 45 g of phenol novolac resin: HP-850 (trade name, manufactured by Hitachi Chemical Co., Ltd.) as the curing agent. A resin plate for measuring the coefficient of thermal expansion / elastic modulus was obtained in the same manner as in Comparative Example 1 except that the amount was 5 g.
[熱膨張率の測定]
実施例1〜4、6〜11、比較例1〜4、8〜11の銅箔を取り除いた熱膨張率・弾性率測定用樹脂板から4×20mmの試験片を切り出して、TAインスツルメンツ株式会社製TMA試験装置(TMA−2940)を用いて、昇温10℃/min、引張り法でTg未満の熱膨張率を測定した。実施例5、12、比較例5〜7の銅箔を取り除いた熱膨張率・弾性率測定用基板から5mm角の試験片を切り出して、TAインスツルメンツ株式会社製TMA試験装置(TMA−2940)を用いて、昇温10℃/min、圧縮法でTg未満の熱膨張率を測定した。
[Measurement of thermal expansion coefficient]
TA Instruments Co., Ltd. cut out the test piece of 4 * 20 mm from the resin plate for thermal expansion coefficient and elastic modulus measurement from which the copper foils of Examples 1 to 4, 6 to 11 and Comparative Examples 1 to 4 and 8 to 11 were removed. A thermal expansion coefficient of less than Tg was measured by a tensile method using a TMA test apparatus (TMA-2940) manufactured by TMA. A 5 mm square test piece was cut out from the thermal expansion coefficient / elastic modulus measurement substrate from which the copper foils of Examples 5 and 12 and Comparative Examples 5 to 7 were removed, and a TMA test apparatus (TMA-2940) manufactured by TA Instruments Co., Ltd. was used. A thermal expansion coefficient of less than Tg was measured by a compression method using a temperature increase of 10 ° C./min.
[貯蔵弾性率の測定]
銅箔を除去した熱膨張率・弾性率測定用樹脂板、熱膨張率・弾性率測定用基板から5×30mmの試験片を切り出して、動的粘弾性測定装置(株式会社UBM製E−4000)を用いて昇温;5℃/min、自動静荷重の条件で貯蔵弾性率を測定した。
[Measurement of storage modulus]
A 5 × 30 mm test piece was cut out from the thermal expansion coefficient / elastic modulus measurement resin plate from which the copper foil was removed, and the thermal expansion coefficient / elastic modulus measurement substrate, and a dynamic viscoelasticity measurement apparatus (E-4000 manufactured by UBM Co., Ltd.). The storage elastic modulus was measured under the conditions of 5 ° C./min and automatic static load.
[ガラスクロス含浸時の取扱い性(粉落ち)]
作製したプリプレグをカッターで切断し、その粉落ち状態を目視で観察した。
[Handability when impregnating glass cloth (powder fall)]
The prepared prepreg was cut with a cutter, and the state of powder falling was visually observed.
実施例で作製した熱膨張率・弾性率測定用の樹脂板(樹脂を含み、無機充填剤、ガラスクロスを含まない)の長さ方向の貯蔵弾性率、Tg未満の熱膨張率の測定結果を表1、3に示す。
また、実施例で作製した熱膨張率・弾性率測定用の基板(樹脂と、無機充填剤及び/又はガラスクロスとを含む)の面方向の貯蔵弾性率、Tg未満の熱膨張率測定結果も表1、3に併せて示す。
Measurement results of storage modulus in the length direction of the thermal expansion coefficient / elastic modulus measurement resin plate (including resin, not including inorganic filler and glass cloth) produced in the examples, and thermal expansion coefficient less than Tg Tables 1 and 3 show.
Further, the storage elastic modulus in the surface direction of the substrate for thermal expansion coefficient / elastic modulus measurement (including resin, inorganic filler and / or glass cloth) produced in the examples, and the thermal expansion coefficient measurement result less than Tg Tables 1 and 3 are also shown.
一方、比較例で作製した熱膨張率・弾性率測定用の樹脂板の長さ方向の貯蔵弾性率、Tg未満の熱膨張率の測定結果を表2、4に示す。
また、比較例で作製した熱膨張率・弾性率測定用の基板の面方向の貯蔵弾性率、Tg未満の熱膨張率測定結果も表2、4に併せて示す。
On the other hand, Tables 2 and 4 show the measurement results of the storage elastic modulus in the length direction and the thermal expansion coefficient less than Tg of the resin plate for measuring the thermal expansion coefficient and elastic modulus produced in the comparative example.
In addition, Tables 2 and 4 also show the storage elastic modulus in the surface direction of the substrate for measuring the thermal expansion coefficient and elastic modulus produced in the comparative example, and the thermal expansion coefficient measurement results less than Tg.
材料の比重は、実施例1〜3、6〜8、比較例1〜3、8〜11では1.2とした。実施例4、9〜11、比較例4は、材料の比重を1.6とした。実施例5、12、比較例5、6は、材料の比重を2.0とした。比較例7は、材料の比重を2.2とした。架橋点間分子量の修正は、シリカの貯蔵弾性率は80GPaとして貯蔵弾性率の修正を行い、材料の比重は1.2として架橋点間分子量を算出した。また、ポアソン比は、全て0.5とした。 The specific gravity of the materials was 1.2 in Examples 1 to 3, 6 to 8 and Comparative Examples 1 to 3 and 8 to 11. In Examples 4, 9 to 11, and Comparative Example 4, the specific gravity of the material was 1.6. In Examples 5 and 12, and Comparative Examples 5 and 6, the specific gravity of the material was 2.0. In Comparative Example 7, the specific gravity of the material was 2.2. The molecular weight between crosslink points was calculated by correcting the storage elastic modulus of silica at 80 GPa and the specific gravity of the material at 1.2. All Poisson's ratios were set to 0.5.
樹脂板である実施例1〜3及び6〜8のTg未満の熱膨張率が55〜64ppm/℃であるのに対し、比較例1〜3及び8〜11のTg未満の熱膨張率は68〜87ppm/℃と、最小で4ppm/℃最大で32ppm/℃低いTg未満の熱膨張率を示していることがわかる。ここで、比較例8及び10は、Tg以上では測定装置の荷重でサンプルが伸びてしまい、Tg以上での貯蔵弾性率の測定ができなかった。この時、実施例1〜3及び6〜8の架橋点間分子量は請求範囲の300〜1000の範囲であるが、比較例1〜3及び9、11の架橋点間分子量は250以下を示し、架橋密度が高く、芳香環の相互作用を充分に発現できず、熱膨張率が下がらなかった。 The thermal expansion coefficient of less than Tg of Examples 1 to 3 and 6 to 8 which are resin plates is 55 to 64 ppm / ° C., whereas the thermal expansion coefficient of less than Tg of Comparative Examples 1 to 3 and 8 to 11 is 68. It can be seen that the coefficient of thermal expansion is less than Tg less than Tg of -87 ppm / ° C, a minimum of 4 ppm / ° C and a maximum of 32 ppm / ° C. Here, in Comparative Examples 8 and 10, the sample was stretched by the load of the measuring device at Tg or higher, and the storage elastic modulus at Tg or higher could not be measured. At this time, the molecular weights between the crosslinking points of Examples 1 to 3 and 6 to 8 are in the range of 300 to 1000 of the claims, but the molecular weights between the crosslinking points of Comparative Examples 1 to 3, 9, and 11 are 250 or less, The crosslink density was high, the interaction of aromatic rings could not be sufficiently expressed, and the coefficient of thermal expansion did not decrease.
また、実施例1に実施例1と同じエポキシ樹脂を用いた反応物を配合し、架橋点間分子量を3860にした比較例3のTg未満の熱膨張率は68ppm/℃であった。このことから、芳香環を有する絶縁性樹脂を配合するだけでは芳香環同士の相互作用によって、Tg未満の熱膨張率を低くさせることは不可能であり、本発明の架橋点間分子量を300〜1000の範囲に樹脂組成を設定することが芳香環同士の相互作用による低熱膨張率化に重要であることがわかる。 Moreover, the thermal expansion coefficient less than Tg of the comparative example 3 which mix | blended the reaction material using the same epoxy resin as Example 1 and set the molecular weight between crosslinking points to 3860 was 68 ppm / degreeC. For this reason, it is impossible to reduce the thermal expansion coefficient below Tg by the interaction between aromatic rings only by blending an insulating resin having an aromatic ring. It can be seen that setting the resin composition in the range of 1000 is important for reducing the thermal expansion coefficient due to the interaction between the aromatic rings.
実施例4、9〜11と比較例4は無機の充填剤としてシリカを配合したものである。実施例4、9〜11のTg未満の熱膨張率は、34〜36ppm/℃であるが、比較例4は40ppm/℃であった。このときの修正後の架橋点間分子量は実施例4が458、実施例9が320、実施例10が564、実施例11が365であるのに対し、比較例4が235であった。実施例1〜3の絶縁性樹脂と同様に実施例4、9〜11は芳香環同士の相互作用により低熱膨張率化が発現していることがわかる。また、絶縁性樹脂の架橋点間分子量を本願特許の範囲にすることで、充填剤を配合した場合でも従来材料に比較して低いTg未満の熱膨張率を示すことがわかった。 In Examples 4, 9 to 11, and Comparative Example 4, silica is blended as an inorganic filler. The thermal expansion coefficient of less than Tg of Examples 4 and 9 to 11 was 34 to 36 ppm / ° C., but Comparative Example 4 was 40 ppm / ° C. The molecular weights between the crosslinking points after correction were 458 in Example 4, 320 in Example 9, 564 in Example 10, and 365 in Example 11, while 235 in Comparative Example 4. As with the insulating resins of Examples 1 to 3, it can be seen that Examples 4 and 9 to 11 exhibit low thermal expansion due to the interaction between aromatic rings. In addition, it was found that by setting the molecular weight between the crosslinking points of the insulating resin within the range of the patent of the present application, even when a filler is blended, the coefficient of thermal expansion is less than Tg, which is lower than that of the conventional material.
実施例5と比較例5は、実施例4と比較例4をガラスクロスに含浸したものである。実施例5のTg未満の熱膨張率は、13.5ppm/℃であるが、比較例5は15ppm/℃であった。このときの貯蔵弾性率の修正を行った架橋点間分子量は実施例5が458、比較例5が233であった。
また、実施例12は実施例6にシリカを配合しガラスクロスに含浸したものである。実施例12のTg未満の熱膨張率は、12.5ppm/℃である。このときの貯蔵弾性率の修正を行った架橋点間分子量は314であった。
また、比較例6、7は比較例5にシリカ配合量を増やしたものである。比較例6のTg未満の熱膨張率は、13.5ppm/℃であるもののガラスクロス含浸時の取り扱い性は粉落ちが多く望ましくない。比較例7はプレス成形性に問題があり、サンプルを作製できなかった。このときの貯蔵弾性率の修正を行った架橋点間分子量は比較例6が218であった。絶縁性樹脂の架橋点間分子量を300から1000の範囲に樹脂組成を設定することが芳香環同士の相互作用を発現して低熱膨張率化する上で重要であることがわかる。
In Example 5 and Comparative Example 5, glass cloth was impregnated with Example 4 and Comparative Example 4. The thermal expansion coefficient of Example 5 below Tg was 13.5 ppm / ° C., but Comparative Example 5 was 15 ppm / ° C. The molecular weight between cross-linking points at which the storage elastic modulus was corrected at this time was 458 in Example 5 and 233 in Comparative Example 5.
Moreover, Example 12 mixes a silica with Example 6, and impregnates the glass cloth. The thermal expansion coefficient less than Tg of Example 12 is 12.5 ppm / ° C. At this time, the molecular weight between cross-linking points where the storage elastic modulus was corrected was 314.
Further, Comparative Examples 6 and 7 are obtained by increasing the amount of silica added to Comparative Example 5. Although the thermal expansion coefficient less than Tg of Comparative Example 6 is 13.5 ppm / ° C., the handleability at the time of impregnation with glass cloth is not desirable because it causes powder falling off. Comparative Example 7 had a problem in press formability, and a sample could not be produced. In Comparative Example 6, the molecular weight between cross-linking points where the storage elastic modulus was corrected was 218 in Comparative Example 6. It can be seen that setting the resin composition so that the molecular weight between cross-linking points of the insulating resin is in the range of 300 to 1000 is important in terms of reducing the coefficient of thermal expansion by expressing the interaction between aromatic rings.
従来の充填剤を増やす方法の低熱膨張率化では、プレス成形不良を起こすTg未満の熱膨張率でも実施例12では達成しており、本願特許の有効性を示すものである。 In the conventional method of increasing the filler, a low thermal expansion coefficient is achieved in Example 12 even with a thermal expansion coefficient of less than Tg that causes press molding failure, which shows the effectiveness of the present patent.
以下の表中、配合の単位はグラムである。 In the following table, the unit of blending is gram.
本発明の例等で用いた樹脂の構造を以下に示す。
本発明によれば、架橋点間分子量が300〜1000の範囲に入るように芳香環を有する絶縁性樹脂の樹脂組成を制御することで低熱膨張率の樹脂組成物を得ることができる。 According to the present invention, a resin composition having a low coefficient of thermal expansion can be obtained by controlling the resin composition of an insulating resin having an aromatic ring so that the molecular weight between crosslinking points is in the range of 300 to 1,000.
低コストで架橋密度を上げることなく、低熱膨張な樹脂組成物、プリプレグ、積層板及び配線板を提供することが可能となった。 It has become possible to provide a low thermal expansion resin composition, prepreg, laminate and wiring board without increasing the crosslink density at low cost.
Claims (1)
で示される2官能ナフタレン型エポキシ樹脂及び硬化剤を含み、
前記硬化剤がアミノトリアジンノボラック樹脂又はビスマレイミド含有アミノトリアジンノボラック樹脂であり、
前記樹脂組成物の硬化後のTg以上のせん断弾性率から求めた架橋点間分子量が、300〜800であることを特徴とする樹脂組成物。 It is a resin composition used for manufacture of a laminated board, Comprising : A resin composition is following formula (4):
Includes bifunctional naphthalene type epoxy resin and a curing agent shown in,
The curing agent is an aminotriazine novolak resin or a bismaleimide-containing aminotriazine novolak resin;
A resin composition having a molecular weight between crosslinking points of 300 to 800 determined from a shear elastic modulus of Tg or more after curing of the resin composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007116605A JP4926811B2 (en) | 2006-04-28 | 2007-04-26 | Resin composition, prepreg, laminate and wiring board |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006125603 | 2006-04-28 | ||
JP2006125603 | 2006-04-28 | ||
JP2007116605A JP4926811B2 (en) | 2006-04-28 | 2007-04-26 | Resin composition, prepreg, laminate and wiring board |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008204304A Division JP5338187B2 (en) | 2006-04-28 | 2008-08-07 | Inorganic filler-containing resin composition, prepreg, laminate and wiring board |
JP2008204305A Division JP4950142B2 (en) | 2006-04-28 | 2008-08-07 | Prepreg, laminated board and wiring board |
JP2008204303A Division JP4950141B2 (en) | 2006-04-28 | 2008-08-07 | Film with resin, laminate and wiring board |
JP2009160940A Division JP5316267B2 (en) | 2006-04-28 | 2009-07-07 | Resin composition, prepreg, laminate and wiring board |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007314782A JP2007314782A (en) | 2007-12-06 |
JP2007314782A5 JP2007314782A5 (en) | 2008-09-25 |
JP4926811B2 true JP4926811B2 (en) | 2012-05-09 |
Family
ID=38848929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007116605A Active JP4926811B2 (en) | 2006-04-28 | 2007-04-26 | Resin composition, prepreg, laminate and wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4926811B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY146556A (en) * | 2006-09-21 | 2012-08-30 | Sumitomo Bakelite Co | Resin composition, prepreg, and laminate |
JP2010100802A (en) * | 2008-09-24 | 2010-05-06 | Sekisui Chem Co Ltd | Epoxy-based resin composition, sheet-like molded product, prepreg, cured product, laminated plate, and multilayer laminated plate |
JP5540494B2 (en) * | 2008-10-30 | 2014-07-02 | 日立化成株式会社 | Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same |
JP5417799B2 (en) * | 2008-10-30 | 2014-02-19 | 日立化成株式会社 | Thermosetting resin composition, and prepreg and laminate using the same |
WO2011104905A1 (en) | 2010-02-24 | 2011-09-01 | 日立化成工業株式会社 | Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board |
JP2010222569A (en) * | 2009-02-24 | 2010-10-07 | Hitachi Chem Co Ltd | Resin composition, and prepreg, laminated board and wiring board using the same |
JP5136573B2 (en) | 2009-02-24 | 2013-02-06 | 日立化成工業株式会社 | Varnish, prepreg, film with resin, metal foil-clad laminate, printed wiring board |
KR101868161B1 (en) | 2010-02-24 | 2018-06-15 | 히타치가세이가부시끼가이샤 | Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board |
JP5779962B2 (en) * | 2011-04-27 | 2015-09-16 | 日立化成株式会社 | Resin composition for package substrate and prepreg and laminate using the same |
JP2012054589A (en) * | 2011-10-31 | 2012-03-15 | Hitachi Chem Co Ltd | Semiconductor package |
JP2012124479A (en) * | 2011-11-24 | 2012-06-28 | Hitachi Chem Co Ltd | Semiconductor package |
JP5988220B2 (en) * | 2012-09-28 | 2016-09-07 | パナソニックIpマネジメント株式会社 | Prepreg, metal-clad laminate, printed wiring board, multilayer printed wiring board |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05140266A (en) * | 1991-11-22 | 1993-06-08 | Shin Kobe Electric Mach Co Ltd | Preparation of resin composition for laminated board and laminated board |
JP2736212B2 (en) * | 1992-10-26 | 1998-04-02 | 住友ベークライト株式会社 | Epoxy resin composition |
JPH09216933A (en) * | 1996-02-07 | 1997-08-19 | Toshiba Chem Corp | Epoxy resin composition and sealed semiconductor device |
JP3659842B2 (en) * | 1999-08-09 | 2005-06-15 | 住友ベークライト株式会社 | Flame-retardant resin composition for laminates, prepreg and laminate |
JP4725704B2 (en) * | 2003-05-27 | 2011-07-13 | 味の素株式会社 | Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg |
JP4702764B2 (en) * | 2003-09-04 | 2011-06-15 | 日本化薬株式会社 | Epoxy resin composition and cured product thereof |
JP4354242B2 (en) * | 2003-09-26 | 2009-10-28 | ジャパンエポキシレジン株式会社 | Novel crystalline epoxy resin, curable epoxy resin composition and cured product thereof |
JP4687224B2 (en) * | 2004-04-23 | 2011-05-25 | 東レ株式会社 | Epoxy resin composition, prepreg and fiber reinforced composite material |
CA2599153A1 (en) * | 2005-02-25 | 2006-08-31 | Nippon Kayaku Kabushiki Kaisha | Epoxy resin, hardenable resin composition containing the same and use thereof |
JP2007182544A (en) * | 2005-12-07 | 2007-07-19 | Hitachi Chem Co Ltd | Halogen-free resin composition, and prepreg and printed wiring board by using the same |
-
2007
- 2007-04-26 JP JP2007116605A patent/JP4926811B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007314782A (en) | 2007-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4950141B2 (en) | Film with resin, laminate and wiring board | |
JP4926811B2 (en) | Resin composition, prepreg, laminate and wiring board | |
US10294341B2 (en) | Thermosetting resin composition for semiconductor package and prepreg using the same | |
WO2016031205A1 (en) | Prepreg, metal-clad laminated board, and printed wiring board | |
JP2013239701A (en) | Interlayer dielectric film with carrier material, and multilayer printed circuit board using the same | |
US6544652B2 (en) | Cyanate ester-containing insulating composition, insulating film made therefrom and multilayer printed circuit board having the film | |
JP6428638B2 (en) | Metal-clad laminate, circuit board, and electronic device | |
JP5736944B2 (en) | Thermosetting resin composition, prepreg and laminate | |
JP2013036041A (en) | Varnish, prepreg, film with resin, metal foil-clad laminate, and printed wiring board | |
JP6299834B2 (en) | Low thermal expansion resin composition, prepreg, laminate and wiring board | |
JP4765975B2 (en) | Laminated board and printed wiring board using the same | |
JPH09143247A (en) | Resin composition for laminate, prepreg and laminate | |
JP6111518B2 (en) | Low thermal expansion resin composition, prepreg, laminate and wiring board | |
JP2017052236A (en) | Metal foil with resin, metal-clad laminate and wiring board using the same | |
JP2001240687A (en) | Prepreg and laminated board clad with metallic foil | |
JP3546594B2 (en) | Epoxy resin composition, prepreg and laminate | |
JP2005029673A (en) | Epoxy resin composition for printed wiring board, and prepreg for printed wiring board, metal-clad laminate and multilayer printed wiring board using the composition | |
JP2019199537A (en) | Resin composition, prepreg, metal foil with resin, laminate, and printed wiring board | |
JP2004307673A (en) | Modified polyimide resin composition, and prepreg and laminate using the same | |
JP2007294516A (en) | Material for multilayer printed-circuit board and the multilayer printed-circuit board using the same | |
JP2016196556A (en) | Prepreg, metal-clad laminate and printed wiring board | |
JPS625448B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080807 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080807 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20080807 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20080825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080916 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081114 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090407 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20090527 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090609 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090707 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090902 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20100409 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120208 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4926811 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |