Nothing Special   »   [go: up one dir, main page]

JP4998706B2 - Transformer internal abnormality diagnosis method - Google Patents

Transformer internal abnormality diagnosis method Download PDF

Info

Publication number
JP4998706B2
JP4998706B2 JP2007016240A JP2007016240A JP4998706B2 JP 4998706 B2 JP4998706 B2 JP 4998706B2 JP 2007016240 A JP2007016240 A JP 2007016240A JP 2007016240 A JP2007016240 A JP 2007016240A JP 4998706 B2 JP4998706 B2 JP 4998706B2
Authority
JP
Japan
Prior art keywords
signal
detection signal
transformer
current sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007016240A
Other languages
Japanese (ja)
Other versions
JP2008180681A (en
Inventor
哲平 上山
清佳 末長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007016240A priority Critical patent/JP4998706B2/en
Publication of JP2008180681A publication Critical patent/JP2008180681A/en
Application granted granted Critical
Publication of JP4998706B2 publication Critical patent/JP4998706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、変圧器の経年劣化等によって変圧器内部で発生する部分放電(内部異常)を検出するための変圧器の内部異常診断方法に関するものである。   The present invention relates to an internal abnormality diagnosis method for a transformer for detecting a partial discharge (internal abnormality) generated inside the transformer due to aged deterioration of the transformer or the like.

従来、変圧器の内部異常診断方法としては、変圧器の絶縁油に含まれるガスの成分を分析(油中ガス分析)する方法、変圧器内部の部分放電によって生じる弾性波(超音波等)をアコースティックエミッションセンサ(AEセンサ、超音波センサ)で検出する方法、部分放電発生時に接地線を流れる放電パルス信号を電流センサで検出する方法、前記のAEセンサによる信号と電流センサによる信号の時間差が同一のケースが連続した場合に放電と判定する方法(例えば、特許文献1参照)等が実用化されている。
特開平4−194762号公報
Conventionally, as a method for diagnosing the internal abnormality of a transformer, a method of analyzing a gas component contained in the insulating oil of the transformer (gas analysis in oil), an elastic wave (ultrasonic wave, etc.) generated by partial discharge inside the transformer is used. A method of detecting with an acoustic emission sensor (AE sensor, ultrasonic sensor), a method of detecting a discharge pulse signal flowing through the ground line when a partial discharge occurs with a current sensor, and the time difference between the signal from the AE sensor and the signal from the current sensor is the same For example, a method of determining a discharge when the cases are continuous (see, for example, Patent Document 1) has been put into practical use.
JP-A-4-194762

しかし、従来の変圧器の内部異常診断方法については、以下のような問題点があった。   However, the conventional method for diagnosing internal abnormality of a transformer has the following problems.

まず、油中ガス分析で内部異常を診断する方法は、診断コストが高いため(例えば、診断コストは15千円/台)、診断頻度が上げられないという問題があり、診断周期が長期化していた(例えば、2年周期で診断)。   First, the method of diagnosing internal abnormalities by gas analysis in oil has a problem that the diagnosis frequency cannot be increased because the diagnosis cost is high (for example, the diagnosis cost is 15,000 yen / unit), and the diagnosis cycle is prolonged. (For example, diagnosed every two years).

また、AEセンサによる方法は、簡便な方法ではあるもののノイズの問題があり、内部の異常によって生じた信号かノイズかの判定が困難で普及には至っていない。   In addition, although the method using the AE sensor is a simple method, there is a problem of noise, and it is difficult to determine whether the signal is caused by an internal abnormality or noise, so that the method has not been widely used.

また、電流センサによる方法も、変圧器外部のコロナ放電によるパルス信号を拾ってしまうなどノイズの影響があり、やはり普及には至っていない。   In addition, the current sensor method is not widely used because of the influence of noise such as picking up a pulse signal due to corona discharge outside the transformer.

さらに、前記特許文献1のように、AEセンサと電流センサを両方用いて信号検出を行い、両センサからの信号の時間差が同一となる信号検出が複数回続いた場合に部分放電と判定する方法は、偶然連続してノイズを拾ってしまう誤検出を判別できないという問題と、連続して放電しない初期放電を検出できないという問題がある。   Further, as in Patent Document 1, a method of performing signal detection using both an AE sensor and a current sensor, and determining a partial discharge when signal detection in which the time difference between the signals from both sensors is the same continues multiple times. However, there are a problem that it is impossible to determine a false detection that picks up noise continuously by accident, and a problem that an initial discharge that does not discharge continuously cannot be detected.

本発明は、上記の問題点を解決するためになされたものであり、従来よりも高精度で安価に変圧器内部の異常診断を行うことのできる変圧器の内部異常診断方法を提供することを目的としている。   The present invention has been made to solve the above-described problems, and provides a transformer internal abnormality diagnosis method capable of performing abnormality diagnosis inside a transformer with higher accuracy and lower cost than conventional ones. It is aimed.

本発明は、上記課題を解決するために、以下の特徴を有する。   The present invention has the following features to solve the above problems.

[1]変圧器の内部異常である部分放電を検出する変圧器の内部異常診断方法であって、部分放電によって生じる弾性波を検出するアコースティックエミッションセンサと、接地線に流れる電流を検出する電流センサと、商用電源の電圧を検出する電圧検出端子とを設け、前記電流センサの検出信号が前記商用電源電圧(変圧器への印加電圧と同期し、かつ前記電流センサの検出信号と前記アコースティックエミッションセンサの検出信号との時間差が同一となる場合が一定時間内に所定数以上ある場合に、部分放電と判定することを特徴とする変圧器の内部異常診断方法。 [1] A transformer internal abnormality diagnosis method for detecting a partial discharge which is an internal abnormality of a transformer, an acoustic emission sensor for detecting an elastic wave generated by the partial discharge, and a current sensor for detecting a current flowing through a ground line And a voltage detection terminal for detecting the voltage of the commercial power supply, the detection signal of the current sensor is synchronized with the commercial power supply voltage ( voltage applied to the transformer ) , and the detection signal of the current sensor and the acoustic emission A method for diagnosing an internal abnormality of a transformer, characterized in that a partial discharge is determined when a predetermined number or more of time differences from a sensor detection signal are the same within a certain time.

[2]前記アコースティックエミッションセンサからの信号と前記電流センサからの信号を、商用電源電圧が瞬時値0Vの時点から0.5サイクル分ごとに区切り、0.5サイクルごとに、それぞれの検出信号とその発生時間を記録することにより、前記アコースティックエミッションセンサの検出信号と前記電流センサの検出信号が当該商用電源電圧(変圧器への印加電圧の波高値と同期する範囲にあるとき、部分放電と判定することを特徴とする前記[1]に記載の変圧器の内部異常診断方法。 [2] The signal from the acoustic emission sensor and the signal from the current sensor are separated every 0.5 cycle from the time when the commercial power supply voltage is an instantaneous value of 0 V, and the detection signal By recording the generation time, when the detection signal of the acoustic emission sensor and the detection signal of the current sensor are in a range synchronized with the peak value of the commercial power supply voltage ( voltage applied to the transformer ) , partial discharge The method for diagnosing an internal abnormality of a transformer as described in [1], wherein the determination is made .

[3]前記アコースティックエミッションセンサからの信号と前記電流センサからの信号を、商用電源電圧が瞬時値0Vの時点から0.5サイクル分毎に区切り、0.5サイクル毎に得られる、前記アコースティックエミッションセンサによる検出信号の大きさPAEと、前記電流センサによる検出信号の大きさPCTを用いてノイズを除去した後、前記アコースティックエミッションセンサによる検出信号の発生時間TAEと、前記電流センサによる検出信号の発生時間TCTを用いて、前記電流センサによる検出信号の発生時間T CT を原点Oからの距離で表し、前記アコースティックエミッションセンサによる検出信号の発生時間T AE と前記電流センサによる検出信号の発生時間T CT との信号発生時間差Δt(=T AE −T CT )を縦軸から円周方向への回転角度で表したベクトル表示によるグラフを描画し、そのグラフに基づいて部分放電を判定することを特徴とする前記[1]または[2]に記載の変圧器の内部異常診断方法。 [3] The acoustic emission obtained by dividing the signal from the acoustic emission sensor and the signal from the current sensor every 0.5 cycle from the time when the commercial power supply voltage is an instantaneous value of 0 V, and is obtained every 0.5 cycle. the size P AE detection signal by the sensor, after removal of the noise by using the magnitude P CT of a detection signal from the current sensor, the occurrence time T AE detection signal from the acoustic emission sensor, detected by the current sensor Using the signal generation time T CT , the detection time T CT of the detection signal by the current sensor is expressed as a distance from the origin O, the generation time T AE of the detection signal by the acoustic emission sensor and the detection signal of the current sensor signal generation time difference Δt of the generation time T CT (= T AE -T Draw a graph T) from the longitudinal axis by the vector representation expressed in the rotation angle in the circumferential direction, according to [1] or [2], wherein the determining the partial discharge on the basis of the graph Transformer internal abnormality diagnosis method.

本発明によって、変圧器内の部分放電による内部異常を、高コストであった従来のガス分析による診断方法よりも安価に、また精度の面で問題のあった従来の部分放電診断方法よりも高精度に診断を行うことができる。その結果、変圧器内の部分放電による内部異常を日常点検によって的確に検知することが可能となる。   According to the present invention, internal abnormality due to partial discharge in the transformer is cheaper than the conventional diagnostic method by gas analysis, which is expensive, and higher than the conventional partial discharge diagnostic method which has a problem in accuracy. Diagnosis can be made with accuracy. As a result, it is possible to accurately detect internal abnormality due to partial discharge in the transformer by daily inspection.

本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態において用いる変圧器の内部異常診断システムを示すものである。この診断システムは、診断対象変圧器1内に対して、変圧器1内の部分放電によって生じる弾性波(超音波)信号を検出するアコースティックエミッションセンサ(AEセンサ、超音波センサ)2およびその増幅器(AEプリアンプ)3と、部分放電発生時に接地線を流れる放電パルス信号を検出する電流センサ4と、商用電源6の電圧を検出する電圧検出端子7と、それらの検出データに基づいて演算・画像表示をして部分放電の判定を行う演算・表示装置5から構成されている。ここで、商用電源電圧を検出しているのは、変圧器1への印加電圧は商用電源電圧と同じ位相であるので、印加電圧の検出を商用電源電圧の検出で代用するためである。   FIG. 1 shows an internal abnormality diagnosis system for a transformer used in an embodiment of the present invention. This diagnostic system includes an acoustic emission sensor (AE sensor, ultrasonic sensor) 2 that detects an elastic wave (ultrasonic wave) signal generated by partial discharge in the transformer 1 and an amplifier ( AE preamplifier) 3, current sensor 4 that detects a discharge pulse signal that flows through the ground line when partial discharge occurs, voltage detection terminal 7 that detects the voltage of commercial power supply 6, and calculation / image display based on the detection data The calculation / display device 5 is configured to determine partial discharge. Here, the commercial power supply voltage is detected because the voltage applied to the transformer 1 is in the same phase as the commercial power supply voltage, and thus the detection of the applied voltage is substituted by the detection of the commercial power supply voltage.

なお、図2は、AEセンサ2、電流センサ4、電圧検出端子7から演算・表示装置5に送られてくる信号の一例を示したものである。   FIG. 2 shows an example of signals sent from the AE sensor 2, the current sensor 4, and the voltage detection terminal 7 to the calculation / display device 5.

そして、この実施形態においては、電流センサ4の検出信号が商用電源電圧(変圧器1への印加電圧)と同期し、かつ電流センサ4の検出信号とAEセンサ2の検出信号との信号発生時間差Δtが同一となる場合が一定時間内に所定数以上(閾値数以上)ある場合に、部分放電と判定するようにしている。   In this embodiment, the detection signal of the current sensor 4 is synchronized with the commercial power supply voltage (voltage applied to the transformer 1), and the signal generation time difference between the detection signal of the current sensor 4 and the detection signal of the AE sensor 2 is detected. When Δt is the same, if there is a predetermined number or more (threshold number or more) within a certain time, it is determined that the partial discharge has occurred.

具体的には、商用電源電圧の瞬時値0Vを起点として、0.5サイクル(例えば、60サイクルの場合は1/120(S))毎に区切り、0.5サイクル毎に得られる、AEセンサ2による検出信号の大きさPAEと、電流センサ4による検出信号の大きさPCTを用いてノイズを除去した後、AEセンサ2による検出信号の発生時間TAEと、電流センサ4による検出信号の発生時間TCTを用いて、図3に示すような、電流センサ4による検出信号の発生時間TCTと前述の信号発生時間差Δt(=TAE−TCT)をベクトル表示したグラフを描画し、そのグラフを網目に区切った区域内の点密度が閾値以上の区域が、電圧放電判定範囲(商用電源電圧の波高値と同期する範囲)にあるとき、部分放電と判定するようにしている。 Specifically, an AE sensor obtained every 0.5 cycle is divided into 0.5 cycles (for example, 1/120 (S) in the case of 60 cycles) starting from the instantaneous value of commercial power supply voltage 0V. the size P AE detection signal by 2, after removal of the noise by using the magnitude P CT of the detection signal from the current sensor 4, and the occurrence time T AE detection signal by the AE sensor 2, a detection signal from the current sensor 4 using the generation time T CT, as shown in FIG. 3, draws a graph generation time T CT with the aforementioned signal occurrence time difference Δt a (= T AE -T CT) was the vector representation of the signal detected by the current sensor 4 When the area where the point density in the area where the graph is divided into meshes is equal to or higher than the threshold is within the voltage discharge determination range (the range synchronized with the peak value of the commercial power supply voltage), it is determined that the partial discharge is detected.

以下に、図3に示すグラフの描画とそのグラフに基づく部分放電の判定の手順について説明する。   The procedure for drawing the graph shown in FIG. 3 and determining partial discharge based on the graph will be described below.

まず、ノイズ除去のために、電流センサ4による検出信号の大きさPCTとAEセンサ2による検出信号の大きさPAEの積がある閾値以上(またはある範囲内)であるような信号を取り出す。これは、変圧器1の内部放電により得られる信号の大きさと、変電所単位で発生する大きなノイズ、小さなノイズとを区別することで、大雑把にノイズを取り除くためである。 First, in order to remove noise, a signal is extracted such that the product of the magnitude P CT of the detection signal from the current sensor 4 and the magnitude P AE of the detection signal from the AE sensor 2 is greater than or equal to a certain threshold value (or within a certain range). . This is because noise is roughly removed by distinguishing between the magnitude of the signal obtained by the internal discharge of the transformer 1 and the large noise and small noise generated in each substation.

続いて、残った信号から信号発生時間差Δt(=TAE−TCT)が負である信号を取り除く。これは、変圧器1内の部分放電によって生じる弾性波(超音波)信号の伝播速度は、部分放電によって接地線を流れる放電パルス信号の伝達速度に比べて遅いので、放電パルス信号を検出する電流センサ4の方が弾性波(超音波)信号を検出するAEセンサ2よりも早く信号検出することを利用したノイズ除去である。すなわち、信号発生時間差Δtが負である信号は、部分放電による信号ではないからである。 Subsequently, a signal having a negative signal generation time difference Δt (= T AE −T CT ) is removed from the remaining signals. This is because the propagation speed of the elastic wave (ultrasonic wave) signal generated by the partial discharge in the transformer 1 is slower than the transmission speed of the discharge pulse signal flowing through the ground line by the partial discharge, and thus the current for detecting the discharge pulse signal. This is noise removal utilizing the fact that the sensor 4 detects the signal earlier than the AE sensor 2 that detects the elastic wave (ultrasonic wave) signal. That is, a signal with a negative signal generation time difference Δt is not a signal due to partial discharge.

上記のようにしておおまかなノイズを除いた信号から、電流信号発生時間TCTと信号発生時間差Δtを用いて、図3に示すような、ベクトル表示によるグラフを描画する。 Using the current signal generation time TCT and the signal generation time difference Δt from the signal from which rough noise has been removed as described above, a vector display graph as shown in FIG. 3 is drawn.

このベクトル表示によるグラフは、図3(a)に示すように、電流信号発生時間TCTを原点Oからの距離で表し、信号発生時間差Δtを縦軸から円周方向への回転角度で表したものである。 In this vector display graph, as shown in FIG. 3A, the current signal generation time TCT is represented by the distance from the origin O, and the signal generation time difference Δt is represented by the rotation angle from the vertical axis to the circumferential direction. Is.

これにより、電流信号発生時間がTCT1で、信号発生時間差がΔtである信号は、図3(a)中のA点(TCT1、Δt)の位置に表示され、電流信号発生時間がTCT2で、信号発生時間差がΔtである信号は、図3(a)中のB点(TCT2、Δt)の位置に表示される。 As a result, the signal having the current signal generation time T CT1 and the signal generation time difference Δt 1 is displayed at the position of point A (T CT1 , Δt 1 ) in FIG. in T CT2, signal signal occurrence time difference is Delta] t 2 is FIGS. 3 (a) in the point B (T CT2, Δt 2) is displayed at the position of.

そして、上記のようにして描画されたグラフにおいては、変圧器1内で部分放電現象がある場合は、
(ア)部分放電の発生は印加電圧の波高値と同期する。
(イ)放電点が同一の場合、信号発生時間差Δtが同一の信号が得られる。
という特性から、描画される点が図3(b)に示すように偏在することになる。
In the graph drawn as described above, when there is a partial discharge phenomenon in the transformer 1,
(A) The occurrence of partial discharge is synchronized with the peak value of the applied voltage.
(A) When the discharge points are the same, signals having the same signal generation time difference Δt are obtained.
Therefore, the drawn points are unevenly distributed as shown in FIG.

そこで、この偏在具合について、図3(b)に示すように、グラフをグリッド状(網目状)に区切った区域内の点数として検出し、点数の多い(密度の高い)区域が印加電圧(商用電源電圧)の波高値と同期している場合は、部分放電であると判定する。   Therefore, as shown in FIG. 3 (b), this uneven distribution is detected as the number of points in the area obtained by dividing the graph into a grid (mesh), and the area with a large number of points (high density) is applied voltage (commercial). If it is synchronized with the peak value of the power supply voltage), it is determined that the partial discharge has occurred.

これに対して、ノイズの場合は、信号発生時間差Δtが一定でないため、グラフ上に全面的に分布することとなり、図3(b)に示すような偏在は生じない。   On the other hand, in the case of noise, since the signal generation time difference Δt is not constant, it is distributed over the entire graph, and uneven distribution as shown in FIG. 3B does not occur.

このようにして、この実施形態では、AEセンサおよび電流センサによる診断方法が本質的にノイズを拾い易いという点を克服することができる。   Thus, in this embodiment, it is possible to overcome the point that the diagnostic method using the AE sensor and the current sensor is inherently easy to pick up noise.

また、前記特許文献1に記載の診断方法の問題点である、偶然連続してノイズを拾ってしまう誤検出を判別できないという問題や連続して放電しない初期放電を検出できないという問題についても、この実施形態では、検出信号の全体的傾向から部分放電を判定しているうえ、印加電圧波高値と同期する検出信号を重視することで更なるノイズ除去が可能となっており、より高精度で部分放電を検知することができる。   In addition, regarding the problem of the diagnostic method described in Patent Document 1, the problem that it is not possible to determine the false detection that picks up noise by chance or the initial discharge that does not discharge continuously cannot be detected. In the embodiment, the partial discharge is determined from the overall tendency of the detection signal, and further noise removal is possible by placing importance on the detection signal synchronized with the applied voltage peak value, and the partial discharge can be performed with higher accuracy. Discharge can be detected.

さらに、検出信号を図3に示したようなグラフに描画することにより、演算・表示装置5による判定結果を作業者が視覚的に最終確認することができる。   Furthermore, by drawing the detection signal in a graph as shown in FIG. 3, the operator can visually confirm the determination result by the calculation / display device 5 finally.

したがって、この実施形態においては、変圧器1内の部分放電による内部異常を、高コストであった従来のガス分析による診断方法よりも安価に、また精度の面で問題のあった従来の部分放電診断方法よりも高精度に診断を行うことができる。その結果、変圧器1内の部分放電による内部異常を日常点検によって的確に検知することが可能となる。   Therefore, in this embodiment, the internal abnormality due to the partial discharge in the transformer 1 is cheaper than the conventional diagnostic method by gas analysis, which is expensive, and the conventional partial discharge has a problem in accuracy. Diagnosis can be performed with higher accuracy than the diagnostic method. As a result, it is possible to accurately detect internal abnormality due to partial discharge in the transformer 1 through daily inspection.

本発明の実施例として、上記の実施形態に基づいて、変圧器の内部異常(部分放電)の診断を行った例を示す。   As an example of the present invention, an example in which an internal abnormality (partial discharge) of a transformer is diagnosed based on the above embodiment will be described.

なお、その際に使用した各診断機器の諸元は、
AEセンサ 周波数帯域:300kHz〜2.2MHz
AEプリアンプ 周波数帯域:100Hz〜20MHz
AEテスタ 最大入力電圧:50mVp−p
周波数特性:100kHz〜2MHz(−3dB)
検出感度:50μV〜5mV
電流センサ 周波数特性:20kHz〜30MHz
である。
The specifications of each diagnostic device used at that time are as follows:
AE sensor frequency band: 300 kHz to 2.2 MHz
AE preamplifier Frequency band: 100Hz to 20MHz
AE tester Maximum input voltage: 50mVp-p
Frequency characteristics: 100 kHz to 2 MHz (-3 dB)
Detection sensitivity: 50 μV to 5 mV
Current sensor Frequency characteristics: 20 kHz to 30 MHz
It is.

そして、その診断結果を図4、図5に示す。それぞれの図において、(a)が各センサからの信号であり、(b)が電流信号発生時間TCTと信号発生時間差Δtをベクトル表示で描画したグラフである。 The diagnostic results are shown in FIGS. In each figure, (a) is a signal from each sensor, and (b) is a graph in which a current signal generation time TCT and a signal generation time difference Δt are drawn in vector display.

図4については、図4(b)に示すように、描画された点が偏在しており、その偏在した区域が商用電源電圧の波高値と同期していることから、部分放電であると判定された。   For FIG. 4, as shown in FIG. 4B, the drawn points are unevenly distributed, and the unevenly distributed area is synchronized with the peak value of the commercial power supply voltage. It was done.

これに対して、図5については、図5(b)に示すように、描画された点がグラフ上に散らばって存在しており、部分放電ではないと判定された。   On the other hand, in FIG. 5, as shown in FIG. 5B, the drawn points are scattered on the graph, and it is determined that the discharge is not partial discharge.

このようにして、変圧器の内部異常診断を的確に行うことができた。   Thus, the internal abnormality diagnosis of the transformer could be performed accurately.

本発明の一実施形態における内部異常診断システムを示す図である。It is a figure which shows the internal abnormality diagnosis system in one Embodiment of this invention. 本発明の一実施形態における各センサからの信号の一例を示す図である。It is a figure which shows an example of the signal from each sensor in one Embodiment of this invention. 本発明の一実施形態におけるベクトル表示グラフを示す図である。It is a figure which shows the vector display graph in one Embodiment of this invention. 本発明の実施例における診断結果を示す図である(内部放電あり)。It is a figure which shows the diagnostic result in the Example of this invention (with internal discharge). 本発明の実施例における診断結果を示す図である(内部放電なし)。It is a figure which shows the diagnostic result in the Example of this invention (no internal discharge).

符号の説明Explanation of symbols

1 変圧器
2 AEセンサ
3 AEプリアンプ
4 電流センサ
5 演算・表示装置
6 商用電源
7 電圧検出端子
DESCRIPTION OF SYMBOLS 1 Transformer 2 AE sensor 3 AE preamplifier 4 Current sensor 5 Calculation / display apparatus 6 Commercial power supply 7 Voltage detection terminal

Claims (3)

変圧器の内部異常である部分放電を検出する変圧器の内部異常診断方法であって、部分放電によって生じる弾性波を検出するアコースティックエミッションセンサと、接地線に流れる電流を検出する電流センサと、商用電源の電圧を検出する電圧検出端子とを設け、前記電流センサの検出信号が前記商用電源電圧(変圧器への印加電圧と同期し、かつ前記電流センサの検出信号と前記アコースティックエミッションセンサの検出信号との時間差が同一となる場合が一定時間内に所定数以上ある場合に、部分放電と判定することを特徴とする変圧器の内部異常診断方法。 A method for diagnosing an internal abnormality of a transformer that detects a partial discharge that is an internal abnormality of a transformer, an acoustic emission sensor that detects an elastic wave generated by the partial discharge, a current sensor that detects a current flowing through a ground wire, and a commercial A voltage detection terminal for detecting a voltage of the power supply , wherein the detection signal of the current sensor is synchronized with the commercial power supply voltage ( voltage applied to the transformer ) , and the detection signal of the current sensor and the detection of the acoustic emission sensor A method for diagnosing an internal abnormality of a transformer, characterized in that a partial discharge is determined when a predetermined number or more of time differences from a signal are the same within a certain time. 前記アコースティックエミッションセンサからの信号と前記電流センサからの信号を、商用電源電圧が瞬時値0Vの時点から0.5サイクル分ごとに区切り、0.5サイクルごとに、それぞれの検出信号とその発生時間を記録することにより、前記アコースティックエミッションセンサの検出信号と前記電流センサの検出信号が当該商用電源電圧(変圧器への印加電圧の波高値と同期する範囲にあるとき、部分放電と判定することを特徴とする請求項1に記載の変圧器の内部異常診断方法。 The signal from the acoustic emission sensor and the signal from the current sensor are divided every 0.5 cycle from the time when the commercial power supply voltage is an instantaneous value of 0 V, and each detection signal and its generation time are divided every 0.5 cycle. When the detection signal of the acoustic emission sensor and the detection signal of the current sensor are in a range synchronized with the peak value of the commercial power supply voltage ( voltage applied to the transformer ) , it is determined that the partial discharge has occurred. The method for diagnosing an internal abnormality of a transformer according to claim 1. 前記アコースティックエミッションセンサからの信号と前記電流センサからの信号を、商用電源電圧が瞬時値0Vの時点から0.5サイクル分毎に区切り、0.5サイクル毎に得られる、前記アコースティックエミッションセンサによる検出信号の大きさPAEと、前記電流センサによる検出信号の大きさPCTを用いてノイズを除去した後、前記アコースティックエミッションセンサによる検出信号の発生時間TAEと、前記電流センサによる検出信号の発生時間TCTを用いて、前記電流センサによる検出信号の発生時間T CT を原点Oからの距離で表し、前記アコースティックエミッションセンサによる検出信号の発生時間T AE と前記電流センサによる検出信号の発生時間T CT との信号発生時間差Δt(=T AE −T CT )を縦軸から円周方向への回転角度で表したベクトル表示によるグラフを描画し、そのグラフに基づいて部分放電を判定することを特徴とする請求項1または2に記載の変圧器の内部異常診断方法。 The signal from the acoustic emission sensor and the signal from the current sensor are separated every 0.5 cycle from the time when the commercial power supply voltage is an instantaneous value of 0V, and obtained by every 0.5 cycle. Detection by the acoustic emission sensor the size P AE signals, said after removing noise by using the magnitude P CT of the detection signal of the current sensor, the occurrence time T AE detection signal from the acoustic emission sensor, the generation of a detection signal from the current sensor Using the time T CT , the generation time T CT of the detection signal by the current sensor is expressed by the distance from the origin O, the generation time T AE of the detection signal by the acoustic emission sensor and the generation time T of the detection signal by the current sensor signal generation time difference Δt of the CT (= T AE -T CT) The internal abnormality of the transformer of Claim 1 or 2 which draws the graph by the vector display which represented the rotation angle to the circumferential direction from the vertical axis | shaft, and determines partial discharge based on the graph Diagnosis method.
JP2007016240A 2007-01-26 2007-01-26 Transformer internal abnormality diagnosis method Expired - Fee Related JP4998706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016240A JP4998706B2 (en) 2007-01-26 2007-01-26 Transformer internal abnormality diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016240A JP4998706B2 (en) 2007-01-26 2007-01-26 Transformer internal abnormality diagnosis method

Publications (2)

Publication Number Publication Date
JP2008180681A JP2008180681A (en) 2008-08-07
JP4998706B2 true JP4998706B2 (en) 2012-08-15

Family

ID=39724682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016240A Expired - Fee Related JP4998706B2 (en) 2007-01-26 2007-01-26 Transformer internal abnormality diagnosis method

Country Status (1)

Country Link
JP (1) JP4998706B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6116495B2 (en) * 2014-02-04 2017-04-19 三菱電機株式会社 DC arc detection apparatus and method
JP6448213B2 (en) * 2014-04-23 2019-01-09 東芝三菱電機産業システム株式会社 Partial discharge measuring device
WO2016098644A1 (en) 2014-12-18 2016-06-23 三菱電機株式会社 Partial discharge detection method for power apparatus, partial discharge detection device, partial discharge detection system, power apparatus for which partial discharge detection was performed using foregoing, and power apparatus manufacturing method including partial discharge detection method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527903A (en) * 1978-08-18 1980-02-28 Daihen Corp Method and unit for indicating partialy discharging position of electric apparatus
JPS5780572A (en) * 1980-11-07 1982-05-20 Fuji Electric Co Ltd Inner abnormality monitor for oil-filled electric apparatus
JP2536111B2 (en) * 1989-01-06 1996-09-18 株式会社高岳製作所 Automatic partial discharge monitoring device
JPH04160375A (en) * 1990-10-24 1992-06-03 Toshiba Corp Partial discharge monitor for transformer
JPH04194762A (en) * 1990-11-28 1992-07-14 Toshiba Corp Device for monitoring partial discharge of electric apparatus

Also Published As

Publication number Publication date
JP2008180681A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5228558B2 (en) Partial discharge detection device by electromagnetic wave detection and detection method thereof
JP2010085386A (en) Apparatus for measuring superhigh frequency partial discharge and partial discharge position for high-voltage power apparatus
US10422774B2 (en) System and method for detecting abnormality of rotating machines
JP5414413B2 (en) Partial discharge diagnostic method and partial discharge diagnostic device for gas insulated switchgear
KR20150037291A (en) Apparatus and method for monitoring partial discharge
KR102058841B1 (en) Systems and methods to detect generator collector flashover
JP2008045977A (en) Insulation diagnostic device and insulation diagnosis method
WO2022054482A1 (en) Partial discharge monitoring device and partial discharge monitoring method
JP6633006B2 (en) Partial discharge monitoring device and partial discharge monitoring method
JP4217728B2 (en) Lightning strike advanced evaluation apparatus and method, lightning charge evaluation apparatus and method, lightning charge advanced evaluation program
CN105203632A (en) Pipeline defect type distinguishing method based on ultrasonic guided waves
US20140216159A1 (en) Method and arrangement for determining and/or monitoring the state of a roller bearing
JP4998706B2 (en) Transformer internal abnormality diagnosis method
US8527221B2 (en) Method and an apparatus for monitoring an activity of partial electrical discharges in an electrical apparatus powered with direct voltage
JP2005147890A (en) Insulation abnormality diagnostic device
KR20120037374A (en) Instrument and method for detecting partial electric discharges in an electric apparatus
KR100665879B1 (en) Apparatus for finding and processing partial discharge in power equipments
JP2010133746A (en) Partial discharge discrimination method
JP2007292700A (en) Partial discharge position specifying method of stationary induction apparatus
JP2011237182A (en) Device and method for determining partial discharge
JP5419848B2 (en) Anomaly detection device, anomaly detection method, and anomaly detection program
RU2572662C2 (en) Device for defect detection in welds during welding
JPH0580112A (en) Failure diagnostic device for power cable
JP7447045B2 (en) Inspection system, inspection device and inspection method
JP6570439B2 (en) Spark plug evaluation device and spark plug evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees