JP4993266B2 - Electrolytic solution for electric double layer capacitor and electric double layer capacitor - Google Patents
Electrolytic solution for electric double layer capacitor and electric double layer capacitor Download PDFInfo
- Publication number
- JP4993266B2 JP4993266B2 JP2006273848A JP2006273848A JP4993266B2 JP 4993266 B2 JP4993266 B2 JP 4993266B2 JP 2006273848 A JP2006273848 A JP 2006273848A JP 2006273848 A JP2006273848 A JP 2006273848A JP 4993266 B2 JP4993266 B2 JP 4993266B2
- Authority
- JP
- Japan
- Prior art keywords
- double layer
- electric double
- layer capacitor
- electrolytic solution
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は、電気二重層キャパシタ用電解液及び電気二重層キャパシタに関し、より詳しくは、添加剤を加えることで活性炭シート電極及びセパレータ不織布への含浸性を向上させ内部抵抗を低減せしめた電気二重層キャパシタ用電解液及び該電解液を使用してなる電気二重層キャパシタに関する。 The present invention relates to an electrolytic solution for an electric double layer capacitor and an electric double layer capacitor, and more specifically, an electric double layer in which impregnation into an activated carbon sheet electrode and a separator nonwoven fabric is improved and internal resistance is reduced by adding an additive. The present invention relates to an electrolytic solution for a capacitor and an electric double layer capacitor using the electrolytic solution.
電気二重層キャパシタは、重金属等の環境負荷物質を含まず安全であり、優れた充放電サイクル寿命を有し、大電流充放電が可能という特徴を持つため、近年、無停電電源装置や電気自動車の補助電源等への利用が進められている。 Electric double layer capacitors are safe, free from environmentally hazardous substances such as heavy metals, have excellent charge / discharge cycle life, and can charge and discharge large currents. Is being used for auxiliary power supplies.
この電気二重層キャパシタは、出力密度向上のため、内部抵抗の低減化が求められており、その電気二重層キャパシタに用いられる電解液は電気化学的安定性、高電気伝導性、経時安定性等の特性が要求される。また、電気二重層キャパシタは過酷な条件下において使用されることが想定され、その電解液としては、低温から高温に至るまでの広い温度範囲において、電気二重層キャパシタを安定に作動させることのできる特性も重要である。 This electric double layer capacitor is required to reduce the internal resistance in order to improve the output density, and the electrolyte used for the electric double layer capacitor has electrochemical stability, high electrical conductivity, stability over time, etc. Characteristics are required. In addition, the electric double layer capacitor is assumed to be used under severe conditions, and the electrolyte can stably operate the electric double layer capacitor in a wide temperature range from low temperature to high temperature. Properties are also important.
従来の電気二重層キャパシタ用電解液は、プロピレンカーボネートやγ−ブチロラクトン等の非プロトン性有機溶媒中に、脂肪族第4級アンモニウム塩からなる常温で固体の電解質を溶解させたものが多用されている。 Conventional electrolytic solutions for electric double layer capacitors are often used in which a solid electrolyte made of an aliphatic quaternary ammonium salt is dissolved in an aprotic organic solvent such as propylene carbonate or γ-butyrolactone. Yes.
上記電解液は、電極となるシート状の活性炭およびセパレータに注液して浸漬させ、減圧、または加圧、または減圧と加圧を繰り返すことで含浸している。電解液が電極内部の細孔へ充分に行き渡らない場合や、セパレータが充分に濡れていないなどの未含浸部分が生じると、容量減少、内部抵抗増大、電流レート特性の悪化等の電気二重層キャパシタの電気的特性の劣化を招く。 The electrolytic solution is impregnated by being poured and immersed in a sheet-like activated carbon to be an electrode and a separator, and being subjected to reduced pressure or increased pressure, or repeated reduced pressure and increased pressure. Electric double layer capacitors such as reduced capacity, increased internal resistance, deteriorated current rate characteristics, etc., when electrolyte does not reach the pores inside the electrode sufficiently, or when an unimpregnated part such as the separator is not sufficiently wet occurs. It causes deterioration of the electrical characteristics of.
一方、未含浸部分を低減しようとする目的で、含浸工程で過度に減圧にしすぎると、電解液に使用しているプロピレンカーボネートやγ−ブチロラクトン等の非プロトン性有機溶媒が蒸発し、溶質となる脂肪族第4級アンモニウム塩の濃度が変化して、本来発現し得る電気的特性が損なわれてしまう恐れがある。 On the other hand, if the pressure is excessively reduced in the impregnation step for the purpose of reducing the unimpregnated portion, the aprotic organic solvent such as propylene carbonate and γ-butyrolactone used in the electrolyte solution is evaporated and becomes a solute. The concentration of the aliphatic quaternary ammonium salt may change, and the electrical characteristics that can be originally expressed may be impaired.
従って、従来知られている電解液より、電極やセパレータへの含浸性に優れ、かつ、電気的特性に優れた特性を有する電解液が望まれている。 Therefore, there is a demand for an electrolyte solution that has superior impregnation into electrodes and separators and superior electrical characteristics than the conventionally known electrolyte solutions.
例えば、電気二重層キャパシタ用電解液の添加剤として提案されてきた物質としては、ホスファゼン及びその誘導体が挙げられる。(例えば、特許文献1及び特許文献2参照) For example, phosphazenes and their derivatives are listed as substances that have been proposed as additives for electrolytic solutions for electric double layer capacitors. (For example, see Patent Document 1 and Patent Document 2)
しかし、上記ホスファゼン及びその誘導体は、電気二重層キャパシタへの難燃性の付与や、低温での特性改善が主な目的であり、電気二重層キャパシタの含浸性向上および内部抵抗低減の効果については不十分であった。 However, the above phosphazene and its derivatives are mainly intended to impart flame retardancy to the electric double layer capacitor and to improve the characteristics at low temperature. Regarding the effect of improving the impregnation property and reducing the internal resistance of the electric double layer capacitor, It was insufficient.
特許文献3、特許文献4、特許文献5、特許文献6、及び非特許文献1に、リチウムイオン電池などの負極用電解液添加剤としてポリエーテル変性シロキサンを加えることで、負極に導電性の薄膜を生じさせ、その薄膜によって、溶媒や電解質の分解を抑制し、耐電圧向上及びそれに伴う充放電サイクル特性が向上する旨が開示されている。 By adding polyether-modified siloxane as an electrolyte solution additive for a negative electrode such as a lithium ion battery to Patent Document 3, Patent Document 4, Patent Document 5, Patent Document 6, and Non-Patent Document 1, a conductive thin film on the negative electrode It is disclosed that the thin film suppresses the decomposition of the solvent and the electrolyte and improves the withstand voltage and the accompanying charge / discharge cycle characteristics.
しかし、電気二重層キャパシタの充放電メカニズムや電極反応はリチウムイオン電池とは異なるものである上に、上記添加剤を電気二重層キャパシタ用電解液に添加することの効果は不明である。 However, the charging / discharging mechanism and electrode reaction of the electric double layer capacitor are different from those of the lithium ion battery, and the effect of adding the additive to the electrolytic solution for the electric double layer capacitor is unknown.
本発明は、上記課題に鑑み、電極やセパレータへの含浸性に優れ、低粘性率、高電気伝導性かつ、広い電位窓を示し、電気化学的安定性に優れた電気二重層キャパシタ用電解液の提供、及び該電解液を使用し、広い温度範囲、とりわけ低温度領域において高容量、低内部抵抗であり、かつ、優れた耐電圧特性を示す電気二重層キャパシタを提供することである。 In view of the above problems, the present invention provides an electrolytic solution for an electric double layer capacitor that is excellent in impregnation into electrodes and separators, exhibits a low viscosity, high electrical conductivity, a wide potential window, and is excellent in electrochemical stability. And to provide an electric double layer capacitor having a high capacity and a low internal resistance in a wide temperature range, particularly in a low temperature range, and exhibiting an excellent withstand voltage characteristic.
本発明者らは上記課題に鑑み、鋭意検討を行った結果、溶媒中に電解質として第4級アンモニウム塩を含有させた電解液に、変性ポリシロキサン誘導体を添加することで、特に低温における電気伝導度を向上でき、該電解液を用いた電気二重層キャパシタは、電極及びセパレータとの含浸性も向上することと相俟って、著しく内部抵抗が低減し、幅広い温度領域、とりわけ低温領域で優れた電気特性を発揮できることを見出し、本発明を完成するに至った。 As a result of intensive studies in view of the above problems, the present inventors have conducted electrical conduction particularly at low temperatures by adding a modified polysiloxane derivative to an electrolytic solution containing a quaternary ammonium salt as an electrolyte in a solvent. The electric double layer capacitor using the electrolytic solution, combined with the improved impregnation with the electrode and the separator, significantly reduces the internal resistance, and is excellent in a wide temperature range, particularly in a low temperature range. The inventors have found that the electrical characteristics can be exhibited, and have completed the present invention.
すなわち本発明は、溶媒中に第4級アンモニウム塩と添加剤とが含有されてなる電気二重層キャパシタ用電解液において、上記添加剤が下記一般式(1)で示される変性ポリシロキサン誘導体であることを特徴とする電気二重層キャパシタ用電解液である。 That is, the present invention provides an electrolytic solution for an electric double layer capacitor in which a quaternary ammonium salt and an additive are contained in a solvent, wherein the additive is a modified polysiloxane derivative represented by the following general formula (1). This is an electrolytic solution for an electric double layer capacitor.
上記(1)式中、R1は有機基を示し、それぞれ置換基を結合できるものは置換されていてもよい。n及びmは1以上100以下の整数を示し、それぞれ同一でも異なっていても良い。 In the above formula (1), R 1 represents an organic group, and each of which can be bonded to a substituent may be substituted. n and m each represent an integer of 1 to 100 and may be the same or different.
また、本発明は、上記一般式(1)で示される変性ポリシロキサン誘導体において、R1が下記一般式(2)で示される鎖状エーテル基であることを特徴とする電気二重層キャパシタ用電解液である。 In the modified polysiloxane derivative represented by the general formula (1), R 1 is a chain ether group represented by the following general formula (2). It is a liquid.
上記式(2)中のR2及びR3は水素原子、ハロゲン原子、鎖状アルキル基、環状アルキル基、アルコキシ基、ベンジルアルコキシ基、フェニルアルコキシ基、フェニル基、ベンジル基を示し、それぞれ置換基を結合できるものは置換されていてもよく、同一でも異なっていてもよい。また、a及びbは1以上から100以下の整数を示し、それぞれ同一でも異なっていても良い。 R 2 and R 3 in the above formula (2) represent a hydrogen atom, a halogen atom, a chain alkyl group, a cyclic alkyl group, an alkoxy group, a benzylalkoxy group, a phenylalkoxy group, a phenyl group, and a benzyl group, each of which is a substituent. Those capable of bonding are optionally substituted, and may be the same or different. A and b each represent an integer of 1 to 100 and may be the same or different.
また、本発明は、上記添加剤の含有量が0.01〜10重量%であることを特徴とする電気二重層キャパシタ用電解液である。 The present invention also provides an electrolytic solution for an electric double layer capacitor, wherein the content of the additive is 0.01 to 10% by weight.
また、本発明は、上記第4級アンモニウム塩が、下記一般式(3)で表されるスピロ化合物であることを特徴とする電気二重層キャパシタ用電解液である。 The present invention also provides an electrolytic solution for an electric double layer capacitor, wherein the quaternary ammonium salt is a spiro compound represented by the following general formula (3).
上記(3)式中、m及びnは3〜7の整数を示し、それぞれ同一であっても異なっていてもよい。X−は陰イオンを示す。 In the above formula (3), m and n represent an integer of 3 to 7, and may be the same or different. X − represents an anion.
さらに、本発明は、セパレータを挟み込んだ分極性電極に、上記電解液を含浸させ、これを容器に密閉してなる電気二重層キャパシタである。 Furthermore, the present invention is an electric double layer capacitor obtained by impregnating a polarizable electrode sandwiching a separator with the above electrolyte and sealing the container in a container.
変性ポリシロキサン誘導体が添加された本発明の電気二重層キャパシタ用電解液は、低粘性率、高電気伝導度を示し、広い電位窓及び高い電気化学安定性を示す。 The electrolytic solution for an electric double layer capacitor of the present invention to which a modified polysiloxane derivative is added exhibits a low viscosity, a high electrical conductivity, a wide potential window and a high electrochemical stability.
上記添加剤は電気二重層キャパシタに加えることによって、その界面活性剤としての作用から、活性炭シート電極及びセパレータへの電解液の含浸性向上と、それに伴う内部抵抗低減効果を得ることができる。 By adding the additive to the electric double layer capacitor, it is possible to obtain an improvement in the impregnation property of the electrolytic solution into the activated carbon sheet electrode and the separator and an accompanying internal resistance reduction effect from its action as a surfactant.
また、本発明の電解液を使用してなる電気二重層キャパシタは、高容量、低内部抵抗であり、特に低温領域での特性に優れる。また、上記添加剤はその界面活性剤としての作用から、電解液の表面張力を下げる働きがあり、上記添加剤を添加した電解液を用いると、電気二重層キャパシタ製造時の含浸速度向上等のハンドリング向上の効果が得られる。 An electric double layer capacitor using the electrolytic solution of the present invention has a high capacity and a low internal resistance, and is particularly excellent in characteristics at a low temperature region. In addition, the additive acts as a surfactant to lower the surface tension of the electrolytic solution, and using the electrolytic solution with the additive added improves the impregnation rate during the production of an electric double layer capacitor. The effect of improving handling is obtained.
以下、本発明の電気二重層キャパシタ用電解液について詳細に説明する。 Hereinafter, the electrolytic solution for an electric double layer capacitor of the present invention will be described in detail.
本発明の電気二重層キャパシタ用電解液に添加される添加剤は、上記一般式(1)に示される変性ポリシロキサン誘導体である。溶媒中、第4級アンモニウム塩を電解質として含有する電気二重層キャパシタ用電解液に該添加剤を添加することによって、電気二重層キャパシタの電極及びセパレータへの含浸性の向上が見られ、低粘性率、および高電気伝導性を示し、かつ広い電位窓及び高い電気化学安定性の電解液が得られる。 The additive added to the electrolytic solution for electric double layer capacitors of the present invention is a modified polysiloxane derivative represented by the above general formula (1). By adding the additive to the electrolytic solution for an electric double layer capacitor containing a quaternary ammonium salt as an electrolyte in a solvent, the impregnation property of the electrode and separator of the electric double layer capacitor is improved, and low viscosity And an electrolyte with high electrical conductivity and a wide potential window and high electrochemical stability.
本発明の電気二重層キャパシタ用電解液に添加される上記添加剤は下記一般式(1)で示される、少なくとも1種類の変性ポリシロキサン誘導体であることを特徴とする電気二重層キャパシタ用電解液である。 The additive for the electric double layer capacitor electrolyte of the present invention is at least one modified polysiloxane derivative represented by the following general formula (1): It is.
上記(1)式中、R1は有機基を示し、それぞれ置換基を結合できるものは置換されてもよい。n及びmは1以上100以下の、より好ましくは1以上20以下の整数を示し、両者は同一でも異なっていても良い。nが100を超える場合、著しく粘度が高くなり、電解液に溶解させたとき、キャパシタの特性が劣化してしまう。 In the above formula (1), R 1 represents an organic group, and each of which can be bonded to a substituent may be substituted. n and m each represent an integer of 1 to 100, more preferably 1 to 20, and both may be the same or different. When n exceeds 100, the viscosity is remarkably increased, and the characteristics of the capacitor are deteriorated when dissolved in the electrolytic solution.
上記有機基として好ましいものは、水素原子、ハロゲン原子、鎖状アルキル基、鎖状エーテル基、環状アルキル基、アルコキシ基、ベンジルアルコキシ基、フェニルアルコキシ基、フェニル基、ベンジル基、アミノ基、エポキシ基、カルボキシル基、エポキシ基、水酸基、スチリル基、含フッ素アルキル基、エステル基を例示することができる。 Preferred as the organic group are hydrogen atom, halogen atom, chain alkyl group, chain ether group, cyclic alkyl group, alkoxy group, benzylalkoxy group, phenylalkoxy group, phenyl group, benzyl group, amino group, epoxy group , Carboxyl group, epoxy group, hydroxyl group, styryl group, fluorine-containing alkyl group, and ester group.
それらの中でも好ましい有機基R1の具体例を以下に示す。 Among them, specific examples of preferable organic group R 1 are shown below.
上記(1)式で示される変性ポリシロキサン誘導体において、R1が下記一般式(2)で示される鎖状エーテル基であるポリエーテル変性ポリシロキサン誘導体であることが好ましい。ポリエーテル変性シロキサンを加えることで、電極−電解液界面が活性になり、電極と電解液の相性がよくなる。結果、これまで入り込めなかったような電極の細孔まで電解液で満たすことができるようになり、特に低温においてキャパシタの静電容量増加や内部抵抗低減といった効果を得ることができる。 The modified polysiloxane derivative represented by the above formula (1) is preferably a polyether-modified polysiloxane derivative in which R 1 is a chain ether group represented by the following general formula (2). By adding polyether-modified siloxane, the electrode-electrolyte interface becomes active and the compatibility between the electrode and the electrolyte is improved. As a result, it becomes possible to fill the pores of the electrode that could not be penetrated with the electrolytic solution, and the effect of increasing the capacitance of the capacitor and reducing the internal resistance can be obtained particularly at low temperatures.
上記(2)式中のR2及びR3は水素原子、ハロゲン原子、鎖状アルキル基、環状アルキル基、アルコキシ基、ベンジルアルコキシ基、フェニルアルコキシ基、フェニル基、ベンジル基を示し、それぞれ置換基を結合できるものは置換されていてもよく、同一でも異なっていてもよい。また、a及びbは1以上100以下の整数を示し、より好ましくは1以上20以下の整数であり、それぞれ同一でも異なっていても良い。 R 2 and R 3 in the above formula (2) represent a hydrogen atom, a halogen atom, a chain alkyl group, a cyclic alkyl group, an alkoxy group, a benzylalkoxy group, a phenylalkoxy group, a phenyl group, and a benzyl group, each having a substituent. Those capable of bonding are optionally substituted, and may be the same or different. A and b each represent an integer of 1 to 100, more preferably an integer of 1 to 20, which may be the same or different.
また、上記変性ポリシロキサン誘導体の含有量は0.01〜10重量%であることが好ましく、より好ましくは0.1〜1重量%である。 Moreover, it is preferable that content of the said modified polysiloxane derivative is 0.01 to 10 weight%, More preferably, it is 0.1 to 1 weight%.
第4級アンモニウム塩としては、従来公知の第4級アンモニウム塩から任意に選択でき、特に限定されない。具体的には、陽イオンとして、テトラエチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどの第4級アンモニウムカチオン、1−エチル−3−メチルイミダゾリウムイオン、ジエチルイミダゾリウムイオンなどの第4級イミダゾリウムカチオン、プロピルピリジニウムイオン、イソプロピルピリジニウムイオンなどの第4級ピリジニウムカチオン、スピロ−(1,1’)−ビピロリジニウムイオンなどのピロリジニウムカチオンからなる群から選択されることが好ましい。なお、これらの陽イオンは、2種以上が混合されていてもよい。陰イオンは、特に限定されないが、非金属元素のみからなるアニオンが好ましい。 The quaternary ammonium salt can be arbitrarily selected from conventionally known quaternary ammonium salts, and is not particularly limited. Specifically, as a cation, a quaternary ammonium cation such as tetraethylammonium ion or triethylmethylammonium ion, a quaternary imidazolium cation such as 1-ethyl-3-methylimidazolium ion or diethylimidazolium ion, propyl, etc. It is preferably selected from the group consisting of quaternary pyridinium cations such as pyridinium ions and isopropylpyridinium ions, and pyrrolidinium cations such as spiro- (1,1 ′)-bipyrrolidinium ions. In addition, 2 or more types of these cations may be mixed. The anion is not particularly limited, but an anion composed only of a nonmetallic element is preferable.
上記第4級アンモニウム塩において、上記一般式(3)で表される化合物は、溶媒への溶解性に優れ、得られる電解液の粘性率、電気伝導度及び電位窓、電気化学安定性の観点からより好適に使用できる。(3)式中、m及びnはそれぞれ同一であっても異なっていてもよい3〜7の自然数を示し、X−は陰イオンを示す。 In the quaternary ammonium salt, the compound represented by the general formula (3) is excellent in solubility in a solvent, and is obtained from the viewpoint of the viscosity, electric conductivity and potential window of the electrolyte, and electrochemical stability. Can be used more suitably. (3) In the formula, m and n each represent a natural number of 3 to 7 which may be the same or different, and X − represents an anion.
上記一般式(3)で表される化合物として具体的には、スピロ−(1,1’)−ビピロリジニウムイオン、スピロ−(1,1’)−ビピペリジニウムイオン、ピペリジン−1−スピロ−1’−ピロリジニウムイオンなどを例示することができ、特に好ましくはスピロ−(1,1’)−ビピロリジニウムイオンである。 Specific examples of the compound represented by the general formula (3) include spiro- (1,1 ′)-bipyrrolidinium ion, spiro- (1,1 ′)-bipiperidinium ion, piperidine-1-spiro. -1′-pyrrolidinium ions and the like can be exemplified, and spiro- (1,1 ′)-bipyrrolidinium ions are particularly preferable.
また、陰イオンは、非金属元素のみからなるアニオンが好ましいが、これらに限定されるものではない。上記非金属元素のみからなる具体的なアニオンとしては、BF4 −、PF6 −、CF3SO3 −、N(CF3SO2)2 −、N(C2F5SO2)2 −、N(CF3SO2)(C4F9SO2)−、C(CF3SO2)3 −及びC(C2F5SO2)3 −からなる群から選択されることが好ましい。なお、これらのアニオンは、2種以上が混合されていてもよい。 Further, the anion is preferably an anion composed of only a nonmetallic element, but is not limited thereto. Specific anions consisting only of the non-metallic elements include BF 4 − , PF 6 − , CF 3 SO 3 − , N (CF 3 SO 2 ) 2 − , N (C 2 F 5 SO 2 ) 2 − , It is preferably selected from the group consisting of N (CF 3 SO 2 ) (C 4 F 9 SO 2 ) − , C (CF 3 SO 2 ) 3 — and C (C 2 F 5 SO 2 ) 3 — . In addition, 2 or more types of these anions may be mixed.
溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体;4−エチルフルオロベンゼン、(トリフルオロメチル)エチルカーボネート等のフッ素系溶媒等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。 Examples of the solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like. Chain carbonates; chain esters such as methyl formate, methyl acetate, methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-di Ethers such as butoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sultone or derivatives thereof; Examples thereof include, but are not limited to, fluorinated solvents such as lobenzene and (trifluoromethyl) ethyl carbonate, or a mixture of two or more thereof.
本発明の電気二重層キャパシタ用電解液は、以下の製造方法により調製することができる。 The electrolytic solution for electric double layer capacitors of the present invention can be prepared by the following production method.
すなわち、上記溶媒に任意の濃度で第4級アンモニウム塩からなる電解質塩を加え、攪拌して塩が完全に溶解したことを確認してから、添加剤として上記変性ポリシロキサン誘導体を、好ましくは0.01から10重量%、より好ましくは0.1〜1重量%加える。0.01重量%以下の場合、添加したことによる表面張力の低下およびそれに伴う電気伝導度の向上及び低粘性率化の効果が発揮されない場合があり、10重量%以上の場合、電解液の粘性率、電気伝導性及び電圧保持特性が著しく劣る場合が生じるとともに、経済性にも劣る場合がある。得られた電解液を脱水し、電解液中の水分を100ppm以下、好ましくは20ppm以下にまで減少させると、目的とする電気二重層キャパシタ用電解液が得られる。 That is, an electrolyte salt composed of a quaternary ammonium salt is added to the solvent at an arbitrary concentration, and after stirring to confirm that the salt is completely dissolved, the modified polysiloxane derivative is preferably added as an additive. Add from 0.01 to 10% by weight, more preferably from 0.1 to 1% by weight. In the case of 0.01% by weight or less, the effect of lowering the surface tension due to the addition and the accompanying improvement in electrical conductivity and lowering the viscosity may not be exhibited. In the case of 10% by weight or more, the viscosity of the electrolyte The rate, electrical conductivity, and voltage holding characteristics may be extremely inferior, and the economy may be inferior. When the obtained electrolytic solution is dehydrated and the water content in the electrolytic solution is reduced to 100 ppm or less, preferably 20 ppm or less, the intended electrolytic solution for electric double layer capacitors is obtained.
本発明の電解液における第4級アンモニウム塩の濃度は、電解液全体に対して、0.5〜3mol/Lが好ましい。第4級アンモニウム塩の濃度が0.5mol/L未満では、電気伝導度が不足する場合があり、また、3mol/Lより多い場合は電気化学的安定性が低下するとともに、経済性に劣る場合がある。 As for the density | concentration of the quaternary ammonium salt in the electrolyte solution of this invention, 0.5-3 mol / L is preferable with respect to the whole electrolyte solution. When the concentration of the quaternary ammonium salt is less than 0.5 mol / L, the electrical conductivity may be insufficient. When the concentration is more than 3 mol / L, the electrochemical stability is lowered and the economy is inferior. There is.
このようにして調整された電解液を使用して電気二重層キャパシタを作製することができる。本発明のキャパシタの作製は、一般的なキャパシタの製造方法によることができ、すなわち、セパレータを挟み込んだ分極性電極に、駆動用電解液となる本発明の添加剤を含有させた電気二重層キャパシタ用電解液を含浸させ、これを容器に密封することにより行われる。 An electric double layer capacitor can be produced using the electrolytic solution thus adjusted. The capacitor of the present invention can be produced by a general method for manufacturing a capacitor, that is, an electric double layer capacitor in which a polarizable electrode sandwiching a separator contains the additive of the present invention to be a driving electrolyte. It is carried out by impregnating with an electrolytic solution and sealing it in a container.
キャパシタ電極に用いられる分極性電極としては、活性炭粉末、活性炭繊維などの多孔性炭素材料や、貴金属酸化物材料、あるいは導電性高分子材料などが用いられるが、多孔性炭素材料が安価で好ましい。また、セパレータとしては、ポリエチレン、ポリプロピレン系不織布などの素材からなるセパレータを用いることができる。 As the polarizable electrode used for the capacitor electrode, porous carbon materials such as activated carbon powder and activated carbon fibers, noble metal oxide materials, conductive polymer materials, and the like are used, and porous carbon materials are preferable because they are inexpensive. Moreover, as a separator, the separator which consists of raw materials, such as polyethylene and a polypropylene-type nonwoven fabric, can be used.
本発明の電気二重層キャパシタの形状としては、特に限定されず、フィルム型、コイン型、円筒型、箱型などの形状に作製することができる。 The shape of the electric double layer capacitor of the present invention is not particularly limited, and can be produced in a film shape, a coin shape, a cylindrical shape, a box shape or the like.
図1は上記形状のうち、コイン型電気二重層キャパシタの例であり、本発明の電気二重層キャパシタの構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a coin-type electric double layer capacitor of the above shapes, and showing an example of the configuration of the electric double layer capacitor of the present invention.
図1中、負極キャップ1,負極電極2,集電体3からなる負極部と、集電体3,正極電極6,正極ケース7からなる正極部とを有し、正負両電極はセパレータ5を介し対向するよう配置される。電解液4は電極、セパレータ、及び容器中に含浸、充填される。負極キャップ1と正極ケース7とはガスケット8によって絶縁され、嵌合される。
In FIG. 1, it has a negative electrode part composed of a negative electrode cap 1, a negative electrode 2 and a current collector 3, and a positive electrode part composed of a current collector 3, a positive electrode 6 and a
本発明の電気二重層キャパシタは、極めて高い耐電圧を有し、少なくとも2.8Vから3.2Vに至るまでを含む範囲で安定した充放電特性を示す。 The electric double layer capacitor of the present invention has an extremely high withstand voltage, and exhibits stable charge / discharge characteristics in a range including at least 2.8V to 3.2V.
以下、実施例を挙げ、本発明を更に詳しく説明する。なお、本発明は実施例によりなんら限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited at all by the Example.
実施例1
電気二重層キャパシタ用電解液の調整
プロピレンカーボネートに濃度1.5mol/Lとなるようにスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを加え、ポリエーテル変性ポリシロキサン(「KF-351A」、信越化学工業株式会社製)を0.5重量%添加し、脱水して水分値を100ppm以下にした電気二重層キャパシタ用電解液を得た(以下、この電解液及び電解液を用いた電気二重層キャパシタを「発明品1」とする)。
Example 1
Preparation of electrolytic solution for electric double layer capacitor Spiro- (1,1 ')-bipyrrolidinium tetrafluoroborate was added to propylene carbonate to a concentration of 1.5 mol / L, and polyether-modified polysiloxane ("KF- 351A "(manufactured by Shin-Etsu Chemical Co., Ltd.) was added in an amount of 0.5% by weight and dehydrated to obtain an electrolytic solution for an electric double layer capacitor having a moisture value of 100 ppm or less (hereinafter, this electrolytic solution and the electrolytic solution were used). The electric double layer capacitor was called “Invention 1”).
同様に、プロピレンカーボネートに濃度1.5mol/Lとなるようにスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを加え、ポリエーテル変性ポリシロキサン(「KF-355A」、信越化学工業株式会社製)を0.5重量%添加し、脱水して水分値を100ppm以下にした電気二重層キャパシタ用電解液を得た(上記同様、「発明品2」とする)。 Similarly, spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is added to propylene carbonate to a concentration of 1.5 mol / L, and polyether-modified polysiloxane (“KF-355A”, Shin-Etsu Chemical Co., Ltd.) is added. Co., Ltd.) was added in an amount of 0.5% by weight and dehydrated to obtain an electrolytic solution for an electric double layer capacitor having a moisture value of 100 ppm or less (same as above, “Invention 2”).
同様に、プロピレンカーボネートに濃度1.5mol/Lとなるようにスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを加え、ポリエーテル変性ポリシロキサン(「KF-6011」、信越化学工業株式会社製)を0.5重量%添加し、脱水して水分値を100ppm以下にした電気二重層キャパシタ用電解液を得た(上記同様、「発明品3」とする)。 Similarly, spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is added to propylene carbonate to a concentration of 1.5 mol / L, and polyether-modified polysiloxane (“KF-6011”, Shin-Etsu Chemical Co., Ltd.) is added. 0.5% by weight) was added and dehydrated to obtain an electrolytic solution for an electric double layer capacitor having a moisture value of 100 ppm or less (same as above, “Invention 3”).
同様に、プロピレンカーボネートに濃度1.5mol/Lとなるようにスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを加え、ポリエーテル変性ポリシロキサン(「KF-6015」、信越化学工業株式会社製)を0.5重量%添加し、脱水して水分値を100ppm以下にした電気二重層キャパシタ用電解液を得た(上記同様、「発明品4」とする)。 Similarly, spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is added to propylene carbonate to a concentration of 1.5 mol / L, and polyether-modified polysiloxane (“KF-6015”, Shin-Etsu Chemical Co., Ltd.) is added. 0.5% by weight was added and dehydrated to obtain an electrolytic solution for an electric double layer capacitor having a moisture value of 100 ppm or less (same as above, “Invention 4”).
同様に、プロピレンカーボネートに濃度1.5mol/Lとなるようにスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを加え、ポリエーテル変性ポリシロキサン(「KF-618」、信越化学工業株式会社製)を0.5重量%添加し、脱水して水分値を100ppm以下にした電気二重層キャパシタ用電解液を得た(上記同様、「発明品5」とする)。 Similarly, spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is added to propylene carbonate to a concentration of 1.5 mol / L, and polyether-modified polysiloxane (“KF-618”, Shin-Etsu Chemical Co., Ltd.) is added. 0.5% by weight) was added and dehydrated to obtain an electrolytic solution for an electric double layer capacitor having a moisture value of 100 ppm or less (same as above, “Invention 5”).
同様に、プロピレンカーボネートに濃度1.5mol/Lとなるようにスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを加え、ポリエーテル変性ポリシロキサン(「KF-945」、信越化学工業株式会社製)を0.5重量%添加し、脱水して水分値を100ppm以下にした電気二重層キャパシタ用電解液を得た(上記同様、「発明品6」とする)。 Similarly, spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is added to propylene carbonate to a concentration of 1.5 mol / L, and polyether-modified polysiloxane (“KF-945”, Shin-Etsu Chemical Co., Ltd.) is added. 0.5% by weight) was added and dehydrated to obtain an electrolytic solution for an electric double layer capacitor having a moisture value of 100 ppm or less (same as above, “Invention 6”).
同様に、プロピレンカーボネートに濃度1.0mol/Lとなるようテトラエチルアンモニウムテトラフルオロボレートを加え、ポリエーテル変性ポリシロキサン(「KF-6015」、信越化学工業株式会社製)を0.5重量%添加し、脱水して水分値を100ppm以下にした電気二重層キャパシタ用電解液を得た(上記同様、「発明品7」とする)。
Similarly, tetraethylammonium tetrafluoroborate is added to propylene carbonate to a concentration of 1.0 mol / L, and polyether-modified polysiloxane (“KF-6015”, manufactured by Shin-Etsu Chemical Co., Ltd.) is added by 0.5% by weight. Then, an electrolytic solution for an electric double layer capacitor having a moisture value of 100 ppm or less was obtained by dehydration (same as above, referred to as “
比較として、1.5mol/Lのスピロ−(1,1’)−ビピロリジニウムのプロピレンカーボネート溶液を調整した(上記同様、「比較品1」とする)。また1.0mol/Lのテトラエチルアンモニウムのプロピレンカーボネート溶液を調整した(前記同様、「比較品2」とする)。 For comparison, a propylene carbonate solution of 1.5 mol / L spiro- (1,1 ′)-bipyrrolidinium was prepared (same as above, “Comparative Product 1”). Further, a 1.0 mol / L tetraethylammonium propylene carbonate solution was prepared (same as above, “Comparative product 2”).
今回使用したポリエーテル変性シロキサン「KF-351A」「KF-355A」「KF-6011」「KF-6015」「KF-618」「KF-945」の特徴について、表1に示す。 Table 1 shows the characteristics of the polyether-modified siloxanes “KF-351A”, “KF-355A”, “KF-6011”, “KF-6015”, “KF-618”, and “KF-945” used this time.
この電解液の25℃のときの粘性率、電気伝導度及び電位窓を測定した結果を表1に示す。なお、電位窓の測定はサイクリックボルタモグラムにより酸化還元分解電圧の測定を行った。すなわち、作用極に白金線(直径3mm)、対極に白金板、参照電極にAg/Ag+、掃引速度10mV/sで0.1mA/cm2の電流が流れるまでの電圧を測定し、還元分解及び酸化分解電圧値から電位窓を決定した。 Table 1 shows the results of measurement of the viscosity, electrical conductivity, and potential window of this electrolytic solution at 25 ° C. The potential window was measured by a redox decomposition voltage using a cyclic voltammogram. That is, a platinum wire (diameter 3 mm) as a working electrode, a platinum plate as a counter electrode, Ag / Ag + as a reference electrode, a voltage until a current of 0.1 mA / cm 2 flows at a sweep rate of 10 mV / s, and reductive decomposition is measured. The potential window was determined from the oxidative decomposition voltage value.
表2に示すように、第4級アンモニウム塩にスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを使用し、添加剤としてポリエーテル変性ポリシロキサンを添加した発明品1〜6は、添加剤を使用しない比較品1と比べて粘性率及び電気伝導度に優れ、電位窓についても比較品と遜色ない結果となっている。具体的には粘性率で約22.0〜9.8%低減、電気伝導度で約3.2〜8.2%増大させる効果を得た。また、より好ましい添加剤としては、「発明品4」に使用した「KF−6015」であることが確認できた。 As shown in Table 2, invention products 1 to 6 using spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate as a quaternary ammonium salt and adding a polyether-modified polysiloxane as an additive are as follows: In comparison with Comparative Product 1 using no additive, the viscosity and electrical conductivity are excellent, and the potential window is comparable to the Comparative Product. Specifically, an effect of reducing the viscosity by about 22.0 to 9.8% and increasing the electric conductivity by about 3.2 to 8.2% was obtained. Moreover, as a more preferable additive, it has confirmed that it was "KF-6015" used for "invention product 4."
また、第4級アンモニウム塩にテトラエチルアンモニウムテトラフルオロボレートを用い、添加剤としてポリエーテル変性ポリシロキサンを添加した発明品7についても同様に添加剤を使用しない比較品2と比べると、粘度で約8.9%低減、及び電導度で約6.9%させる効果を得、電位窓についても比較品と遜色ない分解電圧を示すことが確認できた。
In addition, the
実施例2
電気二重層キャパシタの作製
実施例1の電解液(発明品1〜7及び比較品1、2)を用いて電気二重層キャパシタを作製した。
Example 2
Production of Electric Double Layer Capacitor An electric double layer capacitor was produced using the electrolyte solution of Example 1 (Inventions 1 to 7 and Comparative Products 1 and 2).
正極、及び負極電極は活物質(活性炭:日本エンバイロケミカルズ株式会社、白鷺KA)、導電材(ケッチェンブラック:ライオン株式会社、ECP−600JD)、及びバインダー(PTFE:三井・デュポン フロロケミカル株式会社、30−J)を混合し作製した。その重量組成比は活物質:導電材:バインダー=80部:10部:10部とした。これらの混合物にエタノールを加えながら十分に混錬し、圧延することで平均して厚み0.85mmの活性炭シート電極を得た。この活性炭シート電極をφ15のポンチで打ち抜いたものを、集電体(φ17のSUS316製プレート)が溶接されたケース、キャップ(何れもSUS316製)に導電性接着剤にて接着し、それぞれ正極部、負極部を得た。それらの電極に実施例1の電解液をそれぞれ注液し、0.060MPaで10分減圧含浸した後、ポリプロピレン製不織布をセパレータとして介し、ポリプロピレン製ガスケットをキャップに装着して組み立て、カシメ機にて嵌合して2032サイズのコイン型電気二重層キャパシタを完成した。 The positive electrode and the negative electrode are active materials (activated carbon: Nippon Enviro Chemicals Co., Ltd., Shirahama KA), conductive materials (Ketjen Black: Lion Co., Ltd., ECP-600JD), and binder (PTFE: Mitsui DuPont Fluoro Chemical Co., Ltd.) 30-J). The weight composition ratio was active material: conductive material: binder = 80 parts: 10 parts: 10 parts. These mixtures were sufficiently kneaded while adding ethanol, and rolled to obtain an activated carbon sheet electrode having an average thickness of 0.85 mm. This activated carbon sheet electrode punched out with a φ15 punch is adhered to a case and cap (both made of SUS316) welded with a current collector (φ17 made of SUS316) with a conductive adhesive, respectively. A negative electrode part was obtained. Each of these electrodes was injected with the electrolyte solution of Example 1 and impregnated under reduced pressure at 0.060 MPa for 10 minutes, and then assembled by attaching a polypropylene gasket to the cap with a polypropylene non-woven fabric as a separator. The 2032 size coin type electric double layer capacitor was completed by fitting.
電気二重層キャパシタの評価
それぞれの電気二重層キャパシタについて、20℃において充放電試験を行った。各キャパシタを所定の測定温度下に30分以上放置し、キャパシタが所定温度に達した後、定格電圧として3.0Vを30分印加後、放電電流2mAにて定電流放電し、キャパシタ端子間電圧が2Vから1Vになるまでの時間より静電容量を算出した。また、放電の下限値を0.9Vとした。内部抵抗は静電容量測定時と同様に定格電圧として3.0Vを30分印加後、放電電流50mAにて定電流放電したときのIRドロップより算出した。漏れ電流は静電容量測定時と同様に、定格電圧として3.0Vを30分印加後、回路中に直列接続した定格1kΩの精密抵抗の抵抗間電圧を測定することで算出した。これらの結果を下表2に示す。
Evaluation of Electric Double Layer Capacitor Each electric double layer capacitor was subjected to a charge / discharge test at 20 ° C. Each capacitor is allowed to stand at a predetermined measurement temperature for 30 minutes or more, and after the capacitor reaches a predetermined temperature, 3.0 V is applied as a rated voltage for 30 minutes, and then a constant current discharge is performed at a discharge current of 2 mA. The capacitance was calculated from the time from 1V to 2V. Further, the lower limit value of discharge was set to 0.9V. The internal resistance was calculated from the IR drop when a constant current was discharged at a discharge current of 50 mA after applying 3.0 V as a rated voltage for 30 minutes as in the capacitance measurement. The leakage current was calculated by measuring the voltage between resistors of a precision resistor with a rating of 1 kΩ connected in series in the circuit after applying 3.0 V as a rated voltage for 30 minutes in the same manner as the capacitance measurement. These results are shown in Table 2 below.
表3に示すように、第4級アンモニウム塩にスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを使用し、添加剤としてポリエーテル変性ポリシロキサンを添加した発明品1〜6は、添加剤を使用しない比較品1と比べて静電容量に優れ、内部抵抗で大幅に低減され、漏れ電流についても比較品と遜色ない結果となっている。具体的には静電容量で約0.9〜2.4%増大し、内部抵抗で約8.3〜12.9%低減させる効果を得た。またより好ましい添加剤としては、「発明品5」に使用した「KF−618」であることが確認できた。 As shown in Table 3, invention products 1 to 6 using spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate as a quaternary ammonium salt and adding polyether-modified polysiloxane as an additive are as follows: Compared with the comparative product 1 using no additive, the capacitance is excellent, the internal resistance is greatly reduced, and the leakage current is comparable to the comparative product. Specifically, the effect of increasing the capacitance by about 0.9 to 2.4% and reducing the internal resistance by about 8.3 to 12.9% was obtained. Moreover, as a more preferable additive, it was confirmed that it was “KF-618” used in “Invention Product 5”.
また、第4級アンモニウム塩にテトラエチルアンモニウムテトラフルオロボレートを用い、添加剤としてポリエーテル変性ポリシロキサンを添加した発明品7についても同様に添加剤を使用しない比較品2と比べると、静電容量で約1.6%増大、及び内部抵抗で約8.0%させる効果を得、漏れ電流についても比較品と遜色ない分解電圧を示すことが確認できた。
Further, the
次に、実施例1の電解液(発明品1〜7及び比較品1、2)を用いて作製した電気二重層キャパシタの温度特性を測定した。各キャパシタを所定の測定温度下に30分以上放置し、キャパシタが所定温度に達した後、定格電圧として3.0Vを30分印加後、放電電流2mAにて定電流放電し、キャパシタ端子間電圧が2Vから1Vになるまでの時間より静電容量を算出した。また、放電の下限値を0.9Vとした。内部抵抗は静電容量測定時と同様に定格電圧として3.0Vを30分印加後、放電電流50mAにて定電流放電したときのIRドロップより算出した。雰囲気温度は−40℃より10℃毎に温度を上昇させる方向で試験を行った。 Next, the temperature characteristics of the electric double layer capacitor produced using the electrolyte solution of Example 1 (Invention products 1 to 7 and Comparative products 1 and 2) were measured. Each capacitor is allowed to stand at a predetermined measurement temperature for 30 minutes or more, and after the capacitor reaches a predetermined temperature, 3.0 V is applied as a rated voltage for 30 minutes, and then a constant current discharge is performed at a discharge current of 2 mA. The capacitance was calculated from the time from 1V to 2V. Further, the lower limit value of discharge was set to 0.9V. The internal resistance was calculated from the IR drop when a constant current was discharged at a discharge current of 50 mA after applying 3.0 V as a rated voltage for 30 minutes as in the capacitance measurement. The ambient temperature was tested in the direction of increasing the temperature from -40 ° C every 10 ° C.
−40℃での添加剤の効果を下表4に示す。比較品1及び2を100としたときの発明品各キャパシタの静電容量及び内部抵抗の百分率を示している。(発明品1〜6については比較品1、発明品7については比較品2を基準としている。)
The effect of the additive at −40 ° C. is shown in Table 4 below. When the comparative products 1 and 2 are set to 100, the capacitance of each capacitor of the invention and the percentage of the internal resistance are shown. (Inventive products 1 to 6 are based on the comparative product 1, and the
表4より、特に効果の高かった発明品4及び発明品5について、静電容量の温度特性測定結果を図2に、内部抵抗の温度特性測定結果を図3にそれぞれ示し、各測定結果と比較品1とを比較した。 Table 4 shows the results of measuring the temperature characteristics of the electrostatic capacitance in FIG. 2 and the results of measuring the temperature characteristics of the internal resistance in FIG. Product 1 was compared.
図2、図3及び表4に示すように、第4級アンモニウム塩にスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを使用し、添加剤としてポリエーテル変性ポリシロキサンを添加した発明品1〜6は、添加剤を使用しない比較品1と比べて−40℃での静電容量発現性に優れ、同−40℃での内部抵抗で大幅に低減される結果となっている。具体的には静電容量で約48.1〜73.4%増大し、内部抵抗で約8.4〜26.8%低減させる効果を得た。またより好ましい添加剤としては、「発明品4」に使用した「KF−6015」であることが確認できた。 As shown in FIG. 2, FIG. 3 and Table 4, spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate was used for the quaternary ammonium salt, and polyether-modified polysiloxane was added as an additive. Inventive products 1 to 6 are excellent in electrostatic capacity development at −40 ° C. as compared with Comparative Product 1 that does not use an additive, and the internal resistance at −40 ° C. is greatly reduced. . Specifically, the capacitance was increased by about 48.1 to 73.4%, and the internal resistance was reduced by about 8.4 to 26.8%. Moreover, as a more preferable additive, it has confirmed that it was "KF-6015" used for "invention product 4."
加えて、第4級アンモニウム塩にテトラエチルアンモニウムテトラフルオロボレートを用い、添加剤としてポリエーテル変性ポリシロキサンを添加した発明品7についても同様に添加剤を使用しない比較品2と比べると、第4級アンモニウム塩にスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを使用した場合と比べると、若干劣るものの、静電容量で約4%増大し、及び内部抵抗で約12.9%低減させる効果を得ることが確認できた。
In addition, the
本発明の電気二重層キャパシタ用電解液の添加剤である変性ポリシロキサン誘導体を用いると、上述したように、電気二重層キャパシタを試作する際の含浸性が向上し、それに伴い低内部抵抗化が可能になる。また、特に、電解質にスピロ化合物を使用した電解液及びセルは、従来のものより格段に優れた諸特性を有している。 When the modified polysiloxane derivative, which is an additive for the electrolytic solution for the electric double layer capacitor of the present invention, is used, as described above, the impregnation property when producing the electric double layer capacitor is improved, and accordingly, the low internal resistance is reduced. It becomes possible. In particular, an electrolytic solution and a cell using a spiro compound as an electrolyte have various characteristics that are markedly superior to conventional ones.
1 負極キャップ
2 負極電極
3 集電体
4 電解質
5 セパレータ
6 正極電極
7 正極ケース
8 ガスケット
DESCRIPTION OF SYMBOLS 1 Negative electrode cap 2 Negative electrode 3 Current collector 4 Electrolyte 5 Separator 6
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006273848A JP4993266B2 (en) | 2006-10-05 | 2006-10-05 | Electrolytic solution for electric double layer capacitor and electric double layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006273848A JP4993266B2 (en) | 2006-10-05 | 2006-10-05 | Electrolytic solution for electric double layer capacitor and electric double layer capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008091820A JP2008091820A (en) | 2008-04-17 |
JP4993266B2 true JP4993266B2 (en) | 2012-08-08 |
Family
ID=39375629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006273848A Expired - Fee Related JP4993266B2 (en) | 2006-10-05 | 2006-10-05 | Electrolytic solution for electric double layer capacitor and electric double layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4993266B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4016153B2 (en) * | 1998-01-26 | 2007-12-05 | ソニー株式会社 | Nonaqueous electrolyte and nonaqueous electrolyte battery using the same |
JP2002289476A (en) * | 2001-03-23 | 2002-10-04 | Asahi Glass Co Ltd | Electric double layer capacitor and non aqueous electrolytic solution |
WO2005022571A1 (en) * | 2003-08-29 | 2005-03-10 | Japan Carlit Co., Ltd. | Electrolytic solution for electric double layer capacitor and electric double layer capacitor |
JP4650625B2 (en) * | 2004-10-15 | 2011-03-16 | 信越化学工業株式会社 | Cyclic carbonate-modified organosilicon compound, nonaqueous electrolyte containing the same, secondary battery and capacitor |
-
2006
- 2006-10-05 JP JP2006273848A patent/JP4993266B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008091820A (en) | 2008-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4802243B2 (en) | Electrolytic solution additive and electrolytic solution | |
KR101375450B1 (en) | Electric double layer capacitor | |
JP5637858B2 (en) | Electric double layer capacitor | |
WO2014208474A1 (en) | Electrolyte solution and electrochemical device | |
JPWO2008123529A1 (en) | Electrolyte for electric double layer capacitor | |
JP2008277503A (en) | Electrolyte for electric double-layer capacitor and electric double layer capacitor | |
TW201621947A (en) | Electrolytes for high temperature EDLC | |
JP2008091823A (en) | Electrolyte for electric double layer capacitor and electric double layer capacitor | |
JP4993266B2 (en) | Electrolytic solution for electric double layer capacitor and electric double layer capacitor | |
JP6187688B2 (en) | Electrolytic solution and electrochemical device | |
JPWO2013146136A1 (en) | Electrolyte for capacitor, electric double layer capacitor and lithium ion capacitor | |
JP4798609B2 (en) | Electrolytic solution for electric double layer capacitor and electric double layer capacitor | |
JP5305343B2 (en) | Electrolytic solution for electric double layer capacitor and electric double layer capacitor | |
JP2008091821A (en) | Electrolyte for electric double layer capacitor and electric double layer capacitor | |
JP2013197535A (en) | Electrolytic solution and electric double-layer capacitor | |
JP2009065074A (en) | Electrolyte for pseudocapacitor, and pseudocapacitor | |
JP4707425B2 (en) | Electrolyte for electric double layer capacitor and electric double layer capacitor | |
JP5430464B2 (en) | Electrolytic solution for electric double layer capacitor and electric double layer capacitor | |
JP2009065073A (en) | Electrolyte for electric double layer capacitor, and electric double layer capacitor | |
JP2008091822A (en) | Electrolyte for electric double layer capacitor and electric double layer capacitor | |
JP2011159895A (en) | Electrolyte for electric double layer capacitor, and electric double layer capacitor | |
CN105814656A (en) | Electrolyte solution, and electrochemical device | |
JP2007088359A (en) | Electrolyte for electrochemistry device, and electrochemistry device using the same | |
JP6314409B2 (en) | Electrolytic solution and electrochemical device | |
JP5296637B2 (en) | Electrolytic solution for electric double layer capacitor and electric double layer capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120426 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120426 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150518 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4993266 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |