Nothing Special   »   [go: up one dir, main page]

JP4901158B2 - Parts feeder - Google Patents

Parts feeder Download PDF

Info

Publication number
JP4901158B2
JP4901158B2 JP2005235133A JP2005235133A JP4901158B2 JP 4901158 B2 JP4901158 B2 JP 4901158B2 JP 2005235133 A JP2005235133 A JP 2005235133A JP 2005235133 A JP2005235133 A JP 2005235133A JP 4901158 B2 JP4901158 B2 JP 4901158B2
Authority
JP
Japan
Prior art keywords
parts
magnetic
rotating plate
magnetic pole
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005235133A
Other languages
Japanese (ja)
Other versions
JP2007050936A (en
Inventor
邦元 横塚
顕一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APOLLO GIKEN CO., LTD.
Original Assignee
APOLLO GIKEN CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APOLLO GIKEN CO., LTD. filed Critical APOLLO GIKEN CO., LTD.
Priority to JP2005235133A priority Critical patent/JP4901158B2/en
Publication of JP2007050936A publication Critical patent/JP2007050936A/en
Application granted granted Critical
Publication of JP4901158B2 publication Critical patent/JP4901158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Attitude Control For Articles On Conveyors (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Description

本発明は、磁性体電極が形成されたチップ状のパーツを磁力により整列して移送するパーツフィーダに関する。   The present invention relates to a parts feeder that aligns and transfers chip-like parts on which magnetic electrodes are formed by magnetic force.

磁性体電極が形成されたチップ状のパーツを整列して移送するパーツフィーダにおいては、磁石が発生する磁力によりパーツを吸引して壁に吸着し、この吸着状態で磁石を移動することによりパーツを取込口へ搬送するものが提案されている(特許文献1参照)。このパーツフィーダは、予め定められた向きに整列していないパーツを取込口の縁に引っ掛けて落下させる一方、整列されたパーツのみを取入口へ取り込んで、パーツの整列処理を行う。
また、パーツフィーダの中には、搬送中のパーツが予め定められた向きに整列しているか否かを光学的な検査手段を用いて検査し、この検査結果に基づいて、整列していないパーツを排除したり、あるいは反転したりして、パーツの向きを整列するものが存在する。
特開平11−059872号公報
In a parts feeder that aligns and transfers chip-shaped parts on which magnetic electrodes are formed, the parts are attracted to the wall by the magnetic force generated by the magnets, and the parts are moved by moving the magnets in this attracted state. The thing conveyed to an intake port is proposed (refer patent document 1). This parts feeder hooks parts that are not aligned in a predetermined direction to the edge of the inlet and drops them, while taking only the aligned parts into the inlet and performs the parts alignment process.
Also, in the parts feeder, whether the parts being transported are aligned in a predetermined direction is inspected using an optical inspection means, and based on the inspection result, the parts that are not aligned There are things that align the orientation of parts by eliminating or reversing.
JP 11-059872 A

ところで、近年、パーツフィーダのパーツ移送効率の向上が望まれている。しかしながら、上記特許文献に記載のパーツフィーダは、取入口でパーツの整列処理を行っているため、短時間に大量のパーツを取入口へ送ると、パーツが取入口で詰まり易い。したがって、却ってパーツ移送効率を低下させる虞がある。さらに、磁性体電極を壁に沿わせた状態で磁石を移動することでパーツを壁面に摺動させながら搬送するので、パーツの搬送中に磁性体電極が壁へ擦り付けられ易く、パーツの磁性体電極が損傷することがある。   Incidentally, in recent years, it has been desired to improve the parts transfer efficiency of the parts feeder. However, since the parts feeder described in the above-mentioned patent document performs part alignment processing at the inlet, if a large number of parts are sent to the inlet in a short time, the parts are easily clogged at the inlet. Therefore, there is a risk that the parts transfer efficiency may be lowered. Furthermore, since the parts are slid on the wall surface by moving the magnet with the magnetic material electrode along the wall, the magnetic material electrode is easy to be rubbed against the wall during the parts transportation. The electrode may be damaged.

また、検査手段を備えてパーツの整列状態を検査するパーツフィーダにおいては、パーツを高速で搬送すると、検査手段が全てのパーツをもれなく検査することが困難になる。このため、幾つかのパーツが整列していないままの状態で移送先へ移送されてしまう虞がある。そこで、検査手段を複数設ける等することが考えられるが、検査手段やパーツフィーダ全体の構成が複雑になったり、パーツフィーダの製造コストが高くなったりする不都合を生じてしまう。   Further, in a parts feeder that includes an inspection unit and inspects the alignment state of parts, if the parts are transported at a high speed, it becomes difficult for the inspection unit to inspect all parts. For this reason, there is a possibility that some parts may be transferred to the transfer destination in a state where they are not aligned. In view of this, it is conceivable to provide a plurality of inspection means. However, the configuration of the inspection means and the entire parts feeder becomes complicated, and the manufacturing cost of the parts feeder increases.

本発明は、上記の事情に鑑みてなされたものであり、その目的は、簡単な構成でパーツ移送効率を向上させることができ、且つ移送中のパーツの磁性体電極が損傷することを抑えることができるパーツフィーダを提供しようとするものである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the parts transfer efficiency with a simple configuration and to suppress damage to the magnetic electrode of the parts being transferred. It is intended to provide a parts feeder that can be used.

本発明は、上記目的を達成するために提案されたものであり、請求項1に記載のものは、一側面の両端部に磁性体電極が形成されたパーツを、磁性体電極が前後に位置する姿勢に整列して移送するパーツフィーダであって、
磁極部の先端を連続する円弧状に形成した磁力発生源と、
前記磁極部の円弧状先端に被せた状態で回転可能な非磁性体製の回転板と、
該回転板を挟んで前記磁極部とは反対側に設けられたパーツ貯留部と、
該パーツ貯留部に下端が連通し、前記磁極部の連続する円弧状先端に沿って設けられた円弧状のパーツ搬送路と、
該パーツ搬送路の終端に配置され、パーツをパーツ搬送路から回転板の外方へ導出する導出部材と、
を備え、前記磁性体電極を磁極部の磁力により吸引してパーツ貯留部内のパーツを回転板の表面に吸着させ、この吸着状態で回転板を回転してパーツをパーツ搬送路へ送り出して整列することを特徴とするパーツフィーダである。
The present invention has been proposed in order to achieve the above object, and according to the first aspect of the present invention, there are provided parts having magnetic electrodes formed on both ends of one side surface, and the magnetic electrodes are positioned in the front and rear. A parts feeder that is aligned and transported in a posture
A magnetic force source formed in a continuous arc shape at the tip of the magnetic pole part;
A rotating plate made of a non-magnetic material that can be rotated in a state of covering the arcuate tip of the magnetic pole portion;
A parts storage part provided on the opposite side of the magnetic pole part across the rotating plate;
An arc-shaped parts conveyance path provided along the arc-shaped tip of the magnetic pole part, the lower end communicating with the parts storage part,
A lead-out member that is disposed at the end of the parts transport path and leads the parts from the parts transport path to the outside of the rotating plate;
The magnetic material electrode is attracted by the magnetic force of the magnetic pole part, and the parts in the part storage part are attracted to the surface of the rotating plate, and in this attracting state, the rotating plate is rotated and the parts are sent out to the parts conveying path and aligned. It is a parts feeder characterized by this.

請求項2に記載のものは、前記回転板の回転中心を磁極部の円弧状先端の曲率中心よりもパーツ貯留部側へ偏心したことを特徴とする請求項1に記載のパーツフィーダである。   According to a second aspect of the present invention, there is provided the parts feeder according to the first aspect, wherein the rotation center of the rotating plate is decentered toward the parts storage part side from the center of curvature of the arcuate tip of the magnetic pole part.

請求項3に記載のものは、前記パーツ搬送路へ向けて圧縮気体を噴出可能な気体噴出機構を備え、
該気体噴出機構は、両方の磁性体電極がパーツ搬送路上に位置し、且つ回転板に吸着した整列姿勢のパーツをパーツ搬送路から落下させない一方、整列姿勢以外の状態で回転板に吸着している非整列姿勢のパーツをパーツ搬送路から落下させる程度の勢いで圧縮気体を噴出するように設定されたことを特徴とする請求項1または請求項2に記載のパーツフィーダである。
The thing of Claim 3 is equipped with the gas ejection mechanism which can eject compressed gas toward the parts conveyance way,
The gas ejection mechanism is configured such that both magnetic electrodes are positioned on the parts conveyance path and the parts in the aligned posture that are attracted to the rotating plate are not dropped from the parts conveying path, while they are attracted to the rotating plate in a state other than the aligned posture. 3. The parts feeder according to claim 1, wherein the parts feeder is set so as to eject the compressed gas at such a moment that the parts in the non-aligned posture are dropped from the parts conveying path.

請求項4に記載のものは、前記磁極部が生じる磁力の強さを調整可能な磁力調整機構を備え、
該磁力調整機構は、両方の磁性体電極がパーツ搬送路上に位置し、且つ回転板に吸着した整列姿勢のパーツをパーツ搬送路に維持する一方、整列姿勢以外の状態で回転板に吸着している非整列姿勢のパーツをパーツ搬送路から落下させる程度の強さに磁極部からの磁力を調整可能としたことを特徴とする請求項1から請求項3のいずれかに記載のパーツフィーダである。
The thing of Claim 4 is equipped with the magnetic force adjustment mechanism which can adjust the intensity of the magnetic force which the above-mentioned magnetic pole part generates,
The magnetic force adjusting mechanism maintains both of the magnetic body electrodes positioned on the parts conveyance path and maintains the aligned posture parts adsorbed on the rotating plate in the parts conveying path, while adsorbing them to the rotating plate in a state other than the alignment posture. 4. The parts feeder according to claim 1, wherein the magnetic force from the magnetic pole part can be adjusted to a strength that allows the unaligned posture parts to fall from the parts conveyance path. 5. .

請求項5に記載のものは、前記パーツ搬送路の外方に、パーツを摺動しながらパーツ搬送路の終端へ向けて誘導する円弧壁状の誘導部を備えたことを特徴とする請求項1から請求項4のいずれかに記載のパーツフィーダである。   5. The apparatus according to claim 5, further comprising an arcuate wall-shaped guide portion that guides toward the end of the parts transport path while sliding the parts outside the parts transport path. It is a parts feeder in any one of Claims 1-4.

請求項6に記載のものは、前記パーツ搬送路の終端に、底部および側部をパーツの送り方向へ進行するにしたがって次第に傾けたパーツ回転部を設けたことを特徴とする請求項1から請求項5のいずれかに記載のパーツフィーダである。   According to a sixth aspect of the present invention, there is provided a parts rotating portion that is gradually inclined at the end of the parts conveyance path as the bottom portion and the side portion proceed in the part feeding direction. Item 6. The parts feeder according to any one of Items 5.

本発明によれば、以下のような優れた効果を奏する。
請求項1に記載の発明によれば、磁極部の先端を連続する円弧状に形成した磁力発生源と、磁極部の円弧状先端に被せた状態で回転可能な非磁性体製の回転板と、該回転板を挟んで磁極部とは反対側に設けられたパーツ貯留部と、該パーツ貯留部に下端が連通し、磁極部の円弧状先端に沿って設けられた連続する円弧状のパーツ搬送路と、該パーツ搬送路の終端に配置され、パーツをパーツ搬送路から回転板の外方へ導出する導出部材とを備え、磁性体電極を磁極部の磁力により吸引してパーツ貯留部内のパーツを回転板の表面に吸着させ、この吸着状態で回転板を回転してパーツをパーツ搬送路へ送り出して整列するので、磁極部の円弧状先端に磁性体電極を吸引して、パーツ搬送路上にパーツの両端部を配置し易くすることができる。したがって、パーツを磁性体電極がパーツ搬送路に沿って前後に位置する姿勢で簡単に整列することができる。このことから、パーツの姿勢を整えるための複雑な機構を備える必要がなく、簡単な構成でパーツを整列可能なパーツフィーダを実現することができる。これにより、移送速度を上げたとしても、パーツの整列が間に合わずに整列していない状態のパーツが移送されたり、あるいはパーツフィーダ内で詰まってしまったりする不具合を抑えることができ、整列されたパーツの移送効率の向上を図ることができる。
また、パーツ搬送路上において、磁性体電極が回転板上を摺動することなくパーツを搬送することができる。したがって、磁性体電極が回転板へ擦り付けられることがなく、パーツの磁性体電極が損傷することを抑えることができる。
According to the present invention, the following excellent effects can be obtained.
According to the first aspect of the present invention, the magnetic force generation source having the magnetic pole portion formed in a continuous arc shape, the rotating plate made of a non-magnetic material that can rotate in a state of covering the arc-shaped tip portion of the magnetic pole portion, and A part storage part provided on the opposite side of the magnetic pole part across the rotating plate, and a continuous arc-shaped part provided along the arcuate tip of the magnetic pole part with a lower end communicating with the part storage part A conveying path, and a lead-out member arranged at the end of the parts conveying path, for leading the part out of the rotating plate from the parts conveying path, and attracting the magnetic electrode by the magnetic force of the magnetic pole part to The parts are adsorbed on the surface of the rotating plate, and in this adsorbed state, the rotating plate is rotated to send the parts to the parts conveyance path and align them. It is possible to facilitate the arrangement of both ends of the part. Therefore, the parts can be easily aligned in a posture in which the magnetic electrodes are positioned back and forth along the parts conveyance path. Therefore, it is not necessary to provide a complicated mechanism for adjusting the posture of the parts, and a parts feeder that can align parts with a simple configuration can be realized. As a result, even if the transfer speed is increased, it is possible to suppress the trouble that parts that are not aligned because the parts are not aligned in time are transferred or clogged in the parts feeder. It is possible to improve the transfer efficiency of parts.
In addition, parts can be transported on the parts transport path without the magnetic electrode sliding on the rotating plate. Therefore, the magnetic body electrode is not rubbed against the rotating plate, and damage to the magnetic body electrode of the part can be suppressed.

請求項2に記載の発明によれば、回転板の回転中心を磁極部の円弧状先端の曲率中心よりもパーツ貯留部側へ偏心したので、パーツ搬送路と回転板の回転中心との距離をパーツ貯留部からパーツ搬送路の終端へ向かうに連れて次第に長くなるように設定することができる。したがって、パーツ搬送路におけるパーツの回転半径を変化させて搬送距離を次第に大きくすることができ、パーツ搬送路に沿って並んだパーツの前後間隔を広げることができる。このことから、パーツがパーツ搬送路上で詰まり難くなり、パーツフィーダによるパーツの移送をスムーズに行うことができる。さらに、パーツの選別を効率よく行うことができる。   According to the second aspect of the present invention, since the rotation center of the rotating plate is decentered toward the part storage part side than the center of curvature of the arcuate tip of the magnetic pole part, the distance between the parts transport path and the rotation center of the rotating plate is It can be set so as to become gradually longer from the parts storage part toward the end of the parts conveyance path. Therefore, it is possible to gradually increase the conveyance distance by changing the rotation radius of the parts in the part conveyance path, and it is possible to widen the front-rear interval of the parts arranged along the part conveyance path. This makes it difficult for the parts to be jammed on the parts conveyance path, and the parts can be smoothly transferred by the parts feeder. Furthermore, parts can be sorted efficiently.

請求項3に記載の発明によれば、パーツ搬送路へ向けて圧縮気体を噴出可能な気体噴出機構を備え、両方の磁性体電極がパーツ搬送路上に位置し、且つ回転板に吸着した整列姿勢のパーツをパーツ搬送路から落下させない一方、整列姿勢以外の状態で回転板に吸着している非整列姿勢のパーツをパーツ搬送路から落下させる程度の勢いで圧縮気体を噴出するように上記気体噴出機構を設定したので、パーツ搬送路へ圧縮気体を噴出して、パーツ搬送路上から非整列姿勢のパーツを取り除くことができ、整列されたパーツの選別を簡単に行うことができる。 According to the invention described in claim 3, comprising a gas ejection mechanism capable ejecting the compressed gas toward the parts conveying path, both of the magnetic electrode is located in the part conveying path, and adsorbed aligned position to the rotation plate The above-mentioned gas ejection is performed so that the compressed gas is ejected with such a force that the parts in the non-alignment posture that are attracted to the rotating plate in a state other than the alignment posture are dropped from the parts conveyance passage while the parts are not dropped from the parts conveyance passage. Since the mechanism is set, it is possible to eject the compressed gas to the parts conveyance path, remove the non-aligned posture parts from the parts conveyance path, and easily sort the aligned parts.

請求項4に記載の発明によれば、磁極部が生じる磁力の強さを調整可能な磁力調整機構を備え、該磁力調整機構は、両方の磁性体電極がパーツ搬送路上に位置し、且つ回転板に吸着した整列姿勢のパーツをパーツ搬送路に維持する一方、整列姿勢以外の状態で回転板に吸着している非整列姿勢のパーツをパーツ搬送路から落下させる程度の強さに磁極部からの磁力を調整可能としたので、磁極部が生じる磁力の強さを調整して、パーツ搬送路上から非整列姿勢のパーツを取り除くことができ、整列されたパーツの選別を簡単に行うことができる。 According to the fourth aspect of the present invention, the magnetic force adjusting mechanism capable of adjusting the strength of the magnetic force generated by the magnetic pole portion is provided, and the magnetic force adjusting mechanism is configured such that both magnetic electrodes are positioned on the parts conveying path and rotated. While maintaining the parts in the alignment posture attracted to the plate in the parts conveyance path, the magnetic pole part is strong enough to drop the parts in the non-alignment posture adsorbed to the rotating plate in a state other than the alignment posture from the parts conveyance path. Since the magnetic force of the magnetic pole part can be adjusted, the magnetic force generated by the magnetic pole part can be adjusted to remove non-aligned parts from the part transport path, and the sorted parts can be easily selected. .

請求項5に記載の発明によれば、パーツ搬送路の外方に、パーツを摺動しながらパーツ搬送路の終端へ向けて誘導する円弧壁状の誘導部を備えたので、整列したパーツの姿勢が搬送途中で変わってしまう不具合を抑えることができ、整列姿勢のパーツの移送効率を一層向上させることができる。   According to the invention described in claim 5, since the arcuate wall-shaped guide portion that guides toward the end of the parts transport path while sliding the parts is provided outside the parts transport path, It is possible to suppress a problem that the posture changes during the conveyance, and it is possible to further improve the transfer efficiency of the parts in the aligned posture.

請求項6に記載の発明によれば、パーツ搬送路の終端に、底部および側部をパーツの送り方向へ進行するにしたがって次第に傾けたパーツ回転部を設けたので、パーツの姿勢を回転板に対向していた磁性体電極が異なる方向を向く状態に変換することができ、次工程へ移送する際のパーツの姿勢の設定自由度を拡げることができる。   According to the sixth aspect of the present invention, since the part rotation part that is gradually inclined as the part and the side part are advanced in the part feeding direction is provided at the end of the part conveyance path, the posture of the part is changed to the rotating plate. The facing magnetic body electrode can be converted into a different direction, and the degree of freedom of setting the posture of the parts when transferring to the next process can be expanded.

以下、本発明の最良の実施形態を図面に基づいて説明する。図1は本発明に係るパーツフィーダ1の正面図、図2は断面図である。
パーツフィーダ1は、図1に示すように、パーツを縦方向へ回転搬送しながら整列する整列機構2と、該整列機構2で整列されたパーツを移送先(例えば、次工程を行う装置)へ送る送り機構3とをベース4上に備えて構成されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, the best embodiment of the invention will be described with reference to the drawings. FIG. 1 is a front view of a parts feeder 1 according to the present invention, and FIG. 2 is a sectional view.
As shown in FIG. 1, the parts feeder 1 has an alignment mechanism 2 that aligns parts while rotating and conveying the parts in the vertical direction, and the parts aligned by the alignment mechanism 2 to a transfer destination (for example, an apparatus that performs the next process). The feed mechanism 3 for feeding is provided on the base 4.

なお、本実施形態のパーツフィーダ1は、磁性体電極5を備えたチップ状のコイル6を移送対象パーツとして移送する。このコイル(パーツ)6は、0.4mg程度の重量を有し、図3に示すように、長さ0.8mm、四角形端部の一辺長さ0.4mm程度の小さな角片形状のセラミック製コイル芯7を備え、該コイル芯7の中央部分を両端部分よりも細く形成し、この中央部分にワイヤ8を巻回している。また、コイル6の一側面(図中下側面)の両端部に、例えばニッケルメッキ等を施して磁性体電極5を形成し、該磁性体電極5にワイヤ8の端部を半田付けしている。さらに、コイル6の他側面(図中上側面)に有色の樹脂層9を形成し、コイル6の向き(具体的には磁性体電極5を下に向けた姿勢)が容易に認識できるように構成されている。そして、パーツフィーダ1においては、磁性体電極5が前後に位置する姿勢に整列して移送される。   In addition, the parts feeder 1 of this embodiment transfers the chip-like coil 6 provided with the magnetic body electrode 5 as a transfer object part. This coil (part) 6 has a weight of about 0.4 mg, and is made of a small square piece of ceramic having a length of 0.8 mm and a side length of about 0.4 mm as shown in FIG. A coil core 7 is provided, a central portion of the coil core 7 is formed to be narrower than both end portions, and a wire 8 is wound around the central portion. Further, for example, nickel plating or the like is applied to both end portions of one side surface (lower side surface in the figure) of the coil 6 to form the magnetic electrode 5, and the end portion of the wire 8 is soldered to the magnetic electrode 5. . Further, a colored resin layer 9 is formed on the other side surface (upper side surface in the figure) of the coil 6 so that the orientation of the coil 6 (specifically, the posture with the magnetic electrode 5 facing down) can be easily recognized. It is configured. In the parts feeder 1, the magnetic body electrode 5 is transferred in alignment with the posture positioned in the front-rear direction.

整列機構2は、上部に配置されたホッパー部13と、該ホッパー部13の下方に配置され、パーツ6を磁力で吸引しながら整列する整列操作部14とを備え、ホッパー部13と整列操作部14との側方(図1中右側方)には、ホッパー部13から整列操作部14へパーツ6を流下させるための縦長な流下路15を備え、整列操作部14を挟んで流下路15とは反対側には、整列操作部14で発生する磁力の強さを調整可能な変圧器等の磁力調整機構16を備えている。   The alignment mechanism 2 includes a hopper portion 13 disposed at an upper portion, and an alignment operation portion 14 that is disposed below the hopper portion 13 and that aligns the parts 6 while attracting them with a magnetic force, and includes the hopper portion 13 and the alignment operation portion. 14 is provided on the side (right side in FIG. 1) with a vertically long flow path 15 for flowing parts 6 from the hopper 13 to the alignment operation section 14, and with the flow down path 15 across the alignment operation section 14. On the opposite side, a magnetic force adjusting mechanism 16 such as a transformer capable of adjusting the strength of the magnetic force generated by the alignment operation unit 14 is provided.

ホッパー部13は、図1および図2に示すように、横長な貯留空間部18を上方へ向けて拡開した状態で区画形成し、貯留空間部18の一側(図1中左側)の上方に投入口19を開設し、貯留空間部18の他側(図1中右側)を流下路15の上部に連通している。また、貯留空間部18の底部を開口し、この底部開口の下方に搬送機(ベルトコンベア)20を配置している。搬送機20は、投入口19の下方から流下路15の上部の側方に亘って延設された無端ベルト21と、この無端ベルト21を掛け渡す両端のローラ22と、一方のローラ22を回転駆動するモータ等のローラ駆動源(図示せず)とにより構成されている。したがって、ホッパー部13の投入口19からパーツ6を投入して貯留空間部18に貯留し、この貯留状態で搬送機20を駆動して無端ベルト21を流下路15の上部へ向けて移動すると、貯留空間部18内のパーツ6を流下路15へ送ることができる。   As shown in FIGS. 1 and 2, the hopper 13 is partitioned and formed in a state in which the horizontally long storage space 18 is expanded upward, and above one side (left side in FIG. 1) of the storage space 18. The inlet 19 is opened to the other side, and the other side (the right side in FIG. 1) of the storage space 18 communicates with the upper part of the flow-down channel 15. Moreover, the bottom part of the storage space part 18 is opened, and the conveying machine (belt conveyor) 20 is arrange | positioned under this bottom part opening. The conveyor 20 rotates an endless belt 21 extending from the lower side of the inlet 19 to the side of the upper portion of the flow-down path 15, rollers 22 at both ends over which the endless belt 21 is wound, and one of the rollers 22. It is comprised by roller drive sources (not shown), such as a motor to drive. Therefore, when the parts 6 are thrown in from the charging port 19 of the hopper part 13 and stored in the storage space part 18, and the transporter 20 is driven in this storage state to move the endless belt 21 toward the upper part of the downflow path 15, The parts 6 in the storage space 18 can be sent to the flow-down path 15.

整列操作部14は、ケーシング25の略中央部分に収納され、磁力調整機構16に電気的に接続された電磁石26(本発明における磁力発生源に相当)と、該電磁石26を覆う状態でケーシング25の表面(前面)に配置された非磁性体製の円形回転板27と、該回転板27の下部を挟んで後述する電磁石26の磁極部28とは反対側に設けられたパーツ貯留部29と、該パーツ貯留部29に下端(始端)が連通した状態で回転板27上に設定された円弧状のパーツ搬送路30とを備えて構成されている。また、当該整列操作部14の前方を透明なカバー31で開閉可能な状態で覆っている。   The alignment operation unit 14 is accommodated in a substantially central portion of the casing 25 and is electrically connected to the magnetic force adjusting mechanism 16 (corresponding to a magnetic force generation source in the present invention), and the casing 25 is in a state of covering the electromagnet 26. A non-magnetic circular rotating plate 27 arranged on the front surface (front surface) of the magnet, and a parts storage unit 29 provided on the opposite side to a magnetic pole portion 28 of an electromagnet 26 to be described later across the lower portion of the rotating plate 27 The part storage part 29 is configured to include an arc-shaped part conveyance path 30 set on the rotating plate 27 in a state where the lower end (starting end) communicates with the part storage part 29. Further, the front of the alignment operation unit 14 is covered with a transparent cover 31 so as to be opened and closed.

電磁石26は、先端を連続する円弧状(詳しくは円環状)に形成した磁極部28を備え、この円弧状先端28aをケーシング25の表面(本実施形態では前側面。図2中右側に位置する表面)と略同じ位置に配置している(図2および図5参照)。磁極部28は、コア32の前端(図2中右端)に浅いカップ状の第1磁極体33を備え、該第1磁極体33の外方に円筒状の第2磁極体34を配置し、該第2磁極体34をコア32の後端(図2中左端)に接続して構成されている。第1磁極体33は、磁極部28の円弧状先端28aの一部となる縁部33aをケーシング25の前側面へ向けて延出するとともに、縁部33aの厚さが先端へ向けて次第に薄くなる状態、言い換えると断面において縁部33aの先端が鋭角に尖った状態で形成している。また、第2磁極体34は、磁極部28の円弧状先端28aの一部となる先端部に環状の突起34aを第1磁極体33の縁部33aの先端へ向けて突設し、この突起34aを第1磁極体33の縁部33aの先端に対向させている。 The electromagnet 26 includes a magnetic pole portion 28 formed in a circular arc shape (specifically, an annular shape) having a continuous tip, and this arc-shaped tip 28a is located on the surface of the casing 25 (front side in the present embodiment; right side in FIG. 2). (Refer to FIG. 2 and FIG. 5). The magnetic pole portion 28 includes a shallow cup-shaped first magnetic pole body 33 at the front end (right end in FIG. 2) of the core 32, and a cylindrical second magnetic pole body 34 is disposed outside the first magnetic pole body 33. The second magnetic pole body 34 is connected to the rear end (left end in FIG. 2) of the core 32. The first magnetic pole body 33 extends an edge portion 33a that is a part of the arcuate tip 28a of the magnetic pole portion 28 toward the front side surface of the casing 25, and the thickness of the edge portion 33a gradually decreases toward the tip. In other words, in other words, the tip of the edge 33a is formed with a sharp angle in the cross section. In addition, the second magnetic pole body 34 has an annular protrusion 34 a that protrudes from the tip of the arc-shaped tip 28 a of the magnetic pole portion 28 toward the tip of the edge 33 a of the first magnetic pole body 33. 34 a is opposed to the tip of the edge 33 a of the first magnetic pole body 33.

そして、磁極部28は、第1磁極体33の縁部33aの先端と第2磁極体34の突起34aとの間をパーツの太さよりも狭い幅で離隔して円弧状の磁場発生空間部35を形成している。したがって、電磁石26に通電すると、第1磁極体33の先端に一方の磁極(例えばN極)が発生するととも、第2磁極体34の突起34aに他方の磁極(例えばS極)が発生する。これにより、磁場発生空間部35に磁場が磁極部28の円弧状先端28aに沿って円弧状に発生する。   The magnetic pole portion 28 is separated from the tip of the edge portion 33a of the first magnetic pole body 33 and the protrusion 34a of the second magnetic pole body 34 by a width narrower than the thickness of the part, and the arc-shaped magnetic field generation space portion 35 is formed. Is forming. Therefore, when the electromagnet 26 is energized, one magnetic pole (for example, N pole) is generated at the tip of the first magnetic pole body 33 and the other magnetic pole (for example, S pole) is generated at the protrusion 34 a of the second magnetic pole body 34. As a result, a magnetic field is generated in the magnetic field generating space 35 in an arc shape along the arc-shaped tip 28 a of the magnetic pole portion 28.

また、電磁石26の中央部分には、前後方向へ延設された回転軸36を磁極部28の円弧状先端28aの曲率中心(磁場発生空間部35の曲率中心)C1よりも下方(パーツ貯留部29側)へ偏心した位置で軸支し、回転軸36の前端(図2中右端)に円弧状先端28aよりもひと回り大きな回転板27を縦向きの姿勢で止着している。したがって、図4に示すように、回転板27の回転中心C2を磁極部28の円弧状先端28aの曲率中心C1よりもパーツ貯留部29側へ偏心した位置に配置したことになる。また、磁極部28の第1磁性体33の内側にリング状のスペーサ37を設け、該スペーサ37により回転板27を支持した状態で、回転板27の外周部分を磁極部28の円弧状先端28aへ当接あるいは近接している。さらに、回転軸36の後端(図2中左端)には、プーリ38およびタイミングベルト39を介してモータ等の回転板駆動源40を接続し、該回転板駆動源40を駆動することで回転板27を磁極部28の円弧状先端28aに被せた状態で回転できるように構成されている。なお、本実施形態では、回転板27は、正面から見て時計方向へ回転する。また、回転板27は、板厚0.2mmのステンレス鋼で構成されているが、非磁性体製であればどのような材質であってもよい。例えば、アルミ板、プラスチック板、ガラス板などでもよい。   In addition, a rotating shaft 36 extending in the front-rear direction is provided below the center of curvature C1 of the arcuate tip 28a of the magnetic pole portion 28 (center of curvature of the magnetic field generation space portion 35) C1 at the center portion of the electromagnet 26 (part storage portion). The rotary plate 27 is supported at a position eccentric to the 29th side, and a rotary plate 27 that is slightly larger than the arcuate tip 28a is fixed to the front end (right end in FIG. 2) of the rotary shaft 36 in a vertical orientation. Therefore, as shown in FIG. 4, the rotation center C <b> 2 of the rotating plate 27 is arranged at a position eccentric to the part storage part 29 side with respect to the center of curvature C <b> 1 of the arcuate tip 28 a of the magnetic pole part 28. In addition, a ring-shaped spacer 37 is provided inside the first magnetic body 33 of the magnetic pole portion 28, and the rotating plate 27 is supported by the spacer 37, and the outer peripheral portion of the rotating plate 27 is the arc-shaped tip 28 a of the magnetic pole portion 28. Abutting or close to. Further, a rotary plate drive source 40 such as a motor is connected to the rear end (left end in FIG. 2) of the rotary shaft 36 via a pulley 38 and a timing belt 39, and the rotary plate drive source 40 is driven to rotate. The plate 27 is configured to be able to rotate in a state where it covers the arcuate tip 28a of the magnetic pole portion 28. In the present embodiment, the rotating plate 27 rotates clockwise as viewed from the front. The rotating plate 27 is made of stainless steel having a thickness of 0.2 mm, but any material may be used as long as it is made of a non-magnetic material. For example, an aluminum plate, a plastic plate, a glass plate, etc. may be used.

回転板27の下部の前方に配置されたパーツ貯留部29は、ホッパー部13から流下路15を介して送られてきたパーツ6を整列前に一時貯留する箇所である。このパーツ貯留部29は、ケーシング25の下半部分、流下路15の下端部および回転板27の下部にプレート状の貯留部形成部材41を重合し、該貯留部形成部材41の上端部を回転板27へ向けて下り傾斜させ(図2参照)、該下り傾斜面と回転板27との間に形成されている。また、当該パーツ貯留部29の底部を磁極部28の先端28aに沿って円弧状に凹ませて形成し(図4参照)、パーツ貯留部29の底部に位置するパーツ6から優先して磁極部28の磁力により吸引されるように構成されている。さらに、パーツ貯留部29の側方には、パーツ貯留部29内にパーツ6が所定の高さ(例えば、パーツ6が横向きで2〜3個積み重なった程度の高さ)まで貯留されたか否かを検出する非接触タイプのレベルセンサ(例えば透過センサ)42を設けている。そして、パーツ貯留部29と流下路15の下端との間には、図1に示すように、パーツ貯留部29へ向けて下り傾斜した連通路43を形成し、流下路15から流下したパーツ6をパーツ貯留部29へ誘導できるように構成されている。   The parts storage part 29 arranged in front of the lower part of the rotating plate 27 is a part for temporarily storing the parts 6 sent from the hopper part 13 via the flow-down path 15 before alignment. The parts storage part 29 superposes a plate-like storage part forming member 41 on the lower half of the casing 25, the lower end part of the flow-down path 15 and the lower part of the rotating plate 27, and rotates the upper end part of the storage part forming member 41. It is inclined downward toward the plate 27 (see FIG. 2), and is formed between the downward inclined surface and the rotating plate 27. Further, the bottom part of the part storage part 29 is formed in an arc shape along the tip 28a of the magnetic pole part 28 (see FIG. 4), and the magnetic pole part is given priority over the part 6 located at the bottom part of the part storage part 29. It is configured to be attracted by 28 magnetic forces. Furthermore, whether or not the parts 6 have been stored in the parts storage part 29 to a predetermined height (for example, a height in which two or three parts 6 are stacked in the horizontal direction) beside the parts storage part 29. A non-contact type level sensor (for example, a transmission sensor) 42 is provided. As shown in FIG. 1, a communication path 43 that is inclined downward toward the parts storage unit 29 is formed between the parts storage unit 29 and the lower end of the flow channel 15, and the parts 6 that flow down from the flow channel 15 are formed. It is comprised so that can be guide | induced to the parts storage part 29. FIG.

パーツ搬送路30は、回転板27のうち磁極部28とは反対側の表面(すなわち回転板27の前面)上に設定された円弧状の通路であり、磁極部28の円弧状先端28aおよび磁場発生空間部35に沿って設けられている。本実施形態では、回転板27の左半部分の前面に設定され、パーツ6がパーツ貯留部29から上方へ向けて磁極部28の円弧状先端28aの曲率中心C1の周りを時計方向へ回転して搬送されるように構成されている。また、パーツ搬送路30の外方には、パーツ6を摺動しながらパーツ搬送路30の終端へ向けて誘導する円弧壁状の誘導部44を備えている(図4および図5参照)。そして、パーツ搬送路30の曲率中心および誘導部44の曲率中心を磁極部28の円弧状先端28aの曲率中心C1と一致させて、回転板27の回転中心C2よりも上方、すなわちパーツ貯留部29から離れる方向へ偏心している。したがって、回転板27の回転中心C2とパーツ搬送路30(あるいは誘導部44)との距離は、パーツ搬送路30に沿って搬送方向(すなわちパーツ貯留部29からパーツ搬送路30の終端へ向かう方向)へ移動するに連れて次第に長くなるように設定されている。   The parts conveying path 30 is an arc-shaped passage set on the surface of the rotating plate 27 opposite to the magnetic pole portion 28 (that is, the front surface of the rotating plate 27), and the arc-shaped tip 28a of the magnetic pole portion 28 and the magnetic field. It is provided along the generation space 35. In this embodiment, it is set to the front surface of the left half portion of the rotating plate 27, and the part 6 rotates clockwise around the center of curvature C1 of the arcuate tip 28a of the magnetic pole part 28 upward from the part storage part 29. It is configured to be conveyed. Further, an arcuate wall-shaped guiding portion 44 that guides the parts 6 toward the end of the parts conveying path 30 while sliding the parts 6 is provided outside the parts conveying path 30 (see FIGS. 4 and 5). Then, the center of curvature of the parts conveying path 30 and the center of curvature of the guide portion 44 are made to coincide with the center of curvature C1 of the arcuate tip 28a of the magnetic pole portion 28, and above the rotation center C2 of the rotating plate 27, that is, the parts storage portion 29. Eccentric in the direction away from. Therefore, the distance between the rotation center C2 of the rotating plate 27 and the parts transport path 30 (or the guide section 44) is the transport direction along the parts transport path 30 (that is, the direction from the parts storage section 29 toward the end of the parts transport path 30). ) Is set so that it gradually becomes longer as it moves to ().

なお、本実施形態では、パーツ6は、両端部の磁性体電極5がパーツ搬送路30上に位置し、且つ回転板27に重なった状態で磁極部28に吸引(吸着)される姿勢(以下、整列姿勢と称す。)で整列される(図7参照)。この整列姿勢のパーツ6aは、両端部の磁性体電極5を磁極部28へ最も近づけることができ、磁極部28からの磁力、詳しくは磁場発生空間部35内の磁場に起因する磁力により吸引され易くなる。一方、整列姿勢以外の状態のパーツ(具体的には両端部の磁性体電極5が回転板27に重合しない非整列姿勢のパーツ6b、あるいは一方の磁性体電極5がパーツ搬送路30に位置しない非整列姿勢のパーツ6c)は、少なくともいずれかの磁性体電極5が整列姿勢の磁性体電極5よりも磁極部28から遠ざかって位置するため、整列姿勢時よりも弱い吸引力で回転板27の表面に吸着される。また、パーツ搬送路30におけるパーツ6の整列作用については、後で詳細に説明する。 In the present embodiment, the parts 6 are attracted (adsorbed) to the magnetic pole portion 28 in a state where the magnetic electrodes 5 at both ends are positioned on the parts conveyance path 30 and overlap the rotating plate 27 (hereinafter referred to as “part 6” ). , Referred to as an alignment posture.) (See FIG. 7). The parts 6a in this aligned posture can bring the magnetic electrodes 5 at both ends closest to the magnetic pole portion 28, and are attracted by the magnetic force from the magnetic pole portion 28, specifically, the magnetic force caused by the magnetic field in the magnetic field generating space portion 35. It becomes easy. On the other hand, a part in a state other than the alignment posture (specifically, the part 6b in a non-alignment posture where the magnetic electrodes 5 at both ends do not overlap the rotating plate 27, or one magnetic electrode 5 is not positioned in the parts conveyance path 30. In the non-aligned posture part 6c), at least one of the magnetic electrodes 5 is positioned farther from the magnetic pole portion 28 than the magnetic electrode 5 in the aligned posture, so that the rotating plate 27 has a lower suction force than that in the aligned posture. Adsorbed on the surface. Further, the alignment action of the parts 6 in the parts conveyance path 30 will be described in detail later.

そして、送り機構3は、パーツ6を直進させて搬送するための機構(リニアフィーダ)であり、図1に示すように、搬送台46と、該搬送台46を振動可能な状態で支持する支持台47と、支持台47と搬送台46との間に配置され、搬送台46を振動させる電磁式の振動発生部48とにより概略構成されている。搬送台46は、当該搬送台46の上部にパーツ6を滑り移動させる溝状の送り通路49を形成し、該送り通路49の上方には、送り通路49内のパーツ6の状態を監視する監視センサ50を設けてある。また、振動発生部48は、搬送台46をパーツ6の搬送方向(図1中白抜きの矢印で示す方向)へ移動させる電磁石等の加振手段51と、支持台47の側部と搬送台46の側部とを連結する板ばね52とにより構成され、板ばね52を傾斜した状態に配置して、板ばね52の搬送台46側の端部がパーツ6の搬送方向よりも僅かに上向きの方向へ沿って撓み移動できるように設定されている。   The feed mechanism 3 is a mechanism (linear feeder) for moving the part 6 straightly, and as shown in FIG. 1, as shown in FIG. The base 47 and an electromagnetic vibration generator 48 that is disposed between the support base 47 and the transport base 46 and vibrates the transport base 46 are roughly configured. The conveyance table 46 forms a groove-like feed passage 49 for sliding the parts 6 on the upper part of the conveyance table 46, and the monitoring for monitoring the state of the parts 6 in the feed passage 49 above the feed passage 49. A sensor 50 is provided. Further, the vibration generating unit 48 includes an excitation means 51 such as an electromagnet that moves the transport base 46 in the transport direction of the part 6 (direction indicated by a white arrow in FIG. 1), a side portion of the support base 47, and the transport base. The leaf spring 52 is connected to the side portion of the plate 46, and the leaf spring 52 is disposed in an inclined state so that the end portion of the leaf spring 52 on the conveyance stand 46 side is slightly upward from the conveyance direction of the parts 6. It is set to be able to bend and move along the direction.

さらに、搬送台46の始端(図中左端)には、パーツ6を整列操作部14のパーツ搬送路30から回転板27の外方の送り機構3へ導出するための導出部材54を備え、該導出部材54をパーツ搬送路30の終端に配置している。この導出部材54は、図4および図6に示すように、パーツ搬送路30の終端に対向する箇所に、整列姿勢のパーツ6aが前端部(具体的には磁性体電極5を形成した前端部)から進入可能な断面L字状の切欠部55を設け、該切欠部55から円弧状のパーツ搬送路30の接線方向へ延出する溝部56を備え、該溝部56の終端を送り通路49に連通し、整列機構2により整列したパーツ6を送り機構3の送り通路49へ導出するように構成されている。また、送り通路49の途中には、底部および側部をパーツ6の送り方向へ進行するにしたがって次第に傾けた、すなわちひねったパーツ回転部57を形成し、パーツ6がパーツ回転部57を通ると、パーツ6の姿勢が回転板27に対向していた側面をひねって上方に向ける状態へ変換するように構成されている。   In addition, at the start end (left end in the figure) of the transport base 46, a lead-out member 54 for leading the parts 6 from the parts transport path 30 of the alignment operation unit 14 to the feed mechanism 3 outside the rotary plate 27 is provided. The lead-out member 54 is disposed at the end of the parts conveyance path 30. As shown in FIGS. 4 and 6, the lead-out member 54 has a front end portion (specifically, a front end portion on which the magnetic electrode 5 is formed) at a position facing the terminal end of the parts conveying path 30. ) And a groove 56 extending from the notch 55 in the tangential direction of the arc-shaped part conveyance path 30, and the end of the groove 56 is provided in the feed passage 49. The parts 6 arranged in communication and arranged by the alignment mechanism 2 are led out to the feed passage 49 of the feed mechanism 3. Further, in the middle of the feed passage 49, a bottom part and a side part are gradually inclined, that is, a twisted part rotating part 57 is formed as the part 6 advances in the feeding direction, and the part 6 passes through the part rotating part 57. The posture of the part 6 is configured to be converted into a state in which the side face facing the rotating plate 27 is twisted and directed upward.

そして、パーツフィーダ1は、整列操作部14のパーツ搬送路30へ向けて圧縮気体(例えば圧縮空気)を噴出可能な気体噴出機構60を備えている。この気体噴出機構60は、パーツ搬送路30の外方に配置され、複数(本実施形態では3つ)の気体噴出孔61を開設した噴出部62と、整列操作部14を貫通して気体噴出孔61に連通する連通孔63と、該連通孔63に接続された気体供給源(図示せず)とにより構成され、気体噴出孔61の開口端をパーツ搬送路30へ臨ませている(図5参照)。また、噴出部62から噴出される圧縮気体の勢いが、回転板27に整列姿勢で吸着するパーツ6をパーツ搬送路30から落下させない一方、整列姿勢以外の状態で回転板27に吸着しているパーツ6をパーツ搬送路30から落下させる程度の勢いとなるように設定されている。   The parts feeder 1 includes a gas ejection mechanism 60 capable of ejecting compressed gas (for example, compressed air) toward the parts conveyance path 30 of the alignment operation unit 14. The gas ejection mechanism 60 is disposed outside the parts conveyance path 30, and ejects a gas through the ejection section 62 having a plurality of (three in this embodiment) gas ejection holes 61 and the alignment operation section 14. A communication hole 63 communicating with the hole 61 and a gas supply source (not shown) connected to the communication hole 63 are formed, and the opening end of the gas ejection hole 61 faces the parts conveying path 30 (see FIG. 5). Further, the momentum of the compressed gas ejected from the ejection part 62 does not drop the parts 6 that are attracted to the rotating plate 27 in the aligned posture from the parts conveyance path 30, but is attracted to the rotating plate 27 in a state other than the aligned posture. It is set so that the part 6 can be dropped from the parts conveyance path 30.

次に、パーツフィーダ1の作用について説明する。なお、パーツフィーダ1でパーツ6を移送する準備として、磁力調整機構16を調整して、磁極部28から発生する磁力がパーツ6を十分に吸引して回転板27の表面に吸着させ、吸着したパーツ6が自重により回転板27上を滑り落ちないように、詳しくは吸着力により生じる回転板27とパーツ6との摩擦力がパーツ6の自重よりも大きくなるように設定する。また、送り機構3の振動発生部48を駆動して搬送台46を振動させ、また、気体噴出機構60からパーツ搬送路30へ向けて圧縮気体を噴出しておく。   Next, the operation of the parts feeder 1 will be described. In preparation for transferring the part 6 by the parts feeder 1, the magnetic force adjusting mechanism 16 is adjusted so that the magnetic force generated from the magnetic pole part 28 sufficiently attracts the part 6 and attracts it to the surface of the rotating plate 27. Specifically, the frictional force between the rotating plate 27 and the part 6 generated by the adsorption force is set to be larger than the weight of the part 6 so that the part 6 does not slide on the rotating plate 27 due to its own weight. Further, the vibration generating unit 48 of the feed mechanism 3 is driven to vibrate the conveyance table 46, and the compressed gas is ejected from the gas ejection mechanism 60 toward the parts conveyance path 30.

まず、複数のパーツ6をホッパー部13の投入口19から貯留空間部18へ投入し、搬送機20を駆動して貯留空間部18内のパーツ6を流下路15へ流下し、パーツ貯留部29へ送る。このとき、パーツ貯留部29にパーツ6が所定量まで貯留してレベルセンサ42がパーツ6を検出すると、この検出信号に基づいて搬送機20が停止し、パーツ6のパーツ貯留部29への供給が停止する。したがって、パーツ6がパーツ貯留部29に供給され過ぎることを防ぎ、パーツ貯留部29内のパーツ6と回転板27との接触抵抗が大きくなり過ぎることを抑えることができる。このことから、回転板27を滞りなく回転駆動させることができ、パーツ6の搬送動作をスムーズに行うことができる。   First, a plurality of parts 6 are introduced into the storage space 18 from the inlet 19 of the hopper 13, the transporter 20 is driven, and the parts 6 in the storage space 18 flow down to the downflow path 15, and the parts storage 29 Send to. At this time, when the part 6 is stored up to a predetermined amount in the part storage unit 29 and the level sensor 42 detects the part 6, the transport machine 20 stops based on this detection signal, and the supply of the part 6 to the parts storage unit 29 is performed. Stops. Therefore, it is possible to prevent the parts 6 from being excessively supplied to the parts storage unit 29 and to prevent the contact resistance between the parts 6 in the parts storage unit 29 and the rotary plate 27 from becoming too large. Thus, the rotating plate 27 can be driven to rotate without delay, and the parts 6 can be transported smoothly.

パーツ貯留部29にパーツ6が貯留されると、整列操作部14は、パーツ6の磁性体電極5を磁極部28の磁力により吸引してパーツ貯留部29内のパーツ6を回転板27の表面に吸着させる。この吸着状態で回転板27を時計方向へ回転すると、パーツ6が磁極部28の円弧状先端28aに沿って移動してパーツ搬送路30へ送り出される。このとき、磁性体電極5が磁極部28の円弧状先端28aに吸引されるため、パーツ6の両端部がパーツ搬送路30上に配置され易い。したがって、パーツ6を磁性体電極5,5がパーツ搬送路30に沿って前後に位置する姿勢で簡単に整列することができる。このことから、パーツ6の姿勢を監視するためのセンサやパーツ6の姿勢を整えるための複雑な機構を備える必要がなく、簡単な構成でパーツ6を整列可能なパーツフィーダ1を実現することができる。これにより、移送速度を上げたとしても、パーツ6の整列が間に合わずに整列していない状態のパーツ6が移送されたり、あるいはパーツフィーダ1内で詰まってしまったりする不具合を抑えることができ、整列されたパーツ6の移送効率の向上を図ることができる。
また、パーツ搬送路30上において、磁性体電極5が回転板27上を摺動することなくパーツ6を搬送することができる。したがって、磁性体電極5が回転板27へ擦り付けられることがなく、パーツ6の磁性体電極5が損傷することを抑えることができる。
When the parts 6 are stored in the parts storage part 29, the alignment operation part 14 attracts the magnetic body electrode 5 of the parts 6 by the magnetic force of the magnetic pole part 28, so that the parts 6 in the part storage part 29 are attracted to the surface of the rotary plate 27. Adsorb to. When the rotating plate 27 is rotated clockwise in this attracting state, the part 6 moves along the arcuate tip 28 a of the magnetic pole portion 28 and is sent out to the parts conveying path 30. At this time, since the magnetic body electrode 5 is attracted to the arcuate tip 28 a of the magnetic pole portion 28, both end portions of the part 6 are easily arranged on the part conveyance path 30. Therefore, the parts 6 can be easily aligned in a posture in which the magnetic electrodes 5 and 5 are positioned forward and backward along the parts conveyance path 30. Therefore, it is not necessary to provide a sensor for monitoring the posture of the part 6 or a complicated mechanism for adjusting the posture of the part 6, and the parts feeder 1 capable of aligning the parts 6 with a simple configuration can be realized. it can. Thereby, even if the transfer speed is increased, it is possible to suppress the trouble that the parts 6 that are not aligned due to the alignment of the parts 6 are not transferred in time, or that the parts 6 are clogged in the parts feeder 1, The transfer efficiency of the aligned parts 6 can be improved.
Further, the part 6 can be transported on the parts transport path 30 without the magnetic electrode 5 sliding on the rotating plate 27. Therefore, the magnetic body electrode 5 is not rubbed against the rotating plate 27, and damage to the magnetic body electrode 5 of the part 6 can be suppressed.

そして、回転板27の表面に吸着して回転搬送されるパーツ6の中には、図7に示すように、磁性体電極5,5を搬送方向の前後に位置する姿勢で吸着されたとしても、磁性体電極5,5を回転板27に対向させている整列姿勢のパーツ6aや、磁性体電極5,5を回転板27に対向させていない非整列姿勢のパーツ6bが混在する。さらには、一方の磁性体電極5が磁極部28に吸引されていても、前後に位置するパーツ6に邪魔されてパーツ搬送路30に沿って配置されないで起立してしまったり、他方の磁性体電極5がパーツ搬送路30から外れたりした非整列姿勢のパーツ6cも混在する。   Then, even in the parts 6 that are attracted to the surface of the rotating plate 27 and rotated and conveyed, as shown in FIG. In addition, there are mixed parts 6a in an aligned posture in which the magnetic electrodes 5 and 5 are opposed to the rotating plate 27 and parts 6b in an unaligned posture in which the magnetic electrodes 5 and 5 are not opposed to the rotating plate 27. Furthermore, even if one of the magnetic electrodes 5 is attracted by the magnetic pole portion 28, it is disturbed by the parts 6 located at the front and back and is not disposed along the parts transport path 30, or the other magnetic body 5 A part 6c in a non-aligned posture in which the electrode 5 is detached from the part conveyance path 30 is also present.

このように様々な姿勢が混在した状態でパーツ6がパーツ搬送路30に沿って回転搬送され、気体噴出孔の61の側方に到達すると、これらのパーツ6は、気体噴出機構60からの圧縮気体を受ける。すると、整列姿勢のパーツ6aは、圧縮気体の圧力に耐え得る程度の吸着力で吸着しているので、パーツ搬送路30上から落下しないが、整列姿勢の状態よりも吸着力が弱い非整列姿勢のパーツ6b,6cは、圧縮気体の圧力により吹き飛ばされてパーツ搬送路30から落下する。すなわち、気体噴出機構60は、整列姿勢のパーツ6aをパーツ搬送路30から落下させない一方、非整列姿勢のパーツ6b,6cをパーツ搬送路30から落下させる程度の勢いで圧縮気体を噴出するので、パーツ搬送路30上から非整列姿勢のパーツ6b,6cを取り除くことができ、整列されたパーツ6の選別を簡単に行うことができる。そして、パーツ搬送路30から取り除かれたパーツ6は、下方のパーツ貯留部29へ落下して貯留され、再びパーツ搬送路30へ送ることができる。   When the parts 6 are rotated and conveyed along the parts conveying path 30 in a state where various postures are mixed in this way, and reach the side of the gas ejection holes 61, these parts 6 are compressed from the gas ejection mechanism 60. Receive gas. Then, since the parts 6a in the aligned posture are adsorbed with an adsorption force that can withstand the pressure of the compressed gas, they do not fall from the parts conveyance path 30, but the non-aligned posture in which the adsorption force is weaker than in the aligned posture state. The parts 6b and 6c are blown off by the pressure of the compressed gas and fall from the parts conveyance path 30. That is, since the gas ejection mechanism 60 does not drop the aligned posture parts 6a from the parts conveyance path 30, the gas ejection mechanism 60 ejects the compressed gas with such a momentum that the non-aligned parts 6b and 6c are dropped from the parts conveyance path 30. The parts 6b and 6c in the non-aligned posture can be removed from the part conveyance path 30, and the sorted parts 6 can be easily selected. Then, the parts 6 removed from the parts conveyance path 30 are dropped and stored in the lower part storage unit 29 and can be sent to the parts conveyance path 30 again.

さらに、パーツ搬送路30上に残った整列姿勢のパーツ6aは、回転板27の回転により誘導部44に側面を摺動させながらパーツ搬送路30を上昇し、パーツ搬送路30の終端および導出部材54へ向けて誘導される。したがって、整列したパーツ6の姿勢が搬送途中で変わってしまう不具合を抑えることができ、整列姿勢のパーツ6の移送効率を一層向上させることができる。   Further, the parts 6a in the alignment posture remaining on the parts conveying path 30 are lifted up the parts conveying path 30 while sliding the side surfaces of the guiding portion 44 by the rotation of the rotating plate 27, and the end of the parts conveying path 30 and the lead-out member To 54. Therefore, it is possible to suppress a problem that the posture of the aligned parts 6 changes during the conveyance, and it is possible to further improve the transfer efficiency of the parts 6 in the aligned posture.

また、回転板27の回転中心C2を磁極部28の円弧状先端28aの曲率中心C1よりもパーツ貯留部29側へ偏心したことにより、パーツ搬送路30と回転中心C2との距離をパーツ貯留部29からパーツ搬送路30の終端へ向かうに連れて次第に長くなるように設定することができる。したがって、パーツ6が回転軸36の周りを回転してパーツ搬送路30の終端へ向けて搬送されると、パーツ6の回転半径が次第に長くなり、パーツ6の搬送速度(すなわち単位時間当たりの搬送距離)を次第に速くすることができる。このことから、パーツ搬送路30に沿って並んだパーツ6の前後間隔を広げることができる。これにより、パーツ6がパーツ搬送路30上で詰まり難くなり、パーツフィーダ1によるパーツ6の移送をスムーズに行うことができる。また、パーツフィーダ1によって送り出されるパーツ6の間に隙間ができると、パーツの選別を効率よく行うことができる。   Further, since the rotation center C2 of the rotating plate 27 is decentered toward the parts storage unit 29 side with respect to the center of curvature C1 of the arcuate tip 28a of the magnetic pole part 28, the distance between the parts conveying path 30 and the rotation center C2 is set to the parts storage unit. It can be set to gradually become longer from 29 toward the end of the parts conveying path 30. Therefore, when the part 6 rotates around the rotation shaft 36 and is conveyed toward the end of the parts conveyance path 30, the rotation radius of the part 6 gradually increases, and the conveyance speed of the part 6 (that is, conveyance per unit time). Distance) can be made faster. From this, the front-rear interval of the parts 6 arranged along the parts conveyance path 30 can be widened. Thereby, it becomes difficult for the parts 6 to be clogged on the parts conveyance path 30, and the parts 6 can be smoothly transferred by the parts feeder 1. Further, when a gap is formed between the parts 6 sent out by the parts feeder 1, it is possible to efficiently select the parts.

整列姿勢のパーツ6aがパーツ搬送路30の終端まで到達すると、このパーツ6は、導出部材54の切欠部55から溝部56へ進入して回転板27の外方へ導出され、振動発生部48が発生する振動により溝部56内で僅かに振動しながら送り機構3の送り通路49へ滑り移動する。さらに、パーツ回転部57を通過すると、パーツ6は、回転板27に対向していた磁性体電極5が上方を向く状態に姿勢に変換され、この変換した姿勢で送り通路49の終端まで送られて次工程を行う装置へ移送される。したがって、次工程へ移送する際のパーツ6の姿勢の設定自由度を拡げることができる。   When the aligned part 6a reaches the end of the parts conveyance path 30, the part 6 enters the groove 56 from the notch 55 of the lead-out member 54 and is led out of the rotating plate 27, and the vibration generator 48 is The generated vibration slides to the feed passage 49 of the feed mechanism 3 while slightly vibrating in the groove 56. Further, after passing through the parts rotating part 57, the part 6 is converted into a posture so that the magnetic electrode 5 facing the rotating plate 27 faces upward, and is sent to the end of the feed passage 49 in this converted posture. And then transferred to an apparatus for performing the next process. Therefore, the degree of freedom of setting the posture of the part 6 when transferring to the next process can be expanded.

なお、本実施形態では、電磁石26によりパーツ6を吸引するように構成したが、本発明はこれに限定されない。例えば、磁力発生源として永久磁石を採用し、この永久磁石によりパーツ6を吸引するように構成すれば、パーツフィーダ1の消費電力を低減することができ、パーツフィーダ1のランニングコストを抑えることができる。   In addition, in this embodiment, although comprised so that the parts 6 may be attracted | sucked with the electromagnet 26, this invention is not limited to this. For example, if a permanent magnet is adopted as the magnetic force generation source and the part 6 is attracted by the permanent magnet, the power consumption of the parts feeder 1 can be reduced and the running cost of the parts feeder 1 can be suppressed. it can.

また、本実施形態の気体噴出孔61は、その開口端が回転板27の回転中心C2を向く状態で開設されたが、本発明はこれに限定されない。例えば、図8に示すように、気体噴出孔61の開口端を誘導部44へ向けた状態で開設すれば、圧縮気体が誘導部44に吹き付けられて誘導部44の表面に沿って流れ易くなり、誘導部44とパーツ搬送路30上のパーツ6のとの間に吹き込み易くなる。したがって、不安定な非整列姿勢のパーツ6b,6cを一層落下させ易くなるので好適である。   Moreover, although the gas ejection hole 61 of this embodiment was established in the state in which the opening end faces the rotation center C2 of the rotating plate 27, the present invention is not limited to this. For example, as shown in FIG. 8, if the opening end of the gas ejection hole 61 is opened in the state directed to the guiding portion 44, the compressed gas is blown to the guiding portion 44 and easily flows along the surface of the guiding portion 44. It becomes easy to blow between the guide part 44 and the parts 6 on the parts conveyance path 30. Therefore, the unstable unaligned posture parts 6b and 6c are more easily dropped, which is preferable.

ところで、上記実施形態では、気体噴出機構60から噴出する圧縮気体の圧力により、パーツ搬送路30上の非整列姿勢のパーツ6b,6cをパーツ搬送路30から外すように構成されたが、本発明はこれに限定されない。例えば、磁力調整機構16により調整された磁力を利用して非整列姿勢のパーツ6b,6cをパーツ搬送路30から外してもよい。具体的に説明すると、磁力調整機構16を調整して磁極部28から発生する磁力がパーツ6を選別できる程度の強さ、すなわち整列姿勢のパーツ6aをパーツ搬送路30に維持する一方、非整列姿勢のパーツ6b,6cをパーツ搬送路30から落下させる程度の強さになるように設定してもよい。このように磁極部28の磁力の強さを調整し、パーツ貯留部29に貯留されたパーツ6を磁極部28の磁力により吸引してパーツ貯留部29内のパーツ6を回転板27の表面に吸着させ、この吸着状態で回転板27を回転してパーツ搬送路30へ送り出せば、整列姿勢のパーツ6aのみを回転板27に吸着したまま上昇させ、非整列姿勢のパーツ6b,6cを自重によりパーツ搬送路30から落下させることができる。このようにして、磁極部28が生じる磁力の強さを調整するだけで、パーツ搬送路30上から非整列姿勢のパーツ6b,6cを取り除くことができ、整列されたパーツ6の選別を簡単に行うことができる。
なお、上記した気体噴出機構60から噴出する圧縮気体の圧力と、磁力調整機構16により調整された磁力とを併用して非整列姿勢のパーツ6b,6cをパーツ搬送路から落下させるように構成すれば、パーツ6の選別を一層効率よく行うことができて好適である。
By the way, in the said embodiment, it was comprised so that the parts 6b and 6c of the non-alignment attitude | position on the parts conveyance path 30 may be removed from the parts conveyance path 30 with the pressure of the compressed gas ejected from the gas ejection mechanism 60, but this invention. Is not limited to this. For example, the parts 6 b and 6 c in the non-aligned posture may be removed from the parts conveyance path 30 using the magnetic force adjusted by the magnetic force adjusting mechanism 16. More specifically, the magnetic force adjusting mechanism 16 is adjusted so that the magnetic force generated from the magnetic pole portion 28 is strong enough to select the parts 6, that is, the parts 6 a in the aligned posture are maintained in the parts conveyance path 30, while not aligned. You may set so that it may become the intensity | strength of the grade which drops the parts 6b and 6c of attitude | position from the parts conveyance path 30. FIG. Thus, the strength of the magnetic force of the magnetic pole part 28 is adjusted, and the part 6 stored in the part storage part 29 is attracted by the magnetic force of the magnetic pole part 28 so that the part 6 in the part storage part 29 is brought to the surface of the rotating plate 27. If the rotating plate 27 is rotated and sent out to the parts transport path 30 in this attracting state, only the aligned part 6a is lifted while adsorbed to the rotating plate 27, and the non-aligned parts 6b and 6c are moved by their own weight. It can be dropped from the parts conveyance path 30. In this way, it is possible to remove the non-aligned posture parts 6b and 6c from the parts conveying path 30 only by adjusting the strength of the magnetic force generated by the magnetic pole portion 28, and the sorting of the aligned parts 6 can be easily performed. It can be carried out.
It should be noted that the parts 6b and 6c in the non-aligned posture are dropped from the parts conveyance path by using both the pressure of the compressed gas ejected from the gas ejection mechanism 60 and the magnetic force adjusted by the magnetic force adjustment mechanism 16. Therefore, it is preferable that the parts 6 can be selected more efficiently.

また、上記実施形態では、縦向きに配置した回転板27の表面にパーツ6を吸着させて、パーツ6の磁性体電極5が側方(詳しくは後方)を向く姿勢で搬送できるようにしたが、本発明はこれに限定されない。例えば、回転板27を横向きに配置してもよく、横向きの回転板27の上面にパーツ6を吸着させるように整列操作部14を構成すれば、磁性体電極5を下方に向けた姿勢でパーツ6を整列することができ、また、下面にパーツ6を吸着させるように整列操作部14を構成すれば、磁性体電極5を上方に向けた姿勢でパーツ6を整列することができる。さらに、回転板27を傾斜した状態で配置してもよく、傾斜状態の回転板27の表面にパーツ6を吸着させるように整列操作部14を構成すれば、磁性体電極5を傾斜させた姿勢でパーツ6を整列することができる。このように、回転板27の姿勢の設定を変えて整列操作部14を構成すれば、送り機構3のパーツ回転部57においてパーツ6の姿勢を変換する必要がなく、磁性体電極5を所望の位置に配置した姿勢でパーツ6を移送することができて好適である。   In the above-described embodiment, the part 6 is attracted to the surface of the rotary plate 27 arranged in the vertical direction so that the magnetic electrode 5 of the part 6 can be conveyed in a posture in which it faces sideward (specifically, rearward). However, the present invention is not limited to this. For example, the rotating plate 27 may be arranged sideways, and if the alignment operation unit 14 is configured so that the part 6 is attracted to the upper surface of the sideways rotating plate 27, the magnetic electrode 5 is oriented downward. 6 can be aligned, and if the alignment operation unit 14 is configured to attract the part 6 to the lower surface, the part 6 can be aligned with the magnetic electrode 5 facing upward. Further, the rotating plate 27 may be disposed in an inclined state. If the alignment operation unit 14 is configured to attract the part 6 to the surface of the inclined rotating plate 27, the magnetic electrode 5 is inclined. The parts 6 can be aligned with. As described above, if the alignment operation unit 14 is configured by changing the setting of the posture of the rotating plate 27, it is not necessary to change the posture of the part 6 in the parts rotating unit 57 of the feed mechanism 3, and the magnetic electrode 5 can be placed in a desired manner. It is preferable that the part 6 can be transferred in a posture arranged at the position.

パーツフィーダの正面図である。It is a front view of a parts feeder. パーツフィーダの断面図である。It is sectional drawing of a parts feeder. 移送対象パーツとしてのコイルの概略図であり、(a)は正面図、(b)は下方から見た斜視図である。It is the schematic of the coil as a transfer object part, (a) is a front view, (b) is the perspective view seen from the downward direction. 整列操作部の部分拡大図である。It is the elements on larger scale of the alignment operation part. 気体噴出孔周辺の整列操作部の部分断面図である。It is a fragmentary sectional view of the alignment operation part around a gas ejection hole. パーツ搬送路の終端周辺の整列操作部の部分断面図である。It is a fragmentary sectional view of the alignment operation part around the terminal end of a parts conveyance path. パーツ搬送路におけるパーツの姿勢を示す概略図であり、(a)は正面図、(b)は側面図である。It is the schematic which shows the attitude | position of the parts in a parts conveyance path, (a) is a front view, (b) is a side view. 気体噴出孔の変形例を示す概略図である。It is the schematic which shows the modification of a gas ejection hole.

符号の説明Explanation of symbols

1 パーツフィーダ
2 整列機構
3 送り機構
4 ベース
5 磁性体電極
6 コイル(パーツ)
7 コイル芯
8 ワイヤ
9 樹脂層
13 ホッパー部
14 整列操作部
15 流下路
16 磁力調整機構
18 貯留空間部
19 投入口
20 搬送機
21 無端ベルト
22 ローラ
25 ケーシング
26 電磁石
27 回転板
28 磁極部
28a 円弧状先端
29 パーツ貯留部
30 パーツ搬送路
31 カバー
32 コア
33 第1磁極体
33a 縁部
34 第2磁極体
34a 突起
35 磁場発生空間部
36 回転軸
37 スペーサ
38 プーリ
39 タイミングベルト
40 回転板駆動源
41 貯留部形成部材
42 レベルセンサ
43 連通路
44 誘導部
46 搬送台
47 支持台
48 振動発生部
49 送り通路
50 監視センサ
51 加振手段
52 板ばね
54 導出部材
55 切欠部
56 溝部
57 パーツ回転部
60 気体噴出機構
61 気体噴出孔
62 噴出部
63 連通孔
DESCRIPTION OF SYMBOLS 1 Parts feeder 2 Alignment mechanism 3 Feeding mechanism 4 Base 5 Magnetic body electrode 6 Coil (parts)
7 Coil core 8 Wire 9 Resin layer 13 Hopper part 14 Alignment operation part 15 Down flow path 16 Magnetic adjustment mechanism 18 Storage space part 19 Loading port 20 Transporter 21 Endless belt 22 Roller 25 Casing 26 Electromagnet 27 Rotary plate 28 Magnetic pole part 28a Arc shape Tip 29 Parts storage section 30 Parts conveyance path 31 Cover 32 Core 33 First magnetic pole body 33a Edge 34 Second magnetic pole body 34a Protrusion 35 Magnetic field generation space section 36 Rotating shaft 37 Spacer 38 Pulley 39 Timing belt 40 Rotating plate drive source 41 Storage Part forming member 42 Level sensor 43 Communication path 44 Guide section 46 Transport base 47 Support base 48 Vibration generating section 49 Feed path 50 Monitoring sensor 51 Excitation means 52 Leaf spring 54 Deriving member 55 Notch section 56 Groove section 57 Parts rotating section 60 Gas ejection Mechanism 61 Gas ejection hole 62 Ejection part 63 Communication hole

Claims (6)

一側面の両端部に磁性体電極が形成されたパーツを、磁性体電極が前後に位置する姿勢に整列して移送するパーツフィーダであって、
磁極部の先端を連続する円弧状に形成した磁力発生源と、
前記磁極部の円弧状先端に被せた状態で回転可能な非磁性体製の回転板と、
該回転板を挟んで前記磁極部とは反対側に設けられたパーツ貯留部と、
該パーツ貯留部に下端が連通し、前記磁極部の連続する円弧状先端に沿って設けられた円弧状のパーツ搬送路と、
該パーツ搬送路の終端に配置され、パーツをパーツ搬送路から回転板の外方へ導出する導出部材と、
を備え、
前記磁性体電極を磁極部の磁力により吸引してパーツ貯留部内のパーツを回転板の表面に吸着させ、この吸着状態で回転板を回転してパーツをパーツ搬送路へ送り出して整列することを特徴とするパーツフィーダ。
A parts feeder that transfers parts in which magnetic body electrodes are formed on both ends of one side surface, aligned in a posture in which the magnetic body electrodes are positioned in front and back,
A magnetic force source formed in a continuous arc shape at the tip of the magnetic pole part;
A rotating plate made of a non-magnetic material that can be rotated in a state of covering the arcuate tip of the magnetic pole portion;
A parts storage part provided on the opposite side of the magnetic pole part across the rotating plate;
An arc-shaped parts conveyance path provided along the arc-shaped tip of the magnetic pole part, the lower end communicating with the parts storage part,
A lead-out member that is disposed at the end of the parts transport path and leads the parts from the parts transport path to the outside of the rotating plate;
With
The magnetic material electrode is attracted by the magnetic force of the magnetic pole part, and the parts in the part storage part are attracted to the surface of the rotating plate, and in this attracting state, the rotating plate is rotated and the parts are sent out to the parts conveying path and aligned. A parts feeder.
前記回転板の回転中心を磁極部の円弧状先端の曲率中心よりもパーツ貯留部側へ偏心したことを特徴とする請求項1に記載のパーツフィーダ。   2. The parts feeder according to claim 1, wherein the rotation center of the rotating plate is decentered toward the parts storage part side from the center of curvature of the arcuate tip of the magnetic pole part. 前記パーツ搬送路へ向けて圧縮気体を噴出可能な気体噴出機構を備え、
該気体噴出機構は、両方の磁性体電極がパーツ搬送路上に位置し、且つ回転板に吸着した整列姿勢のパーツをパーツ搬送路から落下させない一方、整列姿勢以外の状態で回転板に吸着している非整列姿勢のパーツをパーツ搬送路から落下させる程度の勢いで圧縮気体を噴出するように設定されたことを特徴とする請求項1または請求項2に記載のパーツフィーダ。
Provided with a gas ejection mechanism capable of ejecting compressed gas toward the parts conveyance path,
The gas ejection mechanism is configured such that both magnetic electrodes are positioned on the parts conveyance path and the parts in the aligned posture that are attracted to the rotating plate are not dropped from the parts conveying path, while they are attracted to the rotating plate in a state other than the aligned posture. 3. The parts feeder according to claim 1, wherein the parts feeder is set so as to eject the compressed gas with such a momentum that the parts in a non-aligned posture are dropped from the parts conveyance path.
前記磁極部が生じる磁力の強さを調整可能な磁力調整機構を備え、
該磁力調整機構は、両方の磁性体電極がパーツ搬送路上に位置し、且つ回転板に吸着した整列姿勢のパーツをパーツ搬送路に維持する一方、整列姿勢以外の状態で回転板に吸着している非整列姿勢のパーツをパーツ搬送路から落下させる程度の強さに磁極部からの磁力を調整可能としたことを特徴とする請求項1から請求項3のいずれかに記載のパーツフィーダ。
A magnetic force adjustment mechanism capable of adjusting the strength of the magnetic force generated by the magnetic pole part,
The magnetic force adjusting mechanism maintains both of the magnetic body electrodes positioned on the parts conveyance path and maintains the aligned posture parts adsorbed on the rotating plate in the parts conveying path, while adsorbing them to the rotating plate in a state other than the alignment posture. The parts feeder according to any one of claims 1 to 3, wherein the magnetic force from the magnetic pole part can be adjusted to such a strength that the non-aligned parts are dropped from the parts conveyance path.
前記パーツ搬送路の外方に、パーツを摺動しながらパーツ搬送路の終端へ向けて誘導する円弧壁状の誘導部を備えたことを特徴とする請求項1から請求項4のいずれかに記載のパーツフィーダ。   5. The arcuate wall-shaped guiding portion that guides toward the end of the parts conveying path while sliding the parts outside the parts conveying path. The parts feeder described. 前記パーツ搬送路の終端に、底部および側部をパーツの送り方向へ進行するにしたがって次第に傾けたパーツ回転部を設けたことを特徴とする請求項1から請求項5のいずれかに記載のパーツフィーダ。   The part according to any one of claims 1 to 5, wherein a part rotating part that is gradually inclined as the bottom part and the side part are advanced in the part feeding direction is provided at the end of the part conveying path. feeder.
JP2005235133A 2005-08-15 2005-08-15 Parts feeder Expired - Fee Related JP4901158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235133A JP4901158B2 (en) 2005-08-15 2005-08-15 Parts feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235133A JP4901158B2 (en) 2005-08-15 2005-08-15 Parts feeder

Publications (2)

Publication Number Publication Date
JP2007050936A JP2007050936A (en) 2007-03-01
JP4901158B2 true JP4901158B2 (en) 2012-03-21

Family

ID=37915659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235133A Expired - Fee Related JP4901158B2 (en) 2005-08-15 2005-08-15 Parts feeder

Country Status (1)

Country Link
JP (1) JP4901158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102292105B1 (en) * 2020-12-19 2021-08-19 이영조 Part feeder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460915B2 (en) 2007-03-01 2013-06-11 Microbiopharm Japan Co., Ltd. Escherichia coli expressing the cytochrome P-450 gene and a method for microbial conversion using them
CN110014260B (en) * 2019-01-28 2023-06-16 河北骄阳焊工有限公司 Cross wire feeding hopper for welding machine and method for carrying out cross wire feeding by using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826462A (en) * 1994-07-15 1996-01-30 Kao Corp Article holder and article arranging device
JPH09315557A (en) * 1996-05-30 1997-12-09 Ntn Corp Workpiece aligning device
JPH11349128A (en) * 1998-06-05 1999-12-21 Shinko Electric Co Ltd Vibrating part supply device
JP3796971B2 (en) * 1998-07-16 2006-07-12 松下電器産業株式会社 Parts alignment device
JP2002193430A (en) * 2000-12-28 2002-07-10 Musashi Seimitsu Ind Co Ltd Parts feeder
JP3811856B2 (en) * 2002-12-25 2006-08-23 株式会社サイサンテック Parts alignment supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102292105B1 (en) * 2020-12-19 2021-08-19 이영조 Part feeder

Also Published As

Publication number Publication date
JP2007050936A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
KR101196502B1 (en) Workpiece Feeding Apparatus
JP2016044056A (en) Article sorting device
US7119299B2 (en) Work inspection system
KR20220130586A (en) Component receiving device
US8025285B2 (en) Sheet take out apparatus and sheet processing apparatus
JP4901158B2 (en) Parts feeder
CN114476597A (en) Method and system for aligning conveyed articles
JP2004168516A (en) Alignment apparatus for electronic component
JP2008056363A (en) Paper sheet separation mechanism, paper sheet separation method, and paper sheet feeder
JP2020158260A (en) Arrangement method and arrangement device
JP5491307B2 (en) Method and apparatus for aligning top and bottom direction of container lid
JP2004115273A (en) Chip automatic separation and conveyance device
JP3212292B2 (en) Electronic component supply device
JP4055221B2 (en) Parts sorting device
CN218554378U (en) Magnetism-adjustable magnetic separator
JP6482332B2 (en) Can transporting apparatus and printing apparatus
JP3318601B2 (en) Cap cutting device
JPH11240615A (en) Parts aligning and feeding device
JPH0640545A (en) Part regular feed device for vibrating part conveyor
JP2002265036A (en) Cartridge aligning method and device
JP3148129U (en) Rod-shaped body alignment device
JPH0713828U (en) Parts feeding device
WO2017154874A1 (en) Automatic continuous image engraving device and method
JP6619265B2 (en) Sheet-like medium take-up and conveying device
JP2002265035A (en) Component carrying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees