Nothing Special   »   [go: up one dir, main page]

JP4902066B2 - Battery pack system and battery pack deterioration determination method - Google Patents

Battery pack system and battery pack deterioration determination method Download PDF

Info

Publication number
JP4902066B2
JP4902066B2 JP2001235254A JP2001235254A JP4902066B2 JP 4902066 B2 JP4902066 B2 JP 4902066B2 JP 2001235254 A JP2001235254 A JP 2001235254A JP 2001235254 A JP2001235254 A JP 2001235254A JP 4902066 B2 JP4902066 B2 JP 4902066B2
Authority
JP
Japan
Prior art keywords
battery
battery pack
internal resistance
unit cell
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001235254A
Other languages
Japanese (ja)
Other versions
JP2003045387A (en
Inventor
将義 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001235254A priority Critical patent/JP4902066B2/en
Publication of JP2003045387A publication Critical patent/JP2003045387A/en
Application granted granted Critical
Publication of JP4902066B2 publication Critical patent/JP4902066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車、ハイブリッド車両等に搭載され、ニッケル−水素バッテリなどのアルカリ二次電池である単電池が複数個接続された組電池を内蔵した電池パックの電池劣化を判定する技術に関する。
【0002】
【従来の技術】
最近では、電気自動車(PEV)や、エンジンとモータを備えたいわゆるハイブリッド車両(HEV)において、モータを駆動する際の主電源として、その高いエネルギー密度(すなわち、コンパクトにエネルギーを蓄積できる)と高い出力密度の点から、ニッケル−水素(Ni−MH)バッテリが主に使用されている。かかるPEVやHEVでは、モータに対して十分な出力を供給できるように、単電池を複数個組み合わせて1つの組電池とし、その組電池が電池制御部等とともに電池パックに内蔵されている。
【0003】
かかるPEV等用の電池パックのように、非常に多数の単電池を直列に接続して組電池を構成して使用する場合、単電池の特性が基本的にすべて同じになり、組電池としての性能が十分に発揮できるように設計されている。
【0004】
【発明が解決しようとする課題】
しかしながら、単電池の特性がすべて同じになるように組電池を構成することは、実際には製造上不可能である。このため、例えば、特開平1−134877号公報には、鉛蓄電池に1つの長寿命セルと数個の通常セルを設け、長寿命セルと通常セルとの電圧差を常にモニターして、この電圧差が一定値以上になった時に寿命劣化警報を出す旨の構成が開示されている。
【0005】
かかる従来の鉛蓄電池は、主にエンジン始動を目的とするものであり、例えば電圧12Vを得るために2V用単電池が6個直列に接続されるだけである。これに対して、PEV等用の電池パックのように、非常に多数の単電池を直列に接続して組電池が構成される場合、安全確実に電池の劣化判定を行なうためには、単電池毎の電池状態を監視する必要があるが、単電池数が非常に多いので、製造が困難であり、またコストが増大するという問題がある。
【0006】
一方、電池を重大な不具合に至らない範囲で制御することが可能なブロック単位で電圧等を検出し電池パックの充放電制御を行なっていると、単電池毎の電池状態が認識できず、寿命に至る電池の発生時期や発生個所、また劣化の兆候の見極めが困難である。よって、電池パックの交換時期の指標や基準が明確でないため、PEVやHEVのように電池を動力源に用いている場合、車両走行性能に影響を及ぼす可能性があるという問題があった。
【0007】
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、低コストで寿命末期判定を安全確実に行なうことが可能な電気自動車等用の電池パックシステムおよび電池パックの劣化判定方法を提供することにある。
【0008】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る電池パックシステムは、二次電池である単電池が複数個接続された組電池を有する電池パックシステムであって、組電池は、充放電が行なわれるにつれて、他の単電池に比べて内部抵抗が常に早く上昇し、常に最初に劣化が始まる比較判定用単電池が配設されて成ることを特徴とする。
【0009】
この電池パックシステムにおいて、組電池に流れる電流を検出する電流検出部と、比較判定用単電池の電圧を検出する第1の電圧検出部と、他の単電池の電圧をブロック単位で検出する第2の電圧検出部と、少なくとも電流検出部からの電流データと第1の電圧検出部からの電圧データとに基づいて、比較判定用単電池の第1の内部抵抗を算出する第1の内部抵抗算出部と、少なくとも電流検出部からの電流データと第2の電圧検出部からの電圧データとに基づいて、他の単電池の第2の内部抵抗を算出する第2の内部抵抗算出部と、第1の内部抵抗と第2の内部抵抗とに基づいて、電池劣化判定を行なう劣化判定部とを備えることが好ましい。
【0010】
この場合、比較判定用単電池は、他の単電池よりも目付重量が大きなセパレータを有することが好ましい。
【0011】
または、比較判定用単電池は、他の単電池よりも電解液量が少なく構成されることが好ましい。
【0012】
また、二次電池はニッケル・水素二次電池であることが好ましい。
【0013】
前記の目的を達成するため、本発明に係る電池パックの劣化判定方法は、二次電池である単電池が複数個接続された組電池を有する電池パックの劣化を判定する方法であって、組電池は、充放電が行なわれるにつれて、他の単電池に比べて内部抵抗が常に早く上昇し、常に最初に劣化が始まる比較判定用単電池が配設されて成り、比較判定用単電池の第1の内部抵抗をセル単位でモニターする工程と、他の単電池の第2の内部抵抗をブロック単位でモニターする工程と、第1の内部抵抗と第2の内部抵抗とを比較することにより、電池劣化判定を行なうことを特徴とする。
【0014】
この場合、比較判定用単電池は、他の単電池よりも目付重量が大きなセパレータを有することが好ましい。
【0015】
または、比較判定用単電池は、他の単電池よりも電解液量が少なく構成されることが好ましい。
【0016】
また、二次電池はニッケル・水素二次電池であることが好ましい。
【0017】
上記の構成によれば、電池パックを構成する組電池に、他の単電池に比べて内部抵抗が常に早く上昇し、常に最初に劣化が始まる比較判定用単電池を設け、この比較判定用単電池の内部抵抗をセル単位でモニターし、他の単電池については、電圧等の検出が行われるブロック単位で内部抵抗をモニターして、両方の内部抵抗を比較することで、安全、確実、低コストで電池寿命の末期判定を行なうことができる。
【0018】
【発明の実施の形態】
以下、本発明の好適な実施の形態について、図面を参照して説明する。
【0019】
図1は、本発明の一実施形態による電池パックの構成を示すブロック図である。
【0020】
図1において、1は、HEV等に搭載される、二次電池、例えばニッケル−水素バッテリで構成された電池パックである。この電池パック1は、通常、モータに対する所定の出力を得るため、ニッケル−水素バッテリである多数の単電池が電気的に直列接続された第1電池モジュール11、第2電池モジュール12、第3電池モジュール13、第4電池モジュール14、第5電池モジュール15をさらに複数個電気的に直列接続した構成をとる。各電池モジュール11、12、13、14、15は、後述するが電池電圧を検出するブロック単位で分けられている。また、第1電池モジュール11については、後述するが比較判定用単電池111の電圧がセル単位で検出される。
【0021】
第1電池モジュール11には、他の単電池に比べて内部抵抗が常に早く上昇する比較判定用単電池111が配設されている。この比較判定用単電池111は、他の単電池に比べて、通常の電池特性には差がない程度で、目付重量が大きいセパレータを有して構成されるか、または電解液量を少なくして構成される。一般に、充放電が行われるにつれて、極板の膨張や酸化等によりセパレータの電解液が消費され、セパレータの保液量がある一定の閾値を下回ると、電池の内部抵抗の上昇が始まる。すなわち、比較判定用単電池111は、他の単電池に比べて初期のセパレータの保液量が少ないため、充放電が行なわれるにつれて、常に最初にセパレータの電解液の保液量が閾値を下回ることで、内部抵抗が常に早く上昇し、常に最初に劣化が始まることになる。
【0022】
図2は、電池容量が10Ahの電池パックにおいて、充放電パルスサイクルに対する内部抵抗の変化を、電解液量を少なくした(31g)比較判定用単電池電池(曲線A)と電解液量が通常量である(37g)他の単電池(曲線B)とで比較例示した図である。なお、図2において、1回の充放電サイクルは、20A、1分間の充電パルス期間と20A、1分間の放電パルス期間からなる。図2に示すように、曲線Aの比較判定用単電池のほうが、曲線Bの他の単電池よりも早く内部抵抗が上昇している。
【0023】
再び、図1に戻って、2は、電池パック1に対する電圧検出用スイッチであり、比較判定用単電池111の電圧および第1から第5電池モジュール11、12、13、14、15のそれぞれの電池電圧を時系列で所定時間毎に電圧サンプルV0(n)、V1(n)、V2(n)、V3(n)、V4(n)、V5(n)として検出するためのスイッチ20、21、22、23、24、25からなる。
【0024】
3は、電池パック1に対する温度検出用スイッチであり、第1から第5電池モジュール11、12、13、14、15のそれぞれと温度結合して配設された温度センサ41、42、43、44、45で測定されたそれぞれの電池温度を時系列で所定時間毎に温度サンプルT1(n)、T2(n)、T3(n)、T4(n)、T5(n)として検出するためのスイッチ31、32、33、34、35からなる。
【0025】
4は電流検出部であり、電流センサ(不図示)から出力される電池パック1の充放電電流を所定時間毎にサンプリングし、電流サンプルI(n)を取得して電流の大きさを検出すると共に、その符号により充電であるのか放電であるのかの充放電方向C/Dも検出する。
【0026】
5は電池コントローラであり、制御信号VCにより電圧検出用スイッチ20、21、22、23、24、25を時系列にオン状態にして取得した電圧サンプルV0(n)、V1(n)、V2(n)、V3(n)、V4(n)、V5(n)と、制御信号TCにより温度検出用スイッチ31、32、33、34、35を時系列にオン状態にして取得した温度サンプルT1(n)、T2(n)、T3(n)、T4(n)、T5(n)と、電流検出部5からの電流サンプルI(n)および充放電方向C/Dとから、電池パック1の残存容量を演算により求め、電池パック1に対する充放電制御のために、外部のシステム制御部(不図示)に電池情報BIとして送信する。
【0027】
また、電池コントローラ5は、演算により求めた残存容量が内部抵抗変化の小さい残存容量範囲において、電圧サンプルV0(n)と電流サンプルI(n)および充放電方向C/Dとに基づいて、比較判定用単電池111の内部抵抗を算出し、電圧サンプルV1(n)、V2(n)、V3(n)、V4(n)、V5(n)と電流サンプルI(n)および充放電方向C/Dとに基づいて、各電池モジュール11、12、13、14、15における他の単電池の内部抵抗を算出し、他の単電池の内部抵抗を比較判定用単電池111の内部抵抗と比較することにより、電池パックの劣化状態を判断し、電池寿命末期と判定した場合、外部のシステム制御部(不図示)に電池情報BIにより警告信号を送信する。
【0028】
次に、このように構成された電池パックシステムの劣化判定方法について、図3を参照して説明する。
【0029】
図3は、本発明の一実施形態による電池パックの劣化判定方法における劣化判定ルーチンを示すフローチャートである。
【0030】
図3において、まず、比較判定用単電池111および各電池モジュール11、12、13、14、15の電圧サンプルVi(n)、電流サンプルIi(n)、温度サンプルTi(n)を取得して、残存容量SOCi(n)を演算する(S301)。次に、演算した残存容量SOCi(n)が内部抵抗変化の小さい残存容量範囲において、電圧サンプルVi(n)および電流サンプルIi(n)をプロットして、そのVi(n)−Ii(n)特性から、比較判定用単電池111の内部抵抗RAおよび他の単電池の内部抵抗RBを算出する(S302)。
【0031】
次に、内部抵抗RAと内部抵抗RBとの差分値(RA−RB)が、所定の閾値Rsを超えているか否かを判断する(S303)。この判断の結果、RA−RB≦Rsであった場合(No)、比較判定用単電池111の内部抵抗RAは増大しておらず、劣化に至っていないため、電池パック1は寿命末期でないと判定し(S304)、ステップS301に戻る。
【0032】
一方、ステップS303における判断の結果、充放電サイクルが繰り返されて、比較判定用単電池111の内部抵抗RAが増大し、RA−RB>Rsとなった場合(Yes)、劣化が進行しており、電池パック1は寿命末期であると判定し(S305)、外部のシステム制御部に警告信号を送信する(S306)。
【0033】
【発明の効果】
以上説明したように、本発明によれば、低コストで寿命末期判定を安全確実に行なうことが可能な電池パックシステムおよび電池パックの劣化判定方法を提供することができる、という格別な効果を奏する。
【図面の簡単な説明】
【図1】 本発明の一実施形態による電池パックの構成を示すブロック図
【図2】 充放電パルスサイクルに対する内部抵抗の変化を示す図
【図3】 本発明の一実施形態による電池パックの劣化判定方法における劣化判定ルーチンを示すフローチャート
【符号の説明】
1 電池パック
2 電圧検出用スイッチ
3 温度検出用スイッチ
4 電流検出部
5 電池コントローラ
111 比較判定用単電池
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technology for determining battery deterioration of a battery pack that is mounted on an electric vehicle, a hybrid vehicle, or the like and that includes an assembled battery in which a plurality of unit cells that are alkaline secondary batteries such as nickel-hydrogen batteries are connected.
[0002]
[Prior art]
Recently, in an electric vehicle (PEV) and a so-called hybrid vehicle (HEV) equipped with an engine and a motor, as a main power source for driving the motor, its high energy density (that is, energy can be stored compactly) and high In view of power density, nickel-hydrogen (Ni-MH) batteries are mainly used. In such PEV and HEV, a plurality of unit cells are combined into one assembled battery so that a sufficient output can be supplied to the motor, and the assembled battery is built in the battery pack together with the battery control unit and the like.
[0003]
When such a battery pack for PEV or the like is used by configuring a battery pack by connecting a large number of battery cells in series, the characteristics of the battery cells are basically the same. It is designed so that performance can be fully demonstrated.
[0004]
[Problems to be solved by the invention]
However, it is actually impossible to manufacture the assembled battery so that the characteristics of the single cells are all the same. For this reason, for example, in JP-A-1-134877, a lead-acid battery is provided with one long-life cell and several normal cells, and the voltage difference between the long-life cell and the normal cell is constantly monitored. A configuration is disclosed in which a life deterioration warning is issued when the difference exceeds a certain value.
[0005]
Such a conventional lead-acid battery is mainly intended for starting the engine, and, for example, in order to obtain a voltage of 12V, only six 2V single cells are connected in series. On the other hand, when an assembled battery is configured by connecting a large number of single cells in series like a battery pack for PEV or the like, in order to perform battery deterioration determination safely and reliably, the single cell Although it is necessary to monitor the state of each battery, there are problems that the number of single cells is so large that it is difficult to manufacture and the cost increases.
[0006]
On the other hand, if the battery pack charge / discharge control is performed by detecting the voltage etc. in units of blocks that can control the battery within a range that does not cause a serious malfunction, the battery status of each unit cell cannot be recognized, and the life It is difficult to ascertain when and where the battery reaches, as well as signs of deterioration. Therefore, since the index and reference | standard of replacement | exchange time of a battery pack are not clear, when using a battery as a motive power source like PEV and HEV, there existed a problem that a vehicle running performance might be affected.
[0007]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a battery pack system for an electric vehicle or the like capable of safely and reliably performing end-of-life determination at low cost and battery pack deterioration determination. It is to provide a method.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a battery pack system according to the present invention is a battery pack system having an assembled battery in which a plurality of single cells as secondary batteries are connected, and the assembled battery is charged and discharged. As a result, the internal resistance is always increased faster than other unit cells, and a unit cell for comparison and determination that always begins to deteriorate is provided.
[0009]
In this battery pack system, a current detection unit that detects a current flowing through the assembled battery, a first voltage detection unit that detects a voltage of the comparison determination unit cell, and a first unit that detects a voltage of another unit cell in block units. 1st internal resistance which calculates the 1st internal resistance of the cell for comparison judgment based on the voltage data of 2 voltage detection parts, the current data from at least the current detection part, and the voltage data from the 1st voltage detection part A second internal resistance calculation unit that calculates a second internal resistance of another unit cell based on at least the current data from the current detection unit and the voltage data from the second voltage detection unit; It is preferable to include a deterioration determination unit that performs battery deterioration determination based on the first internal resistance and the second internal resistance.
[0010]
In this case, it is preferable that the comparative determination unit cell has a separator having a larger weight per unit area than other unit cells.
[0011]
Alternatively, it is preferable that the comparative determination unit cell is configured to have a smaller amount of electrolytic solution than other unit cells.
[0012]
The secondary battery is preferably a nickel / hydrogen secondary battery.
[0013]
In order to achieve the above object, a battery pack deterioration determination method according to the present invention is a method for determining deterioration of a battery pack having an assembled battery in which a plurality of single cells as secondary batteries are connected. As the battery is charged / discharged , the internal resistance always rises faster than the other cells, and the battery for comparison judgment is always arranged, which first starts to deteriorate . Comparing the internal resistance of one cell in units of cells, the step of monitoring the second internal resistance of another unit cell in units of blocks, and comparing the first internal resistance and the second internal resistance, The battery deterioration determination is performed.
[0014]
In this case, it is preferable that the comparative determination unit cell has a separator having a larger weight per unit area than other unit cells.
[0015]
Alternatively, it is preferable that the comparative determination unit cell is configured to have a smaller amount of electrolytic solution than other unit cells.
[0016]
The secondary battery is preferably a nickel / hydrogen secondary battery.
[0017]
According to the above-described configuration, the battery pack constituting the battery pack is provided with the comparative determination unit cell in which the internal resistance always rises faster than other unit cells and always starts to deteriorate first. The internal resistance of the battery is monitored in units of cells, and for other single cells, the internal resistance is monitored in units of blocks in which voltage etc. are detected, and both internal resistances are compared to ensure safety, reliability, and low The end of battery life can be determined at a low cost.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
[0019]
FIG. 1 is a block diagram showing a configuration of a battery pack according to an embodiment of the present invention.
[0020]
In FIG. 1, reference numeral 1 denotes a battery pack that is mounted on a HEV or the like and is composed of a secondary battery, for example, a nickel-hydrogen battery. The battery pack 1 usually includes a first battery module 11, a second battery module 12, and a third battery in which a large number of unit cells, which are nickel-hydrogen batteries, are electrically connected in series in order to obtain a predetermined output to the motor. The module 13, the fourth battery module 14, and the fifth battery module 15 are further electrically connected in series. Each battery module 11, 12, 13, 14, 15 is divided into block units for detecting battery voltage, as will be described later. Further, as will be described later, the voltage of the first battery module 11 is detected on a cell-by-cell basis.
[0021]
The first battery module 11 is provided with a comparative determination unit cell 111 whose internal resistance always increases faster than other unit cells. This comparative determination unit cell 111 is configured to have a separator with a large weight per unit weight or a smaller amount of electrolyte than the other unit cells. Configured. In general, as charging / discharging is performed, the electrolyte solution of the separator is consumed due to expansion and oxidation of the electrode plate, and when the amount of liquid retained in the separator falls below a certain threshold, the internal resistance of the battery starts to increase. That is, since the comparison determination unit cell 111 has a smaller amount of liquid retained in the initial separator than the other unit cells, the amount of retained electrolyte in the separator is always lower than the threshold as charging / discharging is performed first. As a result, the internal resistance always rises quickly, and the deterioration always starts first.
[0022]
FIG. 2 shows a change in internal resistance with respect to a charge / discharge pulse cycle in a battery pack having a battery capacity of 10 Ah (31 g) with a reduced amount of electrolyte (31 g), a comparative judgment cell (curve A), and a normal amount of electrolyte. (37g) is a diagram comparatively illustrated with another unit cell (curve B). In FIG. 2, one charge / discharge cycle is composed of 20A, a charge pulse period of 1 minute, and 20A, a discharge pulse period of 1 minute. As shown in FIG. 2, the internal resistance of the single cell for comparison determination of the curve A increases faster than the other single cells of the curve B.
[0023]
Returning to FIG. 1 again, reference numeral 2 denotes a voltage detection switch for the battery pack 1, and the voltage of the comparison determination unit cell 111 and each of the first to fifth battery modules 11, 12, 13, 14, 15. Switches 20 and 21 for detecting the battery voltage as voltage samples V0 (n), V1 (n), V2 (n), V3 (n), V4 (n), and V5 (n) at predetermined time intervals in time series. , 22, 23, 24, 25.
[0024]
Reference numeral 3 denotes a temperature detection switch for the battery pack 1, and temperature sensors 41, 42, 43, 44 arranged in temperature coupling with the first to fifth battery modules 11, 12, 13, 14, 15. , 45 is a switch for detecting each battery temperature as temperature samples T1 (n), T2 (n), T3 (n), T4 (n), and T5 (n) at predetermined time intervals in a time series. 31, 32, 33, 34, 35.
[0025]
Reference numeral 4 denotes a current detector, which samples the charge / discharge current of the battery pack 1 output from a current sensor (not shown) at predetermined time intervals, acquires a current sample I (n), and detects the magnitude of the current. At the same time, the charge / discharge direction C / D, which is charging or discharging, is also detected by the sign.
[0026]
Reference numeral 5 denotes a battery controller, and voltage samples V0 (n), V1 (n), V2 () obtained by turning on the voltage detection switches 20, 21, 22, 23, 24, and 25 in time series by a control signal VC. n), V3 (n), V4 (n), V5 (n), and the temperature sample T1 (T) obtained by turning on the temperature detection switches 31, 32, 33, 34, and 35 in time series by the control signal TC. n), T2 (n), T3 (n), T4 (n), T5 (n), the current sample I (n) from the current detector 5 and the charge / discharge direction C / D, The remaining capacity is obtained by calculation, and is transmitted as battery information BI to an external system control unit (not shown) for charge / discharge control on the battery pack 1.
[0027]
Further, the battery controller 5 compares the remaining capacity obtained by the calculation based on the voltage sample V0 (n), the current sample I (n), and the charge / discharge direction C / D in the remaining capacity range where the internal resistance change is small. The internal resistance of the judgment cell 111 is calculated, and the voltage samples V1 (n), V2 (n), V3 (n), V4 (n), V5 (n), the current sample I (n), and the charge / discharge direction C Based on / D, the internal resistances of the other unit cells in each of the battery modules 11, 12, 13, 14, and 15 are calculated, and the internal resistances of the other unit cells are compared with the internal resistance of the comparison determination unit cell 111. Thus, the deterioration state of the battery pack is determined, and when it is determined that the end of the battery life is reached, a warning signal is transmitted by the battery information BI to an external system control unit (not shown).
[0028]
Next, a deterioration determination method for the battery pack system configured as described above will be described with reference to FIG.
[0029]
FIG. 3 is a flowchart showing a deterioration determination routine in the battery pack deterioration determination method according to the embodiment of the present invention.
[0030]
In FIG. 3, first, a voltage sample Vi (n), a current sample Ii (n), and a temperature sample Ti (n) of the comparative determination unit cell 111 and each of the battery modules 11, 12, 13, 14, and 15 are obtained. The remaining capacity SOCi (n) is calculated (S301). Next, in the remaining capacity range where the calculated remaining capacity SOCi (n) has a small internal resistance change, the voltage sample Vi (n) and the current sample Ii (n) are plotted, and Vi (n) −Ii (n) is plotted. From the characteristics, the internal resistance RA of the comparison determination unit cell 111 and the internal resistance RB of other unit cells are calculated (S302).
[0031]
Next, it is determined whether or not the difference value (RA−RB) between the internal resistance RA and the internal resistance RB exceeds a predetermined threshold Rs (S303). If RA-RB ≦ Rs as a result of this determination (No), it is determined that the battery pack 1 is not at the end of its life because the internal resistance RA of the comparison determination unit cell 111 has not increased and has not deteriorated. (S304), the process returns to step S301.
[0032]
On the other hand, as a result of the determination in step S303, when the charge / discharge cycle is repeated and the internal resistance RA of the cell for comparison determination 111 increases and RA-RB> Rs is satisfied (Yes), the deterioration is progressing. The battery pack 1 is determined to be at the end of its life (S305), and a warning signal is transmitted to the external system control unit (S306).
[0033]
【Effect of the invention】
As described above, according to the present invention, it is possible to provide a battery pack system and a battery pack deterioration determination method capable of safely and reliably performing end-of-life determination at low cost. .
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a battery pack according to an embodiment of the present invention. FIG. 2 is a diagram showing changes in internal resistance with respect to a charge / discharge pulse cycle. Flow chart showing a deterioration judgment routine in the judgment method [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery pack 2 Voltage detection switch 3 Temperature detection switch 4 Current detection part 5 Battery controller 111 Cell for comparison judgment

Claims (9)

二次電池である単電池が複数個接続された組電池を有する電池パックシステムであって、
前記組電池は、充放電が行なわれるにつれて、他の単電池に比べて内部抵抗が常に早く上昇し、常に最初に劣化が始まる比較判定用単電池が配設されて成ることを特徴とする電池パックシステム。
A battery pack system having an assembled battery in which a plurality of single cells as secondary batteries are connected,
The assembled battery is provided with a comparative determination unit cell in which internal resistance always increases faster than other unit cells as charge / discharge is performed, and deterioration always starts first. Pack system.
前記組電池に流れる電流を検出する電流検出部と、
前記比較判定用単電池の電圧を検出する第1の電圧検出部と、
前記他の単電池の電圧をブロック単位で検出する第2の電圧検出部と、
少なくとも前記電流検出部からの電流と前記第1の電圧検出部からの電圧とに基づいて、前記比較判定用単電池の第1の内部抵抗を算出する第1の内部抵抗算出部と、
少なくとも前記電流検出部からの電流と前記第2の電圧検出部からの電圧とに基づいて、前記他の単電池の第2の内部抵抗を算出する第2の内部抵抗算出部と、
前記第1の内部抵抗と前記第2の内部抵抗とに基づいて、電池劣化判定を行なう劣化判定部とを備えたことを特徴とする請求項1記載の電池パックシステム。
A current detection unit for detecting a current flowing in the assembled battery;
A first voltage detection unit for detecting a voltage of the battery for comparison determination;
A second voltage detector for detecting the voltage of the other unit cell in block units;
A first internal resistance calculation unit that calculates a first internal resistance of the comparison determination unit cell based on at least a current from the current detection unit and a voltage from the first voltage detection unit;
A second internal resistance calculator for calculating a second internal resistance of the other unit cell based on at least a current from the current detector and a voltage from the second voltage detector;
The battery pack system according to claim 1, further comprising a deterioration determination unit that performs battery deterioration determination based on the first internal resistance and the second internal resistance.
前記比較判定用単電池は、前記他の単電池よりも目付重量が大きなセパレータを有することを特徴とする請求項1または2記載の電池パックシステム。  3. The battery pack system according to claim 1, wherein the comparative determination unit cell includes a separator having a larger weight per unit area than the other unit cell. 4. 前記比較判定用単電池は、前記他の単電池よりも電解液量が少なく構成されることを特徴とする請求項1または2記載の電池パックシステム。  3. The battery pack system according to claim 1, wherein the comparison determination unit cell is configured to have a smaller amount of electrolyte than the other unit cell. 前記二次電池はニッケル・水素二次電池である請求項1から4のいずれか一項記載の電池パックシステム。  The battery pack system according to any one of claims 1 to 4, wherein the secondary battery is a nickel-hydrogen secondary battery. 二次電池である単電池が複数個接続された組電池を有する電池パックの劣化を判定する方法であって、
前記組電池は、充放電が行なわれるにつれて、他の単電池に比べて内部抵抗が常に早く上昇し、常に最初に劣化が始まる比較判定用単電池が配設されて成り、
前記比較判定用単電池の第1の内部抵抗をセル単位でモニターする工程と、
前記他の単電池の第2の内部抵抗をブロック単位でモニターする工程と、
前記第1の内部抵抗と前記第2の内部抵抗とを比較することにより、電池劣化判定を行なうことを特徴とする電池パックの劣化判定方法。
A method of determining deterioration of a battery pack having an assembled battery in which a plurality of single cells as secondary batteries are connected,
As the battery pack is charged and discharged , the internal resistance always rises faster than other battery cells, and a battery for comparison and determination that always begins to deteriorate first is arranged.
Monitoring the first internal resistance of the comparative determination unit cell in units of cells;
Monitoring the second internal resistance of the other unit cell in units of blocks;
A battery pack deterioration determination method, wherein battery deterioration determination is performed by comparing the first internal resistance and the second internal resistance.
前記比較判定用単電池は、前記他の単電池よりも目付重量が大きなセパレータを有することを特徴とする請求項6記載の電池パックの劣化判定方法。  The battery pack deterioration determination method according to claim 6, wherein the comparison determination unit cell includes a separator having a larger weight per unit area than the other unit cell. 前記比較判定用単電池は、前記他の単電池よりも電解液量が少なく構成されることを特徴とする請求項6記載の電池パックの劣化判定方法。  The battery pack deterioration determination method according to claim 6, wherein the comparison determination unit cell is configured to have a smaller amount of electrolyte than the other unit cell. 前記二次電池はニッケル・水素二次電池である請求項6から8のいずれか一項記載の電池パックの劣化判定方法。  The battery pack deterioration determination method according to any one of claims 6 to 8, wherein the secondary battery is a nickel-hydrogen secondary battery.
JP2001235254A 2001-08-02 2001-08-02 Battery pack system and battery pack deterioration determination method Expired - Fee Related JP4902066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001235254A JP4902066B2 (en) 2001-08-02 2001-08-02 Battery pack system and battery pack deterioration determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235254A JP4902066B2 (en) 2001-08-02 2001-08-02 Battery pack system and battery pack deterioration determination method

Publications (2)

Publication Number Publication Date
JP2003045387A JP2003045387A (en) 2003-02-14
JP4902066B2 true JP4902066B2 (en) 2012-03-21

Family

ID=19066733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235254A Expired - Fee Related JP4902066B2 (en) 2001-08-02 2001-08-02 Battery pack system and battery pack deterioration determination method

Country Status (1)

Country Link
JP (1) JP4902066B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205977A (en) * 2006-02-03 2007-08-16 Toyota Motor Corp Monitor for secondary battery
JP2009064682A (en) * 2007-09-06 2009-03-26 Seiwa Electric Mfg Co Ltd Battery deterioration judging device, and lithium ion battery pack equipped with the same
JP4561859B2 (en) 2008-04-01 2010-10-13 トヨタ自動車株式会社 Secondary battery system
KR101536143B1 (en) * 2011-03-10 2015-07-14 주식회사 엘지화학 Battery Pack Having Stable Measuring Means
JP5971680B2 (en) * 2012-01-11 2016-08-17 株式会社東芝 Battery life prior detection method, battery system, and battery controller
WO2014097490A1 (en) * 2012-12-21 2014-06-26 株式会社日立製作所 Lithium-ion secondary battery module, and device and method for assessing remaining life of same
JP5942882B2 (en) * 2013-02-15 2016-06-29 株式会社デンソー Battery system
JP6171821B2 (en) * 2013-10-09 2017-08-02 Tdk株式会社 Power storage device having life determination function, and battery life determination method
WO2015133068A1 (en) * 2014-03-03 2015-09-11 パナソニックIpマネジメント株式会社 Device for determining battery type and method for determining battery type
JP6048448B2 (en) * 2014-05-22 2016-12-21 トヨタ自動車株式会社 Method for determining reusable product application of used secondary battery and reconfiguring assembled battery reassembled product
CN108604715B (en) 2016-03-01 2021-04-23 株式会社村田制作所 Battery pack and charge/discharge control method
KR101835375B1 (en) 2016-08-30 2018-03-08 조선대학교산학협력단 Apparatus for estimating state-of-health of battery group and method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797504B2 (en) * 1984-12-27 1995-10-18 松下電器産業株式会社 Sealed alkaline storage battery
JPH01134877A (en) * 1987-11-18 1989-05-26 Japan Storage Battery Co Ltd Lead-acid battery
JPH0446530A (en) * 1990-06-12 1992-02-17 Pfu Ltd Battery malfunction detecting circuit
JPH0997624A (en) * 1995-09-29 1997-04-08 Toray Ind Inc Manufacture of battery
JPH10106635A (en) * 1996-09-30 1998-04-24 Matsushita Electric Ind Co Ltd Battery pack condition detecting method
JPH10134852A (en) * 1996-10-29 1998-05-22 Hitachi Auto Syst:Kk Battery diagnostic device
JP3103781B2 (en) * 1997-02-17 2000-10-30 古河電池株式会社 How to inject the battery
JPH11185830A (en) * 1997-12-16 1999-07-09 Shizuoka Seiki Co Ltd Abnormal battery voltage detecting device
JPH11285162A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Charger for assembled battery unit
JP2001057711A (en) * 1999-01-25 2001-02-27 Zip Charge:Kk Energy supply system for electric vehicle, battery for electric vehicle, battery charger for the electric vehicle, battery vending apparatus and battery managing system for the electric vehicle
JP2000223164A (en) * 1999-01-29 2000-08-11 Ntt Docomo Inc Battery pack, and method and device for diagnosing capacity deterioration of same battery pack
JP4529202B2 (en) * 1999-06-23 2010-08-25 パナソニック株式会社 Assembled battery

Also Published As

Publication number Publication date
JP2003045387A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
KR100669434B1 (en) Method for controlling secondary battery module
CN109860740B (en) Control method and device for relieving thermal runaway spread of battery pack and battery pack
JP4186916B2 (en) Battery pack management device
US6642692B2 (en) Charge equalizing device for power storage unit
Garche et al. Battery management systems (BMS) for increasing battery life time
JP3870577B2 (en) Variation determination method for battery pack and battery device
CN109995102A (en) A kind of equal balance system of Prospect of EVS Powered with Batteries and control method
EP3958006B1 (en) Battery diagnosis apparatus and method
US10005373B2 (en) Battery control system and vehicle control system
EP3982140B1 (en) Device for managing battery and method for managing battery
EP3032690B1 (en) Battery control system and vehicle control system
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
JP2007040991A (en) Battery control system and driving method thereof
JP4902066B2 (en) Battery pack system and battery pack deterioration determination method
JP2010088194A (en) Device and method for adjusting capacity of battery pack
JP3855497B2 (en) Charged / discharged state determination method and apparatus for assembled battery
EP4394404A1 (en) Apparatus and method for diagnosing battery cell
JP3649135B2 (en) Abnormality detection device for battery pack
KR102667765B1 (en) Device and method for determining state of battery pack
JP2004031014A (en) Maximum charge-discharge power calculation method and device for battery pack including parallel connection battery
EP3972074A1 (en) Apparatus and method for controlling turn-on operation of switch units included in parallel multi-battery pack
EP3974850A1 (en) Parallel battery relay diagnosis device and method
KR20220122358A (en) Apparatus and method for diagnosing battery
WO2023191098A1 (en) Battery control device
JP4553853B2 (en) Power supply for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees