Nothing Special   »   [go: up one dir, main page]

JP4903035B2 - Radial tire - Google Patents

Radial tire Download PDF

Info

Publication number
JP4903035B2
JP4903035B2 JP2006353003A JP2006353003A JP4903035B2 JP 4903035 B2 JP4903035 B2 JP 4903035B2 JP 2006353003 A JP2006353003 A JP 2006353003A JP 2006353003 A JP2006353003 A JP 2006353003A JP 4903035 B2 JP4903035 B2 JP 4903035B2
Authority
JP
Japan
Prior art keywords
cord
belt
tire
radial tire
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006353003A
Other languages
Japanese (ja)
Other versions
JP2008162366A (en
Inventor
厚 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006353003A priority Critical patent/JP4903035B2/en
Publication of JP2008162366A publication Critical patent/JP2008162366A/en
Application granted granted Critical
Publication of JP4903035B2 publication Critical patent/JP4903035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、タイヤのカーカスを補強するベルトに、波形に形付けしたコードをタイヤの赤道面に沿う向きに配置した周方向ベルト層を少なくとも1層は有する、ラジアルタイヤ、中でも重荷重用ラジアルタイヤに関する。   The present invention relates to a radial tire, particularly a heavy-duty radial tire, having at least one circumferential belt layer in which a corrugated cord is disposed on a belt that reinforces a carcass of a tire in a direction along the equatorial plane of the tire. .

タイヤのベルト補強に波形コードを適用したタイヤについて、例えば特許文献1および2には、ベルト幅方向に剛性分布を持たせるために波形コードを用いることが提案されている。
特開平2−81707号公報 特開平2−81708号公報
Regarding tires in which a corrugated cord is applied to the belt reinforcement of the tire, for example, Patent Documents 1 and 2 propose the use of a corrugated cord in order to have a rigidity distribution in the belt width direction.
JP-A-2-81707 JP-A-2-81708

従来の波形コードをベルトに使用したタイヤでは、その構造からとりわけ周方向ベルト層に大きな負担がかかる。すなわち、周方向ベルト層に適用したコードはタイヤ転動時に周方向の歪を直接受けてしまうために、タイヤ転動時には歪変形を繰り返し受けることになる。従って、長距離走行後には特に負担の厳しい周方向ベルト層の端部に疲労によるコード破断が発生しやすい。
さらに、タイヤの外傷等を介して外部から浸入した水分が周方向ベルト層にまで達すると、コードの腐食によりコード破断が助長される。
In a tire using a conventional corrugated cord for a belt, the circumferential belt layer is particularly burdensome because of its structure. That is, since the cord applied to the circumferential belt layer is directly subjected to circumferential strain at the time of tire rolling, the cord is repeatedly subjected to strain deformation at the time of tire rolling. Therefore, the cord breakage due to fatigue tends to occur at the end of the circumferential belt layer, which is particularly hard after long distance running.
Furthermore, when the moisture that has entered from the outside through the damage of the tire reaches the circumferential belt layer, the cord breakage is promoted by the corrosion of the cord.

このベルト端部でのコード破断が重大な故障に繋がることは少ないが、かようなコード切れを発生したタイヤは更正による再使用が出来ないため、タイヤの商品価値が低下してしまう。   Although the cord breakage at the belt end portion rarely leads to a serious failure, the tire in which such a cord breakage has occurred cannot be reused by correction, and the commercial value of the tire is lowered.

そこで、本発明は、波形コードを周方向ベルト層に適用した際に問題となる波形コードの耐疲労性を、低歪域での剛性と併せて向上することを目的とする。   Accordingly, an object of the present invention is to improve the fatigue resistance of a corrugated cord, which becomes a problem when the corrugated cord is applied to a circumferential belt layer, together with rigidity in a low strain region.

発明者らは、波形の型付けを施したコードの剛性を低下することなしに耐疲労性を向上する方途について鋭意究明したところ、波形コードの伸びを適正な範囲に制御することが極めて有効であることを見出し、本発明を完成するに到った。   The inventors have intensively studied how to improve fatigue resistance without reducing the rigidity of the cord subjected to waveform shaping, and it is extremely effective to control the elongation of the waveform cord within an appropriate range. As a result, the present invention has been completed.

すなわち、本発明の要旨は以下の通りである。
(1)1対のビードコア間でトロイド状に跨るカーカスの径方向外側に、ベルトおよびトレッドを順に積層配置したラジアルタイヤにおいて、該ベルトは、波形に揃って並列しタイヤの赤道面に沿う向きに延びる複数本のコードからなる周方向ベルト層を少なくとも1層は有し、該コードは、直径が0.30〜0.45mmのフィラメントからなり、大気圧下のタイヤ中のコードの伸び歪量が、少なくともベルトの端部において0.3〜2.0%であることを特徴とするラジアルタイヤ。
That is, the gist of the present invention is as follows.
(1) In a radial tire in which a belt and a tread are sequentially stacked on the outer side in the radial direction of a carcass straddling a toroidal shape between a pair of bead cores, the belt is aligned in parallel with a waveform and extends in a direction along the equator plane of the tire. The belt has at least one circumferential belt layer composed of a plurality of extending cords, and the cords are made of filaments having a diameter of 0.30 to 0.45 mm, and the amount of elongation strain of the cords in the tire under atmospheric pressure is increased. A radial tire characterized by being 0.3 to 2.0% at least at the end of the belt.

(2)前記コードは、1または複数本のフィラメントによるコアのまわりに複数本のフィラメントによるシ−スの1層または2層を配置した層撚り構造を有することを特徴とする上記(1)に記載のラジアルタイヤ。 (2) In the above (1), the cord has a layer twist structure in which one or two layers of a sheath of a plurality of filaments are arranged around a core of one or a plurality of filaments. The described radial tire.

(3)前記コードは、最外層のシースにおけるフィラメント相互間の隙間が0.4〜1mmであることを特徴とする上記(1)または(2)に記載のラジアルタイヤ。 (3) The radial tire according to (1) or (2), wherein the cord has a gap between filaments in the outermost sheath of 0.4 to 1 mm.

(4)前記周方向ベルト層におけるコードの並列間隔が0.4〜0.9mmであることを特徴とする上記(1)ないし(3)のいずれかに記載のラジアルタイヤ。 (4) The radial tire according to any one of (1) to (3) above, wherein a parallel interval of cords in the circumferential belt layer is 0.4 to 0.9 mm.

(5)前記コードは、引張強さが2300N以上であることを特徴とする上記(1)ないし(4)のいずれかに記載のラジアルタイヤ。 (5) The radial tire according to any one of (1) to (4), wherein the cord has a tensile strength of 2300 N or more.

(6)前記ベルトが、周方向ベルト層の1〜4層を有することを特徴とする上記(1)ないし(5)のいずれかに記載のラジアルタイヤ。 (6) The radial tire according to any one of (1) to (5), wherein the belt has 1 to 4 circumferential belt layers.

(7)前記ベルトが、タイヤの赤道面に対して傾斜した向きに延びるコードからなる交差ベルト層の1〜3層を有することを特徴とする上記(1)ないし(6)のいずれかに記載のラジアルタイヤ。 (7) The belt according to any one of the above (1) to (6), wherein the belt has 1 to 3 cross belt layers made of cords extending in a direction inclined with respect to the equator plane of the tire. Radial tires.

本発明によれば、波形コードの耐疲労性が向上され、該波形コードを周方向ベルト層に適用した際に問題となる、特にベルト端部でのコード切れは抑制されるため、タイヤ更生にも耐え得る性能のタイヤを提供できる。
また、コードの低歪域での剛性が高いことから、タイヤに内圧を充填した際の径成長は押さえ込まれるため、内圧充填後のコードに波形を残すことが可能になり、波形コードに所期した性能を付与することができる。
According to the present invention, the fatigue resistance of the corrugated cord is improved, and when the corrugated cord is applied to the circumferential belt layer, cord breakage, particularly at the end of the belt, is suppressed. Tires that can withstand
In addition, since the rigidity of the cord in the low strain region is high, the diameter growth when the tire is filled with internal pressure is suppressed, so it is possible to leave a waveform in the cord after filling with the internal pressure. Performance can be imparted.

以下に、本発明のラジアルタイヤについて、図1に示す建設車両用タイヤを例に詳しく説明する。
すなわち、図示のタイヤは、1対のビードコア間でトロイド状に跨る1枚または複数枚のラジアルプライからなるカーカス1を骨格として、このカーカス1のクラウン部の径方向外側にベルト2を配置し、さらにその径方向外側にトレッドを配置してなる。
In the following, the radial tire of the present invention will be described in detail with reference to the construction vehicle tire shown in FIG.
That is, in the illustrated tire, a carcass 1 made of one or a plurality of radial plies straddling a toroidal shape between a pair of bead cores is used as a skeleton, and a belt 2 is arranged on the radially outer side of the crown portion of the carcass 1, Further, a tread is arranged on the outer side in the radial direction.

ベルト3は、複数本のスチールコードによるゴム引き布の積層になり、図示例では4層のベルト層B1〜B4からなる。これらのうち、ベルト層B1およびB2は、タイヤの赤道面に対して傾斜して延びるコードを、積層したベルト層間で交差する向きに配置した交差ベルト層である。一方、ベルト層B3およびB4は、波形に揃って並列しタイヤの赤道面に沿う向きに延びる複数本の波形コードからなる周方向ベルト層である。   The belt 3 is formed by laminating rubberized cloths made of a plurality of steel cords, and is composed of four belt layers B1 to B4 in the illustrated example. Among these, the belt layers B1 and B2 are intersecting belt layers in which cords extending incline with respect to the equator plane of the tire are arranged in an intersecting direction between the laminated belt layers. On the other hand, the belt layers B3 and B4 are circumferential belt layers composed of a plurality of corrugated cords that are aligned in parallel with each other and extend in a direction along the equator plane of the tire.

ここで、上記の周方向ベルト層B3およびB4を構成する波形コードは、直径が0.30〜0.45mmのフィラメントからなること、少なくともベルトの端部に配置したコードの伸び歪量が0.3〜2.0%であること、が肝要である。   Here, the corrugated cords constituting the circumferential belt layers B3 and B4 are made of a filament having a diameter of 0.30 to 0.45 mm, and at least the elongation strain amount of the cord disposed at the end of the belt is 0. It is important to be 3 to 2.0%.

さて、コードの疲労破断を抑えるには、コードに加わる入力を抑えることが有効である。この入力を抑えるためには、タイヤ転動時にかかる歪に対し、コードの伸びが大きく取れるようにすればよい。つまり、タイヤに内圧を充填した後にも、波形コードが伸びきらずに、波形の型付けが残った状態を維持することが重要になる。   In order to suppress the fatigue fracture of the cord, it is effective to suppress the input applied to the cord. In order to suppress this input, it is only necessary to allow the cord to be greatly stretched against the strain applied when the tire rolls. In other words, it is important to maintain the state in which the waveform shaping remains without the waveform cord being stretched even after the tire is filled with the internal pressure.

そのためには、まず、波形コードの低歪域での剛性を高くすること、具体的には、波形コードを径が0.3〜0.45mmのフィラメントから構成する。すなわち、タイヤに内圧を張った際の内圧成長領域における程度の、比較的低い歪をコードが受けた際に、フィラメントの径が0.3mm未満であると、このような低歪域での剛性を確保することができない。
一方、フィラメント径が0.45mmを超えると、波形コードの伸縮時の表面歪が大きくなり、耐疲労性が低下してしまう。
For this purpose, first, the rigidity of the corrugated cord in the low strain region is increased. Specifically, the corrugated cord is composed of a filament having a diameter of 0.3 to 0.45 mm. That is, when the cord is subjected to a relatively low strain, such as in the internal pressure growth region when the internal pressure is applied to the tire, if the filament diameter is less than 0.3 mm, the rigidity in such a low strain region Can not be secured.
On the other hand, if the filament diameter exceeds 0.45 mm, the surface strain at the time of expansion and contraction of the corrugated cord increases, and the fatigue resistance decreases.

次に、少なくともベルトの端部に配置したコードの伸び歪量を0.3〜2.0%とすることにより、コードに付与した波形がタイヤの内圧充填後にも残存させる。
ここに、コードの伸び歪量とは、大気圧下のタイヤ中のコードの伸び歪量であり、具体的には、JIS Z2241に規定の引張試験に準拠して、タイヤから抜き出した(?)コードを引張試験に供して得られる、例えば図2に示す応力−歪み線図において、応力を歪で微分した際の最大値をとる歪の値での接線を歪軸に下ろしたときの該接線と歪軸との交点を求め、この交点での歪値を伸び歪量とした。
Next, by setting the elongation strain amount of the cord disposed at least at the end of the belt to 0.3 to 2.0%, the waveform imparted to the cord remains even after the inner pressure of the tire is filled.
Here, the elongation strain amount of the cord is the elongation strain amount of the cord in the tire under atmospheric pressure. Specifically, the cord was extracted from the tire in accordance with a tensile test specified in JIS Z2241 (?). For example, in the stress-strain diagram shown in FIG. 2 obtained by subjecting the cord to a tensile test, the tangent when the tangent at the strain value taking the maximum value when the stress is differentiated by strain is lowered to the strain axis. The point of intersection between the axis and the strain axis was determined, and the strain value at this point of intersection was taken as the amount of elongation strain.

かように求める伸び歪量は、波形のコードが直線に伸び切るまでの歪量を表すことになる。すなわち、図2において、接線は真直なコードが引っ張られたときの伸びを意味し、全体から真直コードの伸び分を引くことにより波形コードの伸びの歪量が判明する。   The amount of elongation strain thus obtained represents the amount of strain until the corrugated cord is fully extended. That is, in FIG. 2, the tangent means the elongation when the straight cord is pulled, and the distortion amount of the elongation of the waveform cord is found by subtracting the elongation of the straight cord from the whole.

そして、上記の伸び歪量が0.3%未満であると、タイヤ内圧充填時の径成長後においてコードの伸びに余裕がなくなり、フィラメント切れを抑制することができなくなる。一方、2.0%を超えると、内圧充填時のタイヤの径成長が大きくなり過ぎてタイヤ表面のトレッドゴムが引っ張り状態となり、耐摩耗性および耐カット性の悪化をまねくことになる。   When the elongation strain amount is less than 0.3%, there is no allowance for the elongation of the cord after the diameter growth at the time of tire internal pressure filling, and filament breakage cannot be suppressed. On the other hand, if it exceeds 2.0%, the diameter growth of the tire at the time of internal pressure filling becomes too large, and the tread rubber on the tire surface becomes a tensile state, which leads to deterioration of wear resistance and cut resistance.

なお、波形コードの伸び歪量の規制は、少なくともベルト端部において必要であり、ここでいうベルト端部とは、ベルト端からベルト総幅の5%の長さの範囲内の領域を指す。勿論、ベルトの全域にわたり、波形コードの伸び歪量を規制することもできる。   It should be noted that the restriction on the amount of elongation distortion of the waveform cord is required at least at the belt end, and the belt end here refers to a region within a range of 5% of the total belt width from the belt end. Of course, it is also possible to regulate the amount of elongation distortion of the waveform cord over the entire belt.

また、波形コードの伸び歪量は、波形の波長と振幅を変化させることによって、上記の範囲に規制できる。   Further, the elongation distortion amount of the waveform cord can be regulated within the above range by changing the wavelength and amplitude of the waveform.

さらに、波形コードは、1または複数本のフィラメントによるコアのまわりに複数本のフィラメントによるシ−スの1層または2層を配置した層撚り構造であることが好ましい。例えば、図3に、3+9の層撚り構造を例示するように、かような層撚り構造のコードは、断面形状が円形に近くなり、例えば特開昭64−75227号公報に示すような製法をとる場合に、型付けの波長および振幅のバラツキを抑えることができ、また大きな張力が得られる利点があり、上記波形コードに好適である。   Furthermore, it is preferable that the corrugated cord has a layer twist structure in which one or two layers of a sheath of a plurality of filaments are arranged around a core of one or a plurality of filaments. For example, as illustrated in FIG. 3, a 3 + 9 layer twist structure has such a layer twist structure cord that has a cross-sectional shape close to a circle. For example, a manufacturing method as shown in Japanese Patent Application Laid-Open No. 64-75227 is used. In this case, variations in molding wavelength and amplitude can be suppressed, and there is an advantage that a large tension can be obtained, which is suitable for the waveform cord.

この層撚り構造のコードを用いるに当り、特に最外層のシースにおけるフィラメント相互間の隙間が0.4〜1mmであることが、好ましい。この隙間は、図3においてtとして示すように、シースを通る中心線の長さから、(シースフィラメント本数)×(シースフィラメント径)を引いたものである。なぜなら、この間隔tを適正に保持することによって、タイヤの外傷からの水分が周方向ベルト層に達した場合にも、コード内部への伝播を抑えることができ、腐食による疲労性の低下を抑制することができる。すなわち、この間隔が0.4mm未満では、コードの内部へのゴムの浸入性が悪化し、コード内への水分の浸入を抑制するのが難しくなる上、製造上の制約も受けることになる。一方、間隔が1mmを超えると、波形の型付けを安定して行うことが難しくなる。   In using the cord having the layer twist structure, it is particularly preferable that the gap between the filaments in the outermost sheath is 0.4 to 1 mm. This gap is obtained by subtracting (the number of sheath filaments) × (the sheath filament diameter) from the length of the center line passing through the sheath, as indicated by t in FIG. This is because, by properly maintaining this distance t, even when moisture from tire damage reaches the circumferential belt layer, propagation to the inside of the cord can be suppressed, and deterioration of fatigue due to corrosion is suppressed. can do. In other words, if the distance is less than 0.4 mm, the rubber penetration into the cord deteriorates, it becomes difficult to suppress the penetration of moisture into the cord, and manufacturing restrictions are imposed. On the other hand, when the interval exceeds 1 mm, it is difficult to stably perform waveform shaping.

前記周方向ベルト層におけるコードの並列間隔、つまり周方向ベルト層においてコード相互間の間隔を0.4〜0.9mmとすることが好ましい。すなわち、コードの並列間隔が0.4mm未満では、製造上の制約が厳しくなり、一方0.9mmを超えると打ち込みが減少して低歪域での剛性が低下し、所望の効果を得ることが出来ない。   It is preferable that the parallel spacing of the cords in the circumferential belt layer, that is, the spacing between the cords in the circumferential belt layer is 0.4 to 0.9 mm. In other words, when the parallel spacing of the cords is less than 0.4 mm, manufacturing restrictions become severe, while when it exceeds 0.9 mm, the driving is reduced and the rigidity in the low strain region is lowered, and a desired effect can be obtained. I can't.

周方向ベルト層のコードは、引張強さが2300N以上であることが好ましい。すなわち、コードの引張強さが2300N未満では、例えば重荷重用タイヤとして要求される周方向の剛性を保持できない、おそれがある。なお、上限は、4000Nであり、これ以上の強力を得ようとするとコード径が大きくなりすぎ、ゲージが厚くなって発熱耐久性が悪化する。   The cord of the circumferential belt layer preferably has a tensile strength of 2300 N or more. That is, if the tensile strength of the cord is less than 2300 N, there is a possibility that the circumferential rigidity required as, for example, a heavy duty tire cannot be maintained. Note that the upper limit is 4000 N. If an attempt is made to obtain a higher strength, the cord diameter becomes too large, the gauge becomes thick, and the heat generation durability deteriorates.

周方向ベルト層は、1〜4層を有することが好ましい。なぜなら、ベルトが5層以上になると、全体のゴムゲージが厚くなりすぎ、発熱耐久性が悪化する。   The circumferential belt layer preferably has 1 to 4 layers. This is because if the belt has five or more layers, the entire rubber gauge becomes too thick and heat generation durability deteriorates.

一方、交差ベルト層は、1〜3層を有することが好ましい。なぜなら、交差層を持たないものはベルト幅方向の変形を抑えられないため、偏摩耗性の悪化をもたらす。4層以上のベルト層は全体のゴムゲージが厚くなりすぎるため、発熱耐久性の悪化をもたらす。   On the other hand, the cross belt layer preferably has 1 to 3 layers. This is because those having no intersecting layers cannot suppress deformation in the belt width direction, resulting in deterioration of uneven wear. The belt layer of four or more layers brings about deterioration in heat generation durability because the entire rubber gauge becomes too thick.

表1に示す仕様の波形スチールコードを、同表に示す打込み数にて周方向ベルト層に適用し、図1に示した構造のタイヤをサイズ495/45R22.5で試作した。なお、ベルト2は、カーカス1上に、タイヤの赤道面に対して1+6×0.34mm構造のスチールコードが左52°および右52°の角度で傾斜する向きに延びる傾斜ベルト層B1およびB2と、タイヤの赤道面に沿って延びる波形スチールコードによる周方向ベルト層B3およびB4との積層に成る。なお、波形コードの伸び歪量は、特開昭64−75227号公報に記載された、上下のくせ付けギヤの間隔を調整することによって調整した。   A corrugated steel cord having the specifications shown in Table 1 was applied to the circumferential belt layer with the number of drivings shown in the table, and a tire having the structure shown in FIG. 1 was prototyped with a size of 495 / 45R22.5. The belt 2 includes inclined belt layers B1 and B2 extending on the carcass 1 in a direction in which a steel cord having a structure of 1 + 6 × 0.34 mm is inclined at an angle of 52 ° to the left and 52 ° to the right with respect to the equator plane of the tire. And a lamination of circumferential belt layers B3 and B4 with corrugated steel cords extending along the equator plane of the tire. The amount of elongation distortion of the waveform cord was adjusted by adjusting the distance between the upper and lower caulking gears described in JP-A No. 64-75227.

かくして得られたタイヤについて、適用リムに装着後に900kpaの内圧を充填し、その際の波形コードによる周方向ベルト層の端部、すなわちトレッド表面のトレッド中央部から幅方向へ180mmの位置における、トレッド外周径の内圧充填前に対する同充填後の変化率を径成長率として調査した。この径成長率が1%未満であれば、トレッドゴムの耐磨耗性および耐カット性に対して十分な能力を持つことを示していて、1%以上は耐磨耗性および耐カット性の悪化をもたらす。   The tire thus obtained is filled with an internal pressure of 900 kpa after being mounted on the applied rim, and the tread at the end of the circumferential belt layer by the corrugated cord at that time, that is, at a position 180 mm in the width direction from the center of the tread on the tread surface. The change rate of the outer peripheral diameter after filling with respect to the inner pressure filling was investigated as the diameter growth rate. If the diameter growth rate is less than 1%, it indicates that the tread rubber has sufficient ability for wear resistance and cut resistance, and 1% or more indicates wear resistance and cut resistance. Causes deterioration.

次に、内圧調整後のタイヤをドラム試験に供し、7.5トンの荷重を付加しながら1万kmを走行させた後、タイヤを解剖して周方向ベルト層におけるコード切れの本数を確認した。同様に、タイヤを解剖した際に、コードの内部の隙間を計測した。   Next, the tire after adjusting the internal pressure was subjected to a drum test, and after running 10,000 km while applying a load of 7.5 tons, the tire was dissected to confirm the number of cord breaks in the circumferential belt layer. . Similarly, when the tire was dissected, the gap inside the cord was measured.

以上の調査結果を表1に併記する。なお、径成長率の測定結果は、径成長率1%未満の場合を「○」および径成長率1%以上の場合を「×」にて表示した。
また、コード疲労切れ性は、コード切れなしの場合を「○」、端部コード1本のみ切れの場合を「△」およびコード2本以上切れありの場合を「×」にて表示した。
さらに、コード内部の隙間の計測結果は、ゴム浸入性として、ゴム占有率が60%以上の場合を「◎」、ゴム占有率が30%以上の場合を「○」およびゴム占有率が30%未満の場合を「×」にて表示した。
The above survey results are also shown in Table 1. The measurement results of the diameter growth rate are indicated by “◯” when the diameter growth rate is less than 1% and by “x” when the diameter growth rate is 1% or more.
Further, the cord fatigue breakability is indicated by “◯” when there is no cord breakage, “Δ” when only one end cord is cut, and “X” when two or more cords are cut.
Furthermore, the measurement result of the gap inside the cord shows that the rubber penetration is “◎” when the rubber occupancy is 60% or more, “○” when the rubber occupancy is 30% or more, and the rubber occupancy is 30%. The case of less than is indicated by “×”.

Figure 0004903035
Figure 0004903035

本発明のタイヤの構造を示す図である。It is a figure which shows the structure of the tire of this invention. 波形コードにおける応力−歪線図である。It is a stress-strain diagram in a waveform code. 本発明に用いるコード構造を示す断面図である。It is sectional drawing which shows the cord structure used for this invention.

符号の説明Explanation of symbols

1 カーカス
2 ベルト
3 トレッド
B1、B2 傾斜ベルト層
B3、B4 周方向ベルト層
1 Carcass 2 Belt 3 Tread B1, B2 Inclined Belt Layer B3, B4 Circumferential Belt Layer

Claims (7)

1対のビードコア間でトロイド状に跨るカーカスの径方向外側に、ベルトおよびトレッドを順に積層配置したラジアルタイヤにおいて、該ベルトは、波形に揃って並列しタイヤの赤道面に沿う向きに延びる複数本のコードからなる周方向ベルト層を少なくとも1層は有し、該コードは、直径が0.30〜0.45mmのフィラメントからなり、大気圧下のタイヤ中のコードの伸び歪量が、少なくともベルトの端部において0.3〜2.0%であることを特徴とするラジアルタイヤ。   In a radial tire in which a belt and a tread are sequentially stacked on the outer side in the radial direction of a carcass straddling a toroidal shape between a pair of bead cores, the belt includes a plurality of belts aligned in a waveform and extending in a direction along the equatorial plane of the tire. The belt has at least one circumferential belt layer made of the cord, the cord is made of a filament having a diameter of 0.30 to 0.45 mm, and the elongation strain amount of the cord in the tire under the atmospheric pressure is at least the belt. A radial tire characterized by being 0.3 to 2.0% at the end of the tire. 前記コードは、1または複数本のフィラメントによるコアのまわりに複数本のフィラメントによるシ−スの1層または2層を配置した層撚り構造を有することを特徴とする請求項1に記載のラジアルタイヤ。   2. The radial tire according to claim 1, wherein the cord has a layer twist structure in which one or two layers of a sheath of a plurality of filaments are arranged around a core of one or a plurality of filaments. . 前記コードは、最外層のシースにおけるフィラメント相互間の隙間が0.4〜1mmであることを特徴とする請求項1または2に記載のラジアルタイヤ。   The radial tire according to claim 1 or 2, wherein a gap between filaments in the outermost layer sheath is 0.4 to 1 mm. 前記周方向ベルト層におけるコードの並列間隔が0.4〜0.9mmであることを特徴とする請求項1ないし3のいずれかに記載のラジアルタイヤ。   The radial tire according to any one of claims 1 to 3, wherein a parallel interval of cords in the circumferential belt layer is 0.4 to 0.9 mm. 前記コードは、引張強さが2300N以上であることを特徴とする請求項1ないし4のいずれかに記載のラジアルタイヤ。   The radial tire according to any one of claims 1 to 4, wherein the cord has a tensile strength of 2300N or more. 前記ベルトが、周方向ベルト層の1〜4層を有することを特徴とする請求項1ないし5のいずれかに記載のラジアルタイヤ。   The radial tire according to claim 1, wherein the belt has 1 to 4 circumferential belt layers. 前記ベルトが、タイヤの赤道面に対して傾斜した向きに延びるコードからなる交差ベルト層の1〜3層を有することを特徴とする請求項1ないし6のいずれかに記載のラジアルタイヤ。   The radial tire according to any one of claims 1 to 6, wherein the belt has 1 to 3 cross belt layers made of cords extending in an inclined direction with respect to the equator plane of the tire.
JP2006353003A 2006-12-27 2006-12-27 Radial tire Expired - Fee Related JP4903035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353003A JP4903035B2 (en) 2006-12-27 2006-12-27 Radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353003A JP4903035B2 (en) 2006-12-27 2006-12-27 Radial tire

Publications (2)

Publication Number Publication Date
JP2008162366A JP2008162366A (en) 2008-07-17
JP4903035B2 true JP4903035B2 (en) 2012-03-21

Family

ID=39692432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353003A Expired - Fee Related JP4903035B2 (en) 2006-12-27 2006-12-27 Radial tire

Country Status (1)

Country Link
JP (1) JP4903035B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100300596A1 (en) * 2007-11-27 2010-12-02 Bridgestone Corporation Pneumatic radial tire
ES2525523T3 (en) * 2008-08-05 2014-12-26 Bridgestone Corporation Radial tire cover
JP7153554B2 (en) * 2018-12-26 2022-10-14 Toyo Tire株式会社 pneumatic tire

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527801B2 (en) * 1988-03-09 1996-08-28 株式会社ブリヂストン Belt-shaped laminated reinforcement and pneumatic tire
JPH0484395A (en) * 1990-07-27 1992-03-17 Kubota Corp Commodity transporting container
JPH06115310A (en) * 1992-10-06 1994-04-26 Bridgestone Corp Pneumatic radial tire for heavy load
JP4112079B2 (en) * 1997-07-09 2008-07-02 株式会社ブリヂストン Pneumatic radial tire
JP3349443B2 (en) * 1998-07-29 2002-11-25 住友ゴム工業株式会社 Metal cord and pneumatic tire using the same
JP4704610B2 (en) * 2001-05-31 2011-06-15 株式会社ブリヂストン Steel cord for reinforcing rubber articles and radial tire using the same

Also Published As

Publication number Publication date
JP2008162366A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
US9630452B2 (en) Pneumatic tire
JP5587739B2 (en) Pneumatic tire
JP2012046061A (en) Pneumatic tire
US20120193006A1 (en) Pneumatic tire
WO2013176082A1 (en) Pneumatic radial tire for vehicle
EP3000620A1 (en) Pneumatic radial tire for a passenger car having ultra fine steel cords for a carcass ply
JP4903035B2 (en) Radial tire
JP6480794B2 (en) Pneumatic tire
EP3000624B1 (en) Pneumatic tire
JP6873694B2 (en) Pneumatic tires
JP2009248751A (en) Pneumatic radial tire
JP2010018942A (en) Steel cord for large-sized pneumatic radial tire
JP5584053B2 (en) Pneumatic tire
JP6873695B2 (en) Pneumatic tires
JP5837399B2 (en) Pneumatic radial tire for trucks and buses
JP5354788B2 (en) Pneumatic radial tire
US20100300596A1 (en) Pneumatic radial tire
JP2014180896A (en) Radial tire for aircraft
JP5558208B2 (en) Pneumatic tire
JP2009196601A (en) Pneumatic tire
JP6072658B2 (en) Pneumatic tire
JP5680988B2 (en) Pneumatic radial tire
JP4865274B2 (en) Pneumatic radial tire
JP2009248658A (en) Pneumatic radial tire
JPH03220008A (en) 15× taper tubeless tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees