JP4901440B2 - Exhaust gas purification catalyst, regeneration method thereof, exhaust gas purification apparatus and exhaust gas purification method using the same - Google Patents
Exhaust gas purification catalyst, regeneration method thereof, exhaust gas purification apparatus and exhaust gas purification method using the same Download PDFInfo
- Publication number
- JP4901440B2 JP4901440B2 JP2006325206A JP2006325206A JP4901440B2 JP 4901440 B2 JP4901440 B2 JP 4901440B2 JP 2006325206 A JP2006325206 A JP 2006325206A JP 2006325206 A JP2006325206 A JP 2006325206A JP 4901440 B2 JP4901440 B2 JP 4901440B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst
- noble metal
- carrier
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 478
- 238000000746 purification Methods 0.000 title claims description 131
- 238000000034 method Methods 0.000 title claims description 126
- 238000011069 regeneration method Methods 0.000 title claims description 83
- 239000007789 gas Substances 0.000 claims description 371
- 229910000510 noble metal Inorganic materials 0.000 claims description 286
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 281
- 229910052697 platinum Inorganic materials 0.000 claims description 99
- 239000012298 atmosphere Substances 0.000 claims description 88
- 229910052751 metal Inorganic materials 0.000 claims description 78
- 239000002184 metal Substances 0.000 claims description 76
- 230000003647 oxidation Effects 0.000 claims description 67
- 238000007254 oxidation reaction Methods 0.000 claims description 67
- 230000008929 regeneration Effects 0.000 claims description 58
- 229910052760 oxygen Inorganic materials 0.000 claims description 56
- 230000009467 reduction Effects 0.000 claims description 52
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 50
- 239000001301 oxygen Substances 0.000 claims description 50
- 239000002131 composite material Substances 0.000 claims description 43
- 230000006866 deterioration Effects 0.000 claims description 40
- 150000001768 cations Chemical group 0.000 claims description 38
- 230000001590 oxidative effect Effects 0.000 claims description 37
- 230000008569 process Effects 0.000 claims description 36
- 238000001179 sorption measurement Methods 0.000 claims description 30
- 229910052684 Cerium Inorganic materials 0.000 claims description 28
- 239000000654 additive Substances 0.000 claims description 28
- 230000000996 additive effect Effects 0.000 claims description 28
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 28
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 26
- 230000001603 reducing effect Effects 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 25
- 229910052788 barium Inorganic materials 0.000 claims description 22
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 21
- 229910052726 zirconium Inorganic materials 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 18
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 17
- 230000001172 regenerating effect Effects 0.000 claims description 16
- 238000011068 loading method Methods 0.000 claims description 15
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 14
- 229910052763 palladium Inorganic materials 0.000 claims description 12
- 239000010948 rhodium Substances 0.000 claims description 11
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 10
- 238000003745 diagnosis Methods 0.000 claims description 9
- 229910052746 lanthanum Inorganic materials 0.000 claims description 9
- 229910052779 Neodymium Inorganic materials 0.000 claims description 8
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 229910052703 rhodium Inorganic materials 0.000 claims description 8
- 229910052727 yttrium Inorganic materials 0.000 claims description 8
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 7
- 239000011575 calcium Substances 0.000 claims description 7
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 7
- 239000011777 magnesium Substances 0.000 claims description 7
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052706 scandium Inorganic materials 0.000 claims description 7
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 7
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 6
- 238000011946 reduction process Methods 0.000 claims description 6
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 84
- 238000012360 testing method Methods 0.000 description 82
- 239000002245 particle Substances 0.000 description 78
- 230000000694 effects Effects 0.000 description 50
- 230000003197 catalytic effect Effects 0.000 description 42
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 40
- 229910002091 carbon monoxide Inorganic materials 0.000 description 40
- 229910052742 iron Inorganic materials 0.000 description 40
- 230000000052 comparative effect Effects 0.000 description 39
- 239000007864 aqueous solution Substances 0.000 description 37
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 26
- 239000010410 layer Substances 0.000 description 23
- 239000000843 powder Substances 0.000 description 21
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 20
- 239000002923 metal particle Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 20
- 229910017604 nitric acid Inorganic materials 0.000 description 20
- 239000011259 mixed solution Substances 0.000 description 17
- 230000003993 interaction Effects 0.000 description 16
- 239000010970 precious metal Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 14
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 14
- 238000009694 cold isostatic pressing Methods 0.000 description 13
- 238000001228 spectrum Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 10
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 239000000446 fuel Substances 0.000 description 9
- 239000002736 nonionic surfactant Substances 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 description 8
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 241000282320 Panthera leo Species 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- FZMFJORHWIAQFU-UHFFFAOYSA-N [Y].[Zr].[Ce] Chemical compound [Y].[Zr].[Ce] FZMFJORHWIAQFU-UHFFFAOYSA-N 0.000 description 6
- 238000000192 extended X-ray absorption fine structure spectroscopy Methods 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 230000001131 transforming effect Effects 0.000 description 6
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical group [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 5
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 5
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 5
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 3
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- RCFVMJKOEJFGTM-UHFFFAOYSA-N cerium zirconium Chemical compound [Zr].[Ce] RCFVMJKOEJFGTM-UHFFFAOYSA-N 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002500 ions Chemical group 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- VQVDTKCSDUNYBO-UHFFFAOYSA-N neodymium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Nd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VQVDTKCSDUNYBO-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- YWECOPREQNXXBZ-UHFFFAOYSA-N praseodymium(3+);trinitrate Chemical compound [Pr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YWECOPREQNXXBZ-UHFFFAOYSA-N 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 108091006149 Electron carriers Proteins 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- YIDDMGXEHSGRRV-UHFFFAOYSA-N [Y].[Pr].[Zr].[Ce] Chemical compound [Y].[Pr].[Zr].[Ce] YIDDMGXEHSGRRV-UHFFFAOYSA-N 0.000 description 1
- FLALLKCVDYLTMT-UHFFFAOYSA-N [Zr].[Ce].[Pr].[La] Chemical compound [Zr].[Ce].[Pr].[La] FLALLKCVDYLTMT-UHFFFAOYSA-N 0.000 description 1
- AZJLMWQBMKNUKB-UHFFFAOYSA-N [Zr].[La] Chemical compound [Zr].[La] AZJLMWQBMKNUKB-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 238000002253 near-edge X-ray absorption fine structure spectrum Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- YDLQKLWVKKFPII-UHFFFAOYSA-N timiperone Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCC(N2C(NC3=CC=CC=C32)=S)CC1 YDLQKLWVKKFPII-UHFFFAOYSA-N 0.000 description 1
- 229950000809 timiperone Drugs 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y02T10/47—
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Description
本発明は、排ガス浄化用触媒、その再生方法、それを用いた排ガス浄化装置並びに排ガス浄化方法に関する。 The present invention relates to an exhaust gas purification catalyst, a regeneration method thereof, an exhaust gas purification device using the same, and an exhaust gas purification method.
自動車エンジンからの排ガス中の炭化水素ガス(HC)、一酸化炭素(CO)及び窒素酸化物(NOx)等の有害成分を除去するために、従来から排ガス浄化用触媒が用いられてきた。このような排ガス浄化用触媒としては、理論空燃比で燃焼された排ガス中のHC、CO及びNOxを同時に浄化する三元触媒が知られており、一般に、コーディエライト、金属箔等からなりハニカム形状に形成された基材(担体基材)と、基材表面に形成された活性アルミナ粉末、シリカ粉末等からなる担体(触媒担持層)と、この担体に担持された白金等の貴金属からなる触媒成分とから構成されている。 In order to remove harmful components such as hydrocarbon gas (HC), carbon monoxide (CO), and nitrogen oxides (NO x ) in exhaust gas from automobile engines, exhaust gas purification catalysts have been used conventionally. As such an exhaust gas purification catalyst, a three-way catalyst that simultaneously purifies HC, CO, and NOx in exhaust gas burned at a stoichiometric air-fuel ratio is known, and is generally made of cordierite, metal foil, etc. A base material (support base material) formed in a shape, a support (catalyst support layer) made of activated alumina powder, silica powder or the like formed on the surface of the base material, and a noble metal such as platinum supported on the support And a catalyst component.
例えば、特開平5−317652号公報(特許文献1)においては、多孔質体からなる担体に、アルカリ土類金属酸化物および白金を担持してなる排気ガス浄化用触媒が開示されている。また、特開平6−99069号公報(特許文献2)においては、担体基体と、該担体基体の表面に該担体基体容積1lあたりパラジウムを1〜20g、アルミナを50〜250g、酸化セリウムを10〜150g、酸化バリウムを8〜50gの各触媒成分を担持した触媒成分層と、からなる排気ガス浄化用触媒が開示されている。さらに、特開平10−174866号公報(特許文献3)においては、第1多孔質担体に少なくともパラジウムを担持してなる第1触媒層と、前記第1触媒層の表面に形成され第2多孔質担体に少なくともロジウムを担持した第2触媒層とを備え、前記第1触媒層における前記第1多孔質担体単位質量当たりの前記パラジウムの担持質量が前記第2触媒層における前記第2多孔質担体単位質量当たりの前記ロジウムの担持質量より多い排ガス浄化用触媒が開示されている。 For example, JP-A-5-317652 (Patent Document 1) discloses an exhaust gas purification catalyst in which an alkaline earth metal oxide and platinum are supported on a porous carrier. In JP-A-6-99069 (Patent Document 2), 1 to 20 g of palladium, 50 to 250 g of alumina, and 10 to 10 of cerium oxide per 1 l of the carrier substrate on the surface of the carrier substrate. An exhaust gas purifying catalyst comprising 150 g and a catalyst component layer supporting each catalyst component of 8 to 50 g of barium oxide is disclosed. Further, in Japanese Patent Application Laid-Open No. 10-174866 (Patent Document 3), a first catalyst layer in which at least palladium is supported on a first porous carrier, and a second porous layer formed on the surface of the first catalyst layer. A second catalyst layer supporting at least rhodium on the support, and the supported mass of palladium per unit mass of the first porous support in the first catalyst layer is the second porous support unit in the second catalyst layer. There is disclosed an exhaust gas purifying catalyst that is larger than the supported mass of rhodium per mass.
しかしながら、特許文献1〜3に記載のような排ガス浄化用触媒においては、高温(特に800℃以上)の排ガスに長時間晒されると、その担体に担持されている白金、ロジウム、パラジウム等の触媒活性をもつ貴金属の粒子が凝集し、シンタリング(粒成長)が生じて比表面積が減少することから、触媒活性が低下するという問題があった。 However, in the exhaust gas purifying catalysts as described in Patent Documents 1 to 3, when exposed to high temperature (especially 800 ° C. or higher) exhaust gas for a long time, a catalyst such as platinum, rhodium, or palladium supported on the carrier. Since the noble metal particles having activity are aggregated and sintering occurs, the specific surface area is reduced, so that there is a problem that the catalytic activity is lowered.
また、特開2004−41866号公報(特許文献4)においては、希土類元素を必ず含み且つ3価より小さい価数をとり得る希土類元素を含まない希土類元素から選ばれる少なくとも1種の元素と、コバルト、パラジウム及び希土類元素以外の遷移元素並びにAlから選ばれる少なくとも1種の元素と、パラジウムとを含み、特定の式で表されるペロブスカイト型構造の複合酸化物を含む排ガス浄化用触媒が開示されている。しかしながら、特許文献4に記載のような排ガス浄化用触媒においては、ペロブスカイト型構造中に貴金属が固溶され、酸化状態で安定化しているため、その構造中に含有されている貴金属が触媒の活性点として機能し難いといった問題があり、触媒活性が必ずしも十分なものではなかった。 Further, in Japanese Patent Application Laid-Open No. 2004-41866 (Patent Document 4), at least one element selected from rare earth elements that always contain rare earth elements and do not contain rare earth elements that can have a valence smaller than trivalent, cobalt , An exhaust gas purifying catalyst comprising a transition oxide other than palladium and rare earth elements and at least one element selected from Al and palladium, and a composite oxide having a perovskite structure represented by a specific formula Yes. However, in the exhaust gas purifying catalyst as described in Patent Document 4, since the noble metal is dissolved in the perovskite structure and stabilized in the oxidized state, the noble metal contained in the structure is activated by the catalyst. There is a problem that it is difficult to function as a point, and the catalytic activity is not always sufficient.
さらに、特開2003−220336号公報(特許文献5)においては、セリウム酸化物を含む担体と、遷移金属及び貴金属からなり少なくとも前記セリウム酸化物に担持された触媒金属とを備え、前記遷移金属のセリウム原子に対する原子比と前記遷移金属の前記貴金属に対する原子比との関係が特定の範囲にある排ガス浄化用触媒が開示されている。しかしながら、特許文献5に記載のような排ガス浄化用触媒においては、再生処理によって貴金属を再分散させて触媒活性を再生させるという点では必ずしも十分なものではなかった。 Further, JP-A-2003-220336 (Patent Document 5) includes a support containing cerium oxide, and a catalyst metal made of a transition metal and a noble metal and supported on at least the cerium oxide, An exhaust gas purifying catalyst is disclosed in which the relationship between the atomic ratio to the cerium atom and the atomic ratio of the transition metal to the noble metal is in a specific range. However, the exhaust gas purifying catalyst as described in Patent Document 5 is not necessarily sufficient in that the precious metal is redispersed by the regeneration treatment to regenerate the catalyst activity.
また、特開2005−270882号公報(特許文献6)においては、1種又は2種以上のセリア、セリア−ジルコニア、セリア−ジルコニア−イットリア、セリア−ランタン−ジルコニアのいずれかである酸化物からなる多孔質担体に、1種又は2種以上の原子数10〜50000の1種又は2種以上の遷移金属又は遷移金属酸化物からなる触媒金属粒子を担持してなる触媒が開示されている。さらに、特開2002−79053号公報(特許文献7)においては、少なくとも1種の貴金属、耐火性無機酸化物、セリウム及びランタンを含有し且つ結晶構造が正方晶型の酸化ジルコニウムの単一構造であるジルコニウム酸化物を含有する触媒活性成分を、耐火性三次元構造体に被覆した排ガス浄化用触媒が開示されている。また、特開2004−141833号公報(特許文献8)においては、セリア及びジルコニアを含む金属酸化物粒子に貴金属が担持されており、前記金属酸化物粒子が、セリアよりジルコニアを多く含有する中心部、及びジルコニアよりセリアを多く含有する表面層を有する排ガス浄化用触媒が開示されている。さらに、特開2004−243177号公報(特許文献9)においては、一つの粒子中に少なくともCeO2とZrO2とを含む複合酸化物粉末に貴金属が担持されてなり、前記複合酸化物粉末のCeO2の重量%をCCeとしZrO2の重量%をCZrとしたときに0.5≦CZr/CCe≦1.5の関係を満たし、前記貴金属は、前記複合酸化物粉末を純水に懸濁したときの水浸pH値より低いpH値を示す貴金属塩水溶液を用いて前記複合酸化物粉末に担持されている排ガス浄化用触媒が開示されている。 In JP-A-2005-270882 (Patent Document 6), the oxide is one or more of ceria, ceria-zirconia, ceria-zirconia-yttria, and ceria-lanthanum-zirconia. A catalyst is disclosed in which catalyst metal particles made of one or two or more transition metals or transition metal oxides having one or two or more atoms of 10 to 50000 are supported on a porous carrier. Furthermore, in Japanese Patent Application Laid-Open No. 2002-79053 (Patent Document 7), a single structure of zirconium oxide containing at least one kind of noble metal, refractory inorganic oxide, cerium and lanthanum and having a tetragonal crystal structure. An exhaust gas purifying catalyst in which a catalytic active component containing a certain zirconium oxide is coated on a fire-resistant three-dimensional structure is disclosed. Further, in Japanese Patent Application Laid-Open No. 2004-141833 (Patent Document 8), a noble metal is supported on metal oxide particles containing ceria and zirconia, and the metal oxide particles contain a zirconia more than ceria. And an exhaust gas purifying catalyst having a surface layer containing more ceria than zirconia. Furthermore, in Japanese Patent Application Laid-Open No. 2004-243177 (Patent Document 9), a noble metal is supported on a composite oxide powder containing at least CeO 2 and ZrO 2 in one particle, and CeO of the composite oxide powder is used. When the weight percent of 2 is C Ce and the weight percent of ZrO 2 is C Zr , the relationship 0.5 ≦ C Zr / C Ce ≦ 1.5 is satisfied, and the noble metal contains pure water as pure water. An exhaust gas purifying catalyst supported on the composite oxide powder using a noble metal salt aqueous solution exhibiting a pH value lower than the water immersion pH value when suspended in water is disclosed.
しかしながら、特許文献6に記載のような触媒においては、貴金属をクラスターとして担持することで貴金属粒子の熱安定化を図るものであるため、より高温に耐えるものとすると貴金属の単位量あたりの触媒活性が低下するという問題があった。また、特許文献7に記載のような排ガス浄化用触媒においては、貴金属保持サイトが不足しているため、貴金属が粒成長して触媒活性が低下するという問題があった。更に、特許文献8〜9に記載のような排ガス浄化用触媒は、担体粒子中のセリウムとジルコニウムの組成が均一でないために耐熱性が劣り、貴金属の粒成長の抑制という点では必ずしも十分ではなかった。また、特許文献6〜9に記載のような排ガス浄化用触媒においては、長時間使用後における貴金属の単位量あたりの触媒活性が必ずしも十分なものではなく且つ再生処理によって十分な触媒活性の再生を示すものではなかった。 However, in the catalyst as described in Patent Document 6, since the noble metal particles are supported as clusters to achieve thermal stabilization of the noble metal particles, the catalyst activity per unit amount of the noble metal is supposed to withstand higher temperatures. There was a problem that decreased. Further, the exhaust gas purifying catalyst as described in Patent Document 7 has a problem in that the noble metal retention site is insufficient, and thus noble metal grows and the catalytic activity is lowered. Furthermore, the exhaust gas purifying catalysts as described in Patent Documents 8 to 9 have poor heat resistance because the compositions of cerium and zirconium in the support particles are not uniform, and are not necessarily sufficient in terms of suppressing the growth of noble metal grains. It was. In addition, in the exhaust gas purifying catalysts as described in Patent Documents 6 to 9, the catalytic activity per unit amount of the noble metal after long-term use is not always sufficient, and sufficient regeneration of the catalytic activity is achieved by the regeneration treatment. It was not an indication.
一方、前述のようなシンタリングにより触媒活性が低下してしまうといった問題に対して、貴金属粒子に粒成長が発生した排ガス浄化用触媒を再生する方法が種々開発されてきている。例えば、特開平7−75737号公報(特許文献10)には、無機多孔質の母材に活性種として貴金属が担持されてなる排ガス浄化用触媒の再生方法であって、前記触媒にハロゲンを作用させて前記母材上で貴金属のハロゲン化物を生成させた後にそのハロゲン化物からハロゲンを脱離させる方法が開示されている。しかしながら、特許文献10に記載の方法のようにハロゲンを作用させて排ガス浄化用触媒を再生する方法においては、触媒を内燃機関の排気系に装着した状態で再生することは非常に困難であり、また、粒成長した貴金属を再分散させて触媒活性を再生させる再生処理に要する時間の短縮に限界があった。 On the other hand, various methods for regenerating an exhaust gas purifying catalyst in which grain growth has occurred in noble metal particles have been developed in response to the problem that the catalytic activity is reduced by the sintering as described above. For example, Japanese Patent Application Laid-Open No. 7-75737 (Patent Document 10) discloses a method for regenerating an exhaust gas purifying catalyst in which a noble metal is supported as an active species on an inorganic porous base material, in which halogen acts on the catalyst. A method is disclosed in which a halide of a noble metal is generated on the base material and then halogen is eliminated from the halide. However, in the method of regenerating the exhaust gas purifying catalyst by acting halogen as in the method described in Patent Document 10, it is very difficult to regenerate the catalyst while it is mounted on the exhaust system of the internal combustion engine. In addition, there is a limit to shortening the time required for the regeneration treatment for redispersing the grain-grown noble metal to regenerate the catalyst activity.
また、特開2000−202309号公報(特許文献11)には、アルカリ土類金属酸化物及び希土類酸化物から選ばれる少なくとも一種を含む担体と該担体に担持された白金とよりなる排ガス浄化用触媒に対して、酸化処理を行い、次いで還元処理を行う方法が開示されている。しかしながら、特許文献11に記載の方法であっても、粒成長した白金粒子を再分散させて触媒活性を再生させる再生処理に要する時間の短縮と温度の低減という点で必ずしも十分なものではなかった。
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、高温の排ガスに長時間晒されても貴金属の粒子の凝集を十分に抑制して貴金属の粒成長を長期にわたって十分に抑制でき、これによって触媒活性の低下を十分に抑制できるとともに、使用に際して粒成長したときに、貴金属粒子を比較的低い温度領域であっても短時間で再分散させて触媒活性を容易に再生させることができ、しかも内燃機関の排気系に装着した状態であっても容易に再生させることが可能な排ガス浄化用触媒、その排ガス浄化用触媒の再生方法、並びにその排ガス浄化用触媒を用いた排ガス浄化装置及び排ガス浄化方法を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and even when exposed to high-temperature exhaust gas for a long time, the aggregation of the noble metal particles is sufficiently suppressed and the noble metal particle growth is sufficiently suppressed over a long period of time. It is possible to sufficiently suppress the decrease in the catalyst activity, and when the particles are grown during use, the precious metal particles can be re-dispersed in a short time even in a relatively low temperature range to easily regenerate the catalyst activity. Exhaust gas purification catalyst that can be easily regenerated even when attached to the exhaust system of an internal combustion engine, a method for regenerating the exhaust gas purification catalyst, and exhaust gas purification using the exhaust gas purification catalyst An object is to provide an apparatus and an exhaust gas purification method.
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、貴金属が担体の表面の酸素を介して担体の陽イオンと結合してなる表面酸化物層を有する特定の触媒よって、驚くべきことに、貴金属の粒成長が長期にわたって十分に抑制され、触媒活性の低下を十分に抑制することが可能となることを見出すとともに、使用して貴金属が粒成長した場合にも、このような排ガス浄化用触媒に酸化処理及び還元処理を施すことで触媒を効率よく再生させることが可能となることを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above object, the present inventors have been surprised by the specific catalyst having a surface oxide layer in which a noble metal is bonded to a cation of the support through oxygen on the surface of the support. In addition, it is found that the grain growth of the noble metal is sufficiently suppressed over a long period of time, and it is possible to sufficiently suppress the decrease in the catalyst activity. It has been found that the catalyst can be efficiently regenerated by subjecting the exhaust gas purification catalyst to oxidation treatment and reduction treatment, and the present invention has been completed.
本発明の排ガス浄化用触媒は、貴金属が酸化物担体に担持された排ガス浄化用触媒であって、
前記担体が、ジルコニウムと、希土類元素及びアルカリ土類金属元素からなる群から選択され且つセリウムを含む少なくとも一つの金属元素との複合酸化物であり、前記担体中に含有される前記金属元素の量が前記担体に対して金属換算で51〜75mol%の範囲にあり、且つ、前記金属元素中に含有されるセリウムの量が前記金属元素に対して金属換算で90mol%以上の範囲にある蛍石型構造の担体であり、
前記担体に担持されている、マグネシウム、カルシウム、ネオジウム、プラセオジウム、バリウム、ランタン、セリウム、イットリウム及びスカンジウムからなる群から選択される少なくとも一種の元素を含有する添加成分を更に備えており、
前記貴金属の担持量が、前記触媒の質量に対して0.05〜2質量%の範囲であり、
前記添加成分の担持量が、金属換算で前記貴金属の量に対するモル比(添加成分の量/貴金属の量)が0.5〜20の範囲となる量であり、
酸化雰囲気下において、前記貴金属が高酸化状態で前記担体の表面上に存在し且つ前記貴金属が前記担体の表面の酸素を介して前記担体の陽イオンと結合してなる表面酸化物層を有しており、且つ、
還元雰囲気下において、前記貴金属が金属状態で前記担体の表面上に存在し且つCO化学吸着法により測定される前記担体の表面に露出している貴金属の量の割合が前記担体に担持された貴金属の全量に対して原子比率で10%以上である排ガス浄化用触媒である。
The exhaust gas purifying catalyst of the present invention is an exhaust gas purifying catalyst in which a noble metal is supported on an oxide carrier,
The support is a composite oxide of zirconium and at least one metal element selected from the group consisting of rare earth elements and alkaline earth metal elements and containing cerium, and the amount of the metal element contained in the support Is in the range of 51 to 75 mol% in terms of metal with respect to the support, and the amount of cerium contained in the metal element is in the range of 90 mol% or more in terms of metal with respect to the metal element A carrier of a mold structure ,
Further comprising an additive component containing at least one element selected from the group consisting of magnesium, calcium, neodymium, praseodymium, barium, lanthanum, cerium, yttrium, and scandium supported on the carrier;
The amount of the noble metal supported is in the range of 0.05 to 2% by mass with respect to the mass of the catalyst,
The loading amount of the additive component is an amount such that the molar ratio of the noble metal to the amount of the noble metal (amount of additive component / amount of noble metal) is in the range of 0.5 to 20 in terms of metal,
A surface oxide layer in which the noble metal is present in a highly oxidized state on the surface of the carrier in an oxidizing atmosphere, and the noble metal is bonded to a cation of the carrier via oxygen on the surface of the carrier; And
In a reducing atmosphere, the ratio of the amount of the noble metal that is present on the surface of the carrier in a metallic state and exposed on the surface of the carrier as measured by a CO chemical adsorption method is supported on the carrier. It is an exhaust gas purifying catalyst having an atomic ratio of 10% or more with respect to the total amount.
上記本発明の排ガス浄化用触媒においては、前記貴金属が、白金、パラジウム及びロジウムからなる群から選択される少なくとも一つの元素であることが好ましい。 In the exhaust gas purifying catalyst of the present invention, the noble metal is preferably at least one element selected from the group consisting of platinum, palladium and rhodium.
また、上記本発明の排ガス浄化用触媒においては、前記担体中の酸素の1s軌道の結合エネルギーの値が531eV以下の値を示すことが好ましい。 In the exhaust gas purifying catalyst of the present invention, it is preferable that the value of the binding energy of the oxygen 1s orbit in the carrier is 531 eV or less.
また、上記本発明の排ガス浄化用触媒においては、前記担体中の陽イオンのうちの少なくとも一つの陽イオンの電気陰性度が、ジルコニウムの電気陰性度より低いことが好ましい。 In the exhaust gas purifying catalyst of the present invention, it is preferable that the electronegativity of at least one of the cations in the carrier is lower than the electronegativity of zirconium.
さらに、上記本発明の排ガス浄化用触媒においては、前記貴金属と、前記担体の表面に露出し且つジルコニウムの電気陰性度より低い陽イオンとのモル比(陽イオン/貴金属)が1.5以上であることが好ましい。 Furthermore, in the exhaust gas purifying catalyst of the present invention, a molar ratio (cation / noble metal) of the noble metal to a cation exposed on the surface of the carrier and lower than the electronegativity of zirconium is 1.5 or more. Preferably there is.
なお、本発明の排ガス浄化用触媒によって上記目的が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の排ガス浄化用触媒においては、前記酸化物担体(好ましくは、前記酸化物担体中の陽イオンの電気陰性度がジルコニウムの電気陰性度より低く、且つ前記酸化物担体中の酸素の1s軌道の結合エネルギーの値が531eV以下の値を示すものである)は、貴金属に対して極めて強い相互作用を示す。また、このような担体を備える本発明の排ガス浄化用触媒においては、酸化雰囲気下において、貴金属が担体の表面の酸素を介して前記担体の陽イオンと結合している図1に示すような表面酸化物層が形成される。そして、本発明の排ガス浄化用触媒においては、このような表面酸化物層が形成されているため、高温の排ガスに長時間晒されても貴金属の粒成長を十分に抑制することができる。更に、本発明の排ガス浄化用触媒においては、還元雰囲気下においては、前記貴金属が前記担体の表面上において金属状態となり、且つCO化学吸着法により測定される前記担体の表面に露出している貴金属の量の割合が全貴金属量に対して原子比率で10%以上となっていることから、触媒の活性点である前記貴金属は高分散状態(微粒子として高度に分散されている状態)で前記担体の表面上に安定して存在し、高い触媒活性を維持する。 The reason why the above object is achieved by the exhaust gas purifying catalyst of the present invention is not necessarily clear, but the present inventors speculate as follows. That is, in the exhaust gas purifying catalyst of the present invention, the electron carrier of the oxide carrier (preferably the cation in the oxide carrier is lower than the electronegativity of zirconium and the oxygen in the oxide carrier is reduced. 1s orbital bond energy value of 531 eV or less) shows a very strong interaction with noble metals. Further, in the exhaust gas purifying catalyst of the present invention having such a carrier, the surface as shown in FIG. 1 in which noble metal is bonded to the cation of the carrier through oxygen on the surface of the carrier in an oxidizing atmosphere. An oxide layer is formed. In the exhaust gas purifying catalyst of the present invention, since such a surface oxide layer is formed, noble metal grain growth can be sufficiently suppressed even when exposed to high temperature exhaust gas for a long time. Furthermore, in the exhaust gas purifying catalyst of the present invention, in a reducing atmosphere, the noble metal is in a metallic state on the surface of the carrier and is exposed on the surface of the carrier measured by a CO chemical adsorption method. Since the ratio of the amount is 10% or more in terms of the atomic ratio with respect to the total amount of the noble metal, the noble metal which is the active point of the catalyst is in a highly dispersed state (a state in which the noble metal is highly dispersed as fine particles). Exist stably on the surface and maintain high catalytic activity.
さらに、本発明の排ガス浄化用触媒を長期間使用して粒成長した場合においても、酸素を含む酸化雰囲気中にて加熱(好ましくは500〜1000℃で加熱)することによって、貴金属は担体との界面で強い相互作用を示して表面酸化物層を形成し、次第に担体表面上に拡がった状態で分散される。その結果、比較的短時間の酸化処理で担体上の貴金属が酸化物の状態で高分散担持された状態となる(再分散)。次いで還元処理を施すことによって酸化物状態の貴金属は金属状態に還元されることとなり、触媒活性が再生するものと本発明者らは推察する。 Further, even when the exhaust gas-purifying catalyst of the present invention is used for a long period of time to grow grains, the noble metal is mixed with the support by heating in an oxidizing atmosphere containing oxygen (preferably at 500 to 1000 ° C.). A strong oxide is shown at the interface to form a surface oxide layer, which is gradually dispersed in a spread state on the surface of the carrier. As a result, the noble metal on the support is supported in a highly dispersed state in an oxide state (redispersion) by an oxidation treatment for a relatively short time. Next, the present inventors infer that the noble metal in the oxide state is reduced to the metal state by performing the reduction treatment, and the catalytic activity is regenerated.
本発明の排ガス浄化用触媒は、以下の条件(I)を満たすものである。 Catalyzes for purification of exhaust gas of the present invention satisfies the following condition (I).
<条件(I)>
前記担体に担持されている、アルカリ土類金属元素、希土類元素及び3A族元素からなる群から選択される少なくとも一つの元素を含有する添加成分を更に備えており、
前記貴金属の担持量が、前記触媒の質量に対して0.05〜2質量%の範囲であり、且つ、
前記添加成分の担持量が、金属換算で前記貴金属の量に対するモル比(添加成分の量/貴金属の量)が0.5〜20の範囲となる量であること。
<Condition (I)>
An additional component containing at least one element selected from the group consisting of an alkaline earth metal element, a rare earth element, and a group 3A element supported on the carrier;
The amount of the noble metal supported is in the range of 0.05 to 2% by mass with respect to the mass of the catalyst, and
The loading amount of the additive component is such that the molar ratio (amount of additive component / amount of noble metal) in the range of 0.5 to 20 in terms of metal with respect to the amount of the noble metal.
本発明の排ガス浄化用触媒が条件(I)を満たすものである場合、前記添加成分に含有される元素が、マグネシウム、カルシウム、ネオジウム、プラセオジウム、バリウム、ランタン、セリウム、イットリウム及びスカンジウムからなる群から選択される少なくとも一種の元素であることが好ましい。 When the exhaust gas purifying catalyst of the present invention satisfies the condition (I), the element contained in the additive component is selected from the group consisting of magnesium, calcium, neodymium, praseodymium, barium, lanthanum, cerium, yttrium, and scandium. It is preferably at least one element selected.
また、この場合、前記担体に担持されている鉄を更に備えており、
前記鉄の担持量が、金属換算で前記貴金属の量に対するモル比(鉄の量/貴金属の量)が0.8〜12の範囲となる量であることがより好ましい。
Further, in this case, further comprising iron carried on the carrier,
More preferably, the iron loading is such that the molar ratio of the noble metal to the amount of the noble metal (the amount of iron / the amount of noble metal) is in the range of 0.8 to 12.
本発明者らは、本発明の排ガス浄化用触媒が条件(I)を満たすものである場合、驚くべきことに、貴金属の粒成長の発生が長期にわたってより十分に抑制され、触媒活性の低下をより十分に抑制することが可能となることを見出し、更には、このような排ガス浄化用触媒に酸化処理及び還元処理を施すことで再生処理に要する時間の短縮と温度の低減とが図れ、触媒活性をより効率よく再生させることが可能となることを見出した。 When the exhaust gas purifying catalyst of the present invention satisfies the condition (I), the present inventors have surprisingly been able to suppress the occurrence of noble metal grain growth more sufficiently over a long period of time and reduce the catalytic activity. It has been found that it is possible to suppress more sufficiently, and furthermore, by performing oxidation treatment and reduction treatment on such an exhaust gas purification catalyst, it is possible to shorten the time required for the regeneration treatment and to reduce the temperature. It was found that the activity can be regenerated more efficiently.
なお、この場合に上記目的が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、条件(I)を満たす排ガス浄化用触媒においては、前記複合酸化物(好ましくは、酸素1s軌道の結合エネルギーの値が531eV以下の値を示す、酸素の電子密度が高い複合酸化物)が、貴金属に対して極めて強い相互作用を示す。そして、アルカリ土類金属元素、希土類元素及び3A族元素からなる群から選択される少なくとも一つの添加元素を含有してなる添加物が担体に担持されていることから、担体の塩基性が向上するため、担体が貴金属に対して更に強い相互作用を示すものとなる。そのため、条件(I)を満たす排ガス浄化用触媒は、高温の排ガスに長時間晒されても貴金属粒子の粒成長がより十分に抑制され、触媒活性の低下をより十分に抑制することができる。 In this case, the reason why the above object is achieved is not necessarily clear, but the present inventors infer as follows. That is, in the catalyst for purification of exhaust gas satisfying Condition (I), the composite oxide (preferably, the value of the binding energy of the oxygen 1s orbital indicates the following values 531 eV, the electron density of oxygen is high composite oxide) Shows extremely strong interaction with noble metals. Since the additive containing at least one additive element selected from the group consisting of alkaline earth metal elements, rare earth elements, and Group 3A elements is supported on the carrier, the basicity of the carrier is improved. For this reason, the carrier exhibits a stronger interaction with the noble metal. Therefore, the exhaust gas purifying catalyst that satisfies the condition (I) can sufficiently suppress the grain growth of the noble metal particles even when exposed to the high temperature exhaust gas for a long time, and can more sufficiently suppress the decrease in the catalytic activity.
さらに、条件(I)を満たす排ガス浄化用触媒を長期間使用して粒成長が発生した場合には、粒成長した状態で担持されている貴金属粒子と担体との界面で強い相互作用が起こる。そのため、酸素を含む酸化雰囲気中にて加熱(好ましくは500〜1000℃で加熱)することによって、貴金属は担体と複合酸化物及び金属酸化物を形成し、次第に担体表面上に拡がった状態で分散される。その結果、比較的短時間の酸化処理で担体上の貴金属が酸化物の状態で高分散担持された状態となり(再分散)、次いで還元処理を施すことによって酸化物状態の貴金属を金属状態に還元させることとなり、触媒活性が再生するものと本発明者らは推察する。 Furthermore, when grain growth occurs using an exhaust gas purifying catalyst that satisfies the condition (I) for a long time, a strong interaction occurs at the interface between the noble metal particles supported in the grain grown state and the carrier. Therefore, when heated in an oxidizing atmosphere containing oxygen (preferably heated at 500 to 1000 ° C.), the noble metal forms a composite oxide and a metal oxide with the support and gradually spreads on the support surface. Is done. As a result, the noble metal on the support is supported in a highly dispersed state in an oxide state (redispersion) in a relatively short period of oxidation treatment, and then the noble metal in the oxide state is reduced to the metal state by performing a reduction treatment. The present inventors infer that the catalytic activity is regenerated.
また、本発明の排ガス浄化用触媒としては、以下の条件(II)を満たすものがより好ましい。 Further, as the exhaust gas purifying catalyst of the present invention, a catalyst satisfying the following condition (II) is more preferable.
<条件(II)>
前記担体に担持されている鉄を更に備えており、
前記貴金属の担持量が、前記触媒の質量に対して0.05〜2質量%の範囲であり、且つ、
前記鉄の担持量が、金属換算で前記貴金属の量に対するモル比(鉄の量/貴金属の量)が0.8〜12の範囲となる量であること。
<Condition (II)>
Further comprising iron supported on the carrier;
The amount of the noble metal supported is in the range of 0.05 to 2% by mass with respect to the mass of the catalyst, and
The amount of iron supported is such that the molar ratio (the amount of iron / the amount of noble metal) to the amount of the noble metal in a metal conversion is in the range of 0.8 to 12.
本発明者らは、本発明の排ガス浄化用触媒が条件(II)を満たすものである場合、驚くべきことに、貴金属の粒成長が長期にわたってより十分に抑制され、触媒の活性低下をより十分に抑制することが可能となることを見出すとともに、このような排ガス浄化用触媒に酸化処理及び還元処理を施すことでより効率よく触媒を再生することが可能となることを見出した。 When the exhaust gas purifying catalyst of the present invention satisfies the condition (II), the inventors surprisingly suppressed the noble metal grain growth more sufficiently over a long period of time, and more sufficiently reduced the activity of the catalyst. It has been found that it is possible to regenerate the catalyst more efficiently by subjecting such an exhaust gas purifying catalyst to oxidation treatment and reduction treatment.
なお、この場合に上記目的が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、条件(II)を満たす排ガス浄化用触媒においては、前記複合酸化物(好ましくは、酸素1s軌道の結合エネルギーの値が531eV以下の値を示す、酸素の電子密度が高い複合酸化物)が、貴金属に対して極めて強い相互作用を示す。また、このような複合酸化物を含む担体に鉄(Fe)が担持されている。そして、このようなFeは還元雰囲気下においては貴金属と合金化し、酸化雰囲気下においては酸化物として貴金属の表面及び周辺に析出する。そのため、前記担体にFeを担持させることによって、触媒の使用に際して変動雰囲気における貴金属の粒成長をより十分に抑制することができ、触媒活性の低下をより十分に抑制できる。また、このような排ガス浄化用触媒においては、貴金属の近傍にFeが存在するため、貴金属の酸化及び還元が容易となり、排ガス浄化反応の活性をより向上させることができる。特にFeを添加させることで還元性が向上する。更に、条件(II)を満たす排ガス浄化用触媒を長期間使用して貴金属が粒成長した場合に上記再生方法を採用して触媒を再生させた場合には、前記担体に担持された貴金属の粒子径をより微細化することができ、触媒活性をより容易に且つ十分に再生させることができるものと本発明者らは推察する。 In this case, the reason why the above object is achieved is not necessarily clear, but the present inventors infer as follows. That is, in the catalyst for purification of exhaust gas satisfying Condition (II), the composite oxide (preferably, the value of the binding energy of the oxygen 1s orbital indicates the following values 531 eV, the electron density of oxygen is high composite oxide) Shows extremely strong interaction with noble metals. Further, iron (Fe) is supported on a carrier containing such a complex oxide. Such Fe is alloyed with a noble metal in a reducing atmosphere, and is deposited as an oxide on and around the surface of the noble metal in an oxidizing atmosphere. Therefore, by supporting Fe on the carrier, it is possible to more sufficiently suppress the noble metal grain growth in a fluctuating atmosphere when the catalyst is used, and it is possible to more sufficiently suppress the decrease in the catalyst activity. In such an exhaust gas purifying catalyst, since Fe exists in the vicinity of the noble metal, oxidation and reduction of the noble metal are facilitated, and the activity of the exhaust gas purification reaction can be further improved. In particular, reducing properties are improved by adding Fe. Furthermore, when the catalyst is regenerated by adopting the above regeneration method when the noble metal is grown by using an exhaust gas purifying catalyst that satisfies the condition (II) for a long period of time, the noble metal particles supported on the carrier are used. The present inventors infer that the diameter can be further refined and the catalyst activity can be regenerated more easily and sufficiently.
さらに、本発明の排ガス浄化用触媒としては、以下の条件(III)を満たすものがより好ましい。 Furthermore, the exhaust gas purifying catalyst of the present invention is more preferably one that satisfies the following condition (III).
<条件(III)>
前記担体が、ジルコニウムと、希土類元素及びアルカリ土類金属元素からなる群から選択され且つセリウムを含む少なくとも一つの金属元素との複合酸化物を含む蛍石型構造の担体であり、
前記担体中に含有される前記金属元素の量が前記担体に対して金属換算で51〜75mol%の範囲にあり、前記金属元素中に含有されるセリウムの量が前記金属元素に対して金属換算で90mol%以上の範囲にあり、前記担体100gあたりの前記貴金属の担持量が式(1):
X=(σ/100)×S/s÷N×Mnm×100 (1)
[式(1)中、Xは前記担体100gあたりの前記貴金属の量の基準値(単位:g)を示し、σは式(2):
σ=M−50 (2)
(式(2)中、Mは前記担体中に含有される前記金属元素の割合(単位:mol%)を示す。)
により算出される前記金属元素が前記金属元素に囲まれる確率(単位:%)を示し、Sは前記担体の比表面積(単位:m2/g)を示し、sは式(3):
<Condition (III)>
The support is a support having a fluorite structure containing a composite oxide of zirconium and at least one metal element selected from the group consisting of rare earth elements and alkaline earth metal elements and containing cerium;
The amount of the metal element contained in the carrier is in the range of 51 to 75 mol% in terms of metal relative to the carrier, and the amount of cerium contained in the metal element is metal equivalent relative to the metal element. And the amount of the noble metal supported per 100 g of the carrier is represented by the formula (1):
X = (σ / 100) × S / s ÷ N × M nm × 100 (1)
[In the formula (1), X represents a reference value (unit: g) of the amount of the noble metal per 100 g of the support, and σ represents the formula (2):
σ = M−50 (2)
(In the formula (2), M represents a ratio (unit: mol%) of the metal element contained in the carrier.)
Indicates the probability (unit:%) that the metal element is calculated by the metal element, S indicates the specific surface area (unit: m 2 / g) of the support, and s indicates the formula (3):
(式(3)中、aは格子定数(単位:Å)を示す)
により算出される陽イオン1個あたりの単位面積(単位:Å2/個)を示し、Nはアボガドロ数(6.02×1023(単位:個))を示し、Mnmは前記担体に担持された前記貴金属の原子量を示す。]
により算出される基準値Xの2倍以下であり且つ0.01〜0.8gの範囲にあること。
(In formula (3), a represents a lattice constant (unit: Å))
Represents the unit area (unit: 単 位2 / piece) per cation calculated by the above formula, N represents the Avogadro number (6.02 × 10 23 (unit: piece)), and M nm is supported on the carrier. The atomic weight of the noble metal formed is shown. ]
Is not more than twice the reference value X calculated by the above and is in the range of 0.01 to 0.8 g.
本発明者らは、本発明の排ガス浄化用触媒が条件(III)を満たすものである場合、驚くべきことに、高温の排ガスに長時間晒されても貴金属の粒成長をより十分に抑制して触媒活性の低下をより十分に抑制することができ、しかも使用に際して貴金属が粒成長した場合においても貴金属を再分散させて触媒活性を容易に再生させ、担持させた貴金属の単位量あたりの触媒活性が十分に高く、優れた触媒活性を発揮することが可能となることを見出した。 When the exhaust gas purifying catalyst of the present invention satisfies the condition (III), the present inventors surprisingly suppress the noble metal grain growth sufficiently even when exposed to high temperature exhaust gas for a long time. The catalyst per unit amount of the supported noble metal can be more sufficiently suppressed, and even when the noble metal grows in use, the noble metal is redispersed to easily regenerate the catalyst activity. It has been found that the activity is sufficiently high and excellent catalytic activity can be exhibited.
なお、この場合に上記目的が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、条件(III)を満たす排ガス浄化用触媒においては、ジルコニウムと、希土類元素及びアルカリ土類金属元素からなる群から選択され且つセリウムを含む少なくとも一つの金属元素との複合酸化物が、貴金属に対して極めて強い相互作用を示す。これは、酸化雰囲気下において貴金属が酸素を介してセリウム(Ce)や希土類元素及びアルカリ土類金属元素と結合することに起因する。そのため、高温の排ガスに長時間晒されても貴金属の粒成長が十分に抑制され、触媒活性の低下を十分に抑制することができる。 In this case, the reason why the above object is achieved is not necessarily clear, but the present inventors infer as follows. That is, in the exhaust gas purifying catalyst satisfying the condition (III), a complex oxide of zirconium and at least one metal element selected from the group consisting of rare earth elements and alkaline earth metal elements and containing cerium is added to the noble metal. It shows a very strong interaction. This is because noble metals are bonded to cerium (Ce), rare earth elements and alkaline earth metal elements through oxygen in an oxidizing atmosphere. Therefore, noble metal grain growth is sufficiently suppressed even when exposed to high temperature exhaust gas for a long time, and a decrease in catalytic activity can be sufficiently suppressed.
また、条件(III)を満たす排ガス浄化用触媒においては、前記担体が蛍石型構造を備え且つ金属元素中のセリウムの割合が前述のような範囲にあるため、セリウムが担体中に固溶した状態で存在することから、高温雰囲気下においても比表面積の低下が十分に抑制され、且つ前記担体の単位量あたりの貴金属を保持できるサイト数が十分なものとなり、貴金属の粒成長が十分に抑制され、触媒活性の低下を十分に抑制することが可能となる。また、貴金属の量が前述の条件を満たす範囲にあることから、余剰な貴金属に起因した粒成長が抑制される。 Further, in the exhaust gas purifying catalyst that satisfies the condition (III), since the carrier has a fluorite structure and the ratio of cerium in the metal element is in the range as described above, cerium is dissolved in the carrier. Therefore, the decrease in specific surface area is sufficiently suppressed even in a high-temperature atmosphere, and the number of sites capable of holding the noble metal per unit amount of the carrier is sufficient, and the grain growth of the noble metal is sufficiently suppressed. Thus, it is possible to sufficiently suppress the decrease in the catalyst activity. In addition, since the amount of the noble metal is in a range that satisfies the above-described conditions, grain growth caused by excess noble metal is suppressed.
また、条件(III)を満たす排ガス浄化用触媒を長期間使用して粒成長した場合には、酸素を含む酸化雰囲気中にて加熱(好ましくは500〜1000℃で加熱)することによって、貴金属は担体と複合酸化物及び金属酸化物を形成し、次第に担体表面上に拡がった状態で分散される。その結果、担体上の貴金属は酸化物の状態で高分散担持された状態となり(再分散)、次いで還元処理を施すことによって酸化物状態の貴金属を金属状態に還元されることとなり、触媒活性が再生するものと本発明者らは推察する。 In addition, when the catalyst for purifying exhaust gas that satisfies the condition (III) is used for a long period of time, the noble metal is heated by heating in an oxidizing atmosphere containing oxygen (preferably heated at 500 to 1000 ° C.). A composite oxide and a metal oxide are formed with the support and are gradually dispersed in a state of spreading on the support surface. As a result, the noble metal on the support is in a state of being highly dispersed and supported in an oxide state (redispersion), and then by performing a reduction treatment, the noble metal in the oxide state is reduced to the metal state, and the catalytic activity is increased. The present inventors speculate that it will be regenerated.
本発明の排ガス浄化用触媒の再生方法は、前記本発明の排ガス浄化用触媒に対して、酸素を含む酸化雰囲気中にて加熱する酸化処理、及び還元処理を施す方法である。 The regeneration method of the exhaust gas purifying catalyst of the present invention is a method of subjecting the exhaust gas purifying catalyst of the present invention to an oxidation treatment and a reduction treatment in which the exhaust gas purification catalyst is heated in an oxidizing atmosphere containing oxygen.
上記本発明の排ガス浄化用触媒の再生方法においては、(i)前記酸化処理における温度が500〜1000℃であること、及び/又は、(ii)前記酸化雰囲気における酸素濃度が1体積%以上であることが好ましい。 In the above method for regenerating an exhaust gas purifying catalyst of the present invention, (i) the temperature in the oxidation treatment is 500 to 1000 ° C. and / or (ii) the oxygen concentration in the oxidizing atmosphere is 1% by volume or more. Preferably there is.
また、上記本発明の排ガス浄化用触媒の再生方法としては、前記排ガス浄化用触媒を内燃機関の排気系に装着した状態で、前記酸化処理及び前記還元処理を施すことができる。 Moreover, as the regeneration method of the exhaust gas purifying catalyst of the present invention, the oxidation treatment and the reduction treatment can be performed in a state where the exhaust gas purifying catalyst is mounted on an exhaust system of an internal combustion engine.
さらに、上記本発明の排ガス浄化用触媒の再生方法としては、(iii)前記排ガス浄化用触媒に温度センサーを装着し、運転時間と前記温度センサーにより検知された温度とに基づいて前記排ガス浄化用触媒の劣化の程度を判定する工程と、前記触媒が劣化状態にあると判定された後に前記再生処理を開始する工程とを含むこと、及び/又は、(iv)前記排ガス浄化用触媒の劣化状態を判定するための触媒劣化診断装置を用い、前記排ガス浄化用触媒の劣化状態を判定する工程と、前記触媒が劣化状態にあると判定された後に前記再生処理を開始する工程とを含むことが好ましい。 Further, as the regeneration method of the exhaust gas purifying catalyst of the present invention, (iii) the exhaust gas purifying catalyst is equipped with a temperature sensor, and the exhaust gas purifying catalyst is based on the operation time and the temperature detected by the temperature sensor. Including a step of determining the degree of catalyst deterioration, and a step of starting the regeneration after it is determined that the catalyst is in a deteriorated state, and / or (iv) a deterioration state of the exhaust gas purifying catalyst. Using a catalyst deterioration diagnosis device for determining whether or not the exhaust gas purifying catalyst is in a deteriorated state, and starting the regeneration process after it is determined that the catalyst is in a deteriorated state. preferable.
本発明の第一の排ガス浄化装置は、
排ガス供給管と、
前記排ガス供給管の内部に配置された前記本発明の排ガス浄化用触媒と、
前記排ガス浄化用触媒に装着された温度センサーと、
運転時間と前記温度センサーにより検知された温度とに基づいて前記排ガス浄化用触媒の劣化の程度を判定し、前記触媒が劣化状態にあると判定された後に、酸素を含む酸化雰囲気中にて加熱する酸化処理、及び還元処理を施す再生処理が開始されるように制御するための制御手段と、
を備えるものである。
The first exhaust gas purification apparatus of the present invention is
An exhaust gas supply pipe;
The exhaust gas purifying catalyst of the present invention disposed inside the exhaust gas supply pipe;
A temperature sensor mounted on the exhaust gas purification catalyst;
The degree of deterioration of the exhaust gas purifying catalyst is determined based on the operation time and the temperature detected by the temperature sensor, and after it is determined that the catalyst is in a deteriorated state, heating is performed in an oxidizing atmosphere containing oxygen. A control means for controlling the oxidation process to be performed and the regeneration process to perform the reduction process to be started,
Is provided.
また、本発明の第二の排ガス浄化装置は、
排ガス供給管と、
前記排ガス供給管の内部に配置された前記本発明の排ガス浄化用触媒と、
前記排ガス浄化用触媒の劣化状態を判定するための触媒劣化診断装置と、
前記触媒劣化診断装置により排ガス浄化用触媒の劣化状態を判定された後に、酸素を含む酸化雰囲気中にて加熱する酸化処理、及び還元処理を施す再生処理が開始されるように制御するための制御手段と、
を備えるものである。
Moreover, the second exhaust gas purification apparatus of the present invention is
An exhaust gas supply pipe;
The exhaust gas purifying catalyst of the present invention disposed inside the exhaust gas supply pipe;
A catalyst deterioration diagnosis device for determining a deterioration state of the exhaust gas purifying catalyst;
Control for controlling so that the oxidation process for heating in the oxidizing atmosphere containing oxygen and the regeneration process for performing the reduction process are started after the deterioration state of the exhaust gas purifying catalyst is determined by the catalyst deterioration diagnostic device. Means,
Is provided.
さらに、本発明の排ガス浄化方法は、前記本発明の排ガス浄化用触媒に排ガスを接触させて排ガスを浄化する方法である。 Furthermore, the exhaust gas purification method of the present invention is a method of purifying exhaust gas by bringing the exhaust gas into contact with the exhaust gas purification catalyst of the present invention.
本発明によれば、高温の排ガスに長時間晒されても貴金属粒子の凝集を十分に抑制して貴金属の粒成長を長期にわたって十分に抑制でき、これによって触媒活性の低下を十分に抑制できるとともに、使用に際して粒成長したときに、貴金属粒子を比較的低い温度領域であっても短時間で再分散させて触媒活性を容易に再生させることができ、しかも内燃機関の排気系に装着した状態であっても容易に再生させることが可能な排ガス浄化用触媒、その排ガス浄化用触媒の再生方法、並びにその排ガス浄化用触媒を用いた排ガス浄化装置及び排ガス浄化方法を提供することが可能となる。 According to the present invention, noble metal particles can be sufficiently agglomerated over a long period of time even when exposed to high-temperature exhaust gas for a long period of time, thereby sufficiently suppressing a decrease in catalytic activity. When the grains grow in use, the precious metal particles can be re-dispersed in a short time even in a relatively low temperature range, and the catalytic activity can be easily regenerated, and the precious metal particles are attached to the exhaust system of the internal combustion engine. It is possible to provide an exhaust gas purification catalyst that can be easily regenerated, a method for regenerating the exhaust gas purification catalyst, an exhaust gas purification device and an exhaust gas purification method using the exhaust gas purification catalyst.
以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
先ず、本発明の排ガス浄化用触媒について説明する。すなわち、本発明の排ガス浄化用触媒は、貴金属が酸化物担体に担持された触媒であって、酸化雰囲気下において、前記貴金属が高酸化状態で前記担体の表面上に存在し且つ前記貴金属が前記担体の表面の酸素を介して前記担体の陽イオンと結合してなる表面酸化物層を有していること、及び、
還元雰囲気下において、前記貴金属が金属状態で前記担体の表面上に存在し且つCO化学吸着法により測定される前記担体の表面に露出している貴金属の量の割合が前記担体に担持された貴金属の全量に対して原子比率で10%以上であること、
を特徴とするものである。
First, the exhaust gas purifying catalyst of the present invention will be described. That is, the exhaust gas purifying catalyst of the present invention is a catalyst in which a noble metal is supported on an oxide carrier, the noble metal is present in a highly oxidized state on the surface of the carrier in an oxidizing atmosphere, and the noble metal is Having a surface oxide layer bonded to the cation of the carrier via oxygen on the surface of the carrier; and
In a reducing atmosphere, the ratio of the amount of the noble metal that is present on the surface of the carrier in a metallic state and exposed on the surface of the carrier as measured by a CO chemical adsorption method is supported on the carrier. 10% or more by atomic ratio with respect to the total amount of
It is characterized by.
本発明にかかる酸化物担体としては、前記酸化物担体中の酸素1s軌道の結合エネルギーの値が531eV以下の値を示すものが好ましく、531〜529eVの値を示すものであることが特に好ましい。前記結合エネルギーの値が531eVを超えている酸化物を用いた場合は、貴金属と担体との相互作用が十分に強くならず、酸化雰囲気下において貴金属と担体との表面酸化物層が効率よく形成されない傾向にある。更に、後述する酸化処理及び還元処理を施しても担体上の貴金属が十分に再分散しない傾向にある。他方、前記結合エネルギーの値が529eV未満の複合酸化物を用いた場合は、貴金属と担体との相互作用が強くなり過ぎて、再生処理の際に還元処理を施しても担体上の貴金属が活性な状態に戻りにくくなる傾向にある。 The oxide carrier according to the present invention preferably has a bond energy value of oxygen 1s orbital in the oxide carrier of 531 eV or less, particularly preferably 531 to 529 eV. When an oxide having a bond energy value exceeding 531 eV is used, the interaction between the noble metal and the carrier is not sufficiently strong, and the surface oxide layer of the noble metal and the carrier is efficiently formed in an oxidizing atmosphere. There is a tendency not to be. Further, the precious metal on the support does not tend to be sufficiently redispersed even when an oxidation treatment and a reduction treatment described later are performed. On the other hand, when a composite oxide having a binding energy value of less than 529 eV is used, the interaction between the noble metal and the support becomes too strong, and the noble metal on the support is active even when the reduction treatment is performed during the regeneration process. It tends to be difficult to return to a new state.
このような条件を満たす前記酸化物担体としては、例えば以下のもの:
CeO2−ZrO2−Y2O3:530.04eV
ZrO2−La2O3:530.64eV
CeO2−ZrO2:530eV
CeO2−ZrO2−La2O3−Pr2O3:529.79eV
が挙げられる。
Examples of the oxide carrier that satisfies such conditions include the following:
CeO 2 -ZrO 2 -Y 2 O 3 : 530.04eV
ZrO 2 -La 2 O 3: 530.64eV
CeO 2 —ZrO 2 : 530 eV
CeO 2 -ZrO 2 -La 2 O 3 -Pr 2 O 3: 529.79eV
Is mentioned.
また、本発明の排ガス浄化用触媒においては、前記酸化物担体中の陽イオンのうちの少なくとも一つの陽イオンの電気陰性度が、ジルコニウムの陽イオンの電気陰性度より低いことが好ましい。このような酸化物担体中の陽イオンの電気陰性度がジルコニウムの陽イオンの電気陰性度より高いと、貴金属と担体との相互作用が十分に強くならず、酸化雰囲気下において貴金属と担体との表面酸化物層を効率よく形成することが困難となる傾向にあり、更に、後述する酸化処理及び還元処理を施しても担体上の貴金属が十分に再分散しない傾向にある。 In the exhaust gas purifying catalyst of the present invention, it is preferable that the electronegativity of at least one of the cations in the oxide carrier is lower than the electronegativity of the cation of zirconium. If the cation electronegativity in such an oxide support is higher than the cation electronegativity of zirconium, the interaction between the noble metal and the support will not be sufficiently strong, and the noble metal and the support will not react in an oxidizing atmosphere. It tends to be difficult to efficiently form the surface oxide layer, and further, the precious metal on the support tends not to be sufficiently redispersed even when the oxidation treatment and the reduction treatment described later are performed.
また、このような酸化物担体としては、ジルコニウムと、希土類元素及びアルカリ土類金属元素からなる群から選択され且つセリウムを含む少なくとも一つの金属元素との複合酸化物であり、前記担体中に含有される前記金属元素の量が前記担体に対して金属換算で51〜75mol%の範囲にあり、且つ、前記金属元素中に含有されるセリウムの量が前記金属元素に対して金属換算で90mol%以上の範囲にある蛍石型構造の担体が用いられる。このようなアルカリ土類金属元素としては、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)が挙げられ、中でも、貴金属及びその酸化物との相互作用が強く親和性が大きい傾向にあるという観点からMg、Ca、Baが好ましい。また、希土類元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Ga)、テルビウム(Tb)、ジスプロシウム(Dy)、イッテルビウム(Yb)、ルテチウム(Lu)等が挙げられ、中でも、貴金属及びその酸化物との相互作用が強く親和性が大きい傾向にあるという観点からLa、Ce、Nd、Pr、Y、Scが好ましく、La、Ce、Y、Ndがより好ましい。このような電気陰性度の低い希土類元素及びアルカリ土類金属元素は、貴金属との相互作用が強いため、酸化雰囲気において酸素を介して貴金属と結合し、貴金属の蒸散やシンタリングを抑制し、活性点である貴金属の劣化を十分に抑制することができる。 In addition, such an oxide support is a composite oxide of zirconium and at least one metal element selected from the group consisting of rare earth elements and alkaline earth metal elements and containing cerium, and is contained in the support. The amount of the metal element is in the range of 51 to 75 mol% in terms of metal with respect to the support, and the amount of cerium contained in the metal element is 90 mol% in terms of metal with respect to the metal element. A fluorite-type structure carrier in the above range is used . Examples of such alkaline earth metal elements include magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). Among them, interaction with noble metals and oxides thereof. Mg, Ca, and Ba are preferable from the viewpoint of strong and high affinity. Further, as a rare-earth element include scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Ga), Examples include terbium (Tb), dysprosium (Dy), ytterbium (Yb), lutetium (Lu), etc. Among them, La, Ce from the viewpoint of strong interaction with noble metals and their oxides and high affinity. , Nd, Pr, Y, and Sc are preferable, and La, Ce, Y, and Nd are more preferable. Such rare earth elements and alkaline earth metal elements having low electronegativity have strong interactions with noble metals, and therefore, they bind to noble metals through oxygen in an oxidizing atmosphere to suppress the evaporation and sintering of noble metals, Deterioration of the noble metal that is a point can be sufficiently suppressed.
このような複合酸化物においては、上述のジルコニアと、希土類元素及びアルカリ土類金属元素からなる群から選択され且つセリウムを含む少なくとも一つの金属元素とが複合酸化物を形成している必要がある。すなわち、ジルコニアと、前記金属元素とが単に共存している状態(例えば、ジルコニア粒子と、前記金属元素の酸化物粒子とが均一分散している状態)では、再生処理を施した場合に担体上の貴金属を十分に再分散できず、触媒活性は十分に復活(再生)しない。 In such composite oxide, and zirconia A described above, requires at least one metallic element and selected from the group consisting of rare earth elements and alkaline earth metal elements including cerium form a composite oxide is there. In other words, the zirconia A, a state in which the said metallic element is simply coexist (e.g., a zirconia particle child, the state and the oxide particles are uniformly dispersed in the metal element) in the case subjected to regeneration treatment The precious metal on the support cannot be sufficiently redispersed, and the catalytic activity is not fully restored (regenerated).
本発明にかかる担体としては、ジルコニウムと、希土類元素及びアルカリ土類金属元素からなる群から選択され且つセリウムを含む少なくとも一つの金属元素との複合酸化物を含み、且つ蛍石型構造を備えるものが用いられる。ここで、蛍石型構造とは、AX2型化合物(Aは金属元素、Xは酸素)の結晶構造の一つで蛍石により代表される構造であり、面心立方格子で単位格子中に4個の化学式数が含まれる構造である。 The carrier according to the present invention includes a complex oxide of zirconium and at least one metal element selected from the group consisting of rare earth elements and alkaline earth metal elements and including cerium, and has a fluorite structure Is used . Here, the fluorite structure is one of the crystal structures of the AX type 2 compound (A is a metal element, X is oxygen) and is represented by fluorite, and is a face-centered cubic lattice in a unit lattice. The structure includes four chemical formula numbers.
このような担体においては、担体中に含有される前記金属元素の量は、前記担体に対して金属換算で51〜75mol%の範囲である。また、このような金属元素の量としては、前記担体に対して金属換算で51.5〜70mol%の範囲にあることが好ましく、52〜65mol%の範囲にあることがより好ましく、52.5〜60mol%の範囲にあることが特に好ましい。このような金属元素の量が51mol%未満では、前記担体の貴金属を保持できるサイト数が減少し、効率的に貴金属を保持することができず、また、後述する本発明の再生方法を採用して再生処理を施しても担体上の貴金属の粒子は十分に小さくならない。他方、このような金属元素の量が75mol%を超えると、前記複合酸化物中のジルコニウムの比率が少なくなって比表面積の維持が困難となり、耐熱性に劣る。 In such a carrier, the amount of the metal element contained in the carrier, the area by der of 51~75Mol% in terms of metal relative to the carrier. The amount of such a metal element is preferably in the range of 51.5 to 70 mol%, more preferably in the range of 52 to 65 mol% in terms of metal with respect to the support, and more preferably 52.5 A range of ˜60 mol% is particularly preferred. If the amount of the metal element is less than 51 mol%, the number of sites capable of holding the noble metal of the carrier is reduced, and the noble metal cannot be efficiently held, and the regeneration method of the present invention described later is adopted. particles of the noble metal on the support be subjected to regeneration treatment is not a not sufficiently small Te. On the other hand, if the amount of such a metal element exceeds 75 mol%, the it is difficult to maintain the zirconium ratio is less become specific surface area of the composite oxide, Ru inferior in heat resistance.
また、このような担体において金属元素中に含有されるセリウムの量は、前記金属元素に対して金属換算で90mol%以上の範囲である。このようなセリウムの量が前記90mol%未満では、セリウム以外の金属元素が担体中に固溶しきれなくなり、比表面積の低下を招く。
Further, the amount of cerium contained in the metal element in such a carrier is in a range of 90 mol% or more in terms of metal with respect to the metal element. In such cerium less than the amount of the 90 mol%, a metal element other than cerium is not completely dissolved in the carrier, a decrease in the specific surface area rather invited.
さらに、このような担体においては、ジルコニウムと前記金属元素とが固溶して粒子内において均一な組成となる。一般に、担体中のCeO2は高温還元時に著しく比表面積を低下するため、担体中においてジルコニウムとセリウムとの間に組成分布があると耐熱性が低下する傾向にある。しかしながら、前述のように前記担体中の組成が均一なものとなるため比表面積の低下を抑制できる。そのため、このような担体は耐熱性により優れたものとなる。 Further, in such a carrier, zirconium and the metal element are in a solid solution and have a uniform composition in the particles. In general, CeO 2 in the support significantly reduces the specific surface area at the time of high-temperature reduction. Therefore, if there is a composition distribution between zirconium and cerium in the support, the heat resistance tends to decrease. However, since the composition in the carrier is uniform as described above, a decrease in specific surface area can be suppressed. Therefore, such a carrier is excellent in heat resistance.
さらに、本発明にかかる酸化物担体の形状としては特に制限されないが、比表面積を向上させてより高い触媒活性が得られることから、粉体状であることが好ましい。酸化物担体が粉体状のものである場合においては、前記担体の粒度(二次粒子径)は特に制限されず、5〜200μmであることが好ましい。前記粒子径が前記下限未満では、担体の微細化にコストがかかるとともに、その扱いが困難となる傾向にあり、他方、前記上限を超えると後述するような基材に本発明の排ガス浄化用触媒のコート層を安定に形成させることが困難となる傾向にある。 Furthermore, the shape of the oxide support according to the present invention is not particularly limited, but is preferably in the form of a powder because the specific surface area can be improved and higher catalytic activity can be obtained. When the oxide carrier is in powder form, the particle size (secondary particle size) of the carrier is not particularly limited and is preferably 5 to 200 μm. If the particle diameter is less than the lower limit, it is costly to make the carrier finer, and the handling tends to be difficult. On the other hand, if it exceeds the upper limit, the exhaust gas purifying catalyst of the present invention is applied to a substrate as described later. It tends to be difficult to form a stable coat layer.
また、このような酸化物担体の比表面積は特に制限されないが、なお、このような比表面積は吸着等温線からBET等温吸着式を用いてBET比表面積として算出することができる。 The specific surface area of such an oxide carrier is not particularly limited, but such a specific surface area can be calculated as a BET specific surface area from an adsorption isotherm using a BET isotherm adsorption equation.
また、このような担体の比表面積は、1m2/g以上であることが好ましく、5m2/g以上であることがより好ましく、10m2/g以上であることがさらに好ましく、15m2/g以上であることが特に好ましい。比表面積が前記下限未満では、十分な触媒活性を発揮させるために妥当な量の貴金属を担持することが困難となる。また、担体の耐熱性を確保できる限りにおいては、担体の比表面積はより大きいことが好ましいため、前記比表面積の上限は特に制限されない。なお、担体は耐久雰囲気(高温雰囲気)中で比表面積の低下を起こさないことが触媒活性の維持に対して重要な要素の一つであることから、このような触媒に用いる担体としては、予め熱履歴を加えることによって比表面積を落としたものを利用することもできる。そのため、本発明にかかる担体としては、予め熱履歴を加えて比表面積を80m2/g未満、更には60m2/g未満としたものを利用してもよい。なお、このような比表面積は吸着等温線からBET等温吸着式を用いてBET比表面積として算出することができる。 Further, the specific surface area of such a carrier is preferably 1 m 2 / g or more, more preferably 5 m 2 / g or more, further preferably 10 m 2 / g or more, and 15 m 2 / g. The above is particularly preferable. When the specific surface area is less than the lower limit, it becomes difficult to support an appropriate amount of noble metal in order to exhibit sufficient catalytic activity. In addition, as long as the heat resistance of the support can be ensured, the specific surface area of the support is preferably larger, so the upper limit of the specific surface area is not particularly limited. In addition, since it is one of the important elements for maintaining the catalytic activity that the support does not cause a decrease in specific surface area in a durable atmosphere (high temperature atmosphere), It is also possible to use a material whose specific surface area has been reduced by adding a thermal history. Therefore, as the carrier according to the present invention, a carrier having a specific surface area of less than 80 m 2 / g and further less than 60 m 2 / g by adding a heat history in advance may be used. Such a specific surface area can be calculated as a BET specific surface area from an adsorption isotherm using a BET isotherm adsorption equation.
なお、本発明にかかる前記担体の製造方法は、特に制限されず、例えば以下のような方法によって得ることができる。すなわち、上述の複合酸化物の原料となる諸金属の塩(例えば、硝酸塩)と、更に必要に応じて界面活性剤(例えば、ノニオン系界面活性剤)とを含有する水溶液から、アンモニアの存在下で上記複合酸化物の共沈殿物を生成せしめ、得られた共沈殿物を濾過、洗浄した後に乾燥し、更に焼成することによって前記複合酸化物からなる担体を得ることができる。 In addition, the manufacturing method in particular of the said carrier concerning this invention is not restrict | limited, For example, it can obtain by the following methods. That is, in the presence of ammonia from an aqueous solution containing a salt of various metals (for example, nitrate) as a raw material of the composite oxide and, if necessary, a surfactant (for example, a nonionic surfactant). Thus, the composite oxide coprecipitate is produced, and the obtained coprecipitate is filtered, washed, dried, and further baked to obtain a support made of the composite oxide.
また、本発明の排ガス浄化用触媒においては、前記担体に貴金属が担持されている。このような貴金属としては、白金、ロジウム、パラジウム、オスミウム、イリジウム、金等が挙げられるが、得られる排ガス浄化用触媒がより高い触媒活性を示すという観点からは、白金、ロジウム、パラジウムが好ましく、再生の観点から白金、パラジウムが好ましい。 In the exhaust gas purifying catalyst of the present invention, a noble metal is supported on the carrier. Examples of such noble metals include platinum, rhodium, palladium, osmium, iridium, and gold. From the viewpoint that the obtained exhaust gas purifying catalyst exhibits higher catalytic activity, platinum, rhodium, and palladium are preferable. From the viewpoint of regeneration, platinum and palladium are preferable.
また、本発明の排ガス浄化用触媒においては、酸化雰囲気下において、前記貴金属が前記担体の表面上に高酸化状態で存在し且つ前記貴金属が前記担体の表面の酸素を介して前記担体の陽イオンと結合してなる表面酸化物層を有している。そのため、本発明の排ガス浄化用触媒においては、触媒の活性点である前記貴金属が前記担体の表面上において高分散で存在し且つ安定した状態で前記担体の表面上に担持されることとなるため、十分に高い触媒活性を発揮することができるとともに貴金属の粒成長が十分に抑制される。なお、本発明にいう「高酸化状態」とは、貴金属が0価よりも高い状態をいう。また、ここにいう「酸化雰囲気」とは酸素濃度が0.5体積%以上のガスの雰囲気をいう。更に、担体の表面における貴金属の酸化状態及び担体との結合状態は、TEM(透過型電子顕微鏡)観察やXAFS(X線吸収微細構造)スペクトル解析法を採用して確認することができる。 In the exhaust gas purifying catalyst of the present invention, the noble metal is present in a highly oxidized state on the surface of the support in an oxidizing atmosphere, and the noble metal is cation of the support via oxygen on the surface of the support. And a surface oxide layer formed by bonding. Therefore, in the exhaust gas purifying catalyst of the present invention, the noble metal that is the active point of the catalyst is present in a highly dispersed state on the surface of the carrier and is supported on the surface of the carrier in a stable state. It is possible to exhibit a sufficiently high catalytic activity and to sufficiently suppress the noble metal grain growth. In the present invention, the “high oxidation state” refers to a state where the noble metal is higher than zero. Further, the “oxidizing atmosphere” referred to here means an atmosphere of gas having an oxygen concentration of 0.5% by volume or more. Furthermore, the oxidation state of the noble metal on the surface of the support and the bonding state with the support can be confirmed by employing TEM (transmission electron microscope) observation or XAFS (X-ray absorption fine structure) spectrum analysis.
また、本発明の排ガス浄化用触媒においては、還元雰囲気下において、CO化学吸着法により測定される前記担体の表面上に存在する前記貴金属の量が、原子比率で前記担体に担持された全貴金属量に対して10%(より好ましくは15%)以上である。このような担体の表面上に存在する貴金属の量に関する原子比率が10%未満では、担体表面に存在する貴金属の分散状態が不十分となって貴金属の単位量あたりの触媒活性が低下するとともに、再生処理によって触媒活性が再生し難くなる傾向にある。なお、本発明においては、このようなCO化学吸着法として特開2004−340637号公報に記載されている方法を採用する。また、ここにいう「還元雰囲気」とは、還元性ガスの濃度が0.1体積%以上のガスの雰囲気をいう。 In the exhaust gas purifying catalyst of the present invention, the amount of the noble metal present on the surface of the carrier measured by the CO chemical adsorption method in a reducing atmosphere is the total noble metal supported on the carrier at an atomic ratio. It is 10% (more preferably 15%) or more based on the amount. When the atomic ratio relating to the amount of the noble metal present on the surface of the support is less than 10%, the dispersed state of the noble metal existing on the support surface is insufficient, and the catalytic activity per unit amount of the noble metal is reduced. Regeneration treatment tends to make it difficult to regenerate the catalyst activity. In the present invention, the method described in JP-A-2004-340637 is adopted as such a CO chemical adsorption method. Further, the “reducing atmosphere” referred to here means an atmosphere of gas having a reducing gas concentration of 0.1% by volume or more.
また、本発明の排ガス浄化用触媒においては、前記貴金属と、前記担体の表面に露出している前記酸化物のうちのジルコニウムよりも電気陰性度が低い陽イオンとのモル比(陽イオン/貴金属)が、1.5以上であることが好ましい。前記貴金属と前記陽イオンとのモル比(陽イオン/貴金属)が前記下限未満では、貴金属の一部が担体との相互作用を得がたくなる傾向にある。 In the exhaust gas purifying catalyst of the present invention, the molar ratio between the noble metal and a cation having a lower electronegativity than zirconium in the oxide exposed on the surface of the carrier (cation / noble metal). ) Is preferably 1.5 or more. When the molar ratio of the noble metal to the cation (cation / noble metal) is less than the lower limit, a part of the noble metal tends to hardly obtain an interaction with the support.
また、本発明の排ガス浄化用触媒において、前記貴金属の担持量は、前記触媒の質量に対して0.05〜2質量%(より好ましくは0.1〜0.5質量%)の範囲であることが好ましい。前記貴金属の担持量が前記下限未満では、貴金属により得られる触媒活性が不十分となる傾向にあり、他方、上記上限を超えると、コストが高騰するとともに粒成長を起こし易くなる傾向にある。 In the exhaust gas purifying catalyst of the present invention, the amount of the noble metal supported is in the range of 0.05 to 2% by mass (more preferably 0.1 to 0.5% by mass) with respect to the mass of the catalyst. It is preferable. If the amount of the noble metal supported is less than the lower limit, the catalytic activity obtained from the noble metal tends to be insufficient. On the other hand, if the amount exceeds the upper limit, the cost increases and grain growth tends to occur.
また、本発明においては、前記担体100gあたりの前記貴金属の担持量は、以下に説明する基準値Xの2倍以下であり且つ0.01〜0.8g(より好ましくは0.02〜0.5g、更に好ましくは0.05〜0.3g、)であることが好ましい。このような貴金属の担持量が前記下限未満では、貴金属により得られる触媒活性が不十分となる傾向にあり、他方、前記上限を超えると、コストが高騰するとともに粒成長が起こり易くなり、貴金属の単位量あたりの触媒活性が低下する傾向にある。 In the present invention, the amount of the noble metal supported per 100 g of the carrier is not more than twice the reference value X described below and is 0.01 to 0.8 g (more preferably 0.02 to 0.00). 5 g, more preferably 0.05 to 0.3 g). When the amount of the noble metal supported is less than the lower limit, the catalytic activity obtained by the noble metal tends to be insufficient. On the other hand, when the amount exceeds the upper limit, the cost increases and grain growth easily occurs. The catalyst activity per unit amount tends to decrease.
基準値Xの算出方法は、式(1):
X=(σ/100)×S/s÷N×Mnm×100 (1)
[式(1)中、Xは前記担体100gあたりの前記貴金属の量の基準値(単位:g)を示し、σは式(2):
σ=M−50 (2)
(式(2)中、Mは前記担体中に含有される前記金属元素の割合(単位:mol%)を示す。)
により算出される前記金属元素が前記金属元素に囲まれる確率(単位:%)を示し、Sは前記担体の比表面積(単位:m2/g)を示し、sは式(3):
The calculation method of the reference value X is the formula (1):
X = (σ / 100) × S / s ÷ N × M nm × 100 (1)
[In the formula (1), X represents a reference value (unit: g) of the amount of the noble metal per 100 g of the support, and σ represents the formula (2):
σ = M−50 (2)
(In the formula (2), M represents a ratio (unit: mol%) of the metal element contained in the carrier.)
Indicates the probability (unit:%) that the metal element is calculated by the metal element, S indicates the specific surface area (unit: m 2 / g) of the support, and s indicates the formula (3):
(式(3)中、aは格子定数(単位:Å)を示す)
により算出される陽イオン1個あたりの単位面積(単位:Å2/個)を示し、Nはアボガドロ数(6.02×1023(単位:個))を示し、Mnmは前記担体に担持された前記貴金属の原子量を示す。]
により示される。前記担体100gあたりの前記貴金属の担持量は、0.01〜0.8g且つ基準値Xの2倍(より好ましくは1.5倍、更に好ましくは1倍)以下であることが好ましい。なお、貴金属が2種以上担持されている場合には、前記貴金属の原子量Mnmは、それぞれの貴金属の原子量にそれぞれの貴金属の全貴金属量に対する割合を掛け合わせて算出された値を全て足し合せて算出される値とする。
(In formula (3), a represents a lattice constant (unit: Å))
Represents the unit area (unit: 単 位2 / piece) per cation calculated by the above formula, N represents the Avogadro number (6.02 × 10 23 (unit: piece)), and M nm is supported on the carrier. The atomic weight of the noble metal formed is shown. ]
Indicated by. The amount of the precious metal supported per 100 g of the carrier is preferably 0.01 to 0.8 g and not more than twice the reference value X (more preferably 1.5 times, still more preferably 1 time). In addition, when two or more kinds of noble metals are supported, the atomic weight M nm of the noble metals is obtained by adding all the values calculated by multiplying the atomic weight of each noble metal by the ratio of each noble metal to the total noble metal amount. To be calculated.
このような式(1)は、担体上の貴金属を安定に保持させるためのサイトの量、つまり、前記貴金属の基準値Xと担体の組成及び比表面積との関係を示すものである。貴金属の担持量が上記式(1)により算出される基準値Xの2倍を超えると、貴金属を担持させるためのサイトの量に対して担持される貴金属の量が多くなるため余剰な貴金属が存在することとなり、粒成長が起こり易くなり、貴金属の単位量あたりの触媒活性が低下する傾向にある。しかしながら、貴金属の担持量が前記基準値Xの2倍以下である場合には後述する本発明の再生処理を施せば、貴金属をより容易に再分散させることができ、貴金属の単位量あたりの触媒活性をより効率よく再生することができる。貴金属の担持量が前記基準値Xに近くなると、担体の貴金属を担持させるためのサイトの量に対して妥当な貴金属の量に近づき、より粒成長を抑制し再生性が向上する傾向にある。さらに、貴金属の担持量が前記基準値X以下になると、担体の貴金属を担持させるためのサイトの量より少ない貴金属量を担持せしめることができており、貴金属は酸素を介して担体表面の陽イオンと十分に結合できるため、担体の表面において貴金属が安定して存在するとともに高分散の状態で保持され、貴金属の粒成長がさらに抑制され、貴金属の単位量あたりの触媒活性がより十分なものとなる。 Such a formula (1) shows the relationship between the amount of sites for stably holding the noble metal on the support, that is, the reference value X of the noble metal, the composition of the support and the specific surface area. If the amount of noble metal supported exceeds twice the reference value X calculated by the above formula (1), the amount of noble metal supported increases with respect to the amount of sites for supporting the noble metal, so that excess noble metal is present. Therefore, grain growth tends to occur, and the catalytic activity per unit amount of the noble metal tends to decrease. However, when the amount of the noble metal supported is twice or less than the reference value X, the noble metal can be redispersed more easily by performing the regeneration treatment of the present invention described later, and the catalyst per unit amount of the noble metal The activity can be regenerated more efficiently. When the loading amount of the noble metal is close to the reference value X, the amount of the noble metal approaches an appropriate amount with respect to the amount of sites for supporting the noble metal of the carrier, and the grain growth is further suppressed and the reproducibility tends to be improved. Furthermore, when the loading amount of the noble metal is equal to or less than the reference value X, it is possible to carry a noble metal amount smaller than the amount of sites for supporting the noble metal of the carrier, and the noble metal is cation on the surface of the carrier via oxygen. The noble metal is stably present on the surface of the support and is maintained in a highly dispersed state, further suppressing grain growth of the noble metal, and having a more sufficient catalytic activity per unit amount of the noble metal. Become.
図2に、上記式(1)における貴金属の量の基準値Xと担体の比表面積Sとの関係を示すグラフを示す。なお、この図2は、例としてCe0.6Zr0.4O2担体(M=60mol%、格子定数a=5.304915Å)及びPt(原子量Mnm:195.09)を用いた場合に計算されて得られるグラフである。 FIG. 2 is a graph showing the relationship between the reference value X of the amount of noble metal in the above formula (1) and the specific surface area S of the support. FIG. 2 shows an example in which Ce 0.6 Zr 0.4 O 2 carrier (M = 60 mol%, lattice constant a = 5.3049155) and Pt (atomic mass M nm : 195.09) are used. It is a graph obtained by calculating.
また、特に長期間使用後においても前記担体100gあたり貴金属の担持量が上記式(1)により算出される前記基準値Xの2倍以下であり且つ0.01〜0.8gの範囲にあるという条件を満たすことが好ましく、例えば、触媒1.5gに対して333cc/分となるようにしてリッチガス(CO(3.75容量%)/H2(1.25容量%)/H2O(3容量%)/N2(balance))と、リーンガス(O2(5容量%)/H2O(3容量%)/N2(balance))とを5分ごとに交互に流入させたモデルガス雰囲気下で1000℃の温度条件で5時間保持する耐久試験を行った後においても、前記担体100gあたり貴金属の担持量が上記条件を満たすことが好ましい。 In particular, even after a long period of use, the amount of noble metal supported per 100 g of the carrier is not more than twice the reference value X calculated by the above formula (1) and is in the range of 0.01 to 0.8 g. It is preferable to satisfy the conditions, for example, rich gas (CO (3.75 vol%) / H 2 (1.25 vol%) / H 2 O (3 Volume%) / N 2 (balance)) and lean gas (O 2 (5% by volume) / H 2 O (3% by volume) / N 2 (balance)) alternately flowed every 5 minutes. Even after an endurance test is performed in an atmosphere under a temperature condition of 1000 ° C. for 5 hours, it is preferable that the amount of noble metal supported per 100 g of the carrier satisfies the above conditions.
また、本発明の排ガス浄化用触媒において、前記貴金属はより細粒化された粒子の状態で担体に担持されることが好ましい。このような貴金属の粒子径としては3nm以下であることがより好ましく、2nm以下であることがより好ましい。前記貴金属の粒子径が前記上限を超えると高度な触媒活性が得ることが困難になる傾向にある。 In the exhaust gas purifying catalyst of the present invention, the noble metal is preferably supported on a carrier in the form of finer particles. The particle diameter of such noble metal is more preferably 3 nm or less, and more preferably 2 nm or less. When the particle diameter of the noble metal exceeds the upper limit, it tends to be difficult to obtain high catalytic activity.
なお、前記担体に前記貴金属を担持させる方法としては、貴金属の担持量が前述の各条件を満たすように調整する以外は特に制限されず、例えば、貴金属の担持量が前述の各条件を満たすようにして調製した貴金属の塩(例えば、ジニトロジアミン塩)や錯体(例えば、テトラアンミン錯体)を含有する水溶液を前記担体に接触させた後に乾燥し、更に焼成する方法を採用することができる。 The method for supporting the noble metal on the carrier is not particularly limited except that the amount of the noble metal supported is adjusted so as to satisfy the above-mentioned conditions. For example, the amount of the noble metal supported satisfies the above-mentioned conditions. It is possible to employ a method in which an aqueous solution containing a noble metal salt (for example, dinitrodiamine salt) or a complex (for example, tetraammine complex) prepared as described above is contacted with the carrier, dried, and further calcined.
また、本発明の排ガス浄化用触媒においては、前記担体に、アルカリ土類金属元素、希土類元素及び3A族元素からなる群から選択される少なくとも一つの元素を含有する添加成分が更に担持されていることが好ましい。このような担持成分を前記担体に担持せしめることにより、担体の塩基性をより向上させ、担体とその担体に担持された貴金属との間により強い相互作用を付与することができ、これによって貴金属の粒成長をより十分に抑制して触媒活性の低下を十分に抑制することが可能となる。また、このような担持成分を前記担体に担持せしめることにより、上述のように担体と貴金属との間に極めて強い相互作用が働き、貴金属の粒成長を抑制する傾向にあり、使用に際して粒成長した場合においても後述の本発明の排ガス浄化用触媒の再生方法を採用して再生処理を施すことで、短時間でより効率よく貴金属を再分散させて触媒活性を再生させることができる。 In the exhaust gas purifying catalyst of the present invention, the support further carries an additive component containing at least one element selected from the group consisting of an alkaline earth metal element, a rare earth element, and a group 3A element. It is preferable. By supporting such a supporting component on the carrier, the basicity of the carrier can be further improved, and a stronger interaction can be imparted between the carrier and the noble metal supported on the carrier. It becomes possible to sufficiently suppress the grain growth and sufficiently suppress the decrease in the catalytic activity. In addition, by supporting such a supporting component on the carrier, an extremely strong interaction acts between the carrier and the noble metal as described above, and the grain growth of the noble metal tends to be suppressed. Even in this case, by adopting the regeneration method of the exhaust gas purifying catalyst of the present invention, which will be described later, the catalyst activity can be regenerated by redispersing the noble metal more efficiently in a short time.
また、このような添加成分に含有される元素としては、担体の塩基性をより向上させて粒成長をより十分に抑制できるとともに、貴金属が粒成長した場合においても触媒活性をより容易に復活させることができるという観点から、マグネシウム、カルシウム、ネオジウム、プラセオジウム、バリウム、ランタン、セリウム、イットリウム及びスカンジウムからなる群から選択される少なくとも一種の元素が好ましく、ネオジウム、バリウム、イットリウム及びスカンジウムが更に好ましい。また、前記添加成分としては上記元素を含有するものであればよく、例えば、上記元素自体、上記元素の酸化物、上記元素の塩(炭酸塩、硝酸塩、クエン酸塩、酢酸塩、硫酸塩)及びそれらの混合物等が挙げられる。 Moreover, as an element contained in such an additive component, the basicity of the carrier can be further improved to suppress the grain growth more sufficiently, and the catalytic activity can be revived more easily even when the noble metal grain grows. From the viewpoint that it can be used, at least one element selected from the group consisting of magnesium, calcium, neodymium, praseodymium, barium, lanthanum, cerium, yttrium, and scandium is preferable, and neodymium, barium, yttrium, and scandium are more preferable. Further, the additive component may be any element that contains the above element, for example, the element itself, an oxide of the element, or a salt of the element (carbonate, nitrate, citrate, acetate, sulfate). And mixtures thereof.
また、このような添加成分の担持量は、金属換算で前記貴金属の量に対するモル比(添加成分の量/貴金属の量)が0.5〜20(より好ましくは1〜10)の範囲となる量である。このようなモル比が前記下限未満では、添加成分の担持量が十分でないため担体の塩基性を向上させることが困難となり、貴金属の粒成長をより十分に抑制する効果が低減する傾向にあり、他方、前記上限を超えると担体の比表面積が低下し、貴金属の分散性が低下する傾向にある。 In addition, the supported amount of such an additive component is such that the molar ratio (amount of additive component / amount of noble metal) to the amount of the noble metal in terms of metal is in the range of 0.5 to 20 (more preferably 1 to 10). Amount. If such a molar ratio is less than the lower limit, it is difficult to improve the basicity of the support because the loading amount of the additive component is not sufficient, and the effect of more sufficiently suppressing the noble metal grain growth tends to be reduced, On the other hand, when the above upper limit is exceeded, the specific surface area of the carrier tends to decrease, and the dispersibility of the noble metal tends to decrease.
さらに、このような添加成分の担持量としては、前記担体1gあたり前記添加成分が1.28×10−6〜1.28×10−3molとなる量であることが好ましく、5.13×10−6〜5.13×10−4molとなる量であることがより好ましく、5.13×10−6〜2.56×10−4molとなる量であることがさらに好ましく、5.13×10−6〜1.28×10−4molとなる量であることが特に好ましい。 Furthermore, the loading amount of such an additive component is preferably an amount such that the additive component is 1.28 × 10 −6 to 1.28 × 10 −3 mol per 1 g of the carrier. more preferably an amount that a 10 -6 ~5.13 × 10 -4 mol, more preferably an amount that the 5.13 × 10 -6 ~2.56 × 10 -4 mol, 5. It is particularly preferable that the amount is 13 × 10 −6 to 1.28 × 10 −4 mol.
また、このような添加成分は、担持量を少量にして前記担体の外表面に担持させる量を確実に制御することが好ましく、更にコスト面でも担持量が少ないことが好ましいという観点から、前記担体の外表面近傍に高い密度で担持されていることが好ましい。このような状態としては、前記担体が粉体状のものである場合には、前記添加成分の80%以上が前記担体の外表面から前記担体の中心までの間において前記担体の外表面から30%の領域に担持されていることが好ましい。 In addition, it is preferable to control the amount of the additive component to be supported on the outer surface of the carrier by reducing the amount supported, and further from the viewpoint that the amount supported is preferably small in terms of cost. It is preferable that it is supported at a high density in the vicinity of the outer surface. In such a state, when the carrier is in a powder form, 80% or more of the additive component is 30% from the outer surface of the carrier between the outer surface of the carrier and the center of the carrier. % Is preferably carried in the region.
また、前記担体に添加成分を担持させる方法としては特に制限されず、例えば、上記元素の塩(例えば、炭酸塩、硝酸塩、酢酸塩、クエン酸塩、硫酸塩)や錯体を含有する水溶液を前記担体に接触させた後に乾燥し、更に焼成する方法を採用することができる。また、必要に応じて前記担体を予め熱処理して安定化させた後に、前記添加物を担持させてもよい。なお、このような添加成分を担持させる場合には、前記担体に前記添加成分と前記貴金属とを担持させる順序は特に制限されない。 Further, the method of supporting the additive component on the carrier is not particularly limited, and for example, an aqueous solution containing a salt of the above element (for example, carbonate, nitrate, acetate, citrate, sulfate) or a complex is used. A method of drying after contact with the carrier and further firing can be employed. In addition, if necessary, the support may be preheated and stabilized, and then the additive may be supported. In addition, when supporting such an additional component, the order in which the additional component and the noble metal are supported on the carrier is not particularly limited.
また、本発明の排ガス浄化用触媒においては、前記担体に鉄が更に担持されていることが好ましい。このようにしてFeを担持させることで、還元雰囲気下においてはFeが貴金属と合金化し、他方、酸化雰囲気下においてはFeが酸化物として貴金属の表面及び周辺に析出することから、貴金属の粒成長をより十分に抑制することができ、触媒活性の低下をより十分に抑制できる傾向にあり、更には、後述する本発明の排ガス浄化用触媒の再生方法を採用した再生処理を施した際に、活性点である貴金属粒子をより微細化して触媒活性を十分に再生させることが可能となる傾向にある。 In the exhaust gas purifying catalyst of the present invention, it is preferable that iron is further supported on the carrier. By supporting Fe in this way, Fe is alloyed with a noble metal in a reducing atmosphere, and on the other hand, Fe is deposited as an oxide on and around the surface of the noble metal in an oxidizing atmosphere. Can be more sufficiently suppressed, the decrease in catalytic activity tends to be more sufficiently suppressed, and further, when a regeneration process employing the exhaust gas purification catalyst regeneration method of the present invention described later is performed, It tends to be possible to sufficiently regenerate the catalytic activity by making the noble metal particles, which are active points, finer.
このような鉄の担持量としては、金属換算で前記貴金属の量に対するモル比(鉄の量/貴金属の量)が0.5〜12(より好ましくは0.8〜12、さらに好ましくは1〜10、特に好ましくは1〜5)の範囲となる量であることが好ましい。このようなモル比が前記下限未満では、鉄の担持量が少なく貴金属の粒成長を抑制する効果が十分に得られなくなる傾向にあり、前記上限を超えると、過剰に担持された鉄が担体の比評面積を低下させたり、更には長期間使用後に貴金属の表面を覆ってしまったりするため触媒活性が低下する傾向にある。なお、上記モル比の上限の値としては、担体の比表面積低下と貴金属表面の被覆の観点から、3であることが更に好ましく、1.5であることが特に好ましい。 As the amount of iron supported, the molar ratio (the amount of iron / the amount of noble metal) to the amount of the noble metal in terms of metal is 0.5 to 12 (more preferably 0.8 to 12, more preferably 1 to The amount is preferably in the range of 10, particularly preferably 1 to 5). When the molar ratio is less than the lower limit, the amount of iron supported is small and the effect of suppressing the grain growth of the noble metal tends to be insufficient, and when the upper limit is exceeded, excessively supported iron is not supported by the support. The catalytic activity tends to be reduced because the specific evaluation area is reduced or the surface of the noble metal is covered after long-term use. The upper limit of the molar ratio is more preferably 3 and particularly preferably 1.5 from the viewpoints of lowering the specific surface area of the support and coating the surface of the noble metal.
さらに、このような鉄の担持量の下限としては、前記担体100gあたり1.28×10−4molとなる量であることが好ましく、2.05×10−4molとなる量であることがより好ましく、4.10×10−4molとなる量であることがさらに好ましく、5.13×10−4molとなる量であることが特に好ましい。また、このような鉄の担持量の上限としては、前記担体100gあたり1.23×10−1molとなる量であることが好ましく、5.13×10−2molとなる量であることがより好ましく、3.10×10−2molとなる量であることがさらに好ましく、1.28×10−2molとなる量であることが特に好ましい。 Further, the lower limit of the amount of iron supported is preferably an amount of 1.28 × 10 −4 mol per 100 g of the carrier, and an amount of 2.05 × 10 −4 mol. More preferably, the amount is 4.10 × 10 −4 mol, and even more preferably 5.13 × 10 −4 mol. Further, the upper limit of the amount of iron supported is preferably 1.23 × 10 −1 mol per 100 g of the carrier, and preferably 5.13 × 10 −2 mol. More preferably, the amount is 3.10 × 10 −2 mol, and particularly preferably 1.28 × 10 −2 mol.
また、本発明の排ガス浄化用触媒において、前記担体に担持されている前記鉄の担持状態は特に制限されないが、前記鉄が前記貴金属のより近傍に担持されていることが好ましい。前記鉄を前記貴金属のより近傍に担持させることで、貴金属の粒成長を抑制する効果がより向上する傾向にあり、後述する本発明の排ガス浄化用触媒の再生方法を採用した再生処理を施した際に、活性点である貴金属をより速く微細化(再分散)し、触媒活性を再生させることができる傾向にある。 In the exhaust gas purifying catalyst of the present invention, the state of the iron supported on the carrier is not particularly limited, but it is preferable that the iron is supported closer to the noble metal. By supporting the iron in the vicinity of the noble metal, the effect of suppressing grain growth of the noble metal tends to be further improved, and a regeneration treatment employing the regeneration method of the exhaust gas purifying catalyst of the present invention described later was performed. At this time, there is a tendency that the precious metal which is an active point can be refined (redispersed) faster and the catalytic activity can be regenerated.
また、このような鉄を担持させる方法としては特に制限されず、例えば、鉄の塩(例えば、炭酸塩、硝酸塩、酢酸塩、クエン酸塩、硫酸塩)や錯体を含有する水溶液を前記担体に接触させた後に乾燥し、更に焼成する方法を採用することができる。なお、このような鉄の担持は前記貴金属と同時に行ってもよく、例えば、貴金属の塩の水溶液と鉄の塩の水溶液の混合液を前記担体に接触させた後に乾燥し、更に焼成する方法を採用することができる。また、必要に応じて前記担体を予め熱処理して安定化させた後に、前記鉄や貴金属等を担持させてもよい。 Further, the method for supporting such iron is not particularly limited, and for example, an aqueous solution containing an iron salt (for example, carbonate, nitrate, acetate, citrate, sulfate) or a complex is used as the carrier. The method of drying after making it contact and also baking can be employ | adopted. Such iron loading may be carried out simultaneously with the noble metal. For example, a method in which a mixed solution of an aqueous solution of a noble metal salt and an aqueous solution of an iron salt is brought into contact with the carrier and then dried and further fired. Can be adopted. Further, if necessary, the carrier may be supported by heat treatment and then the iron or precious metal may be supported.
このように本発明の排ガス浄化用触媒が、前記担体と、前記担体に担持された貴金属と、前記担体に担持された鉄とを備えるものである場合、前記担体に担持されている前記貴金属及び前記鉄の担持状態(触媒の構造)は特に制限されないが、前記鉄が前記貴金属のより近傍に担持されていることが好ましい。前記鉄を前記貴金属のより近傍に担持させることで、貴金属の粒成長を抑制する効果がより向上する傾向にあり、後述する再生処理を施した際に、活性点である貴金属をより微細化させることが可能となる傾向にある。 Thus, when the exhaust gas purifying catalyst of the present invention comprises the carrier, the noble metal carried on the carrier, and the iron carried on the carrier, the noble metal carried on the carrier and The iron loading state (catalyst structure) is not particularly limited, but it is preferable that the iron is loaded closer to the noble metal. By supporting the iron in the vicinity of the noble metal, the effect of suppressing grain growth of the noble metal tends to be further improved, and when the regeneration treatment described below is performed, the noble metal that is the active site is further refined. Tend to be possible.
また、本発明の排ガス浄化用触媒の形態は特に制限されず、ハニカム形状のモノリス触媒、ペレット形状のペレット触媒等の形態とすることができる。ここで用いられる基材も特に制限されず、得られる触媒の用途等に応じて適宜選択されるが、DPF基材、モノリス状基材、ペレット状基材、プレート状基材等が好適に採用される。また、このような基材の材質も特に制限されないが、コーディエライト、炭化ケイ素、ムライト等のセラミックスからなる基材や、クロム及びアルミニウムを含むステンレススチール等の金属からなる基材が好適に採用される。さらに、このような触媒を製造する方法も特に制限されず、例えば、モノリス触媒を製造する場合は、コーディエライトや金属箔から形成されたハニカム形状の基材に、上述の担体の粉末からなるコート層を形成し、それに貴金属を担持せしめる方法が好適に採用される。また、上述の担体の粉末に予め貴金属を担持せしめた後、その貴金属担持粉末を用いて前記基材にコート層を形成する方法で製造してもよい。 The form of the exhaust gas purifying catalyst of the present invention is not particularly limited, and may be a form of a honeycomb-shaped monolith catalyst, a pellet-shaped pellet catalyst, or the like. The substrate used here is not particularly limited, and is appropriately selected depending on the use of the obtained catalyst, etc., but a DPF substrate, a monolith substrate, a pellet substrate, a plate substrate, etc. are suitably employed. Is done. Also, the material of such a base material is not particularly limited, but a base material made of a ceramic such as cordierite, silicon carbide, mullite, or a base material made of a metal such as stainless steel including chromium and aluminum is suitably employed. Is done. Further, the method for producing such a catalyst is not particularly limited. For example, in the case of producing a monolithic catalyst, the honeycomb-shaped substrate formed of cordierite or metal foil is made of the above carrier powder. A method in which a coat layer is formed and a noble metal is supported thereon is preferably employed. Alternatively, the above-described carrier powder may be preliminarily supported with a noble metal, and then the noble metal-supported powder may be used to form a coating layer on the substrate.
さらに、このような本発明の排ガス浄化用触媒において長期間使用して担体に担持されている貴金属が粒成長した場合には、後述の本発明の排ガス浄化用触媒の再生方法を施すことで貴金属粒子を微細化(再分散)して、触媒活性を十分に再生させることが可能である。そして、このような再生処理を施した後の担体に担持されている貴金属の粒子径としては、高い触媒活性を得るという観点から、3nm以下(より好ましくは2nm以下)であることが好ましい。 Further, when the noble metal supported on the support is used for a long time in such an exhaust gas purifying catalyst of the present invention, the noble metal can be obtained by applying the regeneration method of the exhaust gas purifying catalyst of the present invention described later. It is possible to regenerate the particles sufficiently to regenerate the catalyst activity sufficiently. The particle size of the noble metal supported on the carrier after such regeneration treatment is preferably 3 nm or less (more preferably 2 nm or less) from the viewpoint of obtaining high catalytic activity.
以上、本発明の排ガス浄化用触媒について説明したが、以下において、本発明の排ガス浄化用触媒の再生方法について説明する。 While the exhaust gas purification catalyst of the present invention has been described above, the method for regenerating the exhaust gas purification catalyst of the present invention will be described below.
本発明の排ガス浄化用触媒の再生方法は、上記本発明の排ガス浄化用触媒に対して、酸素を含む酸化雰囲気中にて加熱する酸化処理、及び還元処理を施すことを特徴とする方法である。 The method for regenerating an exhaust gas purifying catalyst of the present invention is a method characterized by subjecting the exhaust gas purifying catalyst of the present invention to an oxidation treatment and a reduction treatment that are heated in an oxidizing atmosphere containing oxygen. .
本発明にかかる酸化処理が行われる酸化雰囲気としては、酸素が少しでも含まれていればそれに相当するモル数の貴金属を酸化することができるが、酸素の濃度が0.5体積%以上であることが好ましく、1〜20体積%であることがより好ましい。酸素の濃度が前記下限未満では、担体上の貴金属の再分散が十分に進行しない傾向にあり、他方、酸素の濃度は高ければ高いほど酸化という観点からは良いが、空気中の酸素濃度を超える20体積%超とするためには酸素ボンベ等の特別な装置が必要となりコストが高騰する傾向にある。また、本発明にかかる酸化雰囲気中の酸素以外のガスとしては、還元性ガスを含まないことが好ましく、窒素ガス又は不活性ガスを用いることが好ましい。 As an oxidizing atmosphere in which the oxidation treatment according to the present invention is performed, noble metals corresponding to the number of moles can be oxidized as long as oxygen is contained, but the oxygen concentration is 0.5% by volume or more. It is preferably 1 to 20% by volume. If the oxygen concentration is less than the lower limit, redispersion of the noble metal on the support tends not to proceed sufficiently. On the other hand, the higher the oxygen concentration, the better from the viewpoint of oxidation, but it exceeds the oxygen concentration in the air. In order to exceed 20% by volume, a special device such as an oxygen cylinder is required, and the cost tends to increase. Moreover, as gas other than oxygen in the oxidizing atmosphere concerning this invention, it is preferable not to contain reducing gas, and it is preferable to use nitrogen gas or an inert gas.
本発明にかかる酸化処理における加熱温度は、担持されている貴金属が酸化される温度であればよいが、500〜1000℃の範囲の温度とすることが好ましい。酸化処理温度が500℃未満では、担体上の貴金属が再分散する速度が極端に遅くなって十分に進行しない傾向にあり、他方、1000℃を超えると担体自体の熱収縮が起こり易くなり、触媒活性が低下する傾向にある。 The heating temperature in the oxidation treatment according to the present invention may be a temperature at which the supported noble metal is oxidized, but is preferably a temperature in the range of 500 to 1000 ° C. If the oxidation treatment temperature is less than 500 ° C., the rate of redispersion of the noble metal on the support tends to be extremely slow and does not proceed sufficiently. On the other hand, if the temperature exceeds 1000 ° C., thermal contraction of the support itself tends to occur. The activity tends to decrease.
また、本発明にかかる酸化処理に要する時間は、酸化処理温度等に応じて適宜選択され、温度が低ければ長時間必要となり、温度が高ければ短時間でよい傾向にある。酸化処理温度が500〜1000℃であれば、酸化処理一工程あたりの時間は1秒〜1時間程度であることが好ましい。酸化処理時間が1秒未満では担体上の貴金属の再分散が十分に進行しない傾向にあり、他方、1時間を超えると貴金属の再分散作用が飽和する傾向にある。 Further, the time required for the oxidation treatment according to the present invention is appropriately selected according to the oxidation treatment temperature and the like. If the temperature is low, it takes a long time, and if the temperature is high, it tends to be short. When the oxidation treatment temperature is 500 to 1000 ° C., the time per oxidation treatment step is preferably about 1 second to 1 hour. If the oxidation treatment time is less than 1 second, the redispersion of the noble metal on the support tends not to proceed sufficiently, whereas if it exceeds 1 hour, the redispersion action of the noble metal tends to be saturated.
本発明にかかる酸化処理は、排ガス浄化用触媒を排気系から取り出して所定の処理装置内で行ってもよいが、内燃機関の排気系に装着した状態で実施することが好ましい。それによって酸化処理工数を大きく低減することができ、しかも酸化処理後に排ガスを流通させることによって貴金属の酸化物を還元させることが可能となる。このように排気系に排ガス浄化用触媒を装着した状態で酸化処理する場合、例えば触媒の上流側に設けられた空気弁から空気を多量に導入したり、混合気の空燃比(A/F)を高くしたり、その逆に燃料の供給量を大幅に減らしたりして、混合気の空燃比(A/F)を高くすることによって実施することができる。また、加熱手段としては、特定の加熱装置によって触媒を加熱してもよいし、触媒上における反応熱を利用して加熱してもよい。 The oxidation treatment according to the present invention may be carried out in a predetermined treatment apparatus after the exhaust gas purification catalyst is taken out from the exhaust system, but is preferably carried out in a state where it is mounted on the exhaust system of the internal combustion engine. As a result, the number of man-hours for the oxidation treatment can be greatly reduced, and furthermore, the oxide of the noble metal can be reduced by circulating the exhaust gas after the oxidation treatment. When the oxidation treatment is performed with the exhaust gas purification catalyst attached to the exhaust system in this manner, for example, a large amount of air is introduced from an air valve provided upstream of the catalyst, or the air-fuel ratio (A / F) of the air-fuel mixture It is possible to increase the air-fuel ratio (A / F) of the air-fuel mixture by increasing the fuel flow rate, or conversely, greatly reducing the amount of fuel supplied. Moreover, as a heating means, a catalyst may be heated with a specific heating apparatus, and you may heat using the reaction heat on a catalyst.
上記のように排気系に装着した状態で酸化処理を実行すれば、触媒性能の劣化の程度に対応してリアルタイムで酸化処理を施すことも可能となる。例えば、自動車の運転時間や走行距離に応じて定期的に酸化処理を行ってもよいし、触媒の下流にNOxセンサーやCOセンサーを設けて触媒性能を検出し、その値が基準値を超えた場合に酸化処理を行うようにしてもよい。 If the oxidation treatment is executed with the exhaust system mounted as described above, the oxidation treatment can be performed in real time in accordance with the degree of deterioration of the catalyst performance. For example, the oxidation treatment may be performed periodically according to the driving time and travel distance of the automobile, or the catalyst performance is detected by providing a NOx sensor or CO sensor downstream of the catalyst, and the value exceeds the reference value. In some cases, oxidation treatment may be performed.
本発明にかかる還元処理は、水素、一酸化炭素等の還元性ガスが存在する雰囲気下で前記触媒を加熱することによって実施することができる。よって、エンジン排気は全体としてストイキ雰囲気であっても還元性ガスを含むことから、貴金属を十分に還元処理できる。さらに、還元処理においては、還元性ガスが少しでも含まれていればよいが、還元性ガスの濃度が0.1体積%以上であることが好ましい。還元性ガスの濃度が前記下限未満では、担体上の貴金属が活性な状態に戻りにくくなる傾向にある。また、本発明にかかる還元性雰囲気中の還元性ガス以外のガスとしては、酸化性ガスを含まないことが好ましく、窒素ガス又は不活性ガスを用いることが好ましい。 The reduction treatment according to the present invention can be carried out by heating the catalyst in an atmosphere in which a reducing gas such as hydrogen or carbon monoxide is present. Therefore, since the engine exhaust as a whole contains a reducing gas even in a stoichiometric atmosphere, the noble metal can be sufficiently reduced. Further, in the reduction treatment, it is sufficient that the reducing gas is contained even a little, but the concentration of the reducing gas is preferably 0.1% by volume or more. If the concentration of the reducing gas is less than the lower limit, the noble metal on the support tends to hardly return to an active state. Moreover, as gas other than the reducing gas in the reducing atmosphere concerning this invention, it is preferable not to contain oxidizing gas, and it is preferable to use nitrogen gas or an inert gas.
本発明にかかる還元処理における加熱温度は、前記酸化処理により酸化された貴金属の酸化物が還元される温度であればよいが、200℃以上であることが好ましく、400〜1000℃の範囲の温度とすることが好ましい。還元処理温度が200℃未満では、担体上の貴金属の酸化物が十分に還元されない傾向にあり、他方、前記上限を超えると担体自体の熱収縮が起こり易くなり、触媒活性が低下する傾向にある。 The heating temperature in the reduction treatment according to the present invention may be a temperature at which the oxide of the noble metal oxidized by the oxidation treatment is reduced, but is preferably 200 ° C. or higher, and a temperature in the range of 400 to 1000 ° C. It is preferable that When the reduction treatment temperature is less than 200 ° C., the oxide of the noble metal on the support tends not to be sufficiently reduced. On the other hand, when the upper limit is exceeded, thermal contraction of the support itself tends to occur and the catalytic activity tends to decrease. .
また、本発明にかかる還元処理に要する時間は、還元処理温度等に応じて適宜選択され、温度が低ければ長時間必要となり、温度が高ければ短時間でよい傾向にある。還元処理温度が200℃以上であれば、還元処理一工程あたりの時間は2秒〜5分程度であることが好ましい。還元処理時間が前記下限未満では担体上の貴金属の酸化物が十分に還元されない傾向にあり、他方、前記上限を超えると貴金属の酸化物の還元作用が飽和してしまう傾向にある。 In addition, the time required for the reduction treatment according to the present invention is appropriately selected according to the reduction treatment temperature and the like. If the temperature is low, it takes a long time, and if the temperature is high, it tends to be short. When the reduction treatment temperature is 200 ° C. or higher, the time per one reduction treatment step is preferably about 2 seconds to 5 minutes. When the reduction treatment time is less than the lower limit, the noble metal oxide tends to be not sufficiently reduced, whereas when the upper limit is exceeded, the reduction action of the noble metal oxide tends to be saturated.
本発明にかかる還元処理も、排ガス浄化用触媒を排気系から取り出して所定の処理装置内で行ってもよいが、内燃機関の排気系に装着した状態で実施することが好ましい。それによって還元処理工数を大きく低減することができ、しかも前記酸化処理後に単に排ガスを流通させることによって貴金属の酸化物を還元させることが可能となる。このように排気系に排ガス浄化用触媒を装着した状態で還元処理する場合、例えば、自動車の排ガス浄化用触媒の場合には、化学量論的に等量比にあるストイキ雰囲気或いは酸素が不足するリッチ雰囲気の排ガスを排ガス浄化用触媒に接触させることによって実施することが好ましい。これにより排ガス浄化用触媒を排気系に装着したまま酸化処理と還元処理を施すことができ、空燃比制御の一環として本発明の再生処理を実施することが可能となる。また、加熱手段としては、特定の加熱装置によって触媒を加熱してもよいし、排ガスの熱を利用して加熱してもよい。 The reduction process according to the present invention may be performed in a predetermined processing apparatus after the exhaust gas purification catalyst is taken out from the exhaust system, but it is preferably performed in a state where it is mounted on the exhaust system of the internal combustion engine. As a result, the number of reduction treatment steps can be greatly reduced, and the oxide of the noble metal can be reduced simply by circulating the exhaust gas after the oxidation treatment. Thus, when the reduction treatment is performed with the exhaust gas purification catalyst mounted on the exhaust system, for example, in the case of an automobile exhaust gas purification catalyst, the stoichiometric atmosphere or oxygen in a stoichiometric equivalence ratio is insufficient. It is preferable that the exhaust gas in a rich atmosphere is brought into contact with the exhaust gas purifying catalyst. As a result, the oxidation treatment and the reduction treatment can be performed with the exhaust gas purification catalyst mounted on the exhaust system, and the regeneration treatment of the present invention can be performed as part of the air-fuel ratio control. Moreover, as a heating means, a catalyst may be heated with a specific heating apparatus, and you may heat using the heat | fever of waste gas.
なお、前記酸化処理と前記還元処理とがそれぞれ一工程の場合は酸化処理の後に還元処理が施されるが、本発明の再生方法においては前記酸化処理と前記還元処理とを交互に繰り返してもよく、その場合は酸化処理が先であっても還元処理が先であってもよい。また、前記酸化処理と前記還元処理とを交互に繰り返す場合、前者の処理の合計時間と後者の処理の合計時間はいずれも特に制限されない。 When the oxidation treatment and the reduction treatment are each in one step, the reduction treatment is performed after the oxidation treatment. However, in the regeneration method of the present invention, the oxidation treatment and the reduction treatment may be alternately repeated. In that case, the oxidation treatment may be performed first or the reduction treatment may be performed first. Further, when the oxidation treatment and the reduction treatment are alternately repeated, the total time of the former treatment and the total time of the latter treatment are not particularly limited.
さらに、本発明の排ガス浄化用触媒の再生方法においては、前記排ガス浄化用触媒に温度センサーを装着し、運転時間と前記温度センサーにより検知された温度とに基づいて前記排ガス浄化用触媒の劣化の程度を判定する工程(I)と、
前記触媒が劣化状態にあると判定された後に前記再生処理を開始する工程(II)と、
を含むことが好ましい。このような工程を含むことにより、前記排ガス浄化用触媒の劣化状態を確認しながら再生処理を施すことができるためより効率よく触媒を再生させることが可能となる。
Further, in the method for regenerating an exhaust gas purification catalyst of the present invention, a temperature sensor is attached to the exhaust gas purification catalyst, and the exhaust gas purification catalyst is deteriorated based on an operation time and a temperature detected by the temperature sensor. Step (I) of determining the degree;
Step (II) of starting the regeneration process after it is determined that the catalyst is in a deteriorated state;
It is preferable to contain. By including such a step, the regeneration process can be performed while confirming the deterioration state of the exhaust gas purifying catalyst, so that the catalyst can be regenerated more efficiently.
そして、このような再生方法においては、排ガス供給管と、前記排ガス供給管の内部に配置された上記本発明の排ガス浄化用触媒と、前記排ガス浄化用触媒に装着された温度センサーと、運転時間と前記温度センサーにより検知された温度とに基づいて前記排ガス浄化用触媒の劣化の程度を判定し、前記触媒が劣化状態にあると判定された後に、酸素を含む酸化雰囲気中にて加熱する酸化処理、及び還元処理を施す再生処理が開始されるように制御するための制御手段とを備えることを特徴とする本発明の第一の排ガス浄化装置を好適に用いることができる。 In such a regeneration method, the exhaust gas supply pipe, the exhaust gas purification catalyst of the present invention disposed inside the exhaust gas supply pipe, the temperature sensor mounted on the exhaust gas purification catalyst, and the operation time And the temperature detected by the temperature sensor, the degree of deterioration of the exhaust gas-purifying catalyst is determined, and after the catalyst is determined to be in a deteriorated state, oxidation is performed in an oxidizing atmosphere containing oxygen. The first exhaust gas purification apparatus of the present invention can be suitably used, comprising a control means for controlling the processing and the regeneration processing for performing the reduction processing to be started.
このような温度センサーとしては特に制限されず、前記排ガス浄化用触媒の温度状態を検知することが可能な公知の温度センサーを適宜用いることができる。また、前記制御手段としては、例えばエンジンコントロールユニット(ECU)が挙げられる。 Such a temperature sensor is not particularly limited, and a known temperature sensor capable of detecting the temperature state of the exhaust gas purifying catalyst can be appropriately used. Moreover, as said control means, an engine control unit (ECU) is mentioned, for example.
また、劣化の程度を判定する方法としては特に制限されないが、例えば、前記排ガス浄化用触媒の運転時間と温度との関係により触媒に担持された貴金属が粒成長する程度(劣化の程度)を予め測定して再生処理が必要となるような劣化状態となるまでの運転時間と温度との関係のマップを作成し、そのマップに基づいて、特定の温度において特定の運転時間前記触媒を利用した際に劣化したものと判定する方法を採用することができる。そして、このようにして劣化の程度を判定し、前記触媒が劣化状態にあると判定した後に前記再生処理を開始する。 Further, the method for determining the degree of deterioration is not particularly limited. For example, the degree of grain growth of the noble metal supported on the catalyst (degree of deterioration) is determined in advance depending on the relationship between the operation time and temperature of the exhaust gas purification catalyst. Create a map of the relationship between the operating time and temperature until it becomes a degraded state that requires measurement and regeneration, and use the catalyst for a specific operating time at a specific temperature based on that map It is possible to adopt a method for determining that the material has deteriorated. The degree of deterioration is determined in this way, and the regeneration process is started after determining that the catalyst is in a deteriorated state.
また、前記再生処理を開始する工程(II)においては、前記排ガス浄化用触媒の温度が500〜1000℃の範囲にある場合に再生処理を開始するように制御して再生処理を施すことが好ましい。このようにして制御して再生処理を施すことによって、より効率的な再生処理を施すことが可能となる。 Further, in the step (II) of starting the regeneration process, it is preferable to perform the regeneration process by controlling so that the regeneration process is started when the temperature of the exhaust gas purification catalyst is in the range of 500 to 1000 ° C. . By performing the reproduction process under such control, it is possible to perform a more efficient reproduction process.
さらに、本発明の排ガス浄化用触媒の再生方法においては、前記排ガス浄化用触媒の劣化の程度と再生処理の温度との関係で、前記再生処理を施して前記排ガス浄化用触媒を十分に再生させるために必要な時間を判定し、前記酸化処理及び前記還元処理を施す時間を制御することが好ましい。このようにして再生処理を施すことで、不要な加熱時間等を低減させ、より効率的に触媒を再生することが可能となる。なお、このような制御に際しては、前述の制御手段を用いることができる。また、前記再生処理を施して前記排ガス浄化用触媒を十分に再生させるために必要な時間を判定するための方法としては特に制限されないが、予め特定温度における再生処理に必要な時間を測定して再生処理に必要な時間とその際の温度との関係のマップを作成しておき、そのマップに基づいて、再生処理に必要な時間を判定する方法が挙げられる。 Furthermore, in the method for regenerating an exhaust gas purification catalyst according to the present invention, the exhaust gas purification catalyst is sufficiently regenerated by performing the regeneration treatment in accordance with the relationship between the degree of deterioration of the exhaust gas purification catalyst and the temperature of the regeneration treatment. Therefore, it is preferable to determine the time required for controlling the time for performing the oxidation treatment and the reduction treatment. By performing the regeneration process in this way, unnecessary heating time and the like can be reduced, and the catalyst can be regenerated more efficiently. In such control, the above-described control means can be used. In addition, the method for determining the time required to sufficiently regenerate the exhaust gas-purifying catalyst by performing the regeneration treatment is not particularly limited, but the time necessary for the regeneration treatment at a specific temperature is measured in advance. There is a method of creating a map of the relationship between the time required for the reproduction process and the temperature at that time, and determining the time necessary for the reproduction process based on the map.
また、本発明の排ガス浄化用触媒の再生方法においては、前記排ガス浄化用触媒の劣化状態を判定するための触媒劣化診断装置を用い、前記排ガス浄化用触媒の劣化状態を判定する工程と、
前記触媒が劣化状態にあると判定された後に前記再生処理を開始する工程と、
を含むことが好ましい。
Moreover, in the regeneration method of the exhaust gas purification catalyst of the present invention, using the catalyst deterioration diagnostic device for determining the deterioration state of the exhaust gas purification catalyst, the step of determining the deterioration state of the exhaust gas purification catalyst;
Starting the regeneration process after it is determined that the catalyst is in a deteriorated state;
It is preferable to contain.
そして、このような工程を含む本発明の排ガス浄化用触媒の再生方法においては、排ガス供給管と、前記排ガス供給管の内部に配置された請求項1〜7のうちのいずれか一項に記載の排ガス浄化用触媒と、前記排ガス浄化用触媒の劣化状態を判定するための触媒劣化診断装置と、前記触媒劣化診断装置により排ガス浄化用触媒の劣化状態を判定された後に、酸素を含む酸化雰囲気中にて加熱する酸化処理、及び還元処理を施す再生処理が開始されるように制御するための制御手段とを備える本発明の第二の排ガス浄化装置を好適に用いることができる。 And in the regeneration method of the exhaust gas purifying catalyst of the present invention including such steps, the exhaust gas supply pipe and any one of claims 1 to 7 disposed inside the exhaust gas supply pipe. An exhaust gas purification catalyst, a catalyst deterioration diagnosis device for determining a deterioration state of the exhaust gas purification catalyst, and an oxidation atmosphere containing oxygen after the deterioration state of the exhaust gas purification catalyst is determined by the catalyst deterioration diagnosis device The second exhaust gas purification apparatus of the present invention including an oxidation process for heating inside and a control means for controlling so as to start a regeneration process for performing a reduction process can be suitably used.
このような工程を含む本発明の排ガス浄化用触媒の再生方法は、前記工程(I)の代わりに前記排ガス浄化用触媒の劣化状態を判定するための触媒劣化診断装置を用い、前記排ガス浄化用触媒の劣化状態を判定する工程を採用する以外は、前述の工程(I)及び工程(II)を含む再生方法と同様にして再生処理を施すことができる。 The method for regenerating an exhaust gas purifying catalyst of the present invention including such steps uses a catalyst deterioration diagnosis device for determining the deterioration state of the exhaust gas purifying catalyst instead of the step (I), and The regeneration process can be performed in the same manner as the regeneration method including the above-described process (I) and process (II) except that the process of determining the deterioration state of the catalyst is employed.
また、このような触媒劣化診断装置としては、前記排ガス浄化用触媒の劣化状態を判定することが可能な装置であればよく特に制限されないが、例えば、特開2005−180201号公報に記載のような触媒劣化診断装置が挙げられる。また、前記制御手段としては、例えばエンジンコントロールユニット(ECU)が挙げられる。 Further, such a catalyst deterioration diagnosis device is not particularly limited as long as it can determine the deterioration state of the exhaust gas purification catalyst. For example, as described in JP-A-2005-180201, And a catalyst deterioration diagnosis device. Moreover, as said control means, an engine control unit (ECU) is mentioned, for example.
以上、本発明の排ガス浄化用触媒の再生方法について説明したが、本発明においては、上述のような再生処理を施すことで、粒成長した貴金属粒子の粒径を3nm以下(より好ましくは2nm以下)に微細化(再分散)させることが可能となる。そして、このような再生処理を施して前記担体に担持されている前記粒径に貴金属粒子を微細化(再分散)させることで、触媒活性をより十分に再生させることが可能となる。 As mentioned above, although the regeneration method of the exhaust gas purifying catalyst of the present invention has been described, in the present invention, the particle size of the noble metal particles grown by performing the regeneration treatment as described above is 3 nm or less (more preferably 2 nm or less). ) Can be refined (redispersed). Then, by performing such a regeneration treatment and refining (redispersing) the noble metal particles to the particle size supported on the carrier, it becomes possible to regenerate the catalyst activity more sufficiently.
本発明の排ガス浄化方法は、上記本発明の排ガス浄化用触媒に排ガスを接触させて排ガスを浄化することを特徴とする方法である。このような排ガス浄化方法は、上記本発明の排ガス浄化用触媒を用いて、前記本発明の排ガス浄化用触媒に排ガスを接触させる以外は特に制限されない。更に、前記排ガス浄化用触媒に排ガスを接触させる方法も特に制限されず、適宜公知の方法を採用できる。 The exhaust gas purification method of the present invention is a method characterized by purifying exhaust gas by bringing the exhaust gas into contact with the exhaust gas purification catalyst of the present invention. Such an exhaust gas purification method is not particularly limited except that the exhaust gas purification catalyst of the present invention is used to contact exhaust gas with the exhaust gas purification catalyst of the present invention. Furthermore, the method of bringing the exhaust gas into contact with the exhaust gas purification catalyst is not particularly limited, and a known method can be adopted as appropriate.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.
(実施例1)
硝酸セリウム水溶液(CeO2として28重量%含む)242.6g、オキシ硝酸ジルコニウム水溶液(ZrO2として18重量%含む)157.6g、硝酸イットリウム12.6g及びノニオン系界面活性剤(ライオン社製、商品名:レオコン)10gを含有する混合水溶液2000gに25重量%濃度のアンモニア水142gを添加し、室温で10分間撹拌して共沈殿物を得た。次いで、得られた共沈殿物を濾過、洗浄した後に110℃で乾燥し、さらに1000℃で5時間大気中にて焼成してセリウム−ジルコニウム−イットリウム複合酸化物(CeO2−ZrO2−Y2O3)からなる担体を得た。得られた複合酸化物の組成比は、55mol%CeO2、40mol%ZrO2、5mol%Y2O3であった。また、上記複合酸化物の酸素1s軌道の結合エネルギーの値をXPS(X−ray photoelectron Spectroscopy)により求めたところ、表4に示す値であった。
Example 1
242.6 g of cerium nitrate aqueous solution (containing 28 wt% as CeO 2 ), 157.6 g of zirconium oxynitrate aqueous solution (containing 18 wt% as ZrO 2 ), 12.6 g of yttrium nitrate and nonionic surfactant (product of Lion Corporation, product) Name: Leocon) To 2000 g of a mixed aqueous solution containing 10 g, 142 g of 25 wt% aqueous ammonia was added and stirred at room temperature for 10 minutes to obtain a coprecipitate. Next, the obtained coprecipitate was filtered, washed, dried at 110 ° C., and further calcined in the atmosphere at 1000 ° C. for 5 hours to cerium-zirconium-yttrium composite oxide (CeO 2 —ZrO 2 —Y 2). A carrier consisting of O 3 ) was obtained. The composition ratio of the obtained composite oxide was 55 mol% CeO 2 , 40 mol% ZrO 2 , 5 mol% Y 2 O 3 . Further, when the value of the bond energy of the oxygen 1s orbit of the composite oxide was determined by XPS (X-ray photoelectron Spectroscopy), it was the value shown in Table 4.
次に、上記担体100gをジニトロジアミン白金の硝酸水溶液(白金濃度:4重量%)に浸漬し、濾過・洗浄した後に110℃で乾燥し、さらに500℃で3時間大気中にて焼成して本発明の排ガス浄化用触媒(Pt/CeO2−ZrO2−Y2O3)を得た。得られた触媒における白金担持量は1重量%であった。また、得られた触媒における白金のモル(PGM)と、前記担体の表面に露出している前記複合酸化物のうちのジルコニウムよりも電気陰性度が低い陽イオンのモル(Ms)の比(Ms/PGM)を表1に示す。 Next, 100 g of the carrier is immersed in a nitric acid aqueous solution of dinitrodiamine platinum (platinum concentration: 4% by weight), filtered and washed, dried at 110 ° C., and further calcined at 500 ° C. for 3 hours in the atmosphere. An exhaust gas purifying catalyst (Pt / CeO 2 —ZrO 2 —Y 2 O 3 ) of the invention was obtained. The amount of platinum supported on the obtained catalyst was 1% by weight. In addition, a ratio (Ms) of platinum moles (PGM) in the obtained catalyst to cation moles (Ms) having electronegativity lower than that of zirconium in the composite oxide exposed on the surface of the support. / PGM) is shown in Table 1.
なお、このような比(Ms/PGM)の値は、以下のようにして求めることができる。すなわち、先ず、セリア系担体の場合、担体の比表面積1m2あたり1.54×10−5molの陽イオンが最表面に存在すると仮定する。そのうちジルコニウムよりも電気陰性度が低い陽イオンの割合をX%とすると、担体の比表面積1m2あたり1.54×10−5×X/100molが担体の最表面に存在し且つジルコニウムの電気陰性度よりも低い電気陰性度を有する陽イオンのmol数(Ms)となる。また、担体の比表面積1m2あたりの貴金属のmol数は、下記式:
Y=W/(100×S×M)
(式中、Yは貴金属のmol数を示し、Wは貴金属の担体に対する重量比(単位:重量%)を示し、Sは担体の比表面積(単位m2/g)を示し、Mは貴金属の原子量(単位:g/mol)を示す。)
により求めることができる。従って、比(Ms/PGM)の値は、下記式:
(Ms/PGM)=1.54×10−5×X×S×M/W
により求めることができる。
Note that the value of such a ratio (Ms / PGM) can be obtained as follows. That is, first, in the case of a ceria-based support, it is assumed that 1.54 × 10 −5 mol of cation is present on the outermost surface per 1 m 2 of the specific surface area of the support. If the proportion of cations having a lower electronegativity than zirconium is X%, 1.54 × 10 −5 × X / 100 mol per 1 m 2 of the specific surface area of the carrier is present on the outermost surface of the carrier, and zirconium is electronegative. The number of moles of cations (Ms) having an electronegativity lower than the degree. In addition, the number of moles of noble metal per 1 m 2 of the specific surface area of the carrier is expressed by the following formula:
Y = W / (100 × S × M)
(In the formula, Y represents the number of moles of the noble metal, W represents the weight ratio of the noble metal to the support (unit: wt%), S represents the specific surface area (unit m 2 / g) of the support, and M represents the noble metal. Atomic weight (unit: g / mol)
It can ask for. Therefore, the value of the ratio (Ms / PGM) is given by the following formula:
(Ms / PGM) = 1.54 × 10 −5 × X × S × M / W
It can ask for.
(実施例2)
オキシ硝酸ジルコニウム水溶液(ZrO2として18重量%含む)231g及び硝酸ランタン63gを含有する混合水溶液1500gに25重量%濃度のアンモニア水150gを添加し、室温で10分間撹拌して共沈殿物を得た。次いで、得られた共沈殿物を濾過、洗浄した後に110℃で乾燥し、さらに1000℃で5時間大気中にて焼成してジルコニウム−ランタン複合酸化物(ZrO2−La2O3)からなる担体を得た。得られた複合酸化物の組成比は、65重量%ZrO2、35重量%La2O3であった。また、上記複合酸化物の酸素1s軌道の結合エネルギーの値をXPSにより求めたところ、表4に示す値であった。そして、このようにして得られた担体を用いるようにした以外は実施例1と同様にして本発明の排ガス浄化用触媒(Pt/ZrO2−La2O3)を得た。また、得られた触媒におけるMs/PGMの値を表1に示す。
(Example 2)
150 g of 25 wt% ammonia water was added to 1500 g of a mixed aqueous solution containing 231 g of zirconium oxynitrate aqueous solution (containing 18 wt% as ZrO 2 ) and 63 g of lanthanum nitrate, and stirred at room temperature for 10 minutes to obtain a coprecipitate. . Next, the obtained coprecipitate is filtered, washed, dried at 110 ° C., and further calcined in the atmosphere at 1000 ° C. for 5 hours to be composed of zirconium-lanthanum composite oxide (ZrO 2 —La 2 O 3 ). A carrier was obtained. The composition ratio of the obtained composite oxide was 65% by weight ZrO 2 and 35% by weight La 2 O 3 . Further, when the value of the bond energy of the oxygen 1s orbit of the composite oxide was determined by XPS, it was the value shown in Table 4. Then, an exhaust gas purifying catalyst (Pt / ZrO 2 -La 2 O 3 ) of the present invention was obtained in the same manner as in Example 1 except that the carrier thus obtained was used. Further, Table 1 shows Ms / PGM values of the obtained catalyst.
(実施例3)
実施例1で採用している担体の製造方法と同様の方法を採用して得られたセリウム−ジルコニウム−イットリウム複合酸化物(CeO2−ZrO2−Y2O3、組成比:55mol%CeO2、40mol%ZrO2、5mol%Y2O3)100gをイオン交換水中で攪拌し、そこに硝酸バリウムを3.38g加えて混合溶液を得た。次に、得られた混合溶液を加熱し、蒸発乾固させ、更に110℃で乾燥させた後、大気中において500℃で5時間焼成した。次に、上記担体100gをジニトロジアミン白金の硝酸水溶液(Pt濃度:4重量%)に浸漬し、濾過、洗浄した後に110℃で乾燥し、更に大気中にて500℃で3時間焼成して本発明の排ガス浄化用触媒(Pt/Ba/CeO2−ZrO2−Y2O3)を得た。なお、得られた触媒における白金担持量は0.5wt%であり、担体1gあたりBa量は0.000128molであり、PtとBaのモル比(Ba/Pt)は5であった。また、得られた触媒におけるMs/PGMの値を表1及び3に示す。
Example 3
Cerium-zirconium-yttrium composite oxide (CeO 2 —ZrO 2 —Y 2 O 3 , composition ratio: 55 mol% CeO 2) obtained by adopting the same method as the carrier production method employed in Example 1 , 40 mol% ZrO 2 , 5 mol% Y 2 O 3 ) 100 g was stirred in ion-exchanged water, and 3.38 g of barium nitrate was added thereto to obtain a mixed solution. Next, the obtained mixed solution was heated, evaporated to dryness, further dried at 110 ° C., and then calcined at 500 ° C. for 5 hours in the air. Next, 100 g of the carrier is immersed in an aqueous nitric acid solution of dinitrodiamine platinum (Pt concentration: 4% by weight), filtered, washed, dried at 110 ° C., and further calcined at 500 ° C. for 3 hours in the atmosphere. An exhaust gas purifying catalyst (Pt / Ba / CeO 2 —ZrO 2 —Y 2 O 3 ) of the invention was obtained. The amount of platinum supported in the obtained catalyst was 0.5 wt%, the amount of Ba per 1 g of support was 0.000128 mol, and the molar ratio of Pt to Ba (Ba / Pt) was 5. Moreover, the value of Ms / PGM in the obtained catalyst is shown in Tables 1 and 3.
(実施例4)
硝酸バリウムの代わりに硝酸ネオジム六水和物5.62gを加えた以外は実施例3と同様にして本発明の排ガス浄化用触媒得た。また、得られた触媒におけるMs/PGMの値を表3に示す。
Example 4
An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 3 except that 5.62 g of neodymium nitrate hexahydrate was added instead of barium nitrate. In addition, Table 3 shows Ms / PGM values of the obtained catalyst.
(実施例5)
ジニトロジアミン白金の硝酸水溶液(Pt濃度:4重量%)の代わりに硝酸パラジウム水溶液(Pd濃度:4重量%)を用いた以外は実施例3と同様にして本発明の排ガス浄化用触媒得た。また、得られた触媒におけるMs/PGMの値を表1及び3に示す。
(Example 5)
An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 3, except that an aqueous palladium nitrate solution (Pd concentration: 4 wt%) was used instead of the nitric acid aqueous solution of dinitrodiamine platinum (Pt concentration: 4 wt%). Moreover, the value of Ms / PGM in the obtained catalyst is shown in Tables 1 and 3.
(実施例6)
ジニトロジアミン白金の硝酸水溶液(Pt濃度:4重量%)の代わりに硝酸パラジウム水溶液(Pd濃度:4重量%)を用いた以外は実施例4と同様にして本発明の排ガス浄化用触媒得た。また、得られた触媒におけるMs/PGMの値を表3に示す。
(Example 6)
An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 4 except that an aqueous palladium nitrate solution (Pd concentration: 4 wt%) was used instead of the nitric acid aqueous solution of dinitrodiamine platinum (Pt concentration: 4 wt%). In addition, Table 3 shows Ms / PGM values of the obtained catalyst.
(実施例7)
ジニトロジアミン白金の硝酸水溶液(Pt濃度:4重量%)の代わりに硝酸ロジウム水溶液(Rh濃度:4重量%)を用いた以外は実施例3と同様にして本発明の排ガス浄化用触媒得た。また、得られた触媒におけるMs/PGMの値を表1及び3に示す。
(Example 7)
An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 3 except that an aqueous rhodium nitrate solution (Rh concentration: 4% by weight) was used instead of the aqueous nitric acid solution of dinitrodiamine platinum (Pt concentration: 4% by weight). Moreover, the value of Ms / PGM in the obtained catalyst is shown in Tables 1 and 3.
(実施例8)
ジニトロジアミン白金の硝酸水溶液(Pt濃度:4重量%)の代わりに硝酸ロジウム水溶液(Rh濃度:4重量%)を用いた以外は実施例4と同様にして本発明の排ガス浄化用触媒得た。また、得られた触媒におけるMs/PGMの値を表3に示す。
(Example 8)
An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 4 except that an aqueous rhodium nitrate solution (Rh concentration: 4% by weight) was used instead of an aqueous nitric acid solution of dinitrodiamine platinum (Pt concentration: 4% by weight). In addition, Table 3 shows Ms / PGM values of the obtained catalyst.
(比較例1)
担体として市販のγ−Al2O3粉末(グレース社製)を用いるようにした以外は実施例1と同様にして比較のための触媒(Pt/Al2O3)を得た。また、得られた触媒におけるMs/PGMの値を表1及び3に示す。
(Comparative Example 1)
A comparative catalyst (Pt / Al 2 O 3 ) was obtained in the same manner as in Example 1, except that a commercially available γ-Al 2 O 3 powder (Grace) was used as the carrier. Moreover, the value of Ms / PGM in the obtained catalyst is shown in Tables 1 and 3.
(比較例2)
担体として市販のSiO2粉末(アエロジル社製)を用いるようにした以外は比較例1と同様にして比較のための触媒(Pt/SiO2)を得た。
(Comparative Example 2)
A comparative catalyst (Pt / SiO 2 ) was obtained in the same manner as in Comparative Example 1 except that commercially available SiO 2 powder (manufactured by Aerosil) was used as the carrier.
(比較例3)
ジニトロジアミン白金の硝酸水溶液(Pt濃度:4重量%)の代わりに硝酸パラジウム水溶液(Pd濃度:4重量%)を用いた以外は比較例1と同様にして比較のための排ガス浄化用触媒得た。また、得られた触媒におけるMs/PGMの値を表3に示す。
(Comparative Example 3)
A catalyst for exhaust gas purification for comparison was obtained in the same manner as in Comparative Example 1 except that an aqueous palladium nitrate solution (Pd concentration: 4 wt%) was used instead of an aqueous nitric acid solution of dinitrodiamine platinum (Pt concentration: 4 wt%). . In addition, Table 3 shows Ms / PGM values of the obtained catalyst.
(比較例4)
ジニトロジアミン白金の硝酸水溶液(Pt濃度:4重量%)の代わりに硝酸ロジウム水溶液(Rh濃度:4重量%)を用いた以外は比較例1と同様にして比較のための排ガス浄化用触媒得た。また、得られた触媒におけるMs/PGMの値を表3に示す。
(Comparative Example 4)
A catalyst for exhaust gas purification for comparison was obtained in the same manner as in Comparative Example 1 except that an aqueous rhodium nitrate solution (Rh concentration: 4 wt%) was used instead of the nitric acid aqueous solution of dinitrodiamine platinum (Pt concentration: 4 wt%). . In addition, Table 3 shows Ms / PGM values of the obtained catalyst.
[実施例1〜3、5、7及び比較例1で得られた排ガス浄化用触媒の特性の評価]
<TEM観察及び貴金属のXAFS測定>
先ず、実施例1〜3及び比較例1で得られた触媒に対しては、O2(20体積%)とN2(80体積%)とからなる酸化雰囲気中において、各触媒に対して800℃で5時間、酸化処理を施した。また、実施例5及び7で得られた触媒に対しては、O2(20体積%)とN2(80体積%)とからなる酸化雰囲気中において、各触媒に対して1000℃で5時間、酸化処理を施した。そして、このような酸化処理を行った後の実施例1及び比較例1で得られた各触媒についてTEM(Transmission Electron Microscopy)観察を行った。また、このような酸化処理を行った後の実施例1〜3、5、7及び比較例1で得られた各触媒について貴金属(Pt、Pd、Rh)のXAFS(X-ray Absorption Fine Structure)測定を行い、貴金属周りの局所構造解析を行い、担体上の貴金属の状態を観測した。得られたTEM写真を図3(実施例1)及び図4(比較例1)に示し、XAFS測定により得られた結果を図5(実施例1及び比較例1)、図6(実施例2)、図7(実施例3)、図8(実施例5)、図9(実施例7)に示す。なお、図5においては、実施例1及び比較例1で得られた触媒並びに参考のためのPtフォイル及びPtO2粉末のPt L3−edgeのEXAFSスペクトルをフーリエ変換したスペクトルを示す。
[Evaluation of Characteristics of Exhaust Gas Purification Catalysts Obtained in Examples 1-3, 5, 7 and Comparative Example 1]
<TEM observation and XAFS measurement of precious metals>
First, for the catalysts obtained in Examples 1 to 3 and Comparative Example 1, in an oxidizing atmosphere composed of O 2 (20% by volume) and N 2 (80% by volume), 800% for each catalyst. Oxidation treatment was performed at 5 ° C. for 5 hours. In addition, for the catalysts obtained in Examples 5 and 7, in an oxidizing atmosphere composed of O 2 (20% by volume) and N 2 (80% by volume), each catalyst was treated at 1000 ° C. for 5 hours. Then, oxidation treatment was performed. And TEM (Transmission Electron Microscopy) observation was performed about each catalyst obtained in Example 1 and Comparative Example 1 after performing such oxidation treatment. Moreover, XAFS (X-ray Absorption Fine Structure) of noble metals (Pt, Pd, Rh) for each of the catalysts obtained in Examples 1 to 3, 5, 7 and Comparative Example 1 after such oxidation treatment. Measurements were made to analyze the local structure around the noble metal, and the state of the noble metal on the support was observed. The obtained TEM photographs are shown in FIG. 3 (Example 1) and FIG. 4 (Comparative Example 1), and the results obtained by XAFS measurement are shown in FIG. 5 (Example 1 and Comparative Example 1) and FIG. 6 (Example 2). ), FIG. 7 (Example 3), FIG. 8 (Example 5), and FIG. 9 (Example 7). FIG. 5 shows a spectrum obtained by Fourier transforming the EXAFS spectrum of Pt L 3 -edge of the catalyst obtained in Example 1 and Comparative Example 1 and the Pt foil and PtO 2 powder for reference.
<還元処理後の貴金属の分散性>
前記酸化処理後の実施例1〜3、5、7及び比較例1で得られた触媒に対して、400℃においてH2(10体積%)とN2(90体積%)とからなるガスの還元雰囲気下において還元処理を施し、特開2004−340637号公報に記載されているCO化学吸着法によって貴金属の分散性を求めた。得られた結果を表1に示す。なお、分散性(%)の値が高いほど、表面に露出している貴金属の割合が高く、高分散な金属状態にあることを示す。
<Dispersibility of precious metal after reduction treatment>
With respect to the catalysts obtained in Examples 1-3, 5, 7 and Comparative Example 1 after the oxidation treatment, a gas composed of H 2 (10% by volume) and N 2 (90% by volume) at 400 ° C. Reduction treatment was performed in a reducing atmosphere, and the dispersibility of the noble metal was determined by the CO chemical adsorption method described in JP-A-2004-340637. The obtained results are shown in Table 1. In addition, the higher the dispersibility (%) value, the higher the ratio of the noble metal exposed on the surface, indicating a highly dispersed metal state.
図3及び図4に示す結果からも明らかなように、本発明の排ガス浄化用触媒(実施例1)においては、TEM測定では担体にPtの粒子が観測されなかった。そして、本発明の排ガス浄化用触媒(実施例1)においては、EDXによる分析ではPtの存在が確認された。そのため、本発明の排ガス浄化用触媒(実施例1)においては、Ptは非常に高分散な状態で担持されていることが確認された。一方、比較のための排ガス浄化用触媒(比較例1)においては、3〜150nmのPt粒子が観測され、Ptは凝集した状態で担持されていることが確認された。 As is clear from the results shown in FIG. 3 and FIG. 4, in the exhaust gas purifying catalyst (Example 1) of the present invention, no Pt particles were observed on the carrier in the TEM measurement. In the exhaust gas purifying catalyst of the present invention (Example 1), the presence of Pt was confirmed by analysis by EDX. Therefore, it was confirmed that Pt was supported in a very highly dispersed state in the exhaust gas purifying catalyst (Example 1) of the present invention. On the other hand, in the exhaust gas purifying catalyst for comparison (Comparative Example 1), 3-150 nm Pt particles were observed, and it was confirmed that Pt was supported in an aggregated state.
また、図5に示す結果からも明らかなように、本発明の排ガス浄化用触媒(実施例1)においては、Pt−O結合に起因ずるピークが観測されていることから、Ptは高酸化状態(+2、+4価)で存在していることが確認された。また、本発明の排ガス浄化用触媒(実施例1)においては、Pt−O−Ce結合に起因するピークが観測されていることから、Ptが担体の陽イオンであるCeと酸素を介して結合していることが確認された。更に前記Pt−O−Ce結合の配位数を求めたところ、3.5であった。これは、Ptが担体中に完全に固溶した場合の配位数12に比べて小さい値であることから、Ptは担体表面上に存在し、Ptと担体との表面酸化物層が形成されていることが確認された。同様に、図6〜9に示す結果から明らかなように、本発明の排ガス浄化用触媒(実施例2、3、5、7)においても、貴金属が担体の陽イオンでと酸素を介して結合していることが確認された。更に前記配位数が完全に固溶した場合の配位数に比べ小さい値であることから、実施例2、3、5、7で得られた触媒においても貴金属と担体との表面酸化物層が形成されていることが確認された。一方、比較のための排ガス浄化用触媒(比較例1)においては、Pt−Pt結合に起因する大きなピークのみが観測されたことから、Ptが金属状態の大きな粒子として存在することが確認された。また、前記Pt−Pt結合の配位数を求めたところ12であり、少なくとも20nm以上の粒子サイズで存在していることが確認された。 Further, as is clear from the results shown in FIG. 5, in the exhaust gas purifying catalyst of the present invention (Example 1), since a peak due to the Pt—O bond is observed, Pt is in a highly oxidized state. (+2, +4 valence) was present. Further, in the exhaust gas purifying catalyst (Example 1) of the present invention, since a peak due to the Pt—O—Ce bond is observed, Pt is bonded to Ce, which is a cation of the carrier, via oxygen. It was confirmed that Further, the coordination number of the Pt—O—Ce bond was determined to be 3.5. This is a value smaller than the coordination number 12 when Pt is completely dissolved in the support. Therefore, Pt exists on the support surface, and a surface oxide layer of Pt and the support is formed. It was confirmed that Similarly, as is apparent from the results shown in FIGS. 6 to 9, in the exhaust gas purifying catalyst (Examples 2, 3, 5, and 7) of the present invention, the noble metal is bonded with the cation of the support through oxygen. It was confirmed that Further, since the coordination number is smaller than the coordination number when completely dissolved, the surface oxide layer of the noble metal and the support is also obtained in the catalysts obtained in Examples 2, 3, 5, and 7. It was confirmed that was formed. On the other hand, in the exhaust gas purifying catalyst for comparison (Comparative Example 1), only a large peak due to the Pt-Pt bond was observed, so that it was confirmed that Pt was present as large particles in the metal state. . Further, when the coordination number of the Pt—Pt bond was determined, it was 12, and it was confirmed that the Pt—Pt bond was present at a particle size of at least 20 nm.
さらに、表1に示す結果からも明らかなように、比較のための排ガス浄化用触媒(比較例1)においては分散性の値が2%と低いのに対して、本発明の排ガス浄化用触媒(実施例1〜3、5、7)においては分散性の値がいずれも20%以上と非常に高いことが確認され、本発明の排ガス浄化用触媒においては貴金属が高分散で存在することが確認された。 Further, as apparent from the results shown in Table 1, the exhaust gas purification catalyst for comparison (Comparative Example 1) has a dispersibility value as low as 2%, whereas the exhaust gas purification catalyst of the present invention is low. In Examples 1 to 3, 5, and 7, it was confirmed that the dispersibility values were all very high, 20% or more, and in the exhaust gas purifying catalyst of the present invention, noble metals were present in high dispersion. confirmed.
このような結果から、本発明の排ガス浄化用触媒(実施例1〜3、5、7)においては、酸化雰囲気において、貴金属が担体の表面上に高酸化状態で存在し且つ前記貴金属が前記担体の表面に露出している酸素を介して前記複合酸化物の陽イオンと結合し、貴金属と担体との表面酸化物層が形成されていること、及び還元雰囲気において、前記貴金属が高分散な金属状態で存在することが確認された。 From these results, in the exhaust gas purifying catalysts of the present invention (Examples 1 to 3, 5, and 7), the noble metal exists in a highly oxidized state on the surface of the carrier in an oxidizing atmosphere, and the noble metal is the carrier. The surface oxide layer of the noble metal and the carrier is formed by bonding with the cation of the composite oxide through oxygen exposed on the surface of the metal, and the noble metal is a highly dispersed metal in a reducing atmosphere. It was confirmed to exist in the state.
[実施例3〜8及び比較例1、3〜4で得られた排ガス浄化用触媒の特性の評価]
<耐久試験後の貴金属の粒子径の測定>
先ず、実施例3〜8及び比較例1、3〜4で得られた排ガス浄化用触媒を用い、それぞれ冷間等方圧加圧法(CIP法)を採用して1t/cm2の圧力で圧粉成形した後、0.5〜1mmの大きさに粉砕し、ペレット状の触媒とした。次に、このようにして得られた各ペレット状の触媒を、それぞれ反応容器に仕込み、反応容器中に触媒3gあたりの流量が500cc/分となるようにして表2に示すリッチガスとリーンガスとを5分おきに交互に流入させて950℃の温度条件で5時間処理することによって担体上の貴金属を粒成長させた(耐久試験)。このような耐久試験後の貴金属粒子の平均粒径を求め、得られた結果を表3に示す。なお、貴金属粒子の平均粒径は、特開2004−340637号公報に記載されているCO化学吸着法によって求めた。
[Evaluation of characteristics of exhaust gas purifying catalysts obtained in Examples 3 to 8 and Comparative Examples 1 and 3 to 4]
<Measurement of precious metal particle size after durability test>
First, the exhaust gas purifying catalysts obtained in Examples 3 to 8 and Comparative Examples 1 and 3 to 4 were used, respectively, and a cold isotropic pressure pressurization method (CIP method) was adopted, and the pressure was 1 t / cm 2. After powder molding, it was pulverized to a size of 0.5 to 1 mm to obtain a pellet-shaped catalyst. Next, each pellet-shaped catalyst obtained in this way is charged into a reaction vessel, and the rich gas and the lean gas shown in Table 2 are added so that the flow rate per 3 g of the catalyst is 500 cc / min in the reaction vessel. The precious metal on the support was grain-grown by flowing alternately every 5 minutes and treating at 950 ° C. for 5 hours (endurance test). The average particle diameter of the noble metal particles after such an endurance test was determined, and the results obtained are shown in Table 3. The average particle size of the noble metal particles was determined by a CO chemical adsorption method described in JP-A-2004-340637.
表3に示す結果からも明らかなように、本発明の排ガス浄化用触媒(実施例3〜8)においては、貴金属の粒成長がより十分に抑制されることが確認された。 As is clear from the results shown in Table 3, in the exhaust gas purifying catalyst (Examples 3 to 8) of the present invention, it was confirmed that the noble metal grain growth was more sufficiently suppressed.
[実施例1〜2及び比較例1〜2で得られた排ガス浄化用触媒の特性の評価]
<白金再分散試験>
(試験例1)
実施例1で得られた触媒を用い、CO3体積%とN297体積%とからなる雰囲気中において1000℃で5時間熱処理することにより、担体上の白金を粒成長させた。そして、このようにして白金を粒成長させた触媒に対して、O220体積%とN280体積%とからなる酸化雰囲気中において800℃で30分間酸化処理(再分散処理)を施し、白金の再分散を試みた。耐久試験後の白金粒子の平均粒径と再分散処理後の白金粒子の平均粒径を求め、得られた結果を表4に示す。なお、白金粒子の平均粒径は、特開2004−340637号公報に記載されているCO化学吸着法によって求めた。また、このような再分散処理及びCO化学吸着法の還元前処理をもって、各排ガス浄化用触媒に対する酸化処理と還元処理を実現し、これを再生処理とした。
[Evaluation of characteristics of exhaust gas purifying catalysts obtained in Examples 1-2 and Comparative Examples 1-2]
<Platinum redispersion test>
(Test Example 1)
Using the catalyst obtained in Example 1, platinum on the support was grown by heat treatment at 1000 ° C. for 5 hours in an atmosphere composed of 3% by volume of CO and 97% by volume of N 2 . Then, an oxidation treatment (redispersion treatment) is performed for 30 minutes at 800 ° C. in an oxidizing atmosphere composed of 20% by volume of O 2 and 80% by volume of N 2 with respect to the catalyst in which platinum is grown in this manner. Attempts were made to redisperse platinum. The average particle diameter of the platinum particles after the durability test and the average particle diameter of the platinum particles after the redispersion treatment were determined, and the obtained results are shown in Table 4. In addition, the average particle diameter of platinum particle | grains was calculated | required by the CO chemical adsorption method described in Unexamined-Japanese-Patent No. 2004-340637. Further, with such redispersion treatment and reduction pretreatment by the CO chemical adsorption method, oxidation treatment and reduction treatment for each exhaust gas purification catalyst were realized, and this was designated as regeneration treatment.
(試験例2)
再分散処理における処理温度を500℃とするようにした以外は試験例1と同様にして白金再分散試験を実施した。得られた結果を表4に示す。
(Test Example 2)
A platinum redispersion test was carried out in the same manner as in Test Example 1 except that the treatment temperature in the redispersion treatment was 500 ° C. Table 4 shows the obtained results.
(試験例3)
再分散処理における処理温度を1000℃とするようにした以外は試験例1と同様にして白金再分散試験を実施した。得られた結果を表4に示す。
(Test Example 3)
A platinum redispersion test was carried out in the same manner as in Test Example 1 except that the treatment temperature in the redispersion treatment was set to 1000 ° C. Table 4 shows the obtained results.
(試験例4)
再分散処理における処理温度を600℃、酸素濃度を3%とするようにした以外は試験例1と同様にして白金再分散試験を実施した。得られた結果を表4に示す。
(Test Example 4)
A platinum redispersion test was carried out in the same manner as in Test Example 1 except that the treatment temperature in the redispersion treatment was 600 ° C. and the oxygen concentration was 3%. Table 4 shows the obtained results.
(試験例5)
実施例2で得られた触媒を用いた以外は試験例1と同様にして白金再分散試験を実施した。得られた結果を表4に示す。
(Test Example 5)
A platinum redispersion test was carried out in the same manner as in Test Example 1 except that the catalyst obtained in Example 2 was used. Table 4 shows the obtained results.
(比較試験例1)
次いで、比較例1で得られた触媒を用い、N2雰囲気中において800℃で5時間熱処理することにより担体上の白金を粒成長させるようにした以外は試験例1と同様にして白金再分散試験を実施した。得られた結果を表4に示す。
(Comparative Test Example 1)
Next, platinum re-dispersion was performed in the same manner as in Test Example 1 except that the catalyst obtained in Comparative Example 1 was used, and the platinum on the carrier was grown by heat treatment at 800 ° C. for 5 hours in an N 2 atmosphere. The test was conducted. Table 4 shows the obtained results.
(比較試験例2)
再分散処理における処理温度を500℃とするようにした以外は比較試験例1と同様にして白金再分散試験を実施した。得られた結果を表4に示す。
(Comparative Test Example 2)
A platinum redispersion test was performed in the same manner as in Comparative Test Example 1 except that the treatment temperature in the redispersion treatment was set to 500 ° C. Table 4 shows the obtained results.
(比較試験例3)
比較例2で得られた触媒を用いた以外は比較試験例1と同様にして白金再分散試験を実施した。得られた結果を表4に示す。
(Comparative Test Example 3)
A platinum redispersion test was carried out in the same manner as in Comparative Test Example 1 except that the catalyst obtained in Comparative Example 2 was used. Table 4 shows the obtained results.
表4に示した結果から明らかな通り、本発明の再生方法(試験例1〜5)によれば、耐久試験により粒成長した白金粒子が再分散処理によってその平均粒径が非常に小さくなることが確認された。一方、比較試験例1〜3では、再分散処理を施しても白金粒子の平均粒径は小さくならず、比較試験例1及び比較試験例3では再分散処理により却って平均粒径が大きくなってしまったことが確認された。これは、担体における酸素1s軌道の結合エネルギーの値が531eVより大きく、白金と担体との相互作用が弱いために再分散処理による効果が得られず、却って高温酸化雰囲気によって白金の粒成長が促進されたものと本発明者らは推察する。 As apparent from the results shown in Table 4, according to the regeneration method of the present invention (Test Examples 1 to 5), the average particle diameter of the platinum particles that have grown by the durability test becomes very small by the redispersion treatment. Was confirmed. On the other hand, in Comparative Test Examples 1 to 3, the average particle size of the platinum particles is not reduced even when the redispersion treatment is performed. In Comparative Test Example 1 and Comparative Test Example 3, the average particle size is increased by the redispersion treatment. It was confirmed that it had closed. This is because the bond energy value of the oxygen 1s orbital in the carrier is larger than 531 eV, and the interaction between platinum and the carrier is weak, so the effect of redispersion treatment cannot be obtained. The present inventors speculate that this has been done.
<白金再分散速度試験>
(試験例6)
先ず、実施例1で得られた触媒(Pt/CeO2−ZrO2−Y2O3)を、CO3体積%とN297体積%とからなる雰囲気中において950℃で5時間熱処理することにより、担体上の白金を平均粒径が6.7nmとなるまで粒成長させた(耐久試験)。次に、このようにして白金を粒成長させた触媒に対して、H23体積%とHe97体積%とからなる還元雰囲気中における700℃で60秒間の還元処理と、O220体積%とHe80体積%とからなる酸化雰囲気中における700℃で10秒間の酸化処理(再分散処理)とを交互に繰り返す処理を100分間にわたって施し、白金の再分散を試みた。そして、その処理中にPt L3−edge XANES(X−ray Absorption Near Edge Spectra)を1秒毎に測定し、XANESスペクトルのwhite−lineと呼ばれるピークの高さから白金粒子の平均粒径を見積もり、前記処理中における白金粒子の平均粒径の経時変化を調べた。得られた結果を図10に示す。
<Platinum redispersion rate test>
(Test Example 6)
First, the catalyst (Pt / CeO 2 —ZrO 2 —Y 2 O 3 ) obtained in Example 1 was heat-treated at 950 ° C. for 5 hours in an atmosphere composed of CO 3 volume% and N 2 97 volume%. The platinum on the carrier was grown until the average particle size became 6.7 nm (endurance test). Next, with respect to the catalyst in which platinum is grown in this manner, a reduction treatment at 700 ° C. for 60 seconds in a reducing atmosphere composed of 3% by volume of H 2 and 97% by volume of He, and 20% by volume of O 2 A treatment for alternately repeating an oxidation treatment (redispersion treatment) at 700 ° C. for 10 seconds in an oxidizing atmosphere composed of 80% by volume of He was performed over 100 minutes to attempt redispersion of platinum. And during the process, Pt L3-edge XANES (X-ray Absorption Near Edge Spectra) is measured every second, and the average particle diameter of platinum particles is estimated from the height of the peak called white-line of the XANES spectrum, The change with time of the average particle diameter of the platinum particles during the treatment was examined. The obtained result is shown in FIG.
(試験例7)
前記の還元処理と酸化処理とを交互に繰り返す処理における処理温度を600℃とするようにした以外は試験例6と同様にして白金再分散速度試験を実施した。得られた結果を図10に示す。
(Test Example 7)
A platinum redispersion rate test was conducted in the same manner as in Test Example 6 except that the treatment temperature in the treatment of alternately repeating the reduction treatment and the oxidation treatment was 600 ° C. The obtained result is shown in FIG.
図10に示した結果から明らかな通り、本発明の再生方法(試験例6〜7)によれば、前記の還元処理と酸化処理とを交互に繰り返すことによって白金の再分散が進行し、試験例6では3.6nmまで、実施例7では2.9nmまで白金粒子の平均粒径は小さくなった。また、白金の再分散の速度は、処理温度が600℃の場合に比べて、700℃の場合の方が速かった。 As is apparent from the results shown in FIG. 10, according to the regeneration method of the present invention (Test Examples 6 to 7), the redispersion of platinum proceeds by alternately repeating the reduction treatment and the oxidation treatment, and the test is performed. In Example 6, the average particle size of the platinum particles was reduced to 3.6 nm, and in Example 7 to 2.9 nm. Also, the redispersion rate of platinum was higher when the processing temperature was 700 ° C. than when the processing temperature was 600 ° C.
このように、10秒間という短い再分散処理においても、その再分散処理を繰り返すことにより白金粒子の平均粒径が小さくなっていくことから、本発明の再生処理は空燃比制御の一環として実施することができ、触媒を内燃機関の排気系に装着した状態で効率良く再生することが可能となる。したがって、本発明の再生方法によれば、特別な保守整備を要することなく、高い触媒活性を長時間にわたって維持することができることが確認された。 As described above, even in the redispersion process as short as 10 seconds, the average particle diameter of the platinum particles is reduced by repeating the redispersion process. Therefore, the regeneration process of the present invention is performed as part of the air-fuel ratio control. Therefore, the catalyst can be efficiently regenerated with the catalyst mounted on the exhaust system of the internal combustion engine. Therefore, according to the regeneration method of the present invention, it was confirmed that high catalytic activity can be maintained for a long time without requiring special maintenance.
(実施例9)
硝酸セリウム水溶液(CeO2として28質量%含む)233g、オキシ硝酸ジルコニウム水溶液(ZrO2として18質量%含む)152g、硝酸イットリウム14g及びノニオン系界面活性剤(ライオン社製、商品名:レオコン)10gを含有する混合水溶液2000gに25質量%濃度のアンモニア水200gを添加し、室温で10分間撹拌して共沈殿物を得た。次いで、得られた共沈殿物を濾過・洗浄した後に110℃で乾燥し、さらに1000℃で5時間大気中にて焼成してセリウム−ジルコニウム−イットリウム複合酸化物(CeO2−ZrO2−Y2O3)からなる担体を得た。なお、得られた複合酸化物(CZY)の組成比は、68質量%CeO2、28質量%ZrO2、4質量%Y2O3であった。また、上記複合酸化物の酸素1s軌道の結合エネルギーの値をXPS(X−ray photoelectron Spectroscopy)により求めたところ、表5に示す値であった。
Example 9
233 g of cerium nitrate aqueous solution (containing 28% by mass as CeO 2 ), 152 g of zirconium oxynitrate aqueous solution (containing 18% by mass as ZrO 2 ), 14 g of yttrium nitrate and 10 g of nonionic surfactant (product name: Leocon, manufactured by Lion Corporation) To 2000 g of the mixed aqueous solution contained, 200 g of 25% by mass ammonia water was added and stirred at room temperature for 10 minutes to obtain a coprecipitate. Next, the obtained coprecipitate was filtered and washed, dried at 110 ° C., and further calcined in the atmosphere at 1000 ° C. for 5 hours to cerium-zirconium-yttrium composite oxide (CeO 2 —ZrO 2 —Y 2). A carrier consisting of O 3 ) was obtained. The composition ratio of the resulting composite oxide (CZY) was 68 wt% CeO 2, 28 wt% ZrO 2, 4 wt% Y 2 O 3. Moreover, when the value of the bond energy of the oxygen 1s orbital of the composite oxide was determined by XPS (X-ray photoelectron Spectroscopy), the values shown in Table 5 were obtained.
次に、得られた担体100gをイオン交換水中に攪拌し、そこに硝酸バリウムを3.38g加えて混合溶液を得た。そして、得られた混合溶液を加熱し、蒸発乾固させた後に110℃の温度条件で乾燥させ、更に大気中にて500℃の温度条件で5時間焼成し、担体にバリウムを含有する添加成分を担持せしめ、添加成分担持担体を得た。 Next, 100 g of the obtained carrier was stirred in ion-exchanged water, and 3.38 g of barium nitrate was added thereto to obtain a mixed solution. Then, the obtained mixed solution is heated and evaporated to dryness, then dried at a temperature condition of 110 ° C., and further calcined in the atmosphere at a temperature condition of 500 ° C. for 5 hours, and an additive component containing barium in the carrier Was added to obtain an additive-supporting carrier.
次いで、得られた添加成分担持担体をジニトロジアミン白金の硝酸水溶液(白金濃度:4質量%)に浸漬し、濾過及び洗浄した後に、110℃の温度条件で乾燥し、更に大気中にて500℃の温度条件で3時間焼成して、前記担体にPtとBaを含有する添加成分とが担持された粉末状の本発明の排ガス浄化用触媒を得た。このようにして得られた粉末状の本発明の排ガス浄化用触媒は冷間等方圧加圧法(CIP法)を採用して1t/cm2の圧力で圧粉成形した後、0.5〜1mmの大きさに粉砕し、ペレット状の触媒とした。なお、得られた排ガス浄化用触媒におけるPtの担持量は0.5質量%であり、添加成分中のBaの担持量は前記担体1gあたり0.000128molであり、Ptの量と添加成分中のBaの量のモル比(Ba/Pt)は5であった。 Subsequently, the obtained additive-supported carrier was immersed in an aqueous nitric acid solution of dinitrodiamine platinum (platinum concentration: 4% by mass), filtered and washed, then dried at a temperature of 110 ° C., and further 500 ° C. in the atmosphere. The catalyst for exhaust gas purification of the present invention in the form of a powder in which an additive component containing Pt and Ba was supported on the carrier was obtained by calcining for 3 hours under the following temperature conditions. The powdery exhaust gas purifying catalyst of the present invention thus obtained is compacted at a pressure of 1 t / cm 2 using a cold isostatic pressing method (CIP method), and then 0.5 to The catalyst was pulverized to a size of 1 mm to obtain a pellet-shaped catalyst. In the obtained exhaust gas purification catalyst, the supported amount of Pt is 0.5 mass%, the supported amount of Ba in the additive component is 0.000128 mol per 1 g of the carrier, and the amount of Pt and the additive component The molar ratio of the amount of Ba (Ba / Pt) was 5.
(実施例10)
硝酸バリウムの代わりに硝酸ネオジム六水和物5.62gを加えた以外は実施例9と同様にしてペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt及びBaの担持量を表5に示す。
(Example 10)
A pellet-shaped exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 9 except that 5.62 g of neodymium nitrate hexahydrate was added instead of barium nitrate. Table 5 shows the amounts of Pt and Ba supported in the obtained exhaust gas purification catalyst.
(実施例11)
硝酸バリウムの添加量を0.677gに変更した以外は実施例9と同様にしてペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt及びBaの担持量を表5に示す。
(Example 11)
Except that the amount of barium nitrate added was changed to 0.677 g, a pellet-shaped exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 9. Table 5 shows the amounts of Pt and Ba supported in the obtained exhaust gas purification catalyst.
(実施例12)
硝酸バリウムの添加量を1.35gに変更した以外は実施例9と同様にしてペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt及びBaの担持量を表5に示す。
(Example 12)
Except that the amount of barium nitrate added was changed to 1.35 g, a pellet-shaped exhaust gas purification catalyst of the present invention was obtained in the same manner as in Example 9. Table 5 shows the amounts of Pt and Ba supported in the obtained exhaust gas purification catalyst.
(実施例13)
硝酸バリウムの添加量を6.77gに変更した以外は実施例9と同様にしてペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt及びBaの担持量を表5に示す。
(Example 13)
Except that the amount of barium nitrate added was changed to 6.77 g, a pellet-shaped exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 9. Table 5 shows the amounts of Pt and Ba supported in the obtained exhaust gas purification catalyst.
(実施例14)
硝酸バリウムの添加量を0.677gに変更し、混合溶液中に更に硝酸鉄を1.05g加えた以外は実施例9と同様にしてペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt、Ba及びFeの担持量を表5に示す。
(Example 14)
A pellet-shaped exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 9 except that the amount of barium nitrate added was changed to 0.677 g, and 1.05 g of iron nitrate was further added to the mixed solution. Table 5 shows the amounts of Pt, Ba, and Fe supported on the obtained exhaust gas purification catalyst.
(実施例15)
硝酸バリウムと硝酸鉄の混合溶液に更にジニトロジアミン白金の硝酸水溶液の添加量を加えて、PtとBaとFeを同時に担持せしめた以外は実施例14と同様にしてペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt、Ba及びFeの担持量を表5に示す。
(Example 15)
Exhaust gas purification of the present invention in the form of pellets in the same manner as in Example 14 except that a mixed solution of barium nitrate and iron nitrate was further added with an addition amount of nitric acid aqueous solution of dinitrodiamine platinum to carry Pt, Ba and Fe simultaneously. A catalyst was obtained. Table 5 shows the amounts of Pt, Ba, and Fe supported on the obtained exhaust gas purification catalyst.
(実施例16)
担体を得る際の焼成温度の条件を1000℃から700℃に変更した以外は実施例12と同様にしてペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt及びBaの担持量を表5に示す。
(Example 16)
A pellet-shaped exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 12 except that the calcination temperature condition for obtaining the support was changed from 1000 ° C to 700 ° C. Table 5 shows the amounts of Pt and Ba supported in the obtained exhaust gas purification catalyst.
(実施例17)
実施例9で用いた担体と同様の担体を用いて、比較のための排ガス浄化用触媒を製造した。すなわち、前記担体100gをジニトロジアミン白金の硝酸水溶液(白金濃度:4質量%)に浸漬し、濾過、洗浄した後に110℃の温度条件で乾燥し、更に500℃の温度条件で3時間大気中にて焼成して、担体にPtが担持された粉末状の比較のための排ガス浄化用触媒を得た。得られた触媒における白金担持量は0.5質量%であった。また、このようにして得られた排ガス浄化用触媒は、冷間等方圧加圧法(CIP法)を採用して1t/cm2の圧力で圧粉成形した後、0.5〜1mmの大きさに粉砕し、ペレット状の触媒とした。なお、得られた排ガス浄化用触媒におけるPtの担持量を表5に示す。
(Example 17)
An exhaust gas purification catalyst for comparison was manufactured using the same carrier as that used in Example 9. That is, 100 g of the carrier was immersed in an aqueous nitric acid solution of dinitrodiamine platinum (platinum concentration: 4 mass%), filtered, washed, dried at a temperature of 110 ° C., and further dried in the atmosphere at a temperature of 500 ° C. for 3 hours. An exhaust gas purification catalyst for comparison in the form of a powder having Pt supported on a carrier was obtained. The amount of platinum supported in the obtained catalyst was 0.5% by mass. Further, the exhaust gas purifying catalyst thus obtained is compacted at a pressure of 1 t / cm 2 using a cold isostatic pressing method (CIP method), and then has a size of 0.5 to 1 mm. Then, it was pulverized into a pellet-shaped catalyst. The amount of Pt supported in the obtained exhaust gas purification catalyst is shown in Table 5.
(比較例5)
担体として市販のγ−Al2O3粉末(グレース社製)を用いた以外は実施例17と同様にして比較のためのペレット状の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPtの担持量を表5に示す。
(Comparative Example 5)
A pellet-shaped exhaust gas purification catalyst for comparison was obtained in the same manner as in Example 17 except that a commercially available γ-Al 2 O 3 powder (Grace) was used as the carrier. The amount of Pt supported in the obtained exhaust gas purification catalyst is shown in Table 5.
<耐久試験>
実施例9〜17及び比較例5で得られたペレット状の触媒をそれぞれ用いて耐久試験を行った。すなわち、反応容器に触媒を仕込み、反応容器中に触媒3gあたりの流量が500cc/分となるようにして表2に示すリッチガスとリーンガスとを5分おきに交互に流入させて950℃の温度条件で5時間処理することによって担体上の貴金属を粒成長させた(耐久試験)。このような耐久試験後の貴金属の平均粒子径を求め、得られた結果を表5に示す。なお、貴金属の平均粒子径は、特開2004−340637号公報に記載されているCO化学吸着法によって求めた。
<Durability test>
Durability tests were performed using the pellet-shaped catalysts obtained in Examples 9 to 17 and Comparative Example 5, respectively. That is, the catalyst was charged into the reaction vessel, and the rich gas and the lean gas shown in Table 2 were alternately flowed every 5 minutes so that the flow rate per 3 g of the catalyst was 500 cc / min. The precious metal on the support was grown by treatment for 5 hours (endurance test). The average particle diameter of the noble metal after such an endurance test was determined, and the results obtained are shown in Table 5. In addition, the average particle diameter of the noble metal was determined by a CO chemical adsorption method described in JP-A-2004-340637.
<白金再分散試験>
前記耐久試験後の実施例9〜17及び比較例5で得られた各排ガス浄化用触媒に対して、20容量%のO2と80容量%のN2とからなる酸化雰囲気中において750℃で30分間酸化処理(再分散処理)を施し、貴金属の再分散を試みた。このような再分散処理後の各排ガス浄化用触媒の貴金属粒子の平均粒子径を表5に示す。なお、貴金属の平均粒子径は、特開2004−340637号公報に記載されているCO化学吸着法によって求めた。このような再分散処理及びCO化学吸着法の還元前処理をもって、各排ガス浄化用触媒に対する酸化処理と還元処理を実現し、これを再生処理とした。
<Platinum redispersion test>
For each exhaust gas purifying catalyst obtained in Examples 9 to 17 and Comparative Example 5 after the durability test, in an oxidizing atmosphere composed of 20% by volume O 2 and 80% by volume N 2 at 750 ° C. An oxidation treatment (redispersion treatment) was performed for 30 minutes, and redispersion of the noble metal was attempted. Table 5 shows the average particle diameter of the noble metal particles of each exhaust gas purifying catalyst after such redispersion treatment. In addition, the average particle diameter of the noble metal was determined by a CO chemical adsorption method described in JP-A-2004-340637. With such redispersion treatment and reduction pretreatment by the CO chemical adsorption method, oxidation treatment and reduction treatment for each exhaust gas purification catalyst were realized, and this was designated as regeneration treatment.
表5に示す結果からも明らかなように、本発明の排ガス浄化用触媒(実施例9〜17、特に実施例9〜16)においては、貴金属の粒成長がより十分に抑制されることが確認された。また、本発明の再生方法により本発明の排ガス浄化用触媒(実施例9〜17、特に実施例9〜16)は貴金属が十分に微細化されることが確認され、これにより触媒活性の再生を容易に行えることが確認された。 As is clear from the results shown in Table 5, it was confirmed that noble metal grain growth was more sufficiently suppressed in the exhaust gas purifying catalysts of the present invention (Examples 9 to 17, especially Examples 9 to 16). It was done. In addition, it was confirmed by the regeneration method of the present invention that the exhaust gas purifying catalyst of the present invention (Examples 9 to 17, especially Examples 9 to 16) sufficiently refined the noble metal, thereby regenerating the catalyst activity. It was confirmed that it can be easily performed.
(実施例18)
硝酸セリウム水溶液(CeO2として28質量%含む)242.6g、オキシ硝酸ジルコニウム水溶液(ZrO2として18質量%含む)157.6g、硝酸イットリウム12.6g及びノニオン系界面活性剤(ライオン社製、商品名:レオコン)10gを含有する混合水溶液2000gに25質量%濃度のアンモニア水142.2gを添加し、室温で10分間撹拌して共沈殿物を得た。次いで、得られた共沈殿物を濾過・洗浄した後に110℃で乾燥し、さらに1000℃で5時間大気中にて焼成してセリウム−ジルコニウム−イットリウム複合酸化物(CeO2−ZrO2−Y2O3)からなる担体を得た。なお、得られた複合酸化物(CZY)の組成比は、67.9質量%CeO2、28.4質量%ZrO2、3.7質量%Y2O3であった。
(Example 18)
242.6 g of cerium nitrate aqueous solution (including 28% by mass as CeO 2 ), 157.6 g of zirconium oxynitrate aqueous solution (including 18% by mass as ZrO 2 ), 12.6 g of yttrium nitrate and nonionic surfactant (product of Lion Corporation, product) Name: Leocon) A mixture of 2000 g containing 10 g of aqueous solution, 142.2 g of 25% strength by weight ammonia water was added and stirred at room temperature for 10 minutes to obtain a coprecipitate. Next, the obtained coprecipitate was filtered and washed, dried at 110 ° C., and further calcined in the atmosphere at 1000 ° C. for 5 hours to cerium-zirconium-yttrium composite oxide (CeO 2 —ZrO 2 —Y 2). A carrier consisting of O 3 ) was obtained. The composition ratio of the resulting composite oxide (CZY) is 67.9 wt% CeO 2, 28.4 wt% ZrO 2, it was 3.7 wt% Y 2 O 3.
次に、得られた担体100gをイオン交換水中に攪拌し、そこに硝酸鉄を2.092g加えて混合溶液を得た。そして、得られた混合溶液を加熱し、蒸発乾固させた後に110℃の温度条件で乾燥させ、更に大気中にて500℃の温度条件で5時間焼成し、担体に鉄を担持せしめ、添加成分担持担体を得た。 Next, 100 g of the obtained carrier was stirred in ion-exchanged water, and 2.092 g of iron nitrate was added thereto to obtain a mixed solution. Then, the obtained mixed solution is heated and evaporated to dryness, and then dried under a temperature condition of 110 ° C., and further calcined in the atmosphere at a temperature condition of 500 ° C. for 5 hours to load iron on the carrier and add A component-supported carrier was obtained.
次いで、得られた添加成分担持担体をジニトロジアミン白金の硝酸水溶液(白金濃度:4質量%)に浸漬し、濾過及び洗浄した後に、110℃の温度条件で乾燥し、更に大気中にて500℃の温度条件で3時間焼成して、前記担体にPtとFeとが担持された粉末状の本発明の排ガス浄化用触媒を得た。このようにして得られた粉末状の本発明の排ガス浄化用触媒は冷間等方圧加圧法(CIP法)を採用して1t/cm2の圧力で圧粉成形した後、0.5〜1mmの大きさに粉砕し、ペレット状の触媒とした。なお、得られた排ガス浄化用触媒におけるPtの担持量は1質量%であり、Feの担持量は前記担体100gあたり0.00513molであり、Ptの量とFeの量のモル比(Fe/Pt)は金属換算で1であった。 Subsequently, the obtained additive-supported carrier was immersed in an aqueous nitric acid solution of dinitrodiamine platinum (platinum concentration: 4% by mass), filtered and washed, then dried at a temperature of 110 ° C., and further 500 ° C. in the atmosphere. The catalyst for exhaust gas purification of the present invention in powder form in which Pt and Fe were supported on the carrier was obtained by calcining for 3 hours under the above temperature conditions. The powdery exhaust gas purifying catalyst of the present invention thus obtained is compacted at a pressure of 1 t / cm 2 using a cold isostatic pressing method (CIP method), and then 0.5 to The catalyst was pulverized to a size of 1 mm to obtain a pellet-shaped catalyst. In the obtained exhaust gas-purifying catalyst, the supported amount of Pt is 1% by mass, the supported amount of Fe is 0.00513 mol per 100 g of the carrier, and the molar ratio of the amount of Pt to the amount of Fe (Fe / Pt ) Was 1 in terms of metal.
(実施例19)
硝酸鉄の添加量を1.046gに変更し、Ptの担持量を0.5質量%に変更した以外は実施例1と同様にしてペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt及びFeの担持量、FeとPtのモル比を表8に示す。
(Example 19)
A pellet-shaped exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 1 except that the amount of iron nitrate added was changed to 1.046 g and the amount of Pt supported was changed to 0.5% by mass. Table 8 shows the supported amounts of Pt and Fe and the molar ratio of Fe and Pt in the obtained exhaust gas purification catalyst.
(実施例20)
硝酸鉄の添加量を2.092gに変更した以外は実施例19と同様にしてペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt及びFeの担持量、FeとPtのモル比を表8に示す。
(Example 20)
A pellet-shaped exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 19 except that the amount of iron nitrate added was changed to 2.092 g. Table 8 shows the supported amounts of Pt and Fe and the molar ratio of Fe and Pt in the obtained exhaust gas purification catalyst.
(実施例21)
硝酸鉄の添加量を5.229gに変更した以外は実施例19と同様にしてペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt及びFeの担持量、FeとPtのモル比を表8に示す。
(Example 21)
A pellet-shaped exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 19 except that the amount of iron nitrate added was changed to 5.229 g. Table 8 shows the supported amounts of Pt and Fe and the molar ratio of Fe and Pt in the obtained exhaust gas purification catalyst.
(実施例22)
硝酸鉄の添加量を1.046gに変更し、更に硝酸バリウムを0.677g加えた以外は実施例19と同様にしてBa元素を含む担持成分が更に担持されたペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt、Fe及びBaの担持量を表8に示す。
(Example 22)
Exhaust gas purification of the present invention in the form of pellets in which a supported component containing Ba element was further supported in the same manner as in Example 19 except that the addition amount of iron nitrate was changed to 1.046 g and 0.677 g of barium nitrate was further added. A catalyst was obtained. Table 8 shows the amounts of Pt, Fe, and Ba supported on the obtained exhaust gas purification catalyst.
(実施例23)
硝酸鉄と硝酸バリウムの他にジニトロジアミン白金の硝酸溶液も同時に加えた以外は実施例22と同様にしてBa元素を含む担持成分が更に担持されたペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt、Fe及びBaの担持量を表8に示す。
(Example 23)
Exhaust gas purifying catalyst of the present invention in the form of pellets further carrying a supported component containing Ba element was obtained in the same manner as in Example 22 except that a nitric acid solution of dinitrodiamine platinum was added simultaneously with iron nitrate and barium nitrate. It was. Table 8 shows the amounts of Pt, Fe, and Ba supported on the obtained exhaust gas purification catalyst.
(実施例24)
実施例18で用いた担体と同様の担体を用いて、比較のための排ガス浄化用触媒を製造した。すなわち、前記担体100gをジニトロジアミン白金の硝酸水溶液(白金濃度:4質量%)に浸漬し、濾過、洗浄した後に110℃の温度条件で乾燥し、更に500℃の温度条件で3時間大気中にて焼成して、担体にPtが担持された粉末状の比較のための排ガス浄化用触媒を得た。得られた触媒におけるPt担持量は1質量%であった。また、このようにして得られた比較のための排ガス浄化用触媒は、冷間等方圧加圧法(CIP法)を採用して1t/cm2の圧力で圧粉成形した後、0.5〜1mmの大きさに粉砕し、ペレット状の触媒とした。
(Example 24)
An exhaust gas purifying catalyst for comparison was manufactured using the same carrier as that used in Example 18. That is, 100 g of the carrier was immersed in an aqueous nitric acid solution of dinitrodiamine platinum (platinum concentration: 4 mass%), filtered, washed, dried at a temperature of 110 ° C., and further dried in the atmosphere at a temperature of 500 ° C. for 3 hours. An exhaust gas purification catalyst for comparison in the form of a powder having Pt supported on a carrier was obtained. The amount of Pt supported in the obtained catalyst was 1% by mass. Further, the exhaust gas purifying catalyst for comparison obtained in this way was compacted at a pressure of 1 t / cm 2 by adopting a cold isostatic pressing method (CIP method), and then 0.5 The catalyst was pulverized to a size of ˜1 mm to obtain a pellet-shaped catalyst.
(実施例25)
Ptの担持量を0.5質量%に変更した以外は実施例24と同様にしてペレット状の本発明の排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPtの担持量を表8に示す。
(Example 25)
A pellet-shaped exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 24 except that the amount of Pt supported was changed to 0.5% by mass. Table 8 shows the amount of Pt supported in the obtained exhaust gas purification catalyst.
(実施例26)
硝酸鉄の添加量を0.523gに変更した以外は実施例19と同様にしてペレット状の比較のための排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt及びFeの担持量、FeとPtのモル比を表8に示す。
(Example 26)
Exhaust gas purification catalysts for comparison in pellet form were obtained in the same manner as in Example 19 except that the amount of iron nitrate added was changed to 0.523 g. Table 8 shows the supported amounts of Pt and Fe and the molar ratio of Fe and Pt in the obtained exhaust gas purification catalyst.
(実施例27)
硝酸鉄の添加量を15.69gに変更した以外は実施例19と同様にしてペレット状の比較のための排ガス浄化用触媒を得た。なお、得られた排ガス浄化用触媒におけるPt及びFeの担持量、FeとPtのモル比を表8に示す。
(Example 27)
Exhaust gas purification catalysts for comparison in pellet form were obtained in the same manner as in Example 19 except that the amount of iron nitrate added was changed to 15.69 g. Table 8 shows the supported amounts of Pt and Fe and the molar ratio of Fe and Pt in the obtained exhaust gas purification catalyst.
<耐久試験(I)>
実施例18及び24で得られたペレット状の触媒をそれぞれ用いて耐久試験(I)を行った。すなわち、H2(3容量%)とN2(97容量%)とからなるガス雰囲気下において950℃の温度条件で10時間処理することによって担体上のPtを粒成長させた(耐久試験(I))。このような耐久試験後のPtの平均粒子径を求め、得られた結果を表6及び表7に示す。なお、Ptの平均粒子径は、X線回折法(XRD)及び特開2004−340637号公報に記載されているCO化学吸着法によって求めた。XRDによって求められた平均粒子径を表6に示し、CO化学吸着法によって求められた平均粒子径を表7に示す。
<Durability test (I)>
Durability test (I) was carried out using the pellet-shaped catalysts obtained in Examples 18 and 24, respectively. That is, Pt on the carrier was grown by treatment for 10 hours at a temperature of 950 ° C. in a gas atmosphere composed of H 2 (3% by volume) and N 2 (97% by volume) (endurance test (I )). The average particle diameter of Pt after such an endurance test was determined, and the obtained results are shown in Tables 6 and 7. In addition, the average particle diameter of Pt was calculated | required by the CO chemical adsorption method described in the X-ray-diffraction method (XRD) and Unexamined-Japanese-Patent No. 2004-340637. Table 6 shows the average particle size determined by XRD, and Table 7 shows the average particle size determined by the CO chemical adsorption method.
表6に示す結果からも明らかなように、単なるリッチ雰囲気であってもFeがPt近傍に存在することでPtの粒成長が抑制されることが確認された。更に、実施例18で得られた触媒においては、Pt(1,1,1)回折線が広角側にシフトしており、FeがPtに固溶して合金化していた。 As is clear from the results shown in Table 6, it was confirmed that even in a simple rich atmosphere, the presence of Fe in the vicinity of Pt suppresses the grain growth of Pt. Furthermore, in the catalyst obtained in Example 18, the Pt (1, 1, 1) diffraction line was shifted to the wide-angle side, and Fe was dissolved in Pt and alloyed.
<再生試験(I)>
耐久試験(I)後の実施例18び24の各排ガス浄化用触媒に対して、先ず、20容量%のO2と80容量%のHeとからなる酸化雰囲気中において800℃で1分間酸化処理(再分散処理)を施し、Ptの再分散を試みた。このような再分散処理後の各排ガス浄化用触媒のPtの平均粒子径を表7に示す。なお、Ptの平均粒子径は、特開2004−340637号公報に記載されているCO化学吸着法によって求めた。このような再分散処理及びCO化学吸着法の還元前処理をもって、各排ガス浄化用触媒に対する酸化処理と還元処理を実現し、これを再生処理とした。
<Regeneration test (I)>
For each exhaust gas purifying catalyst of Examples 18 and 24 after the endurance test (I), first, an oxidation treatment was performed at 800 ° C. for 1 minute in an oxidizing atmosphere composed of 20 vol% O 2 and 80 vol% He. (Redispersion treatment) was performed, and redispersion of Pt was attempted. Table 7 shows the average particle diameter of Pt of each exhaust gas purifying catalyst after such redispersion treatment. In addition, the average particle diameter of Pt was calculated | required by the CO chemical adsorption method described in Unexamined-Japanese-Patent No. 2004-340637. With such redispersion treatment and reduction pretreatment by the CO chemical adsorption method, oxidation treatment and reduction treatment for each exhaust gas purification catalyst were realized, and this was designated as regeneration treatment.
表7に示すように、リッチ雰囲気における耐久試験後、実施例18で得られた排ガス浄化用触媒のPt粒子径が実施例24で得られた触媒のPt粒子径よりも大きく見積られた。このような結果は、表6に示すPt粒子径はシングルオーダーであったことからも明らかなように、FeがPtに固溶し合金化することで活性点の最表面にCOが吸着できなくなっていることを示唆しており、測定法(CO化学吸着法)による影響を受けたものである。そのため、表7に示すPt粒子径は真のPt粒子径を示しているものではない。また、再生処理後においては、実施例18の触媒は実施例24の触媒よりもPt粒子径が細かくなっているが、これは合金化した活性点から酸化鉄が析出し、Pt表面が出現したためにCOの吸着量が増加したためである。このような結果から、実施例18で得られた触媒においては、リッチ雰囲気下においてPtの粒成長が抑制され、更に再生処理を行うことによって活性点が再生したことが確認された。 As shown in Table 7, after the durability test in a rich atmosphere, the Pt particle size of the exhaust gas purifying catalyst obtained in Example 18 was estimated to be larger than the Pt particle size of the catalyst obtained in Example 24. As is clear from these results, the Pt particle size shown in Table 6 was single-order, so that Fe cannot be adsorbed on the outermost surface of the active site by forming a solid solution and alloying with Pt. This is influenced by the measurement method (CO chemisorption method). Therefore, the Pt particle size shown in Table 7 does not indicate the true Pt particle size. In addition, after the regeneration treatment, the Pt particle diameter of the catalyst of Example 18 was smaller than that of the catalyst of Example 24. This was because iron oxide precipitated from the alloyed active sites and the Pt surface appeared. This is because the amount of adsorption of CO increased. From these results, it was confirmed that in the catalyst obtained in Example 18, the growth of Pt grains was suppressed in a rich atmosphere, and the active sites were regenerated by performing regeneration treatment.
<耐久試験(II)>
実施例19〜23、25〜27で得られたペレット状の触媒をそれぞれ用いて耐久試験を行った。すなわち、反応容器に触媒を仕込み、触媒3gあたりの流量が500cc/分となるようにして表2に示すリッチガスとリーンガスとを5分おきに交互に流入させて950℃の温度条件で5時間処理することによって担体上のPtを粒成長させた(耐久試験(II))。このような耐久試験後のPtの平均粒子径を特開2004−340637号公報に記載されているCO化学吸着法によって求め、得られた結果を表8に示す。
<Durability test (II)>
Durability tests were performed using the pellet-shaped catalysts obtained in Examples 19 to 23 and 25 to 27, respectively. That is, a catalyst is charged in a reaction vessel, and a rich gas and a lean gas shown in Table 2 are alternately introduced every 5 minutes so that the flow rate per 3 g of the catalyst is 500 cc / min, and the treatment is performed at a temperature condition of 950 ° C. for 5 hours. By doing so, Pt on the carrier was grown (endurance test (II)). The average particle diameter of Pt after such an endurance test was determined by the CO chemical adsorption method described in JP-A No. 2004-340637, and the obtained results are shown in Table 8.
<再生試験(II)>
耐久試験(II)後の19〜23、25〜27の各排ガス浄化用触媒に対して、20容量%のO2と80容量%のN2とからなる酸化雰囲気中において750℃で30分間酸化処理(再分散処理)を施し、Ptの再分散を試みた。このような再分散処理後の各排ガス浄化用触媒のPtの平均粒子径を表8に示す。なお、Ptの平均粒子径は、特開2004−340637号公報に記載されているCO化学吸着法によって求めた。このような再分散処理及びCO化学吸着法の還元前処理をもって、各排ガス浄化用触媒に対する酸化処理と還元処理を実現し、これを再生処理とした。
<Regeneration test (II)>
Each of the exhaust gas purifying catalysts 19 to 23 and 25 to 27 after the durability test (II) was oxidized at 750 ° C. for 30 minutes in an oxidizing atmosphere composed of 20 vol% O 2 and 80 vol% N 2. Processing (redispersion processing) was performed, and redispersion of Pt was attempted. Table 8 shows the average particle diameter of Pt of each exhaust gas purifying catalyst after such redispersion treatment. In addition, the average particle diameter of Pt was calculated | required by the CO chemical adsorption method described in Unexamined-Japanese-Patent No. 2004-340637. With such redispersion treatment and reduction pretreatment by the CO chemical adsorption method, oxidation treatment and reduction treatment for each exhaust gas purification catalyst were realized, and this was designated as regeneration treatment.
表8に示す結果からも明らかなように、FeとPtのモル比(Fe/Pt)が0.8〜12の範囲にある実施例19〜23で得られた本発明の排ガス浄化用触媒は、Fe/Ptの値が0である実施例25及びFe/Ptの値が0・8〜12の範囲外にある実施例26〜27で得られた排ガス浄化用触媒に対して、リッチ/リーン耐久試験後のPtの粒成長が抑制されることが確認された。更に、本発明の排ガス浄化用触媒(実施例19〜23)においては再生処理後のPt粒子径が細かいことから、触媒活性を十分に再生でき、高い触媒活性が得られることが確認された。また、実施例26で得られた触媒のようにFeの担持量が少ない場合には、Ptの粒成長の抑制及び再生処理の際の粒子の微細化の効果が不十分となる傾向にであり、他方、実施例27で得られた触媒のようにFeの担持量が多い場合には、担体の比表面積が低下する傾向にあることが確認された。また、実施例22〜23で得られた排ガス浄化用触媒の結果から、Ba(添加成分)はPtの担持前に担持させても、Ptと同時に担持させても同様に効果的であることが確認された。 As is clear from the results shown in Table 8, the exhaust gas purifying catalyst of the present invention obtained in Examples 19 to 23 in which the molar ratio of Fe to Pt (Fe / Pt) is in the range of 0.8 to 12 is The exhaust gas purification catalyst obtained in Example 25 in which the value of Fe / Pt is 0 and in Examples 26 to 27 in which the value of Fe / Pt is outside the range of 0.8 to 12 is rich / lean. It was confirmed that the Pt grain growth after the durability test was suppressed. Furthermore, in the exhaust gas purifying catalyst of the present invention (Examples 19 to 23), it was confirmed that the catalyst activity can be sufficiently regenerated and high catalyst activity can be obtained because the Pt particle diameter after regeneration treatment is fine. Further, when the amount of Fe supported is small like the catalyst obtained in Example 26, the effect of suppressing the grain growth of Pt and the refinement of the particles during the regeneration process tends to be insufficient. On the other hand, it was confirmed that when the amount of Fe supported was large as in the catalyst obtained in Example 27, the specific surface area of the support tends to decrease. Further, from the results of the exhaust gas purifying catalysts obtained in Examples 22 to 23, Ba (additive component) is equally effective whether it is supported before or simultaneously with Pt. confirmed.
上述のような結果(表6〜7及び表8)から、本発明の排ガス浄化用触媒(実施例18〜27、特に実施例18〜23)においては、貴金属の粒成長がより十分に抑制されることが確認された。また、本発明の再生方法により本発明の排ガス浄化用触媒(実施例18〜27、特に実施例18〜23)は貴金属が十分に微細化されることが確認され、これにより触媒活性の再生を容易に行えることが確認された。 From the results as described above (Tables 6 to 7 and Table 8), in the exhaust gas purifying catalyst of the present invention (Examples 18 to 27, especially Examples 18 to 23), noble metal grain growth is more sufficiently suppressed. It was confirmed that Further, it was confirmed by the regeneration method of the present invention that the exhaust gas purifying catalyst of the present invention (Examples 18 to 27, especially Examples 18 to 23) sufficiently refined the noble metal, thereby regenerating the catalyst activity. It was confirmed that it can be easily performed.
(実施例28)
先ず、担体としてセリウム−ジルコニウム−プラセオジム−ランタン複合酸化物(CeO2−ZrO2−Pr2O3−La2O3)を製造した。すなわち、先ず、28wt%の硝酸セリウム水溶液217.3g、18wt%のオキシ硝酸ジルコニウム水溶液205.4g、硝酸プラセオジウム2.18g、硝酸ランタン2.89g、ノニオン系界面活性剤(ライオン社製、商品名:レオコン)10gをイオン交換水2Lに溶解し、25wt%のアンモニア水を陽イオンに対して1.2倍当量添加し、得られた共沈殿物を濾過、洗浄して担体前駆体を得た。次に、得られた担体前駆体を110℃で乾燥した後、1000℃で5時間大気中にて焼成してセリウム−ジルコニウム−プラセオジム−ランタン複合酸化物からなる蛍石型構造の担体(組成比:53mol%CeO2、45mol%ZrO2、0.5mol%Pr2O3、0.5mol%La2O3、担体に対する金属元素の量M(金属換算):55mol%)を得た。なお、得られた担体の格子定数は5.304Åであった。
(Example 28)
First, cerium as a carrier - zirconium - praseodymium - produced lanthanum composite oxide (CeO 2 -ZrO 2 -Pr 2 O 3 -La 2 O 3). That is, first, 217.3 g of a 28 wt% cerium nitrate aqueous solution, 205.4 g of an 18 wt% zirconium oxynitrate aqueous solution, 2.18 g of praseodymium nitrate, 2.89 g of lanthanum nitrate, a nonionic surfactant (product name: Lion Corporation) (Leocon) 10 g was dissolved in 2 L of ion exchanged water, 25 wt% ammonia water was added in an amount of 1.2 times the cation, and the resulting coprecipitate was filtered and washed to obtain a carrier precursor. Next, the obtained carrier precursor was dried at 110 ° C. and then calcined in the atmosphere at 1000 ° C. for 5 hours to form a fluorite-type carrier composed of a cerium-zirconium-praseodymium-lanthanum composite oxide (composition ratio). : 53 mol% CeO 2 , 45 mol% ZrO 2 , 0.5 mol% Pr 2 O 3 , 0.5 mol% La 2 O 3 , the amount M of metal element relative to the support (metal conversion): 55 mol%). The obtained carrier had a lattice constant of 5.3045.
次に、前記担体に貴金属を担持せしめて本発明の排ガス浄化触媒を製造した。すなわち、イオン交換水200mlにジニトロジアミン白金の硝酸水溶液(白金濃度:4重量%)0.625gを混合した混合液に、前述のようにして得られた担体25gを加えて含浸担持せしめた後、大気中において500℃で3時間焼成して本発明の排ガス浄化用触媒(Pt(0.1g)/CeO2−ZrO2−Pr2O3−La2O3(100g))を得た。 Next, an exhaust gas purification catalyst of the present invention was produced by loading a noble metal on the carrier. That is, after impregnating and supporting 25 g of the carrier obtained as described above in a mixed solution obtained by mixing 0.625 g of a nitric acid aqueous solution (platinum concentration: 4% by weight) of dinitrodiamine platinum in 200 ml of ion-exchanged water, to obtain a 500 ° C. for 3 hours calcined to exhaust gas purifying catalyst of the present invention (Pt (0.1g) / CeO 2 -ZrO 2 -Pr 2 O 3 -La 2 O 3 (100g)) in the atmosphere.
(実施例29)
先ず、担体としてセリウム−ジルコニウム−プラセオジム−イットリウム複合酸化物(CeO2−ZrO2−Pr2O3−Y2O3)を製造した。すなわち、先ず、28wt%の硝酸セリウム水溶液218.1g、18wt%のオキシ硝酸ジルコニウム水溶液201.7g、硝酸プラセオジウム2.19g、硝酸イットリウム5.13g、ノニオン系界面活性剤(ライオン社製、商品名:レオコン)10gをイオン交換水2Lに溶解し、25wt%のアンモニア水を陽イオンに対して1.2倍当量添加し、得られた共沈殿物を濾過、洗浄して担体前駆体を得た。次に、得られた担体前駆体を110℃で乾燥した後、1000℃で5時間大気中にて焼成してセリウム−ジルコニウム−プラセオジム−イットリウム複合酸化物からなる蛍石型構造の担体(組成比:53mol%CeO2、44mol%ZrO2、0.5mol%Pr2O3、1mol%Y2O3、担体に対する金属元素の量M(金属換算):56mol%)を得た。なお、得られた担体の格子定数は5.304Åであった。
(Example 29)
First, cerium as a carrier - zirconium - praseodymium - produced yttrium composite oxide (CeO 2 -ZrO 2 -Pr 2 O 3 -Y 2 O 3). Specifically, 218.1 g of a 28 wt% cerium nitrate aqueous solution, 201.7 g of an 18 wt% zirconium oxynitrate aqueous solution, 2.19 g of praseodymium nitrate, 5.13 g of yttrium nitrate, a nonionic surfactant (trade name: manufactured by Lion Corporation) (Leocon) 10 g was dissolved in 2 L of ion exchanged water, 25 wt% ammonia water was added in an amount of 1.2 times the cation, and the resulting coprecipitate was filtered and washed to obtain a carrier precursor. Next, the obtained carrier precursor was dried at 110 ° C. and then calcined in the atmosphere at 1000 ° C. for 5 hours to form a fluorite-type carrier composed of a cerium-zirconium-praseodymium-yttrium composite oxide (composition ratio). : 53 mol% CeO 2 , 44 mol% ZrO 2 , 0.5 mol% Pr 2 O 3 , 1 mol% Y 2 O 3 , the amount M of metal element relative to the support (metal conversion): 56 mol%. The obtained carrier had a lattice constant of 5.3045.
次に、前記担体に貴金属を担持せしめて本発明の排ガス浄化触媒を製造した。すなわち、イオン交換水200mlにジニトロジアミン白金の硝酸水溶液(白金濃度:4重量%)1.563gを混合した混合液に、前述のようにして得られた担体25gを加えて含浸担持せしめた後、大気中において500℃で3時間焼成して本発明の排ガス浄化用触媒(Pt(0.25g)/CeO2−ZrO2−Pr2O3−Y2O3(100g))を得た。 Next, an exhaust gas purification catalyst of the present invention was produced by loading a noble metal on the carrier. That is, after impregnating and supporting 25 g of the carrier obtained as described above in a mixed solution obtained by mixing 1.563 g of a nitric acid aqueous solution (platinum concentration: 4% by weight) of dinitrodiamine platinum with 200 ml of ion-exchanged water, to obtain a 500 ° C. for 3 hours calcined to exhaust gas purifying catalyst of the present invention (Pt (0.25g) / CeO 2 -ZrO 2 -Pr 2 O 3 -Y 2 O 3 (100g)) in the atmosphere.
(実施例30)
先ず、担体としてセリウム−ジルコニウム複合酸化物(CeO2−ZrO2)を製造した。すなわち、先ず、28wt%の硝酸セリウム水溶液273.3g、18wt%のオキシ硝酸ジルコニウム水溶液130.4g、ノニオン系界面活性剤(ライオン社製、商品名:レオコン)10gをイオン交換水2Lに溶解し、25wt%のアンモニア水を陽イオンに対して1.2倍当量添加し、得られた共沈殿物を濾過、洗浄して担体前駆体を得た。次に、得られた担体前駆体を110℃で乾燥した後、1000℃で5時間大気中にて焼成してセリウム−ジルコニウム複合酸化物からなる蛍石型構造の担体(組成比:70mol%CeO2、30mol%ZrO2、担体に対する金属元素の量M(金属換算):70mol%)を得た。なお、得られた担体の格子定数は5.334Åであった。
(Example 30)
First, a cerium-zirconium composite oxide (CeO 2 —ZrO 2 ) was produced as a support. Specifically, first, 273.3 g of a 28 wt% cerium nitrate aqueous solution, 130.4 g of an 18 wt% zirconium oxynitrate aqueous solution, and 10 g of a nonionic surfactant (product name: Leocon, manufactured by Lion Corporation) were dissolved in 2 L of ion-exchanged water. 25 wt% aqueous ammonia was added in an amount equivalent to 1.2 times the cation, and the resulting coprecipitate was filtered and washed to obtain a carrier precursor. Next, the obtained carrier precursor was dried at 110 ° C. and then calcined in the atmosphere at 1000 ° C. for 5 hours to form a fluorite-type carrier composed of a cerium-zirconium composite oxide (composition ratio: 70 mol% CeO 2 , 30 mol% ZrO 2 , and the amount M of metal element relative to the carrier (metal conversion): 70 mol%). The obtained carrier had a lattice constant of 5.3345.
次に、前記担体に貴金属を担持せしめて本発明の排ガス浄化触媒を製造した。すなわち、イオン交換水200mlにジニトロジアミン白金の硝酸水溶液(白金濃度:4重量%)1.563gを混合した混合液に、前述のようにして得られた担体25gを加えて含浸担持せしめた後、大気中において500℃で3時間焼成して本発明の排ガス浄化用触媒(Pt(0.25g)/CeO2−ZrO2(100g))を得た。 Next, an exhaust gas purification catalyst of the present invention was produced by loading a noble metal on the carrier. That is, after impregnating and supporting 25 g of the carrier obtained as described above in a mixed solution obtained by mixing 1.563 g of a nitric acid aqueous solution (platinum concentration: 4% by weight) of dinitrodiamine platinum with 200 ml of ion-exchanged water, The exhaust gas-purifying catalyst (Pt (0.25 g) / CeO 2 —ZrO 2 (100 g)) of the present invention was obtained by calcination at 500 ° C. for 3 hours in the air.
(実施例31)
先ず、担体としてセリウム−ジルコニウム−イットリウム複合酸化物(CeO2−ZrO2−Y2O3)を製造した。すなわち、先ず、28wt%の硝酸セリウム水溶液242.6g、18wt%のオキシ硝酸ジルコニウム水溶液157.6g、硝酸イットリウム12.6g、ノニオン系界面活性剤(ライオン社製、商品名:レオコン)10gをイオン交換水2Lに溶解し、25wt%のアンモニア水を陽イオンに対して1.2倍当量添加し、得られた共沈殿物を濾過、洗浄して担体前駆体を得た。次に、得られた担体前駆体を110℃で乾燥した後、1000℃で5時間大気中にて焼成してセリウム−ジルコニウム−イットリウム複合酸化物からなる蛍石型構造の担体(組成比:60mol%CeO2、35mol%ZrO2、2.5mol%Y2O3、担体に対する金属元素の量M(金属換算):65mol%)を得た。なお、得られた担体の格子定数は5.305Åであった。
(Example 31)
First, a cerium-zirconium-yttrium composite oxide (CeO 2 —ZrO 2 —Y 2 O 3 ) was produced as a carrier. That is, first, ion exchange of 242.6 g of 28 wt% cerium nitrate aqueous solution, 157.6 g of 18 wt% zirconium oxynitrate aqueous solution, 12.6 g of yttrium nitrate, and 10 g of nonionic surfactant (product name: Leocon, manufactured by Lion Corporation) It melt | dissolved in 2L of water, 25 wt% ammonia water was added 1.2 times equivalent with respect to the cation, and the obtained coprecipitate was filtered and wash | cleaned, and the support | carrier precursor was obtained. Next, the obtained carrier precursor was dried at 110 ° C., and then calcined at 1000 ° C. for 5 hours in the air to form a fluorite-type carrier composed of a cerium-zirconium-yttrium composite oxide (composition ratio: 60 mol). % CeO 2 , 35 mol% ZrO 2 , 2.5 mol% Y 2 O 3 , the amount M of metal element relative to the support (metal conversion): 65 mol%). The obtained carrier had a lattice constant of 5.305.
次に、前記担体に貴金属を担持せしめて本発明の排ガス浄化触媒を製造した。すなわち、先ず、イオン交換水200mlに硝酸バリウム0.169gを混合した混合液に、前述のようにして得られた担体25gを加えて含浸担持せしめた後、大気中において500℃で5時間焼成して触媒前駆体を得た。次に、イオン交換水200mlにジニトロジアミン白金の硝酸水溶液(白金濃度:4重量%)1.563gを混合した混合液に前記触媒前駆体25gを加えて含浸担持せしめた後、大気中において500℃で3時間焼成して本発明の排ガス浄化用触媒(Pt(0.5g)/CeO2−ZrO2−Y2O3−BaO(100g))を得た。 Next, an exhaust gas purification catalyst of the present invention was produced by loading a noble metal on the carrier. That is, first, 25 g of the carrier obtained as described above was added to a mixed solution obtained by mixing 0.169 g of barium nitrate in 200 ml of ion-exchanged water, impregnated and supported, and then fired at 500 ° C. for 5 hours in the atmosphere. Thus, a catalyst precursor was obtained. Next, 25 g of the catalyst precursor was added to a mixed solution obtained by mixing 1.563 g of a nitric acid aqueous solution (platinum concentration: 4% by weight) of dinitrodiamine platinum in 200 ml of ion-exchanged water, and then impregnated and supported at 500 ° C. in the atmosphere. And the exhaust gas-purifying catalyst (Pt (0.5 g) / CeO 2 —ZrO 2 —Y 2 O 3 —BaO (100 g)) of the present invention was obtained.
(実施例32)
前記混合液に混合する硝酸バリウムの量を0.338gに代えた以外は実施例31と同様にして本発明の排ガス浄化用触媒(Pt(0.5g)/CeO2−ZrO2−Y2O3−BaO(100g))を得た。
(Example 32)
Exhaust gas purifying catalyst of the present invention (Pt (0.5 g) / CeO 2 —ZrO 2 —Y 2 O) in the same manner as in Example 31 except that the amount of barium nitrate mixed in the mixed solution was changed to 0.338 g. 3- BaO (100 g)) was obtained.
(実施例33)
前記混合液に混合するジニトロジアミン白金の硝酸水溶液(白金濃度:4重量%)の量を3.125gに変更した以外は実施例28と同様の方法で本発明の排ガス浄化用触媒(Pt(0.5g)/CeO2−ZrO2−Pr2O3−La2O3(100g))を得た。
(Example 33)
Exhaust gas purifying catalyst (Pt (0)) of the present invention was prepared in the same manner as in Example 28 except that the amount of nitric acid aqueous solution (platinum concentration: 4% by weight) of dinitrodiamine platinum mixed in the mixed solution was changed to 3.125 g. .5g) / CeO 2 -ZrO 2 -Pr 2 O 3 -La 2 O 3 (100g)) was obtained.
(実施例34)
前記混合液に混合するジニトロジアミン白金の硝酸水溶液(白金濃度:4重量%)の量を6.25gに変更した以外は実施例28と同様の方法で比較のための排ガス浄化用触媒(Pt(1g)/CeO2−ZrO2−Pr2O3−La2O3(100g))を得た。
(Example 34)
Exhaust gas purifying catalyst (Pt (Pt ()) for comparison in the same manner as in Example 28 except that the amount of nitric acid aqueous solution (platinum concentration: 4% by weight) of dinitrodiamine platinum mixed in the mixed solution was changed to 6.25 g. 1g) / CeO 2 -ZrO 2 -Pr 2 O 3 -La 2 O 3 (100g)) was obtained.
(実施例35)
ノニオン系界面活性剤を混合しなかった以外は実施例30と同様の方法で比較のための排ガス浄化用触媒(Pt(0.25g)/CeO2−ZrO2(100g))を得た。
(Example 35)
Exhaust gas purification catalyst (Pt (0.25 g) / CeO 2 —ZrO 2 (100 g)) for comparison was obtained in the same manner as in Example 30, except that the nonionic surfactant was not mixed.
<耐久試験A(1000℃)>
実施例28〜30、34〜35で得られた排ガス浄化用触媒を用いて、三元触媒の耐久モードを模擬したリッチ/リーン耐久試験を実施した。すなわち、先ず、各触媒を、冷間等方圧加圧法(CIP法)を採用して1t/cm2の圧力で直径0.5〜1mmの大きさに粉砕し、ペレット状の触媒とした。次に、得られたペレット状の触媒1.5gに対して333cc/分となるようにしてリッチガス(CO(3.75容量%)/H2(1.25容量%)/H2O(3容量%)/N2(balance))と、リーンガス(O2(5容量%)/H2O(3容量%)/N2(balance))とを5分ごとに交互に流入させ(モデルガス雰囲気下)、1000℃の温度条件で5時間保持した(耐久試験A)。このような耐久試験後の各触媒の比表面積、貴金属の平均粒子径を求め、得られた結果を表10に示す。なお、貴金属の平均粒子径は、特開2004−340637号公報に記載されているCO化学吸着法によって求めた。
<Durability test A (1000 ° C.)>
Using the exhaust gas purifying catalysts obtained in Examples 28 to 30 and 34 to 35, rich / lean durability tests simulating the durability mode of the three-way catalyst were performed. That is, first, each catalyst was pulverized to a size of 0.5 to 1 mm in diameter at a pressure of 1 t / cm 2 using a cold isostatic pressing method (CIP method) to obtain a pellet-shaped catalyst. Next, a rich gas (CO (3.75 vol%) / H 2 (1.25 vol%) / H 2 O (3 Volume%) / N 2 (balance)) and lean gas (O 2 (5 volume%) / H 2 O (3 volume%) / N 2 (balance)) are alternately flowed every 5 minutes (model gas) The atmosphere was maintained at 1000 ° C. for 5 hours (endurance test A). The specific surface area of each catalyst after such an endurance test and the average particle diameter of the noble metal were determined, and the results obtained are shown in Table 10. In addition, the average particle diameter of the noble metal was determined by a CO chemical adsorption method described in JP-A-2004-340637.
また、このような耐久試験後の比表面積値を用いて、各触媒に対して、下記式(4):
X=(σ/100)×S/s÷N×Mnm×100 (4)
(式中のσ、S、s、N及びMnmは前記式(1)と同様である。)
を計算して得られる基準値Xに対するPtの担持量Vの割合(V/X)を求めた。得られた結果を表10に示す。なお、本発明の排ガス浄化用触媒(実施例28〜30)の前記式(4)を計算して得られる基準値Xに対するPtの担持量Vの割合(V/X)は、それぞれ約0.59(実施例28)、約1.23(実施例29)、約0.51(実施例30)であった。他方、実施例34〜35で得られた排ガス浄化用触媒においては、それぞれ約5.58(実施例34)、約7.50倍(実施例35)であった。
Further, using the specific surface area value after such an endurance test, for each catalyst, the following formula (4):
X = (σ / 100) × S / s ÷ N × M nm × 100 (4)
(Σ, S, s, N and M nm in the formula are the same as those in the formula (1).)
The ratio (V / X) of the supported amount V of Pt with respect to the reference value X obtained by calculating. Table 10 shows the obtained results. The ratio (V / X) of the supported amount V of Pt with respect to the reference value X obtained by calculating the above equation (4) of the exhaust gas purifying catalyst of the present invention (Examples 28 to 30) is about 0.00. 59 (Example 28), about 1.23 (Example 29), and about 0.51 (Example 30). On the other hand, in the exhaust gas purifying catalysts obtained in Examples 34 to 35, they were about 5.58 (Example 34) and about 7.50 times (Example 35), respectively.
<三元触媒活性の評価>
実施例28、30、34、35で得られた排ガス浄化用触媒(初期)と、耐久試験A後の実施例28、30、34、35の排ガス浄化用触媒とをそれぞれ用いて、表9に示すストイキモデルガスにCO(75容量%)/H2(25容量%)またはO2(100容量%)よってλ=1±0.02(2sec)とした変動雰囲気ガスを、触媒1gに対して3.5L/minの流量で流し、550℃で10分間処理した後、昇温速度12℃/minで100℃〜550℃まで昇温し、各成分の50%浄化温度を測定した。プロピレン(C3H6)の50%浄化温度を表10に示す。なお、表10に示すプロピレンの50%浄化温度は三元触媒性能の目安であり、この温度が低いほど触媒が高活性であることを意味する。
<Evaluation of three-way catalyst activity>
Table 9 shows the exhaust gas purification catalyst (initial) obtained in Examples 28, 30, 34, and 35, and the exhaust gas purification catalyst of Examples 28, 30, 34, and 35 after the durability test A, respectively. In the stoichiometric model gas shown, a variable atmosphere gas in which λ = 1 ± 0.02 (2 sec) by CO (75% by volume) / H 2 (25% by volume) or O 2 (100% by volume) is added to 1 g of the catalyst. After flowing at a flow rate of 3.5 L / min and treating at 550 ° C. for 10 minutes, the temperature was raised from 100 ° C. to 550 ° C. at a temperature rising rate of 12 ° C./min, and the 50% purification temperature of each component was measured. Table 10 shows the 50% purification temperature of propylene (C 3 H 6 ). In addition, the 50% purification temperature of propylene shown in Table 10 is a measure of the performance of the three-way catalyst, and the lower this temperature, the higher the activity of the catalyst.
また、実施例28で得られた排ガス浄化用触媒(初期)を基準として、耐久試験A後のPtの単位量あたりのCO吸着量を比較した(比活性の測定)。結果を表10に示す。なお、このようにして得られる比活性の値は、1よりも大きな値になるほど実施例28で得られた触媒(初期)よりも活性が高いことを示し、1に近いほど実施例28で得られた触媒(初期)とPtの単位量あたりの活性が近いことを示し、1よりも小さな値になるほどPtの単位量あたりの活性が実施例28で得られた触媒(初期)よりも低いことを示す。 Further, the CO adsorption amount per unit amount of Pt after the durability test A was compared using the exhaust gas purifying catalyst (initial stage) obtained in Example 28 as a reference (measurement of specific activity). The results are shown in Table 10. It should be noted that the specific activity value obtained in this manner indicates that the larger the value is, the higher the activity than the catalyst (initial) obtained in Example 28, and the closer the value is to 1, the higher the value obtained in Example 28. It shows that the activity per unit amount of Pt is close to the catalyst obtained (initial), and the activity per unit amount of Pt is lower than the catalyst (initial) obtained in Example 28 as the value is smaller than 1. Indicates.
表10に示す実施例28、34で得られた各排ガス浄化用触媒の耐久試験後の三元触媒性能(プロピレンの50%浄化温度)の結果から、Pt担持量が実施例28で得られた触媒の10倍となっている実施例34で得られた触媒の方が、より高い活性を示していることが分かる。しかしながら、実施例34で得られた触媒が耐久試験後に比活性の値が0.04にまで低下しているのに対して、実施例28で得られた触媒は耐久試験後においても比活性の値が0.85という高い値を保持していた。このような結果から、本発明の排ガス浄化用触媒(実施例28)は、触媒性能の劣化を十分に抑制できることが確認された。これは、実施例28で得られた排ガス浄化用触媒においては、担体表面に貴金属量に対する十分な保持サイトがあるために、Ptの粒成長が抑制されて耐久試験前後での性能差が小さいのに対して、実施例34で得られた排ガス浄化用触媒においては、耐久試験後に余剰なPtが粒成長して初期性能に対して著しく触媒活性が低下したことに起因すると推察される。 From the results of the three-way catalyst performance (50% purification temperature of propylene) after the endurance test of the exhaust gas purification catalysts obtained in Examples 28 and 34 shown in Table 10, the amount of Pt supported was obtained in Example 28. It can be seen that the catalyst obtained in Example 34, which is 10 times the catalyst, shows higher activity. However, the value of the specific activity of the catalyst obtained in Example 34 decreased to 0.04 after the durability test, whereas the catalyst obtained in Example 28 had a specific activity even after the durability test. The value was as high as 0.85. From these results, it was confirmed that the exhaust gas purifying catalyst of the present invention (Example 28) can sufficiently suppress the deterioration of the catalyst performance. This is because, in the exhaust gas purifying catalyst obtained in Example 28, there is a sufficient holding site for the amount of noble metal on the surface of the carrier, so that the Pt grain growth is suppressed and the performance difference before and after the durability test is small. On the other hand, in the exhaust gas purifying catalyst obtained in Example 34, it is surmised that excess Pt grows after the durability test and the catalytic activity is remarkably reduced with respect to the initial performance.
また、実施例30、35で得られた排ガス浄化用触媒の耐久試験後の三元触媒性能(プロピレンの50%浄化温度)を比較すると、同じPt量、同じ担体組成であるにも関わらず、プロピレンの50%浄化温度に100℃近い差があることが分かる。このような結果は、実施例29で得られた排ガス浄化用触媒と用いた担体の組成が同じであっても、実施例35で得られた排ガス浄化用触媒に用いられた担体は比表面積が十分でないために、担体表面に貴金属量に対して十分な保持サイトが無く、貴金属を高分散状態で保持できないことに起因するものと推察される。 In addition, when comparing the three-way catalyst performance after the durability test of the exhaust gas purification catalysts obtained in Examples 30 and 35 (propylene 50% purification temperature), despite the same Pt amount and the same carrier composition, It can be seen that there is a difference close to 100 ° C. in the 50% purification temperature of propylene. As a result, even if the exhaust gas purification catalyst obtained in Example 29 and the carrier used have the same composition, the carrier used in the exhaust gas purification catalyst obtained in Example 35 has a specific surface area. Since it is not sufficient, it is surmised that there is not a sufficient holding site for the amount of the noble metal on the surface of the carrier, and the noble metal cannot be held in a highly dispersed state.
<耐久試験B(950℃)>
実施例28、29、31〜34で得られた排ガス浄化用触媒を用い、三元触媒の耐久モードを模擬したリッチ/リーン耐久試験を実施した。すなわち、先ず、各触媒を、冷間等方圧加圧法(CIP法)を採用して1t/cm2の圧力で直径0.5〜1mmの大きさに粉砕し、ペレット状の触媒とした。次に、得られたペレット状の触媒3gに対して500cc/分となるようにしてリッチガス(CO(5容量%)/CO2(10容量%)/H2O(3容量%)/N2(balance))と、リーンガス(O2(5容量%)/CO2(10容量%)/H2O(3容量%)/N2(balance))とを5分ごとに交互に流入させ(モデルガス雰囲気下)、950℃の温度条件で5時間保持した(耐久試験)。
<Durability test B (950 ° C.)>
Using the exhaust gas purifying catalyst obtained in Examples 28, 29 and 31 to 34, a rich / lean durability test simulating the durability mode of the three-way catalyst was performed. That is, first, each catalyst was pulverized to a size of 0.5 to 1 mm in diameter at a pressure of 1 t / cm 2 using a cold isostatic pressing method (CIP method) to obtain a pellet-shaped catalyst. Next, the rich gas (CO (5 vol%) / CO 2 (10 vol%) / H 2 O (3 vol%) / N 2 is adjusted to 500 cc / min with respect to 3 g of the obtained pellet-shaped catalyst. (Balance)) and lean gas (O 2 (5 vol%) / CO 2 (10 vol%) / H 2 O (3 vol%) / N 2 (balance)) are alternately flowed every 5 minutes ( Under a model gas atmosphere), the temperature was maintained at 950 ° C. for 5 hours (endurance test).
このような耐久試験後の各触媒の比表面積、貴金属の平均粒子径を求め、得られた結果を表11に示す。なお、貴金属粒子の平均粒子径は、特開2004−340637号公報に記載されているCO化学吸着法によって求めた。 The specific surface area of each catalyst after such an endurance test and the average particle diameter of the noble metal were determined, and the results obtained are shown in Table 11. In addition, the average particle diameter of the noble metal particles was determined by a CO chemical adsorption method described in JP-A-2004-340637.
<再生処理条件>
耐久試験B後の実施例28、29、31〜34の排ガス浄化用触媒をそれぞれ0.7g用い、触媒0.7gあたり150ml/分となるようにO2(20容量%)/He(80容量%)からなるガスを流入させた酸化雰囲気中において800℃で15分間それぞれ酸化処理(再分散処理)を施し、貴金属の再分散を試みた。このような再分散処理後の各排ガス浄化用触媒の貴金属の平均粒子径を表11に示す。なお、貴金属の平均粒子径は、特開2004−340637号公報に記載されているCO化学吸着法によって求めた。このような再分散処理及びCO化学吸着法の還元前処理をもって、各排ガス浄化用触媒に対する酸化処理と還元処理を実現し、これを再生処理とした。
<Reproduction processing conditions>
Using 0.7 g of each of the exhaust gas purifying catalysts of Examples 28, 29 and 31 to 34 after the durability test B, O 2 (20 vol%) / He (80 vol.) So as to be 150 ml / min per 0.7 g of the catalyst. %) In an oxidizing atmosphere in which a gas comprising 80% was introduced, an oxidation treatment (redispersion treatment) was performed at 800 ° C. for 15 minutes, and redispersion of the noble metal was attempted. Table 11 shows the average particle diameter of the noble metal of each exhaust gas purifying catalyst after such redispersion treatment. In addition, the average particle diameter of the noble metal was determined by a CO chemical adsorption method described in JP-A-2004-340637. With such redispersion treatment and reduction pretreatment by the CO chemical adsorption method, oxidation treatment and reduction treatment for each exhaust gas purification catalyst were realized, and this was designated as regeneration treatment.
表11に示す結果からも明らかなように、実施例28、29、31〜33で得られた排ガス浄化用触媒は耐久試験後のPtの粒成長が抑制されていることが確認された。また、実施例28、29、31〜33で得られた排ガス浄化用触媒においては、Ptの単位量あたりの活性(比活性)が耐久試験後においても0.17以上と高く、更には再生処理によってPt粒子径が微細化し、比活性が0.4近くまで再生することが確認された。これに対して、実施例34で得られた排ガス浄化用触媒においては、貴金属が粒成長し、比活性も0.1以下に減少していることが確認された。また、再生処理を施しても比活性があまり再生しないことが確認された。 As is clear from the results shown in Table 11, it was confirmed that the exhaust gas purifying catalysts obtained in Examples 28, 29, and 31 to 33 were suppressed in Pt grain growth after the durability test. Further, in the exhaust gas purifying catalysts obtained in Examples 28, 29 and 31 to 33, the activity (specific activity) per unit amount of Pt was as high as 0.17 or more after the durability test, and further, the regeneration treatment. As a result, it was confirmed that the Pt particle diameter was reduced and the specific activity was regenerated to near 0.4. On the other hand, in the exhaust gas purifying catalyst obtained in Example 34, it was confirmed that the noble metal was grown and the specific activity was reduced to 0.1 or less. Further, it was confirmed that the specific activity was not regenerated so much even when the regeneration treatment was performed.
また、実施例31、32で得られた排ガス浄化用触媒は、アルカリ土類金属であるバリウムを担体表面に担持したのちに貴金属を担持して得られたものであり、Ptの粒成長がより抑制されることが確認された。このような結果は、バリウム添加による担体の塩基性向上によるものと推察する。また、表11の式(4)を計算して得られる基準値Xに対するPtの担持量Vの割合(V/X)は、担体に担持したバリウム量がバルク全体に均一として計算した値となるため実際よりも小さくなることに起因するものとも推察される。実施例33で得られた排ガス浄化用触媒においても、Ptの粒成長が抑制され、再生処理によってPtが微細化して比活性が再生していることが確認され、実施例31、32で得られた排ガス浄化用触媒においては、さらにそれらの効果が顕著であることが確認された。 Further, the exhaust gas purifying catalysts obtained in Examples 31 and 32 were obtained by supporting noble metal after supporting barium, which is an alkaline earth metal, on the support surface. It was confirmed that it was suppressed. Such a result is presumed to be due to the improvement of the basicity of the support by addition of barium. Further, the ratio (V / X) of the supported amount V of Pt with respect to the reference value X obtained by calculating the expression (4) in Table 11 is a value calculated by assuming that the amount of barium supported on the carrier is uniform throughout the bulk. For this reason, it can be inferred that it is smaller than the actual size. Also in the exhaust gas purifying catalyst obtained in Example 33, it was confirmed that the Pt grain growth was suppressed, and the specific activity was regenerated by refining Pt by regeneration treatment. In addition, it was confirmed that these effects were more remarkable in the exhaust gas purifying catalyst.
以上説明したように、本発明によれば、高温の排ガスに長時間晒されても貴金属粒子の凝集を十分に抑制して貴金属の粒成長を長期にわたって十分に抑制でき、これによって触媒活性の低下を十分に抑制できるとともに、使用に際して粒成長したときに、貴金属粒子を比較的低い温度領域であっても短時間で再分散させて触媒活性を容易に再生させることができ、しかも内燃機関の排気系に装着した状態であっても容易に再生させることが可能な排ガス浄化用触媒、その排ガス浄化用触媒の再生方法、並びにその排ガス浄化用触媒を用いた排ガス浄化装置及び排ガス浄化方法を提供することが可能となる。 As described above, according to the present invention, it is possible to sufficiently suppress the noble metal particle growth over a long period of time by sufficiently suppressing the aggregation of the noble metal particles even when exposed to a high temperature exhaust gas for a long time, thereby reducing the catalytic activity. In addition, when the grains grow during use, the precious metal particles can be redispersed in a short time even in a relatively low temperature range, and the catalyst activity can be easily regenerated. Provided are an exhaust gas purifying catalyst that can be easily regenerated even when mounted in a system, a method for regenerating the exhaust gas purifying catalyst, an exhaust gas purifying device using the exhaust gas purifying catalyst, and an exhaust gas purifying method. It becomes possible.
したがって、本発明は、自動車エンジンから排出される排ガス中のHC、CO、NOx等の有害成分を除去するための排ガス浄化用触媒を長時間にわたって触媒活性の劣化を招くことなく使用するための技術として非常に有用である。 Therefore, the present invention is a technique for using an exhaust gas purifying catalyst for removing harmful components such as HC, CO, NOx, etc., in exhaust gas discharged from an automobile engine for a long time without causing deterioration of catalytic activity. As very useful.
Claims (15)
前記担体が、ジルコニウムと、希土類元素及びアルカリ土類金属元素からなる群から選択され且つセリウムを含む少なくとも一つの金属元素との複合酸化物であり、前記担体中に含有される前記金属元素の量が前記担体に対して金属換算で51〜75mol%の範囲にあり、且つ、前記金属元素中に含有されるセリウムの量が前記金属元素に対して金属換算で90mol%以上の範囲にある蛍石型構造の担体であり、
前記担体に担持されている、マグネシウム、カルシウム、ネオジウム、プラセオジウム、バリウム、ランタン、セリウム、イットリウム及びスカンジウムからなる群から選択される少なくとも一種の元素を含有する添加成分を更に備えており、
前記貴金属の担持量が、前記触媒の質量に対して0.05〜2質量%の範囲であり、
前記添加成分の担持量が、金属換算で前記貴金属の量に対するモル比(添加成分の量/貴金属の量)が0.5〜20の範囲となる量であり、
酸化雰囲気下において、前記貴金属が高酸化状態で前記担体の表面上に存在し且つ前記貴金属が前記担体の表面の酸素を介して前記担体の陽イオンと結合してなる表面酸化物層を有しており、且つ、
還元雰囲気下において、前記貴金属が金属状態で前記担体の表面上に存在し且つCO化学吸着法により測定される前記担体の表面に露出している貴金属の量の割合が前記担体に担持された貴金属の全量に対して原子比率で10%以上である排ガス浄化用触媒。 An exhaust gas purifying catalyst in which a noble metal is supported on an oxide carrier,
The support is a composite oxide of zirconium and at least one metal element selected from the group consisting of rare earth elements and alkaline earth metal elements and containing cerium, and the amount of the metal element contained in the support Is in the range of 51 to 75 mol% in terms of metal with respect to the support, and the amount of cerium contained in the metal element is in the range of 90 mol% or more in terms of metal with respect to the metal element A carrier of a mold structure ,
Further comprising an additive component containing at least one element selected from the group consisting of magnesium, calcium, neodymium, praseodymium, barium, lanthanum, cerium, yttrium, and scandium supported on the carrier;
The amount of the noble metal supported is in the range of 0.05 to 2% by mass with respect to the mass of the catalyst,
The loading amount of the additive component is an amount such that the molar ratio of the noble metal to the amount of the noble metal (amount of additive component / amount of noble metal) is in the range of 0.5 to 20 in terms of metal,
A surface oxide layer in which the noble metal is present in a highly oxidized state on the surface of the carrier in an oxidizing atmosphere, and the noble metal is bonded to a cation of the carrier via oxygen on the surface of the carrier; And
In a reducing atmosphere, the ratio of the amount of the noble metal that is present on the surface of the carrier in a metallic state and exposed on the surface of the carrier as measured by a CO chemical adsorption method is supported on the carrier. An exhaust gas purifying catalyst having an atomic ratio of 10% or more with respect to the total amount of.
X=(σ/100)×S/s÷N×Mnm×100 (1)
[式(1)中、Xは前記担体100gあたりの前記貴金属の量の基準値(単位:g)を示し、σは式(2):
σ=M−50 (2)
(式(2)中、Mは前記担体中に含有される前記金属元素の割合(単位:mol%)を示す。)
により算出される前記金属元素が前記金属元素に囲まれる確率(単位:%)を示し、Sは前記担体の比表面積(単位:m2/g)を示し、sは式(3):
により算出される陽イオン1個あたりの単位面積(単位:Å2/個)を示し、Nはアボガドロ数(6.02×1023(単位:個))を示し、Mnmは前記担体に担持された前記貴金属の原子量を示す。]
により算出される基準値Xの2倍以下であり且つ0.01〜0.8gの範囲にある、請求項1〜5のうちのいずれか一項に記載の排ガス浄化用触媒。 Before SL loading amount of the noble metal per carrier 100g has the formula (1):
X = (σ / 100) × S / s ÷ N × M nm × 100 (1)
[In the formula (1), X represents a reference value (unit: g) of the amount of the noble metal per 100 g of the support, and σ represents the formula (2):
σ = M−50 (2)
(In the formula (2), M represents a ratio (unit: mol%) of the metal element contained in the carrier.)
Indicates the probability (unit:%) that the metal element is calculated by the metal element, S indicates the specific surface area (unit: m 2 / g) of the support, and s indicates the formula (3):
Represents the unit area (unit: 単 位2 / piece) per cation calculated by the above formula, N represents the Avogadro number (6.02 × 10 23 (unit: piece)), and M nm is supported on the carrier. The atomic weight of the noble metal formed is shown. ]
The exhaust gas-purifying catalyst according to any one of claims 1 to 5 , which is not more than twice the reference value X calculated by the formula (1) and is in the range of 0.01 to 0.8 g.
前記触媒が劣化状態にあると判定された後に前記再生処理を開始する工程と、
を含む、請求項7〜10のうちのいずれか一項に記載の再生方法。 Attaching a temperature sensor to the exhaust gas purification catalyst, and determining a degree of deterioration of the exhaust gas purification catalyst based on an operation time and a temperature detected by the temperature sensor;
Starting the regeneration process after it is determined that the catalyst is in a deteriorated state;
Including The reproducing method according to any one of claims 7-10.
前記触媒が劣化状態にあると判定された後に前記再生処理を開始する工程と、
を含む、請求項7〜10のうちのいずれか一項に記載の再生方法。 Using a catalyst deterioration diagnosis device for determining a deterioration state of the exhaust gas purification catalyst, and determining a deterioration state of the exhaust gas purification catalyst;
Starting the regeneration process after it is determined that the catalyst is in a deteriorated state;
Including The reproducing method according to any one of claims 7-10.
前記排ガス供給管の内部に配置された請求項1〜6のうちのいずれか一項に記載の排ガス浄化用触媒と、
前記排ガス浄化用触媒に装着された温度センサーと、
運転時間と前記温度センサーにより検知された温度とに基づいて前記排ガス浄化用触媒の劣化の程度を判定し、前記触媒が劣化状態にあると判定された後に、酸素を含む酸化雰囲気中にて加熱する酸化処理、及び還元処理を施す再生処理が開始されるように制御するための制御手段と、
を備える排ガス浄化装置。 An exhaust gas supply pipe;
The exhaust gas purifying catalyst according to any one of claims 1 to 6 disposed inside the exhaust gas supply pipe,
A temperature sensor mounted on the exhaust gas purification catalyst;
The degree of deterioration of the exhaust gas purifying catalyst is determined based on the operation time and the temperature detected by the temperature sensor, and after it is determined that the catalyst is in a deteriorated state, heating is performed in an oxidizing atmosphere containing oxygen. A control means for controlling the oxidation process to be performed and the regeneration process to perform the reduction process to be started,
An exhaust gas purification apparatus comprising:
前記排ガス供給管の内部に配置された請求項1〜6のうちのいずれか一項に記載の排ガス浄化用触媒と、
前記排ガス浄化用触媒の劣化状態を判定するための触媒劣化診断装置と、
前記触媒劣化診断装置により排ガス浄化用触媒の劣化状態を判定された後に、酸素を含む酸化雰囲気中にて加熱する酸化処理、及び還元処理を施す再生処理が開始されるように制御するための制御手段と、
を備える排ガス浄化装置。 An exhaust gas supply pipe;
The exhaust gas purifying catalyst according to any one of claims 1 to 6 disposed inside the exhaust gas supply pipe,
A catalyst deterioration diagnosis device for determining a deterioration state of the exhaust gas purifying catalyst;
Control for controlling so that the oxidation process for heating in the oxidizing atmosphere containing oxygen and the regeneration process for performing the reduction process are started after the deterioration state of the exhaust gas purifying catalyst is determined by the catalyst deterioration diagnostic device. Means,
An exhaust gas purification apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006325206A JP4901440B2 (en) | 2006-03-28 | 2006-12-01 | Exhaust gas purification catalyst, regeneration method thereof, exhaust gas purification apparatus and exhaust gas purification method using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006089186 | 2006-03-28 | ||
JP2006089186 | 2006-03-28 | ||
JP2006325206A JP4901440B2 (en) | 2006-03-28 | 2006-12-01 | Exhaust gas purification catalyst, regeneration method thereof, exhaust gas purification apparatus and exhaust gas purification method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007289920A JP2007289920A (en) | 2007-11-08 |
JP4901440B2 true JP4901440B2 (en) | 2012-03-21 |
Family
ID=38761057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006325206A Expired - Fee Related JP4901440B2 (en) | 2006-03-28 | 2006-12-01 | Exhaust gas purification catalyst, regeneration method thereof, exhaust gas purification apparatus and exhaust gas purification method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4901440B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007289921A (en) * | 2006-03-28 | 2007-11-08 | Toyota Central Res & Dev Lab Inc | Exhaust-gas cleaning catalyst and its regeneration method |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5459530B2 (en) * | 2008-10-09 | 2014-04-02 | 日産自動車株式会社 | Exhaust gas purification catalyst |
CN106984309B (en) | 2009-07-09 | 2022-09-09 | 丰田自动车株式会社 | Exhaust gas purifying catalyst and method for producing same |
US8530372B2 (en) * | 2009-07-22 | 2013-09-10 | Basf Corporation | Oxygen storage catalyst with decreased ceria reduction temperature |
JP5488402B2 (en) * | 2010-11-01 | 2014-05-14 | マツダ株式会社 | Exhaust gas purification catalyst |
JP5974579B2 (en) * | 2012-03-28 | 2016-08-23 | 株式会社豊田中央研究所 | Supported catalyst for exhaust gas purification |
JP5942893B2 (en) | 2013-02-21 | 2016-06-29 | マツダ株式会社 | Method for producing exhaust gas purifying catalyst |
CN105658328A (en) * | 2013-11-20 | 2016-06-08 | 马自达汽车株式会社 | Catalyst material for exhaust gas purification and method for producing same |
JP6491004B2 (en) * | 2015-03-23 | 2019-03-27 | 新日本電工株式会社 | Exhaust gas purification catalyst and honeycomb catalyst structure for exhaust gas purification |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1113458A (en) * | 1997-06-27 | 1999-01-19 | Toyota Motor Corp | Catalyst state detector for internal combustion engine |
JP3882627B2 (en) * | 2002-01-29 | 2007-02-21 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
JP2003245553A (en) * | 2002-02-22 | 2003-09-02 | Suzuki Motor Corp | Catalyst powder and catalyst for cleaning exhaust gas |
JP4602021B2 (en) * | 2004-07-22 | 2010-12-22 | 株式会社豊田中央研究所 | Inorganic oxide, exhaust purification catalyst carrier and exhaust purification catalyst |
-
2006
- 2006-12-01 JP JP2006325206A patent/JP4901440B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007289921A (en) * | 2006-03-28 | 2007-11-08 | Toyota Central Res & Dev Lab Inc | Exhaust-gas cleaning catalyst and its regeneration method |
Also Published As
Publication number | Publication date |
---|---|
JP2007289920A (en) | 2007-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100973378B1 (en) | Catalyst for purifying exhaust gas, method of regenerating the same, exhaust gas purification apparatus using the same and method of purifying exhaust gas | |
JP4901440B2 (en) | Exhaust gas purification catalyst, regeneration method thereof, exhaust gas purification apparatus and exhaust gas purification method using the same | |
RU2395341C1 (en) | Catalyst for cleaning exhaust gases, method of regenerating said catalyst, as well as device and method of cleaning exhaust gases using said catalyst | |
JP5216189B2 (en) | Exhaust gas purification catalyst | |
KR100881300B1 (en) | Process for producing metal oxide particle and exhaust gas purifying catalyst | |
JP4959129B2 (en) | Exhaust gas purification catalyst | |
JP4858463B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP4465352B2 (en) | Exhaust gas purification catalyst | |
WO2006049042A1 (en) | Exhaust gas purification catalyst | |
EP1722889A1 (en) | Exhaust gas purifying catalyst, metal oxide particle and production process thereof | |
WO2006134787A1 (en) | Exhaust gas purifying catalyst | |
JP6256769B2 (en) | Exhaust gas purification catalyst | |
JP5078125B2 (en) | Exhaust gas purification catalyst and regeneration method thereof | |
JP4730947B2 (en) | Method for regenerating exhaust gas purification catalyst | |
JP5196656B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP4775953B2 (en) | Exhaust gas purification catalyst and regeneration method thereof | |
JP7329060B2 (en) | Exhaust gas purifying catalyst, exhaust gas purifying method, and exhaust gas purifying catalyst manufacturing method | |
JP4836187B2 (en) | Exhaust gas purification catalyst, production method thereof and regeneration method thereof | |
JP4775954B2 (en) | Exhaust gas purification catalyst and regeneration method thereof | |
JP4697796B2 (en) | Exhaust gas purification catalyst and regeneration method thereof | |
JP4577408B2 (en) | Exhaust gas purification catalyst | |
CN106944094B (en) | Catalyst for exhaust gas purification | |
WO2018088201A1 (en) | Exhaust gas purifying three-way catalyst, method for manufacturing same, and exhaust gas purifying catalyst converter | |
JP2018075550A (en) | Three-dimensional catalyst for exhaust gas purification and manufacturing method therefor, and catalyst converter for exhaust gas solidification | |
JP4836188B2 (en) | Exhaust gas purification catalyst, production method thereof and regeneration method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090527 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110520 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110719 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111121 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20111129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111227 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111227 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150113 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150113 Year of fee payment: 3 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
LAPS | Cancellation because of no payment of annual fees |