Nothing Special   »   [go: up one dir, main page]

JP4979879B2 - Water-absorbing agent and sanitary material using the same - Google Patents

Water-absorbing agent and sanitary material using the same Download PDF

Info

Publication number
JP4979879B2
JP4979879B2 JP2004032501A JP2004032501A JP4979879B2 JP 4979879 B2 JP4979879 B2 JP 4979879B2 JP 2004032501 A JP2004032501 A JP 2004032501A JP 2004032501 A JP2004032501 A JP 2004032501A JP 4979879 B2 JP4979879 B2 JP 4979879B2
Authority
JP
Japan
Prior art keywords
water
absorption
mass
salt concentration
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004032501A
Other languages
Japanese (ja)
Other versions
JP2004290960A (en
Inventor
芳史 足立
貴洋 北野
洋圭 藤丸
博之 池内
克之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2004032501A priority Critical patent/JP4979879B2/en
Publication of JP2004290960A publication Critical patent/JP2004290960A/en
Application granted granted Critical
Publication of JP4979879B2 publication Critical patent/JP4979879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

本発明は吸水性樹脂を主成分とする粒子状吸水剤に関するものであり、さらに詳しくは、尿等の液体に対して優れた吸収性能を発揮する吸水剤およびそれを用いた衛生材料に関するものである。   The present invention relates to a particulate water-absorbing agent mainly composed of a water-absorbing resin, and more particularly to a water-absorbing agent that exhibits excellent absorption performance for liquids such as urine and hygiene materials using the same. is there.

近年、紙おむつや生理用ナプキン、いわゆる失禁パットなどの衛生材料には、その構成材として、体液を吸水させることを目的とした吸水性樹脂が幅広く使用されている。吸水性樹脂としては、例えば、ポリアクリル酸部分中和物架橋体、澱粉−アクリル酸グラフト重合体の加水分解物、酢酸ビニル−アクリル酸エステル共重合体ケン化物、アクリロニトリル共重合体若しくはアクリルアミド共重合体の加水分解物またはこれらの架橋体、およびカチオン性モノマーの架橋重合体等が知られている。   In recent years, hygroscopic materials such as disposable diapers and sanitary napkins, so-called incontinence pads, have widely used water-absorbing resins for the purpose of absorbing bodily fluids as constituent materials. Examples of the water-absorbing resin include a crosslinked polyacrylic acid partially neutralized product, a hydrolyzate of starch-acrylic acid graft polymer, a saponified vinyl acetate-acrylic acid ester copolymer, an acrylonitrile copolymer or an acrylamide copolymer. A hydrolyzate of a polymer or a cross-linked product thereof, and a cross-linked polymer of a cationic monomer are known.

このような吸水性樹脂に対しては、体液などの水性液体に接した際に優れた吸液量や吸水速度、ゲル強度、ゲル通液性、水性液体を含んだ基材から水を吸い上げる吸引力などに優れた物性を備えることが要求されている。さらに、近年は、非常に粒度分布が狭い吸水性樹脂粉末や、吸収倍率が高く水可溶分が少ない吸水性樹脂粉末が求められ、高い加圧下吸収倍率や加圧下通液性などを備えていることが必須に求められるようになっている。   For such water-absorbing resins, excellent water absorption and water absorption speed, gel strength, gel permeability, and water suction from a substrate containing aqueous liquid when in contact with aqueous liquids such as body fluids It is required to have excellent physical properties such as strength. Furthermore, in recent years, water-absorbing resin powders with a very narrow particle size distribution and water-absorbing resin powders with high absorption capacity and low water-soluble content have been demanded, and have high absorption capacity under pressure and liquid permeability under pressure. Being required is essential.

例えば、これら吸水性樹脂の諸物性を規定した多くのパラメータ特許や測定法が下記特許文献1〜24に開示されている。   For example, the following patent documents 1 to 24 disclose many parameter patents and measurement methods that define various properties of these water absorbent resins.

すなわち、特許文献1「米国再発行特許32649号」には、ゲル強度,可溶分,吸水倍率に優れた吸水性樹脂が提案されている。特許文献2「英国特許2267094B号」には、無加圧通液性,吸水速度,吸水倍率に優れた吸水性樹脂が提案されている。特定の粒度分布を規定した技術として、特許文献3「米国特許5051259号」、特許文献4「米国特許5419956号」、特許文献5「米国特許6087002号」、特許文献6「欧州特許629441号」などに記載された技術がある。   That is, Patent Document 1 “US Reissue Patent 32649” proposes a water-absorbing resin excellent in gel strength, soluble content, and water absorption ratio. Patent Document 2 “British Patent No. 2,267,094B” proposes a water-absorbing resin excellent in pressureless liquid permeability, water absorption speed, and water absorption magnification. As a technique for defining a specific particle size distribution, Patent Document 3 “US Pat. No. 5,051,259”, Patent Document 4, “US Pat. No. 5,419,956”, Patent Document 5, “US Pat. No. 6,087,002”, Patent Document 6, “European Patent No. 629441”, etc. There are techniques described in.

また、各種荷重での加圧下吸水倍率に優れた吸水性樹脂やその測定法も多く提案され、加圧吸水倍率単独ないし他の物性との組み合わせた吸水性樹脂が、特許文献7「欧州特許0707603号」、特許文献8「欧州特許0712659号」、特許文献9「欧州特許1029886号」、特許文献10「米国特許5462972号」、特許文献11「米国特許5453323号」、特許文献12「米国特許5797893号」、特許文献13「米国特許6127454号」、特許文献14「米国特許6184433号」、特許文献15「米国特許6297335号」、特許文献16「米国再発行特許Re37021号」などで提案されている。   Also, many water-absorbing resins excellent in water absorption capacity under pressure under various loads and methods for measuring the same have been proposed. A water-absorbing resin alone or in combination with other physical properties is disclosed in Patent Document 7 “European Patent 0707603”. ”, Patent Document 8“ European Patent 0712659 ”, Patent Document 9“ European Patent 1029886 ”, Patent Document 10“ US Pat. No. 5,462,972 ”, Patent Document 11“ US Pat. No. 5,453,323 ”, Patent Document 12“ US Pat. No. 5,977,893 ”. ”, Patent Document 13“ US Patent 6127454 ”, Patent Document 14“ US Patent 6184433 ”, Patent Document 15“ US Patent 6297335 ”, Patent Document 16“ US Reissue Patent Re37021 ”, and the like. .

また、物性低下の耐衝撃性に優れた吸水性樹脂が、特許文献17「米国特許5140076号」や、特許文献18「米国特許6414214B1号」などに提案されている。粉塵量を規定した吸水性樹脂が、特許文献19「米国特許5994440号」などに提案され、着色の少ない吸水性樹脂が、特許文献20「米国特許6444744号」などに提案されている。耐尿性については、L-アスコルビン酸水溶液などへのゲル耐久性や吸水能に優れた吸水性樹脂が、特許文献21「米国特許6194531号」、特許文献22「欧州特許0940148号」で提案され、通気性に優れた吸水性樹脂が、特許文献23「欧州特許1153656号」で提案されている。残存モノマーの少ない吸水性樹脂は、特許文献24「欧州特許0605215号」に提案されている。   Further, a water-absorbing resin excellent in impact resistance with reduced physical properties has been proposed in Patent Document 17 “US Pat. No. 5140076”, Patent Document 18 “US Pat. No. 6,414,214 B1”, and the like. A water-absorbing resin that defines the amount of dust is proposed in Patent Document 19 “US Pat. No. 5,994,440”, and a water-absorbing resin with little coloring is proposed in Patent Document 20 “US Pat. No. 6,444,744”. Regarding urine resistance, water-absorbing resins excellent in gel durability and water-absorbing ability to L-ascorbic acid aqueous solutions and the like have been proposed in Patent Document 21 “US Pat. No. 6,194,531” and Patent Document 22 “European Patent 0940148” A water-absorbing resin excellent in air permeability is proposed in Patent Document 23 “European Patent No. 1153656”. A water-absorbing resin with little residual monomer is proposed in Patent Document 24 “European Patent No. 0605215”.

さらに特定の物性を持った吸水性樹脂が、特定物性や特定構成ないし特定ポリマー濃度の吸水性物品(おむつ)に好適であることは、特許文献25「米国特許5147343号」、特許文献26「米国特許5149335号」、特許文献27「欧州特許532002号」、特許文献28「米国特許5601452号」、特許文献29「米国特許5562646号」、特許文献30「米国特許5669894号」、特許文献31「米国特許6150582号」、特許文献32「国際特許WO02/053198号」、特許文献33「米国特許5843059号」、特許文献34「米国特許公開2001/4951号」などで提案されている。
米国再発行特許32649号 英国特許2267094B号 米国特許5051259号 米国特許5419956号 米国特許6087002号 欧州特許629441号 欧州特許0707603号 欧州特許0712659号 欧州特許1029886号 米国特許5462972号 米国特許5453323号 米国特許5797893号 米国特許6127454号 米国特許6184433号 米国特許6297335号 米国再発行特許Re37021号 米国特許5140076号 米国特許6414214B1号 米国特許5994440号 米国特許6444744号 米国特許6194531号 欧州特許0940148号 欧州特許1153656号 欧州特許0605215号 米国特許5147343号 米国特許5149335号 欧州特許532002号 米国特許5601452号 米国特許5562646号 米国特許5669894号 米国特許6150582号 国際特許WO02/053198号 米国特許5843059号 米国特許公開2001/4951号
Furthermore, the fact that a water-absorbing resin having specific physical properties is suitable for a water-absorbing article (diaper) having a specific physical property, a specific constitution or a specific polymer concentration is disclosed in Patent Document 25 “US Pat. No. 5,147,343” and Patent Document 26 “US Patent No. 5149335 ”, Patent Literature 27“ European Patent 532002 ”, Patent Literature 28“ U.S. Pat. No. 5,601,452 ”, Patent Literature 29“ U.S. Pat. No. 5,562,646 ”, Patent Literature 30“ U.S. Pat. No. 5,669,894 ”, Patent Literature 31“ U.S. Pat. Patent No. 6150582, Patent Document 32 “International Patent WO02 / 053198”, Patent Document 33 “US Patent No. 5843059”, Patent Document 34 “US Patent Publication No. 2001/4951”, and the like.
US Reissue Patent 32649 British Patent No. 2267094B US Pat. No. 5,051,259 US Pat. No. 5,419,956 US Pat. No. 6,087,002 European patent 629441 European Patent 0707603 European Patent 0712659 European Patent No. 1029886 US Pat. No. 5,462,972 US Pat. No. 5,453,323 US Pat. No. 5,797,893 US Pat. No. 6,127,454 US Pat. No. 6,184,433 US Pat. No. 6,297,335 US Reissue Patent Re37021 US Pat. No. 5140076 US Pat. No. 6,414,214 B1 US Pat. No. 5,994,440 US Pat. No. 6,444,744 US Pat. No. 6,194,531 European Patent 0940148 European Patent No. 1153656 European Patent 0605215 US Pat. No. 5,147,343 US Pat. No. 5,149,335 European Patent 532002 US Pat. No. 5,601,452 US Pat. No. 5,562,646 US Pat. No. 5,669,894 US Pat. No. 6,150,582 International patent WO02 / 053198 US Pat. No. 5,843,059 US Patent Publication 2001/4951

しかしながら、上記の多くの物性に着目されて開発されてきた吸水性樹脂は、上記の物性をターゲットないしスペックしたものも製造され使用されてきてはいるが、これら特定物性(性能)をコントロールしても、いまだ紙おむつなどの実使用に際して十分な性能を発揮しているとは言い難いという問題がある。特に、吸水性樹脂の使用量を増加させ、代わりに繊維材料を減らした濃度(高い吸水性樹脂の濃度)での衛生材料では実使用に十分な性能を発揮しているとは言えない。   However, the water-absorbent resin that has been developed with a focus on many of the above-mentioned physical properties has been manufactured and used as targets or specifications of the above-mentioned physical properties, but these specific physical properties (performance) are controlled. However, there is still a problem that it is difficult to say that it is sufficiently performing in actual use such as disposable diapers. In particular, sanitary materials with increased concentrations of water-absorbing resin and reduced fiber materials (high water-absorbing resin concentration) can not be said to exhibit sufficient performance for actual use.

本発明の目的は、従来、数多く物性(吸水速度、無加圧下(無荷重下)吸水倍率、加圧下(荷重下)吸水倍率、ゲル強度、耐久性、可溶分、粒度など)に着目した吸水性樹脂が開発され使用されてきたにもかかわらず、これらの制御ないし設計によって製造しても、実使用に対して十分な性能を発揮し得ないという、従来の吸水性樹脂の問題点を解決し、実使用に好適な吸水性樹脂を与えることにある。   The purpose of the present invention has hitherto been focused on a number of physical properties (water absorption rate, no pressure (under no load) water absorption, under pressure (under load) water absorption, gel strength, durability, soluble content, particle size, etc.). Despite the fact that water-absorbing resins have been developed and used, the problem with conventional water-absorbing resins is that even if they are manufactured by these controls or designs, they do not exhibit sufficient performance for actual use. The problem is to provide a water-absorbing resin suitable for actual use.

本発明者等は、上記課題に鑑み鋭意検討を行った結果、従来の数多くの物性の中でも何ら着目されていなかった、塩濃度による吸水倍率の差、それも特定の加圧下における加圧下吸水倍率の変化がおむつ等での実使用に大きな影響を与えることを見出すとともに、塩濃度の変化によらず一定の吸収性(加圧下吸収性)と通液性とを与える吸水剤が、従来のモデル以上の優れた吸水剤であることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the above-mentioned problems, the present inventors have not paid any attention among many conventional physical properties, the difference in water absorption due to salt concentration, which is also the water absorption under pressure under a specific pressure. A water-absorbing agent that gives a constant absorbency (absorbency under pressure) and liquid permeability regardless of changes in salt concentration is the conventional model. The present inventors have found that it is an excellent water-absorbing agent as described above, and have completed the present invention.

すなわち、本発明の粒子状吸水剤は、上記課題を解決するために、水溶性不飽和単量体の架橋重合体である吸水性樹脂を主成分として含有する粒子状吸水剤であって、106μm以上850μm未満の粒子径を有する粒子状の吸水性樹脂が、吸水性樹脂の全質量に対して90〜100質量%含まれており、下記(式1)
(塩濃度吸収指数)=(一定塩濃度水溶液に対する4.83kPaでの加圧下吸収倍率)/(一定塩濃度水溶液に対する無荷重下吸収倍率) ・・(式1)
(式中、上記加圧下吸収倍率は、4.83kPaの加圧下にて、一定塩濃度水溶液に60分間浸漬した場合の吸収倍率であり、上記無荷重下吸収倍率は、無加圧下にて、一定塩濃度水溶液に60分間浸漬した場合の吸収倍率である)にて、上記一定塩濃度水溶液がイオン交換水である場合の塩濃度吸収指数である第一塩濃度吸収指数が、0.60以上であるものである。
That is, the particulate water-absorbing agent of the present invention is a particulate water-absorbing agent containing, as a main component, a water-absorbing resin that is a cross-linked polymer of a water-soluble unsaturated monomer, in order to solve the above-mentioned problem. The particulate water-absorbing resin having a particle diameter of less than 850 μm is contained in an amount of 90 to 100% by mass with respect to the total mass of the water-absorbing resin, and the following (formula 1)
(Salt concentration absorption index) = (absorption capacity under pressure at 4.83 kPa for a constant salt concentration aqueous solution) / (absorption capacity under no load for a constant salt concentration aqueous solution) (Equation 1)
(In the formula, the absorption capacity under pressure is an absorption capacity when immersed in a constant salt concentration aqueous solution for 60 minutes under a pressure of 4.83 kPa, and the absorption capacity under no load is under no pressure, The first salt concentration absorption index, which is the salt concentration absorption index when the above constant salt concentration aqueous solution is ion-exchanged water, is 0.60 or more. It is what is.

また、本発明の粒子状吸水剤は、上記課題を解決するために、水溶性不飽和単量体の架橋重合体である吸水性樹脂を主成分として含有する粒子状吸水剤であって、106μm以上850μm未満の粒子径を有する粒子状の吸水性樹脂が、吸水性樹脂の全質量に対して90質量%以上含まれており、4.83kPaの加圧下にて、イオン交換水に60分間浸漬した場合の吸収倍率である加圧下吸収倍率が、50g/g以上であるものである。   The particulate water-absorbing agent of the present invention is a particulate water-absorbing agent containing, as a main component, a water-absorbing resin that is a cross-linked polymer of a water-soluble unsaturated monomer, in order to solve the above problems, The particulate water-absorbing resin having a particle diameter of less than 850 μm is contained in an amount of 90% by mass or more with respect to the total mass of the water-absorbing resin, and is immersed in ion-exchanged water for 60 minutes under a pressure of 4.83 kPa. The absorption capacity under pressure, which is the absorption capacity in the case of the above, is 50 g / g or more.

また、本発明の粒子状吸水剤は、上記の粒子状吸水剤において、上記(式1)中の一定塩濃度水溶液が0.10質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数である第二塩濃度吸収指数が、0.80以上であることが好ましい。   Further, the particulate water-absorbing agent of the present invention is the above-mentioned particulate water-absorbing agent, which is a salt concentration absorption index when the constant salt concentration aqueous solution in (Formula 1) is a 0.10% by mass sodium chloride aqueous solution. The bi-salt concentration absorption index is preferably 0.80 or more.

また、本発明の粒子状吸水剤は、上記の粒子状吸水剤において、上記(式1)中の一定塩濃度水溶液が0.30質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数である第三塩濃度吸収指数、上記(式1)中の一定塩濃度水溶液が0.50質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数である第四塩濃度吸収指数、上記(式1)中の一定塩濃度水溶液が0.70質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数である第五塩濃度吸収指数、上記(式1)中の一定塩濃度水溶液が0.90質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数である第六塩濃度吸収指数、のうちの少なくとも1つが、0.90以上であることが好ましい。   The particulate water-absorbing agent of the present invention is a salt concentration absorption index when the constant salt concentration aqueous solution in the above (formula 1) is a 0.30 mass% sodium chloride aqueous solution in the particulate water-absorbing agent. The trisalt concentration absorption index, the fourth salt concentration absorption index, which is the salt concentration absorption index when the constant salt concentration aqueous solution in (Equation 1) is a 0.50% by mass sodium chloride aqueous solution, The fifth salt concentration absorption index, which is the salt concentration absorption index when the constant salt concentration aqueous solution is 0.70% by mass sodium chloride aqueous solution, and the constant salt concentration aqueous solution in the above (formula 1) is 0.90% by mass sodium chloride aqueous solution It is preferable that at least one of the sixth salt concentration absorption index, which is the salt concentration absorption index, is 0.90 or more.

また、本発明の粒子状吸水剤は、上記の粒子状吸水剤において、上記第一塩濃度吸収指数、第二塩濃度吸収指数、第三塩濃度吸収指数、第四塩濃度吸収指数、第五塩濃度吸収指数、第六塩濃度吸収指数の平均値である平均塩濃度吸収指数指数が0.90以上である、または、上記平均塩濃度吸収指数指数の標準偏差が、0〜0.100の範囲内にあることが好ましい。   Further, the particulate water-absorbing agent of the present invention is the above-mentioned particulate water-absorbing agent, wherein the first salt concentration absorption index, the second salt concentration absorption index, the third salt concentration absorption index, the fourth salt concentration absorption index, the fifth The average salt concentration absorption index, which is the average value of the salt concentration absorption index and the sixth salt concentration absorption index, is 0.90 or more, or the standard deviation of the average salt concentration absorption index is 0 to 0.100 It is preferable to be within the range.

また、本発明の粒子状吸水剤は、上記の粒子状吸水剤において、下記(式2)
(耐塩性指数)=(一定塩濃度水溶液に対する無荷重下吸収倍率)/(イオン交換水に対する無荷重下吸収倍率) ・・(式2)
(式中、無荷重下吸収倍率は、一定塩濃度水溶液またはイオン交換水に、60分間浸漬した場合の吸収倍率である)にて、上記一定塩濃度が0.10質量%塩化ナトリム水溶液である場合の耐塩性指数である第一耐塩性指数が、0.40以上であることが好ましい。
Further, the particulate water-absorbing agent of the present invention is the above-mentioned particulate water-absorbing agent in the following (formula 2):
(Salt tolerance index) = (absorption capacity under no load with respect to a constant salt concentration aqueous solution) / (absorption capacity under no load with respect to ion-exchanged water) (Equation 2)
(In the formula, the absorption capacity under no load is the absorption capacity when immersed in a constant salt concentration aqueous solution or ion-exchanged water for 60 minutes), and the above-mentioned constant salt concentration is a 0.10% by mass sodium chloride aqueous solution. In this case, the first salt tolerance index, which is the salt tolerance index, is preferably 0.40 or more.

また、本発明の粒子状吸水剤は、上記の粒子状吸水剤において、無加圧下にて、0.90質量%塩化ナトリウム水溶液に60分間浸漬した場合の吸収倍率である無荷重下吸収倍率が、10〜27g/gであることが好ましい。   Further, the particulate water-absorbing agent of the present invention has an absorption capacity under no load which is an absorption capacity when immersed in a 0.90 mass% sodium chloride aqueous solution for 60 minutes under no pressure in the particulate water-absorbing agent. 10 to 27 g / g.

また、本発明の粒子状吸水剤は、上記の粒子状吸水剤において、4.83kPaの加圧下にて、0.90質量%塩化ナトリウム水溶液に60分間浸漬した場合の吸収倍率である加圧下吸収倍率が、10〜27g/gであるが好ましい。   Further, the particulate water-absorbing agent of the present invention is the above-mentioned particulate water-absorbing agent, absorption under pressure which is an absorption capacity when immersed in a 0.90 mass% sodium chloride aqueous solution for 60 minutes under a pressure of 4.83 kPa. The magnification is preferably 10 to 27 g / g.

また、本発明の粒子状吸水剤は、上記の粒子状吸水剤において、水不溶性微粒子をさらに含むことが好ましい。   The particulate water-absorbing agent of the present invention preferably further contains water-insoluble fine particles in the particulate water-absorbing agent.

また、本発明の粒子状吸水剤は、上記の粒子状吸水剤において、2.07kPaの圧力下にて、イオン交換水に対するゲル通液指数が15以上であることが好ましい。   Moreover, it is preferable that the particulate water-absorbing agent of the present invention has a gel permeation index of 15 or more with respect to ion-exchanged water under the pressure of 2.07 kPa in the above-mentioned particulate water-absorbing agent.

また、本発明の粒子状吸水剤は、上記の粒子状吸水剤において、2.07kPaの圧力下にて、0.30質量%塩化ナトリウム水溶液に対するゲル通液指数が50以上であることが好ましい。   The particulate water-absorbing agent of the present invention preferably has a gel flow index of 50 or more with respect to a 0.30 mass% sodium chloride aqueous solution under the pressure of 2.07 kPa in the particulate water-absorbing agent.

また、本発明の粒子状吸水剤は、上記の粒子状吸水剤において、4.83kPaの圧力下にて、0.70質量%塩化ナトリウム水溶液に対するゲル通液指数が15以上であることが好ましい。   The particulate water-absorbing agent of the present invention preferably has a gel flow index of 15 or more with respect to a 0.70 mass% sodium chloride aqueous solution under the pressure of 4.83 kPa in the particulate water-absorbing agent.

また、本発明の粒子状吸水剤は、上記の粒子状吸水剤において、上記水溶性不飽和単量体は、アクリル酸および/またはその塩を含んでなり、上記粒子状の吸水性樹脂は、表面改質処理が施されていることが好ましい。   Further, the particulate water-absorbing agent of the present invention is the particulate water-absorbing agent described above, wherein the water-soluble unsaturated monomer comprises acrylic acid and / or a salt thereof, and the particulate water-absorbing resin is: It is preferable that surface modification treatment is performed.

また、本発明の衛生材料は、上記課題を解決するために、体液を吸収するための衛生材料であって、上記の粒子状吸水剤のいずれかを含むものである。   Moreover, in order to solve the said subject, the sanitary material of this invention is a sanitary material for absorbing a bodily fluid, Comprising: One of said particulate water absorbing agents is included.

また、本発明の衛生材料は、上記の衛生材料において、上記体液を吸収する吸収層を備え、上記吸収層は、下記(式3)
(コア濃度比)=(粒子状吸水剤の質量)/((粒子状吸水剤の質量)+(繊維材料の質量)) ・・(式3)
で規定されるコア濃度が、0.3以上1.0以下であるとよい。
In addition, the sanitary material of the present invention includes the above sanitary material, and includes an absorption layer that absorbs the body fluid.
(Core concentration ratio) = (mass of particulate water-absorbing agent) / ((mass of particulate water-absorbing agent) + (mass of fiber material)) (Equation 3)
The core concentration defined by is good to be 0.3 or more and 1.0 or less.

本発明に係る粒子状吸水剤は、以上のように、水溶性不飽和単量体の架橋重合体である吸水性樹脂を主成分とする粒子状吸水剤であって、850μm未満で106μm以上の粒子径を有する粒子状の吸水性樹脂が、上記粒子状吸水剤に含まれる吸水性樹脂の全質量に対して、90質量%以上100質量%以下含まれており、上記(式1)で規定される、一定塩濃度水溶液がイオン交換水である場合の塩濃度吸収指数である第一塩濃度吸収指数が、0.60以上であるものである。   As described above, the particulate water-absorbing agent according to the present invention is a particulate water-absorbing agent mainly composed of a water-absorbing resin that is a cross-linked polymer of a water-soluble unsaturated monomer, and is less than 850 μm and 106 μm or more. The particulate water-absorbing resin having a particle size is contained in an amount of 90% by mass to 100% by mass with respect to the total mass of the water-absorbing resin contained in the particulate water-absorbing agent, and is defined by the above (formula 1). The first salt concentration absorption index, which is the salt concentration absorption index when the constant salt concentration aqueous solution is ion-exchanged water, is 0.60 or more.

それゆえ、上記粒子状吸水剤は、塩濃度の変化によらず水性溶液の一定の吸収が可能であるという効果を奏する。また、上記粒子状吸水剤は、塩濃度変化や圧力変化によらず、優れたゲル通液指数を有する。そのため、衛生材料等の吸収物品に上記粒子状吸水剤を使用した場合に、吸収物品全体に液を十分に行き渡らせ、吸液量を増大させることができるという効果を奏する。   Therefore, the particulate water-absorbing agent has an effect that a certain amount of aqueous solution can be absorbed regardless of a change in salt concentration. In addition, the particulate water-absorbing agent has an excellent gel permeation index regardless of changes in salt concentration or pressure. Therefore, when the particulate water-absorbing agent is used in an absorbent article such as a sanitary material, the liquid can be sufficiently spread over the entire absorbent article, and the liquid absorption amount can be increased.

以下、本発明にかかる粒子状吸水剤(吸水剤)について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜実施し得る。   Hereinafter, the particulate water-absorbing agent (water-absorbing agent) according to the present invention will be described in detail. However, the scope of the present invention is not limited to these descriptions, and the spirit of the present invention is not impaired except for the following examples. It can be implemented as appropriate within the range.

吸水性樹脂の諸物性の評価に際し、尿のモデルとして、生理食塩水(0.9質量(質量)%塩化ナトリウム水溶液)ないし各種人工尿を用いることが提案されている。しかしながら、人尿の尿組成は、上記した各特許文献においても、まちまちであるのが実情である。この事実からも理解できることであるが、実際の尿の組成は一定ではなく、生活環境、食生活、年齢、季節、さらに同じ人でも時間や体調によって刻々と大きく変化しているのが実情である。   In evaluating various physical properties of the water-absorbent resin, it has been proposed to use physiological saline (0.9 mass (mass%) sodium chloride aqueous solution) or various artificial urine as a urine model. However, the actual urine composition of human urine varies in each of the above-mentioned patent documents. As can be understood from this fact, the actual composition of urine is not constant, and the actual situation is that the living environment, diet, age, season, and even the same person varies greatly with time and physical condition. .

そこで、本発明者らは、従来の吸水性樹脂の評価では、モデルとして一定の吸水液(生理食塩水、人工尿など)を使用して評価して物性を決定していたという問題点、すなわち、尿の組成の変化に対応できないため、従来の吸水性樹脂は実使用で十分な性能を発揮できなかったことを見出し、本発明では、尿の塩濃度の差に注目した。   Therefore, the present inventors have a problem that in the conventional evaluation of the water-absorbent resin, the physical properties are determined by evaluating using a certain water-absorbing solution (physiological saline, artificial urine, etc.) as a model. Since the conventional water-absorbent resin could not exhibit sufficient performance in actual use because it could not cope with the change in urine composition, the present invention focused on the difference in urine salt concentration.

すなわち、成人尿の場合、イオン強度としては0.8〜1.0質量%の塩化ナトリウム水溶液とほぼ同等であるのに対し、乳幼児の場合、イオン強度としては0.3〜0.7質量%の塩化ナトリウム水溶液とほぼ同等であり、特に新生児尿の場合は、イオン強度としては0.2〜0.4質量%の塩化ナトリウム水溶液とほぼ同等であり、従来の、生理食塩水(0.9質量%塩化ナトリウム水溶液)を用いた吸水性樹脂の物性の評価では、実際の尿の塩濃度に対応していなかったため、必ずしも生理食塩水による吸水性樹脂の評価結果が実使用に対応していないことに問題があることを見出した。   That is, in the case of adult urine, the ionic strength is almost equivalent to a 0.8 to 1.0 mass% sodium chloride aqueous solution, whereas in the case of infants, the ionic strength is 0.3 to 0.7 mass%. In particular, in the case of neonatal urine, the ionic strength is almost equivalent to 0.2 to 0.4 mass% sodium chloride aqueous solution, and conventional saline (0.9 In the evaluation of the properties of the water-absorbent resin using a mass% sodium chloride aqueous solution), the evaluation results of the water-absorbent resin with physiological saline do not necessarily correspond to actual use because the actual salt concentration of urine was not supported. I found that there was a problem.

また、一点から排尿された尿は、オムツ中で拡散するにつれて、吸水性樹脂でイオン交換されて塩濃度が徐々に変化(低下)しており、そのオムツ中での尿の拡散に伴う尿の塩濃度変化がオムツ中の各部で変化するために、実使用での十分な物性を与えない原因であることを見出した。   In addition, as the urine urinated from one point diffuses in the diaper, the salt concentration gradually changes (decreases) due to ion exchange with the water-absorbent resin. It has been found that the salt concentration change varies in each part of the diaper, so that it does not give sufficient physical properties in actual use.

そこで、本発明では、水溶性不飽和単量体の架橋重合体である吸水性樹脂を主成分とする粒子状吸水剤であって、850μm未満で106μm以上の粒子径を有する粒子状の吸水性樹脂が、上記粒子状吸水剤に含まれる吸水性樹脂の全質量に対して、90質量%以上100質量%以下含まれており、後述する(式1)で規定される、一定塩濃度水溶液がイオン交換水である場合の塩濃度吸収指数である第一塩濃度吸収指数が、0.60以上である粒子状吸水剤が、塩濃度の変化によらず一定の吸収が可能なため、従来以上の優れた粒子状吸水剤であることを見出した。   Therefore, in the present invention, a particulate water-absorbing agent mainly composed of a water-absorbing resin that is a crosslinked polymer of a water-soluble unsaturated monomer, having a particle diameter of less than 850 μm and 106 μm or more. The resin is contained in an amount of 90% by mass to 100% by mass with respect to the total mass of the water-absorbing resin contained in the particulate water-absorbing agent, and a constant salt concentration aqueous solution defined by (Equation 1) described later is provided. Since the particulate water-absorbing agent having a first salt concentration absorption index of 0.60 or more, which is a salt concentration absorption index in the case of ion-exchanged water, can absorb a certain amount regardless of changes in salt concentration, it is more than conventional. It was found to be an excellent particulate water-absorbing agent.

また、本発明の粒子状吸水剤は、塩濃度変化や圧力変化によらず、優れたゲル通液指数を有する。そのため、吸収体に本発明の吸水剤を使用した場合に、吸収体全体に液を十分に行き渡らせ、吸液量を増大させることができる。それゆえ、液の漏れを防止するという効果が著しく向上することを見出した。   Moreover, the particulate water-absorbing agent of the present invention has an excellent gel fluid permeability index regardless of changes in salt concentration or pressure. Therefore, when the water-absorbing agent of the present invention is used for the absorber, the liquid can be sufficiently distributed throughout the absorber and the amount of liquid absorption can be increased. Therefore, it has been found that the effect of preventing leakage of the liquid is remarkably improved.

以下、本発明の粒子状吸水剤について、詳細に説明する。   Hereinafter, the particulate water-absorbing agent of the present invention will be described in detail.

〔水溶性不飽和単量体の架橋重合体である吸水性樹脂〕
本発明における吸水剤とは、吸水性樹脂を主成分として、必要により若干の添加剤や水等の吸水性樹脂以外の成分を含んでいてもよく、吸水剤中で通常50〜100質量%、好ましくは70〜100質量%、さらに好ましくは85〜100質量%、特に好ましくは95〜100質量%が吸水性樹脂の樹脂純分よりなり、その形状は後述の粒子状である。また、上記吸水剤は、特定物性パラメータを有する特定物性以上のものである。
[Water-absorbing resin which is a cross-linked polymer of water-soluble unsaturated monomer]
The water-absorbing agent in the present invention includes a water-absorbing resin as a main component, and may optionally contain components other than the water-absorbing resin such as some additives and water, and is usually 50 to 100% by mass in the water-absorbing agent. Preferably it is 70-100 mass%, More preferably, it is 85-100 mass%, Most preferably, 95-100 mass% consists of the resin pure part of a water absorbing resin, The shape is the below-mentioned particle form. The water-absorbing agent is more than a specific physical property having a specific physical property parameter.

本発明で吸水性樹脂とは、水膨潤性かつ実質水不溶性の架橋重合体で、アニオン性、ノニオン性、またはカチオン性の実質水不溶性ヒドロゲルを形成する従来公知の水膨潤性架橋重合体のことである。これら吸水性樹脂は、重合体の内部架橋以外に表面がさらに架橋ないし処理されていてもよく、それらを総称して本発明では吸水性樹脂と呼ぶが、必要により、吸水性樹脂と、表面がさらに架橋された吸水性樹脂と、呼び分ける場合がある。   In the present invention, the water-absorbing resin is a water-swellable and substantially water-insoluble crosslinked polymer, which is a conventionally known water-swellable crosslinked polymer that forms an anionic, nonionic or cationic substantially water-insoluble hydrogel. It is. The surface of these water-absorbing resins may be further cross-linked or treated in addition to the internal cross-linking of the polymer, and they are collectively referred to as a water-absorbing resin in the present invention. Furthermore, it may be called a crosslinked water absorbent resin.

本発明で水膨潤性とは、イオン交換水中において5g/g以上の水を吸収することが必須であり、好ましくは50〜1000g/gという多量の水を吸収することを指す。また、本発明で実質水不溶性とは、吸水性樹脂中の水可溶性成分(水溶性高分子)が0〜50質量(重量)%、好ましくは0〜20質量%、より好ましくは0.01〜15質量%、さらに好ましくは0.1〜10質量%であり、このうち、特に好ましくは0.1〜5質量%であり、最も好ましくは0.1〜3質量%であることを指す。(なお、上記吸収倍率や水可溶性成分の測定法は、後述の実施例で規定する)。   In the present invention, the water swellability means that it is essential to absorb 5 g / g or more of water in ion-exchanged water, and preferably absorbs a large amount of water of 50 to 1000 g / g. In the present invention, substantially water-insoluble means that the water-soluble component (water-soluble polymer) in the water-absorbent resin is 0 to 50 mass (weight)%, preferably 0 to 20 mass%, more preferably 0.01 to It is 15 mass%, More preferably, it is 0.1-10 mass%, Among these, Especially preferably, it is 0.1-5 mass%, Most preferably, it points out that it is 0.1-3 mass%. (In addition, the measuring method of the said absorption factor and a water-soluble component is prescribed | regulated by the below-mentioned Example).

上記吸水性樹脂は、1種または2種以上の混合物であり、中でも酸基含有の吸水性樹脂、さらには、カルボン酸またはその塩であるカルボキシル基含有の吸水性樹脂の1種またはその混合物であることが好ましい。より具体的には、アクリル酸および/またはその塩(中和物)を主成分とする水溶性不飽和単量体を重合することによって得られる架橋重合体、すなわち、必要によりグラフト成分を含むポリアクリル酸塩架橋重合体が主成分であることが好ましい。   The water-absorbing resin is one or a mixture of two or more of them, and in particular, an acid group-containing water-absorbing resin, and further, one kind of a carboxyl group-containing water-absorbing resin that is a carboxylic acid or a salt thereof, or a mixture thereof. Preferably there is. More specifically, a cross-linked polymer obtained by polymerizing a water-soluble unsaturated monomer having acrylic acid and / or a salt thereof (neutralized product) as a main component, that is, a polymer containing a graft component as necessary. It is preferable that the acrylate cross-linked polymer is a main component.

上記吸水性樹脂は、その構成単位で、アクリル酸0〜50モル%およびアクリル酸塩100〜50モル%(但し、両者の合計量は100モル%以下とする)の範囲にあるものが好ましく、アクリル酸10〜40モル%およびアクリル酸塩90〜60モル%(但し、両者の合計量は100モル%以下とする)の範囲にあるものがより好ましい。なお、このアクリル酸とアクリル酸塩との合計量に対するアクリル酸塩のモル比を中和率と呼ぶ。   The above water-absorbent resin is preferably in the range of 0 to 50 mol% of acrylic acid and 100 to 50 mol% of acrylate (however, the total amount of both is 100 mol% or less). More preferred are those in the range of 10 to 40 mol% acrylic acid and 90 to 60 mol% acrylate (however, the total amount of both is 100 mol% or less). The molar ratio of acrylate to the total amount of acrylic acid and acrylate is called the neutralization rate.

上記吸水性樹脂の構成単位としてのアクリル酸塩を形成するために、吸水性樹脂に含まれるアクリル酸の中和を行うが、該アクリル酸の中和は、単量体の重合前に単量体の状態で行っても良く、あるいは重合途中や重合後に重合体の状態で行っても良く、これらを併用してもよい。吸水性樹脂に構成単位として含まれる塩としては、(ポリ)アクリル酸の、ナトリウム塩、カリウム塩、リチウム塩等のアルカリ金属塩、アンモニウム塩、およびアミン塩等を例示することができる。   In order to form an acrylate as a structural unit of the water absorbent resin, neutralization of acrylic acid contained in the water absorbent resin is performed. It may be carried out in the form of a polymer, or may be carried out in the state of a polymer during or after polymerization, or these may be used in combination. Examples of the salt contained as a structural unit in the water absorbent resin include alkali metal salts such as sodium salt, potassium salt, lithium salt, ammonium salt, and amine salt of (poly) acrylic acid.

また、本発明で水溶性不飽和単量体として用いられるアクリル酸は、重合促進や低着色の点から、p−メトキシフェノール(別称、ヒドロキノンモノメチルエーテル)を含有することが好ましい。該p−メトキシフェノールの含有量は、アクリル酸に対して、200質量ppm以下であることが好ましく、より好ましくは10〜160質量ppmであり、さらに好ましくは20〜140質量ppmであり、よりさらに好ましくは30〜120質量ppmであり、このうち、特に好ましくは40〜100質量ppmであり、50〜90質量ppmであることが最も好ましい。また、アクリル酸中のプロトアネモニンおよび/またはフルフラールの含有量は、アクリル酸に対して、0〜20質量ppmであることが好ましく、0〜10質量ppmであることがより好ましく、このうち、0〜5質量ppmであることが特に好ましく、0〜1質量ppmであることが最も好ましい。   Moreover, it is preferable that the acrylic acid used as a water-soluble unsaturated monomer by this invention contains p-methoxyphenol (other name, hydroquinone monomethyl ether) from the point of superposition | polymerization acceleration | stimulation and low coloring. It is preferable that content of this p-methoxyphenol is 200 mass ppm or less with respect to acrylic acid, More preferably, it is 10-160 mass ppm, More preferably, it is 20-140 mass ppm, More preferably Preferably it is 30-120 mass ppm, Among these, Most preferably, it is 40-100 mass ppm, and it is most preferable that it is 50-90 mass ppm. Further, the content of protoanemonin and / or furfural in acrylic acid is preferably 0 to 20 ppm by mass, more preferably 0 to 10 ppm by mass with respect to acrylic acid, It is particularly preferably 0 to 5 ppm by mass, and most preferably 0 to 1 ppm by mass.

本発明における吸水性樹脂を得るための水溶性不飽和単量体は、実質的にアクリル酸(塩)のみでもよく、上記アクリル酸(塩)以外の他の水溶性不飽和単量体でもよく、また、該他の水溶性不飽和単量体とアクリル酸(塩)とを併用してもよい。アクリル酸(塩)以外の他の水溶性不飽和単量体としては、特に限定されるものではないが、具体的には、例えば、メタクリル酸、マレイン酸、ビニルスルホン酸、スチレンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−(メタ)アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸等のアニオン性不飽和単量体およびその塩;アクリルアミド、メタアクリルアミド、N−エチル(メタ)アクリルアミド、N−n−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ビニルピリジン、N−ビニルピロリドン、N−アクリロイルピペリジン、N−アクリロイルピロリジン、N−ビニルアセトアミド等のノニオン性の親水基含有不飽和単量体;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、およびこれらの四級塩等のカチオン性不飽和単量体等が挙げられる。これらの不飽和単量体は、単独で用いてもよく、適宜2種類以上を混合して用いてもよい。   The water-soluble unsaturated monomer for obtaining the water-absorbent resin in the present invention may be substantially only acrylic acid (salt), or may be other water-soluble unsaturated monomer other than the acrylic acid (salt). Further, the other water-soluble unsaturated monomer and acrylic acid (salt) may be used in combination. The water-soluble unsaturated monomer other than acrylic acid (salt) is not particularly limited, and specific examples include methacrylic acid, maleic acid, vinyl sulfonic acid, styrene sulfonic acid, 2 Anionic unsaturated monomers such as (meth) acrylamide-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid and salts thereof; acrylamide, methacrylamide, N-ethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl ( (Meth) acrylate, methoxypolyethylene glycol (meth) a Nonionic hydrophilic group-containing unsaturated monomers such as relate, polyethylene glycol mono (meth) acrylate, vinylpyridine, N-vinylpyrrolidone, N-acryloylpiperidine, N-acryloylpyrrolidine, N-vinylacetamide; N, N- Dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide, and quaternary salts thereof And cationic unsaturated monomers. These unsaturated monomers may be used alone or in combination of two or more.

本発明においては、吸水性樹脂の良好な物性を得るために、主成分として、アクリル酸およびその塩を用い、さらに必要に応じて、通常0〜30モル%、好ましくは0〜20モル%、より好ましくは0〜10モル%で、上記他の水溶性不飽和単量体を併用すればよい。   In the present invention, in order to obtain good physical properties of the water-absorbent resin, acrylic acid and a salt thereof are used as a main component, and, if necessary, usually 0 to 30 mol%, preferably 0 to 20 mol%, More preferably, it is 0-10 mol%, and the other water-soluble unsaturated monomer may be used in combination.

本発明における吸水性樹脂を得るために行う、上述の各単量体の重合に際しては、バルク重合や沈殿重合を行うことが可能であるが、吸水性樹脂の性能や重合の制御の容易さ、さらに膨潤ゲルの吸収特性の観点から、上記単量体を水溶液とすることによる水溶液重合や逆相懸濁重合を行うことが好ましい。なお、上記の各単量体を水溶液とする場合の該水溶液(以下、単量体水溶液と称する)中の単量体の濃度は、水溶液の温度や単量体の種類によって決まり、特に限定されるものではないが、10〜70質量%の範囲内が好ましく、20〜60質量%の範囲内がさらに好ましい。また、上記水溶液を用いて重合を行う際には、水以外の溶媒を必要に応じて併用してもよく、併用して用いられる溶媒の種類は、特に限定されるものではない。   In the polymerization of each monomer described above to obtain the water-absorbent resin in the present invention, bulk polymerization and precipitation polymerization can be performed, but the performance of the water-absorbent resin and the ease of control of the polymerization, Furthermore, from the viewpoint of the absorption characteristics of the swollen gel, it is preferable to perform aqueous solution polymerization or reverse phase suspension polymerization by using the monomer as an aqueous solution. The concentration of the monomer in the aqueous solution (hereinafter referred to as the monomer aqueous solution) when each of the above monomers is an aqueous solution is determined by the temperature of the aqueous solution and the type of monomer and is particularly limited. Although not intended, it is preferably in the range of 10 to 70% by mass, more preferably in the range of 20 to 60% by mass. Moreover, when superposing | polymerizing using the said aqueous solution, you may use together solvents other than water as needed, and the kind of solvent used together is not specifically limited.

上記水溶液重合の方法としては、双腕型ニーダー中で単量体水溶液を得られる含水ゲル状架橋重合体を砕きながら重合する、あるいは、所定の容器中や駆動するベルト上に単量体水溶液を供給し、重合して得られたゲルをミートチョッパー等で粉砕する方法等が挙げられる。   As the method for the above aqueous solution polymerization, the water-containing gel-like cross-linked polymer from which the monomer aqueous solution can be obtained is polymerized while being crushed in a double-arm kneader, or the monomer aqueous solution is placed in a predetermined container or on a driving belt. Examples thereof include a method of pulverizing a gel obtained by supplying and polymerizing with a meat chopper or the like.

上記の重合を開始させる際には、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、t−ブチルハイドロパーオキサイド、過酸化水素、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩等のラジカル重合開始剤や、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン等の光重合開始剤を用いることができる。さらに、これら重合開始剤の分解を促進する還元剤を併用し、両者を組み合わせたレドックス系開始剤としてもよい。上記の還元剤としては、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム等の(重)亜硫酸(塩)、L−アスコルビン酸(塩)、第一鉄塩等の還元性金属(塩)、アミン類等が挙げられるが、特に限定されるものではない。これら重合開始剤の使用量は残存モノマーや吸水特性などの物性面から通常0.001〜2モル%(対単量体)、好ましくは0.01〜0.1モル%である。   When starting the above polymerization, for example, potassium persulfate, ammonium persulfate, sodium persulfate, t-butyl hydroperoxide, hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride, etc. Photopolymerization initiators such as 2-hydroxy-2-methyl-1-phenyl-propan-1-one can be used. Furthermore, it is good also as a redox initiator which used the reducing agent which accelerates | stimulates decomposition | disassembly of these polymerization initiators together, and combined both. Examples of the reducing agent include (bi) sulfurous acid (salt) such as sodium sulfite and sodium bisulfite, L-ascorbic acid (salt), reducing metal (salt) such as ferrous salt, amines, and the like. Although it is mentioned, it is not particularly limited. The amount of these polymerization initiators used is usually from 0.001 to 2 mol% (based on monomers), preferably from 0.01 to 0.1 mol%, from the standpoint of physical properties such as residual monomer and water absorption characteristics.

また、反応系に放射線、電子線、紫外線等の活性エネルギー線を照射することにより重合反応の開始を行ってもよいし、さらに、上記重合開始剤を併用してもよい。なお、上記重合反応における反応温度は、特に限定されるものではないが、15〜130℃の範囲内が好ましく、20〜120℃の範囲内がより好ましい。また、反応時間や重合圧力も特に限定されるものではなく、単量体や重合開始剤の種類、反応温度等に応じて適宜設定すればよい。   Further, the polymerization reaction may be initiated by irradiating the reaction system with active energy rays such as radiation, electron beam, and ultraviolet rays, and the above polymerization initiator may be used in combination. In addition, although the reaction temperature in the said polymerization reaction is not specifically limited, The inside of the range of 15-130 degreeC is preferable, and the inside of the range of 20-120 degreeC is more preferable. Further, the reaction time and the polymerization pressure are not particularly limited, and may be appropriately set according to the type of monomer or polymerization initiator, the reaction temperature, and the like.

本発明における吸水性樹脂は、その内部に架橋構造を有する(いわゆる内部架橋)。該内部架橋は、得られる吸水性樹脂が水不溶性となるように行われればその手法は特に問わず、架橋剤を使用しないで形成させたもの(自己架橋型)であってもよいが、一分子中に2個以上の重合性不飽和基や2個以上の反応性基を有する架橋剤(内部架橋剤)を共重合または反応させて形成させたものであることがさらに好ましい。   The water-absorbent resin in the present invention has a crosslinked structure inside (so-called internal crosslinking). The internal cross-linking is not particularly limited as long as the resulting water-absorbent resin is water-insoluble, and may be one formed without using a cross-linking agent (self-crosslinking type). It is more preferable that the polymer is formed by copolymerizing or reacting a crosslinking agent (internal crosslinking agent) having two or more polymerizable unsaturated groups or two or more reactive groups in the molecule.

これら内部架橋剤の具体例としては、例えば、N,N’−メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミン、グリシジル(メタ)アクリレート等を挙げることができる。   Specific examples of these internal crosslinking agents include, for example, N, N′-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethylolpropane tri ( (Meth) acrylate, glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol hexa (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, tri Allylamine, poly (meth) allyloxyalkane, (poly) ethylene glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol, polyethylene Glycol, propylene glycol, glycerol, pentaerythritol, ethylenediamine, ethylene carbonate, propylene carbonate, polyethylenimine, and glycidyl (meth) acrylate.

これら内部架橋剤は単独で用いてもよく、適宜2種類以上を混合して用いてもよい。また、これら内部架橋剤は、反応系に一括して添加してもよく、分割して添加してもよい。1種または2種類以上の内部架橋剤を使用する場合には、最終的に得られる吸水剤の吸収特性等を考慮して、2個以上の重合性不飽和基を有する化合物を重合時に必ず用いることが好ましい。   These internal cross-linking agents may be used alone or in combination of two or more. Moreover, these internal crosslinking agents may be added to the reaction system all at once, or may be added separately. When using one or two or more types of internal cross-linking agents, a compound having two or more polymerizable unsaturated groups must be used during the polymerization in consideration of the absorption characteristics of the finally obtained water-absorbing agent. It is preferable.

これら内部架橋剤の使用量は、吸水性樹脂や吸水剤の良好な物性を得る観点から、前記水溶性不飽和単量体(内部架橋剤を除く)に対して、好ましくは0.001〜2モル%であり、より好ましくは0.005〜1モル%であり、さらに好ましくは0.005〜0.7モル%であり、よりさらに好ましくは0.01〜0.5モル%であり、このうち、特に好ましくは0.01〜0.2モル%であり、最も好ましくは0.03〜0.15モル%の範囲内である。   The amount of these internal cross-linking agents used is preferably 0.001 to 2 with respect to the water-soluble unsaturated monomer (excluding the internal cross-linking agent) from the viewpoint of obtaining good physical properties of the water-absorbing resin or water-absorbing agent. Mol%, more preferably 0.005 to 1 mol%, still more preferably 0.005 to 0.7 mol%, still more preferably 0.01 to 0.5 mol%. Among these, it is particularly preferably 0.01 to 0.2 mol%, and most preferably within the range of 0.03 to 0.15 mol%.

上記内部架橋剤を用いて架橋構造を吸水性樹脂内部に導入する場合には、上記内部架橋剤を、上記水溶性不飽和単量体の重合前あるいは重合途中、あるいは重合後、または中和後に反応系に添加するようにすればよい。   When the crosslinked structure is introduced into the water-absorbent resin using the internal crosslinking agent, the internal crosslinking agent may be added before or during the polymerization of the water-soluble unsaturated monomer, after the polymerization, or after the neutralization. It may be added to the reaction system.

なお、上記重合に際しては、反応系に、澱粉・セルロース、澱粉・セルロースの誘導体、ポリビニルアルコール、ポリアクリル酸(塩)、ポリアクリル酸(塩)架橋体等の親水性高分子0〜50質量%(対水溶性不飽和単量体の質量)や、その他0〜10質量%(対水溶性不飽和単量体の質量)の、炭酸(水素)塩、二酸化炭素、アゾ化合物、不活性有機溶媒等の各種発泡剤;各種界面活性剤;キレート剤;次亜燐酸(塩)等の連鎖移動剤などを添加してもよい。   In the above polymerization, the reaction system includes starch / cellulose, starch / cellulose derivatives, polyvinyl alcohol, polyacrylic acid (salt), polyacrylic acid (salt) cross-linked hydrophilic polymer 0 to 50% by mass. (Mass of water-soluble unsaturated monomer) and other 0-10% by mass (mass of water-soluble unsaturated monomer), carbonic acid (hydrogen) salt, carbon dioxide, azo compound, inert organic solvent Various foaming agents such as: various surfactants; chelating agents; chain transfer agents such as hypophosphorous acid (salt) may be added.

上記重合工程において得られた含水ゲル状架橋重合体は、重合と同時または別途に乾燥され、その乾燥は、通常60〜250℃、好ましくは100℃〜220℃、さらに好ましくは120〜200℃の温度範囲で行われる。乾燥時間は、重合体の表面積、含水率、乾燥機の種類などに依存し、通常1分〜3時間、好ましくは10分〜2時間の範囲で、目的とする含水率になるように選択される。本発明における吸水性樹脂の含水率(吸水性樹脂中に含まれる水分量で規定/吸水性樹脂1gを180℃で3時間乾燥した場合の減量を測定し、該減量を、乾燥前の吸水性樹脂の質量に対する比率で表したもの)は特に限定されないが、得られる吸水性樹脂製品の物性面から室温でも流動性を示す粉末であり、より好ましくは含水率が0.2〜30質量%、さらに好ましくは0.3〜15質量%、特に好ましくは0.5〜10質量%の粉末状態である。(なお、30質量%以下などの少量の水を含む場合も本発明では吸水性樹脂と総称する)。   The hydrogel crosslinked polymer obtained in the polymerization step is dried simultaneously with or separately from the polymerization, and the drying is usually 60 to 250 ° C, preferably 100 to 220 ° C, more preferably 120 to 200 ° C. Performed in the temperature range. The drying time depends on the surface area of the polymer, the moisture content, the type of dryer, etc., and is usually selected in the range of 1 minute to 3 hours, preferably 10 minutes to 2 hours, so that the desired moisture content is obtained. The Moisture content of the water-absorbent resin in the present invention (specified by the amount of water contained in the water-absorbent resin / Measured weight loss when 1 g of the water-absorbent resin was dried at 180 ° C. for 3 hours, What is represented by the ratio to the mass of the resin) is not particularly limited, but is a powder showing fluidity even at room temperature from the physical properties of the resulting water-absorbent resin product, more preferably a water content of 0.2 to 30% by mass, More preferably, it is 0.3-15 mass%, Most preferably, it is a 0.5-10 mass% powder state. (In the present invention, a small amount of water such as 30% by mass or less is also collectively referred to as a water-absorbing resin).

本発明にかかる製造方法には、重合工程により得られた含水ゲル状架橋重合体を上記乾燥工程において乾燥した後、粉砕機で粉砕して粒子状の吸水性樹脂にする粉砕工程が含まれる。このようにして得られた吸水性樹脂の粒子形状は、球状、破砕状、不定形状等特に限定されるものではないが、粉砕工程を経て得られた不定形破砕状のものが好ましく使用できる。   The production method according to the present invention includes a pulverizing step in which the hydrogel crosslinked polymer obtained in the polymerization step is dried in the drying step and then pulverized by a pulverizer to form a particulate water-absorbing resin. The particle shape of the water-absorbent resin thus obtained is not particularly limited to a spherical shape, a crushed shape, an indeterminate shape or the like, but an indeterminate crushed shape obtained through a pulverization step can be preferably used.

本発明における粒子状吸水剤ないし吸水性樹脂は、微粉末(好ましくは106μm未満、より好ましくは150μm未満)の割合が少ない方が好ましく、具体的には10質量%未満、好ましくは5質量%未満、より好ましくは3質量%未満、さらに好ましくは2質量%未満、特に1質量%未満である。また、本発明における吸水性樹脂は、粗大粒子(好ましくは850μm篩以上、さらに好ましくは500μm篩以上)の割合が少ない方が好ましい。よって、本発明の吸水性樹脂は、850〜106μm(好ましくは850〜150μm)の粒子状の吸水性樹脂が90〜100質量%、好ましくは97〜100質量%、さらに好ましくは98〜100質量%、特に好ましくは99〜100質量%の範囲とされる。   The particulate water-absorbing agent or water-absorbing resin in the present invention preferably has a smaller proportion of fine powder (preferably less than 106 μm, more preferably less than 150 μm), specifically less than 10% by mass, preferably less than 5% by mass. More preferably, it is less than 3 mass%, More preferably, it is less than 2 mass%, Especially less than 1 mass%. The water-absorbent resin in the present invention preferably has a smaller proportion of coarse particles (preferably 850 μm sieve or more, more preferably 500 μm sieve or more). Therefore, the water-absorbent resin of the present invention is a particulate water-absorbent resin having a particle size of 850 to 106 μm (preferably 850 to 150 μm) of 90 to 100% by mass, preferably 97 to 100% by mass, and more preferably 98 to 100% by mass. Especially preferably, it is made into the range of 99-100 mass%.

かくして得られた粒子状の吸水性樹脂は、通常さらに表面改質されて本発明の粒子状吸水剤とされる。本発明での表面改質とは、粒子の表面ないしその近傍(0.001μm〜数10μmの表層)をさらに架橋処理するか、無機粉末など不活性添加剤で被覆処理することを指す。   The particulate water-absorbing resin thus obtained is usually further surface-modified to obtain the particulate water-absorbing agent of the present invention. Surface modification in the present invention means that the surface of the particle or the vicinity thereof (surface layer of 0.001 μm to several tens of μm) is further crosslinked or coated with an inert additive such as inorganic powder.

吸水性樹脂の物性を考慮すると、表面改質剤(表面架橋剤や、水不溶性微粒子など不活性添加剤)の使用量は、吸水性樹脂100質量部に対して0.001〜10質量部の範囲、好ましくは0.01〜8質量部の範囲、より好ましくは0.05〜5質量部、最も好ましくは0.1〜2質量部の範囲である。   Considering the physical properties of the water-absorbent resin, the amount of the surface modifier (inactive additive such as surface cross-linking agent and water-insoluble fine particles) used is 0.001 to 10 parts by mass with respect to 100 parts by mass of the water-absorbent resin. The range is preferably 0.01 to 8 parts by mass, more preferably 0.05 to 5 parts by mass, and most preferably 0.1 to 2 parts by mass.

表面架橋は、吸水性樹脂の表面近傍の架橋密度を粒子内部より高めて、吸水性樹脂の諸物性の改良を行う操作であり、1種又は2種以上の種々の表面架橋剤(上記した内部架橋剤とは別の第二の架橋剤となる)を吸水性樹脂に加えて表面のみを架橋する。   Surface cross-linking is an operation for improving various physical properties of the water-absorbent resin by increasing the cross-link density in the vicinity of the surface of the water-absorbent resin from inside the particles. A second cross-linking agent different from the cross-linking agent) is added to the water absorbent resin to cross-link only the surface.

このような表面架橋剤としては、脱水反応性の架橋剤が用いられ、具体的には、例えば、吸水性樹脂がカルボキシル基を含有する場合は、多価アルコールなどのヒドロキシル基含有の架橋剤;多価アミンなどのアミノ基含有の架橋剤;アルキレンカーボネートや、モノオキサゾリジノン化合物、ジオキサゾリジノン化合物またはポリオキサゾリジノン化合物、3−メチル−3−オキセタンメタノール等のオキセタン化合物などの環状架橋剤であって、その環状架橋剤の開環反応に伴ってヒドロキシル基やアミノ基を生成し、該ヒドロキシル基やアミノ基が架橋反応を行う環状架橋剤;などを挙げることができる。   As such a surface crosslinking agent, a dehydration-reactive crosslinking agent is used. Specifically, for example, when the water-absorbent resin contains a carboxyl group, a hydroxyl group-containing crosslinking agent such as a polyhydric alcohol; An amino group-containing crosslinking agent such as a polyvalent amine; a cyclic crosslinking agent such as an alkylene carbonate, a monooxazolidinone compound, a dioxazolidinone compound or a polyoxazolidinone compound, or an oxetane compound such as 3-methyl-3-oxetanemethanol, Examples thereof include a cyclic cross-linking agent that generates a hydroxyl group or an amino group in association with the ring-opening reaction of the cyclic cross-linking agent, and the hydroxyl group or amino group undergoes a cross-linking reaction.

脱水反応性架橋剤をより一層具体的に述べると、例えば、プロピレングリコール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、グリセリン、1,4−ブタンジオール、1,5−ペンタンジオールなどの多価アルコール化合物;1,3−ジオキソラン−2−オン、4−メチル−1,3−ジオキソラン2−オンのアルキレンカーボネート化合物;3−メチル−3−オキセタンメタノール等のオキセタン化合物ならびに多価オキセタン化合物などである。これらの中でも本発明の効果を最大限に発揮するため多価アルコール、アルキレンカーボネート、オキサゾリジノン化合物、(多価)オキセタン化合物から選ばれる脱水反応性架橋剤の1種以上が好ましく、多価アルコールを必須に用いることが特に好ましい。   More specifically, the dehydration-reactive cross-linking agent is described, for example, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, glycerin, 1,4-butanediol, 1,5- Polyhydric alcohol compounds such as pentanediol; alkylene carbonate compounds of 1,3-dioxolan-2-one and 4-methyl-1,3-dioxolan-2-one; oxetane compounds such as 3-methyl-3-oxetanemethanol and many others Oxetane compounds and the like. Among these, in order to maximize the effects of the present invention, one or more dehydration reactive crosslinking agents selected from polyhydric alcohols, alkylene carbonates, oxazolidinone compounds, and (polyhydric) oxetane compounds are preferable, and polyhydric alcohols are essential. It is particularly preferable to use for the above.

表面架橋剤としては、上記脱水反応性の架橋剤のほかに、エチレングリコールジグリシジルエーテル、γ−グリシドキシプロピルトリメトキシシラン等のエポキシ化合物;2,4−トリレンジイソシアネート等の多価イソシアネート化合物;1,2−エチレンビスオキサゾリン等の多価オキサゾリン化合物;γ−アミノプロピルトリメトキシシラン等のシランカップリング剤;2,2−ビスヒドロキシメチルブタノール−トリス[3−(1−アジリジニル)プロピオネート]などの多価アジリジン化合物;ベリリウム、マグネシウム、カルシウム、ストロンチウム、亜鉛、アルミニウム、鉄、クロム、マンガン、チタン、ジルコニウムなどの多価金属の非脱水反応性架橋剤;などが例示される。   As the surface cross-linking agent, in addition to the above dehydration-reactive cross-linking agent, epoxy compounds such as ethylene glycol diglycidyl ether and γ-glycidoxypropyltrimethoxysilane; polyvalent isocyanate compounds such as 2,4-tolylene diisocyanate Polyvalent oxazoline compounds such as 1,2-ethylenebisoxazoline; silane coupling agents such as γ-aminopropyltrimethoxysilane; 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], etc. And non-dehydrating reactive crosslinking agents for polyvalent metals such as beryllium, magnesium, calcium, strontium, zinc, aluminum, iron, chromium, manganese, titanium, and zirconium.

吸水性樹脂に上記の表面架橋剤を混合する際には、水および/または親水性有機溶媒などの溶媒を用いて、混合してもよい。   When mixing the surface cross-linking agent with the water-absorbent resin, the surface-crosslinking agent may be mixed using water and / or a solvent such as a hydrophilic organic solvent.

溶媒としての水の使用量は、吸水性樹脂100質量部に対して、好ましくは0.1〜10質量部であり、より好ましくは0.5〜8質量部であり、さらに好ましくは1〜5質量部の範囲である。   The amount of water used as a solvent is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 8 parts by mass, and further preferably 1 to 5 parts per 100 parts by mass of the water-absorbent resin. It is the range of mass parts.

上記親水性有機溶媒としては、例えば、エチルアルコール、プロピルアルコール、イソプロピルアルコール等のアルコール;アセトン等のケトン類;ジオキサン、アルコキシ(ポリ)エチレングリコール、テトラヒドロフラン等のエーテル類;ε−カプロラクタムのアミド類;ジメチルスルホキサイド等のスルホキサイド類;などが挙げられる。親水性有機溶媒の使用量は、吸水性樹脂100質量部に対して0〜10質量部の範囲が好ましく、より好ましくは0〜5質量部の範囲であり、さらに好ましくは0〜3質量部の範囲である。   Examples of the hydrophilic organic solvent include alcohols such as ethyl alcohol, propyl alcohol, and isopropyl alcohol; ketones such as acetone; ethers such as dioxane, alkoxy (poly) ethylene glycol, and tetrahydrofuran; amides of ε-caprolactam; Sulfoxides such as dimethyl sulfoxide; and the like. The amount of the hydrophilic organic solvent used is preferably in the range of 0 to 10 parts by mass, more preferably in the range of 0 to 5 parts by mass, and still more preferably 0 to 3 parts by mass with respect to 100 parts by mass of the water absorbent resin. It is a range.

表面架橋剤の混合方法は特に限定されるものではない。したがって、上記した表面架橋剤と、水や親水性有機溶媒などの溶媒とを、吸水性樹脂に対して別々に混合してもよく、一括で混合してもよく、数回に分けて混合してもよいが、好ましくは、上記表面架橋剤および上記溶媒を全て、予め混合した後に、この混合物を吸水性樹脂に添加して、水溶液化しておくことがより好ましい。   The method for mixing the surface cross-linking agent is not particularly limited. Therefore, the above-mentioned surface cross-linking agent and a solvent such as water or a hydrophilic organic solvent may be mixed separately with respect to the water-absorbent resin, may be mixed together, or mixed in several times. However, it is more preferable to mix the surface cross-linking agent and the solvent in advance and then add the mixture to the water-absorbent resin to form an aqueous solution.

上記表面架橋剤の混合に際し、本発明の粒子状吸水剤が奏する効果を妨げない範囲で、無機粉末、水不溶性微粒子粉末や界面活性剤、親水性ないし疎水性高分子化合物を共存させてもよい。   In mixing the surface cross-linking agent, an inorganic powder, a water-insoluble fine particle powder, a surfactant, and a hydrophilic or hydrophobic polymer compound may coexist within a range that does not interfere with the effect of the particulate water-absorbing agent of the present invention. .

上記種々の混合方法の中では、表面架橋剤と、必要に応じて水および/または親水性有機溶媒とを、吸水性樹脂に滴下混合する方法が好ましく、噴霧する方法がより好ましい。噴霧される液滴の大きさは0.01〜300μmが好ましく、0.1〜200μmがより好ましい。この際に噴霧される溶液の温度は、混合性や安定性の点から、0℃〜沸点が好ましく、より好ましくは5〜50℃、さらに好ましくは10〜30℃である。混合前の吸水性樹脂粉末の温度は、混合性の点から、好ましくは0〜80℃、より好ましくは40〜70℃である。   Among the above-mentioned various mixing methods, a method in which a surface cross-linking agent and, if necessary, water and / or a hydrophilic organic solvent are dropped and mixed in a water-absorbent resin is preferable, and a spraying method is more preferable. The size of the droplets to be sprayed is preferably 0.01 to 300 μm, more preferably 0.1 to 200 μm. The temperature of the solution sprayed at this time is preferably 0 ° C. to boiling point, more preferably 5 to 50 ° C., and further preferably 10 to 30 ° C. from the viewpoints of mixing property and stability. The temperature of the water absorbent resin powder before mixing is preferably 0 to 80 ° C., more preferably 40 to 70 ° C., from the viewpoint of mixing properties.

前記混合に用いられる好適な混合装置は、均一な混合を確実にするため大きな混合力を生み出せる装置であればよい。このような混合装置としては、例えば、円筒型混合機、二重壁円錐型混合機、高速攪拌型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、流動型炉ロータリーディスク型混合機、気流型混合機、双腕型ニーダー、内部混合機、粉砕型ニーダー、回転式混合機、スクリュー型押出機などを挙げることができる。   A suitable mixing device used for the mixing may be a device capable of generating a large mixing force to ensure uniform mixing. Examples of such a mixing apparatus include a cylindrical mixer, a double wall conical mixer, a high-speed stirring mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, and a fluidized furnace rotary disk. Examples thereof include a type mixer, an airflow type mixer, a double arm type kneader, an internal mixer, a pulverizing type kneader, a rotary mixer, and a screw type extruder.

この混合工程において、加熱処理を行う場合、処理時間は1〜180分が好ましく、3〜120分がより好ましく、5〜100分が特に好ましい。加熱処理温度(熱媒温度ないし材料温度で規定)は、100〜250℃の範囲が好ましく、140〜220℃の範囲がより好ましく、150〜230℃の範囲がさらに好ましく、160〜220℃の範囲が特に好ましい。   In this mixing step, when heat treatment is performed, the treatment time is preferably 1 to 180 minutes, more preferably 3 to 120 minutes, and particularly preferably 5 to 100 minutes. The heat treatment temperature (specified by heat medium temperature or material temperature) is preferably in the range of 100 to 250 ° C, more preferably in the range of 140 to 220 ° C, further preferably in the range of 150 to 230 ° C, and in the range of 160 to 220 ° C. Is particularly preferred.

加熱処理は、通常の乾燥機または加熱炉を用いて行うことができ、溝型混合乾燥機、ロータリー乾燥機、ディスク乾燥機、流動層乾燥機、気流型乾燥機、および赤外線乾燥機が例示される。   The heat treatment can be performed using a normal dryer or a heating furnace, and examples include a grooved mixed dryer, a rotary dryer, a disk dryer, a fluidized bed dryer, an airflow dryer, and an infrared dryer. The

本発明の吸水性樹脂の製造方法で行う表面改質では、表面架橋に加えて、あるいは、表面架橋は起こさずに、実質的には吸水性樹脂に反応しないという意味での不活性な界面活性剤、不活性な消臭剤や不活性な無機微粒子粉末などの添加剤を添加してもよい。このとき用いられる界面活性剤や不活性無機微粒子粉末としては、好ましくは、後述の無機ないし有機の微粒子や、脂肪酸(例えば、長鎖脂肪酸ないし塩)などが使用され、その際には、表面架橋も同時または別途に行うことが好ましい。   In the surface modification performed by the method for producing a water-absorbent resin of the present invention, inactive surface activity in the sense that it does not substantially react with the water-absorbent resin in addition to surface crosslinking or without causing surface crosslinking. An additive such as an agent, an inert deodorant, or an inert inorganic fine particle powder may be added. As the surfactant and inert inorganic fine particle powder used at this time, preferably, inorganic or organic fine particles described later, fatty acids (for example, long chain fatty acids or salts), and the like are used. Are preferably performed simultaneously or separately.

本発明において、吸水性樹脂の表面改質に用いられる添加剤としてのカチオン性高分子化合物は、衛生材料への固定性などを向上でき、好ましくは質量平均分子量が2,000〜1,000,000であり、さらに好ましくは5,000〜500,000であり、最も好ましくは10,000〜500,000である。吸水性樹脂の表面改質に用いられる添加剤としての有機化合物としては、脂肪酸ないしその塩、好ましくは長鎖脂肪酸ないしその塩である。   In the present invention, the cationic polymer compound as an additive used for surface modification of the water-absorbent resin can improve the fixability to hygiene materials, and preferably has a mass average molecular weight of 2,000 to 1,000,000. 000, more preferably 5,000 to 500,000, and most preferably 10,000 to 500,000. The organic compound as an additive used for surface modification of the water absorbent resin is a fatty acid or a salt thereof, preferably a long chain fatty acid or a salt thereof.

カチオン性高分子化合物の混合は、単独あるいは溶液(水溶液)で添加され、好ましくは、カチオン性高分子化合物の具体例としては、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン、ポリアミドアミンとエピクロルヒドリンとの縮合物、ポリアミジン、ポリ(N−ビニルホルムアルデヒド)の部分加水分解物またはこれらの塩などが例示される。   The mixture of the cationic polymer compound is added alone or in solution (aqueous solution). Preferably, specific examples of the cationic polymer compound include polyethyleneimine, polyvinylamine, polyallylamine, polyamidoamine and epichlorohydrin condensate. , Polyamidine, a partial hydrolyzate of poly (N-vinylformaldehyde) or a salt thereof.

上記添加剤として水不溶性微粒子を用いると、吸水性樹脂の通液性や吸湿時の耐ブロッキング性などを改善することができる。水不溶性微粒子としては、平均値にて、好ましくは0.0001〜10μmであり、さらには0.001〜1μmであり、特に0.001〜0.1μm(粒子径は例えばコールターカウンター法で測定)の無機または有機の水不溶性微粒子が用いられる。具体的には酸化珪素(商品名、Aerosil、日本アエロジル社製)、酸化チタン、酸化アルミ、などが用いられる。混合は、粉末混合(Dry−Blend)やスラリー混合で行えばよい。   When water-insoluble fine particles are used as the additive, it is possible to improve the liquid permeability of the water-absorbent resin, the blocking resistance at the time of moisture absorption, and the like. The water-insoluble fine particles are, on average, preferably 0.0001 to 10 μm, more preferably 0.001 to 1 μm, and particularly 0.001 to 0.1 μm (particle diameter is measured by, for example, Coulter counter method) Inorganic or organic water-insoluble fine particles are used. Specifically, silicon oxide (trade name, Aerosil, manufactured by Nippon Aerosil Co., Ltd.), titanium oxide, aluminum oxide, or the like is used. Mixing may be performed by powder mixing (Dry-Blend) or slurry mixing.

これらの添加剤の使用量は、吸水性樹脂100質量部に対して、好ましくは10質量部以下であり、より好ましくは0.001〜5質量部であり、さらに好ましくは0.01〜2質量部である。   The amount of these additives used is preferably 10 parts by mass or less, more preferably 0.001 to 5 parts by mass, and still more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the water absorbent resin. Part.

〔粒子状吸水剤の製造方法〕
本発明での粒子状吸水剤の製造法の好ましい一例は、下記1〜3などである。
[Method for producing particulate water-absorbing agent]
Preferred examples of the method for producing the particulate water-absorbing agent in the present invention include the following 1-3.

(製法1)
上記のように重合した、好ましくはメトキシフェノール存在下にてプロトアネモネンが低減された水溶性不飽和単量体を用いて重合したポリアクリル酸(塩)系架橋重合体(吸水性樹脂)を、前記した特定の粒子径に制御するとともに、0.90質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)を15〜27g/gとなるように制御する。その後、得られる吸水剤の吸水倍率が、0.90質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)にて、通常10〜27g/g、好ましくは12〜27g/g、より好ましくは15〜27g/g、さらに好ましくは17〜25g/g、特に好ましくは18〜22g/gの範囲となるように、上記吸水性樹脂の表面改質、好ましくは表面架橋を行って、本発明の粒子状吸水剤を製造する。
(Production method 1)
A polyacrylic acid (salt) -based crosslinked polymer (water-absorbing resin) polymerized using a water-soluble unsaturated monomer that has been polymerized as described above, preferably with reduced protoanemonene in the presence of methoxyphenol. In addition to controlling to the specific particle diameter described above, the unloaded absorption capacity (60-minute value) with respect to the 0.90 mass% sodium chloride aqueous solution is controlled to be 15 to 27 g / g. Thereafter, the water absorption capacity of the resulting water-absorbing agent is usually 10 to 27 g / g, preferably 12 to 27 g / g, more preferably at an absorption capacity under load with respect to a 0.90% by mass sodium chloride aqueous solution (60-minute value). The surface of the water-absorbing resin is modified, preferably surface-crosslinked, so that the water-absorbent resin is in the range of 15 to 27 g / g, more preferably 17 to 25 g / g, and particularly preferably 18 to 22 g / g. A particulate water-absorbing agent is produced.

(製法2)
上記のように重合、好ましくはメトキシフェノール存在下にてプロトアネモネン低減された水溶性不飽和を用いて重合したポリアクリル酸(塩)系架橋重合体(吸水性樹脂)を、前記した特定の粒子径に制御するとともに、0.90質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)を、通常10〜27g/g、好ましくは12〜27g/g、より好ましくは15〜27g/g、さらに好ましくは17〜25g/g、特に好ましくは18〜22g/gに制御する。その後、該粒子系および無荷重下吸収倍率(60分値)が制御された上記吸水性樹脂を、前記した範囲で無機微粉末によって表面被覆して、本発明の粒子状吸水剤を製造する。
(Manufacturing method 2)
A polyacrylic acid (salt) -based crosslinked polymer (water-absorbent resin) polymerized using water-soluble unsaturation in which protoanemonene is reduced in the presence of methoxyphenol, preferably in the presence of methoxyphenol, as described above. In addition, the absorption capacity under load with respect to a 0.90% by mass sodium chloride aqueous solution (60 minute value) is usually 10 to 27 g / g, preferably 12 to 27 g / g, more preferably 15 to 27 g. / G, more preferably 17 to 25 g / g, particularly preferably 18 to 22 g / g. Thereafter, the particulate water-absorbing agent of the present invention is produced by coating the surface of the water-absorbing resin, the particle system and the absorption capacity under no load (60-minute value), with the inorganic fine powder within the aforementioned range.

(製法3)
上記のように重合、好ましくはメトキシフェノール存在下にてプロトアネモネンが低減された水溶性不飽和を用いて重合したポリアクリル酸(塩)系架橋重合体(吸水性樹脂)を、前記した特定の粒子径に制御するとともに、0.90質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)を17〜25g/g、好ましくは18〜22g/gに制御する。その後、該粒子系および無荷重下吸収倍率(60分値)が制御された上記吸水性樹脂を、脂肪酸ないしその塩で表面被覆して、本発明の粒子状吸水剤を製造する。
(Manufacturing method 3)
A polyacrylic acid (salt) -based crosslinked polymer (water-absorbent resin) polymerized using water-soluble unsaturation in which protoanemonene is reduced in the presence of methoxyphenol, preferably in the presence of methoxyphenol, as described above. In addition, the absorption capacity under no load (60 minutes value) with respect to the 0.90 mass% sodium chloride aqueous solution is controlled to 17 to 25 g / g, preferably 18 to 22 g / g. Then, the particulate water-absorbing agent of the present invention is produced by coating the surface of the water-absorbent resin, the particle system and the absorption capacity under no load (60-minute value), with a fatty acid or a salt thereof.

さらに、上記の製法2、3によって得られた吸水性樹脂が表面被覆されてなる粒子状吸水剤の吸水倍率が、0.90質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)にて、通常10〜27g/g、好ましくは12〜27g/g、より好ましくは15〜27g/g、さらに好ましくは17〜25g/g、特に好ましくは18〜22g/gの範囲となるように、架橋されることが好ましい。   Furthermore, the water absorption capacity of the particulate water-absorbing agent obtained by surface-coating the water-absorbing resin obtained by the above-described production methods 2 and 3 is the absorption capacity (60 minutes value) under no load with respect to a 0.90% by mass sodium chloride aqueous solution. In general, 10 to 27 g / g, preferably 12 to 27 g / g, more preferably 15 to 27 g / g, still more preferably 17 to 25 g / g, and particularly preferably 18 to 22 g / g. It is preferably crosslinked.

ここで、0.90質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)とは、無加圧下にて、粒子状吸水剤によって全て吸収されてしまうことのない、大過剰の0.90質量%塩化ナトリウム水溶液に、粒子状吸水剤(吸水性樹脂)を60分間浸漬した場合の吸収倍率をいう。   Here, the absorption capacity without load (60 minutes value) with respect to the 0.90% by mass sodium chloride aqueous solution is a large excess of 0. 0 which is not absorbed by the particulate water-absorbing agent under no pressure. The absorption capacity when a particulate water-absorbing agent (water-absorbing resin) is immersed in a 90% by mass sodium chloride aqueous solution for 60 minutes.

なお、従来、吸水剤(吸水性樹脂)の吸収倍率が高倍率であることは当然であり、市販品では通常30g/g以上であり、好ましくは35g/g以上、さらには40g/g以上のものが主流であったが、本発明では、あえて無荷重下吸収倍率を従来の吸水性樹脂より低倍率の狭い範囲に制御することで、本発明の新規な粒子状吸水剤を与える事が見出された。   In addition, it is natural that the absorption rate of the water-absorbing agent (water-absorbing resin) is high, and it is usually 30 g / g or more in a commercial product, preferably 35 g / g or more, and more preferably 40 g / g or more. However, in the present invention, it is seen that the novel particulate water-absorbing agent of the present invention can be provided by controlling the absorption capacity under no load to a narrow range lower than the conventional water-absorbent resin. It was issued.

さらに、従来と同様に、表面処理後の吸水剤の、0.90質量%塩化ナトリウム水溶液に対する加圧下吸収倍率(60分値)が、15〜27g/g、好ましくは17〜25g/gであるように制御されることが好ましい。ここで、0.90質量%塩化ナトリウム水溶液に対する加圧下吸収倍率(60分値)とは、4.83kPaの加圧下にて、0.90質量%塩化ナトリウム水溶液に、粒子状吸水剤(吸水性樹脂)を60分間浸漬(接触)した場合の吸収倍率をいう。   Further, as in the conventional case, the absorption capacity (60 minutes value) of the water-absorbing agent after the surface treatment with respect to the 0.90 mass% sodium chloride aqueous solution is 15 to 27 g / g, preferably 17 to 25 g / g. It is preferable to be controlled as described above. Here, the absorption capacity under load (60-minute value) with respect to a 0.90 mass% sodium chloride aqueous solution is a particulate water-absorbing agent (water-absorbent) into a 0.90 mass% sodium chloride aqueous solution under a pressure of 4.83 kPa. Resin) refers to the absorption capacity when immersed (contacted) for 60 minutes.

粒子状吸水剤の吸水倍率の制御は、表面処理剤の量や反応条件などを適宜制御することで達成されるので、好ましくは表面処理前の吸水性樹脂の無加圧下での0.9質量%塩化ナトリウム水溶液に対する無荷重下吸水倍率を40〜15g/g、さらには35〜16g/g、30〜17g/gの範囲となるように架橋密度を調整して重合し、かつ、表面処理前の上記吸水性樹脂の粒子径を上記範囲に制御すればよい。   Since the control of the water absorption ratio of the particulate water-absorbing agent is achieved by appropriately controlling the amount of the surface treatment agent, reaction conditions, etc., preferably 0.9 mass under no pressure of the water-absorbing resin before the surface treatment. Polymerization is carried out by adjusting the crosslink density so that the water absorption capacity under no load with respect to an aqueous solution of sodium chloride is 40 to 15 g / g, further 35 to 16 g / g, and 30 to 17 g / g, and before surface treatment. The particle diameter of the water-absorbent resin may be controlled within the above range.

〔本発明の粒子状吸水剤〕
上記のようにして得られた本発明の粒子状吸水剤は、4.83kPaという高加圧下での加圧下吸水倍率(Absorbency against pressure/略称AAP)にて、被吸収液の塩濃度の影響を殆ど受けないという優れた吸水剤である。すなわち、実用において、尿の塩濃度にかかわらず一定の吸水性能を示すため、使用時の塩濃度のふれやオムツ中での塩濃度の変化に拘らず、一定の吸水を示すといった常に高い物性を備えている。
[Particulate water-absorbing agent of the present invention]
The particulate water-absorbing agent of the present invention obtained as described above is affected by the salt concentration of the liquid to be absorbed at a water absorption capacity under pressure (Absorbency against pressure / abbreviated as AAP) of 4.83 kPa. It is an excellent water-absorbing agent that is hardly affected. That is, in practical use, it exhibits a constant water absorption performance regardless of the urine salt concentration. Therefore, it always has high physical properties such as a constant water absorption regardless of the salt concentration fluctuation during use or the change in the salt concentration in the diaper. I have.

本発明の粒子状吸水剤は、水溶性不飽和単量体の架橋重合体である吸水性樹脂を主成分とする粒子状吸水剤であって、850μm未満で106μm以上(好ましくは150μm以上)の粒子径を有する粒子状の吸水性樹脂が、上記粒子状吸水剤に含まれる吸水性樹脂の全質量に対して、90〜100質量%であり、より好ましくは850μm未満で150μm以上の粒子状の吸水性樹脂(以下、粒子と記載することがある)が吸水性樹脂全体の95質量%以上、さらには98質量%以上とされる。また、粒子状の吸水性樹脂の質量平均粒子径は、好ましくは200〜700μm、さらに好ましくは300〜600μmであり、このうち特に好ましくは、350〜550μmであり、最も好ましくは400〜500μmである。 The particulate water-absorbing agent of the present invention is a particulate water-absorbing agent mainly composed of a water-absorbing resin that is a crosslinked polymer of a water-soluble unsaturated monomer, and is less than 850 μm and 106 μm or more (preferably 150 μm or more). The particulate water-absorbing resin having a particle diameter is 90 to 100% by mass with respect to the total mass of the water-absorbing resin contained in the particulate water-absorbing agent, more preferably less than 850 μm and 150 μm or more in particulate form. The water-absorbing resin (hereinafter sometimes referred to as particles) is 95% by mass or more, further 98% by mass or more of the entire water-absorbing resin. The mass average particle diameter of the particulate water-absorbing resin is preferably 200 to 700 μm, more preferably 300 to 600 μm, and particularly preferably 350 to 550 μm, and most preferably 400 to 500 μm. .

150μm未満の粒子が10質量%を超える場合、吸水時に血液や尿等の体液の、吸収体への拡散性が阻害され、また、吸収体としての使用時に空気との接触面積が増加して、粒子状吸水剤が可溶化しやすくなるので好ましくない。850μmを超える粒子が10質量%を超える場合は、吸水剤の吸水速度が遅くなるので好ましくない。   When the particle size of less than 150 μm exceeds 10% by mass, the diffusibility of body fluids such as blood and urine to the absorber is inhibited during water absorption, and the contact area with air increases when used as an absorber. It is not preferable because the particulate water-absorbing agent is easily solubilized. When the particle size exceeding 850 μm exceeds 10% by mass, the water absorption rate of the water absorbing agent becomes slow, which is not preferable.

さらに、上記の特定の粒子径に加えて、本発明の粒子状吸水剤は塩濃度にかかわず一定の加圧下吸収倍率を示す。加圧下吸収倍率は、種々の塩濃度(0〜0.90質量%の塩化ナトリウム水溶液)の吸収溶液で、荷重4.83kPaが付与された場合の所定時間後の吸収倍率として評価される。本発明の粒子状吸水剤は、この特定の加圧下吸収倍率が、実使用での尿などの体液の濃度の変化に最も対応していることが見出された。   Furthermore, in addition to the above specific particle diameter, the particulate water-absorbing agent of the present invention exhibits a constant absorption capacity under pressure regardless of the salt concentration. The absorption capacity under pressure is evaluated as an absorption capacity after a predetermined time when a load of 4.83 kPa is applied with an absorption solution having various salt concentrations (0 to 0.90 mass% sodium chloride aqueous solution). In the particulate water-absorbing agent of the present invention, it has been found that this specific absorption capacity under pressure corresponds most to changes in the concentration of body fluids such as urine in actual use.

すなわち、本発明の吸水剤は、上記の特定の粒子径に加えて、さらに必須に、下記(式1)
(塩濃度吸収指数)=(一定塩濃度水溶液に対する4.83kPaでの加圧下吸収倍率)/(一定塩濃度水溶液に対する無荷重下吸収倍率) ・・(式1)
(式中、上記加圧下吸収倍率は、4.83kPaの加圧下にて、一定塩濃度水溶液に60分間浸漬(接触)した場合の吸収倍率であり、上記無荷重下吸収倍率は、無加圧下にて、大過剰の一定塩濃度水溶液に60分間浸漬した場合の吸収倍率である)で規定される塩濃度吸収指数にて、一定塩濃度水溶液がイオン交換水である場合の塩濃度吸収指数である第一塩濃度吸収指数が0.60以上である吸水剤である。
That is, the water-absorbing agent of the present invention, in addition to the specific particle size described above, further essentially includes the following (formula 1)
(Salt concentration absorption index) = (absorption capacity under pressure at 4.83 kPa for a constant salt concentration aqueous solution) / (absorption capacity under no load for a constant salt concentration aqueous solution) (Equation 1)
(In the formula, the absorption capacity under pressure is the absorption capacity when immersed (contacted) in a constant salt concentration aqueous solution for 60 minutes under a pressure of 4.83 kPa, and the absorption capacity under no load is under no pressure. Is a salt concentration absorption index when the constant salt concentration aqueous solution is ion-exchanged water. A water-absorbing agent having a certain first salt concentration absorption index of 0.60 or more.

上記第一塩濃度吸収指数は、好ましくは0.70以上、さらに好ましくは0.80以上、より好ましくは0.90以上であり、特に好ましくは0.95以上である。第一塩濃度吸収指数が0.60未満である場合、尿の塩濃度の変化やオムツ中での尿拡散にともなう塩濃度の変化(低下)にともなって、吸水性樹脂(吸水塩濃度による加圧下吸収倍率の変化(フレ)が大きく、実使用での十分な性能を発揮できず好ましくない。第一塩濃度吸収指数の上限が高すぎても、同様の現象が見られるので、上限は、通常1.20以下、さらには1.10以下であることが好ましい(なお、上記の指数0.60は0.600と同義語であり、以下、塩濃度吸収指数ないし耐塩性指数で小数点2桁目よりも小さい桁は省略する)。   The first salt concentration absorption index is preferably 0.70 or more, more preferably 0.80 or more, more preferably 0.90 or more, and particularly preferably 0.95 or more. When the first salt concentration absorption index is less than 0.60, the water-absorbing resin (added by the water-absorbing salt concentration) is accompanied by changes in the salt concentration of urine and changes (decrease) in salt concentration accompanying urine diffusion in diapers. The change in rolling reduction ratio (freight) is large and it is not preferable because sufficient performance in actual use cannot be exhibited.Since the upper limit of the first salt concentration absorption index is too high, the same phenomenon can be seen, so the upper limit is Usually, it is preferably 1.20 or less, more preferably 1.10 or less (note that the above index 0.60 is synonymous with 0.600, and hereinafter, the salt concentration absorption index or the salt tolerance index has two decimal places. The digits smaller than the eyes are omitted).

さらに、好ましくは、本発明の粒子状吸水剤は、上記の特定粒子径と第一塩濃度吸収指数とに加えて下記の物性をさらに示すことで、より尿の塩濃度の変化やオムツ中での尿拡散にともなう塩濃度の変化(低下)に対しても、安定的な尿の吸収を示す。   Furthermore, preferably, the particulate water-absorbing agent of the present invention further exhibits the following physical properties in addition to the specific particle diameter and the first salt concentration absorption index, thereby further changing the salt concentration of urine and in diapers. Stable urine absorption is exhibited even when the salt concentration changes (decreases) due to urine diffusion.

すなわち、本発明の粒子状吸水剤は、好ましくは、第二塩濃度吸収指数(上記(式1)で該一定塩濃度水溶液が0.1質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数)が0.80以上である。第二塩濃度吸収指数は、より好ましくは0.90以上であり、特に好ましくは0.95以上であり、その上限は通常1.20以下、さらには1.10以下である。   That is, the particulate water-absorbing agent of the present invention is preferably a second salt concentration absorption index (salt concentration absorption index when the constant salt concentration aqueous solution is a 0.1% by mass sodium chloride aqueous solution in the above (formula 1)). Is 0.80 or more. The secondary salt concentration absorption index is more preferably 0.90 or more, particularly preferably 0.95 or more, and the upper limit is usually 1.20 or less, and further 1.10 or less.

また、本発明の粒子状吸水剤は、上記の特定の粒子径と第一塩濃度吸収指数とに加えて、さらに好ましくは、第三塩濃度吸収指数(上記(式1)で一定塩濃度水溶液が0.3質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数)、第四塩濃度吸収指数(上記(式1)で一定塩濃度水溶液が0.5質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数)、第五塩濃度吸収指数(上記(式1)で一定塩濃度水溶液が0.7質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数)、第六塩濃度吸収指数(上記(式1)で該一定塩濃度水溶液が0.9質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数)のうちの少なくとも1つが、0.90以上である、吸水剤である。これら第三〜第六塩濃度吸収指数にて、その値は特に好ましくは0.95以上であり、その上限は通常1.20以下、さらには1.10以下である。   In addition to the specific particle size and the first salt concentration absorption index, the particulate water-absorbing agent of the present invention is more preferably a third salt concentration absorption index (the above (Formula 1) above). Salt concentration absorption index when is a 0.3% by mass sodium chloride aqueous solution), the fourth salt concentration absorption index (in the above (Formula 1), the salt when the constant salt concentration aqueous solution is a 0.5% by mass sodium chloride aqueous solution) Concentration absorption index), fifth salt concentration absorption index (salt concentration absorption index when the constant salt concentration aqueous solution is 0.7 mass% sodium chloride aqueous solution in the above (formula 1)), sixth salt concentration absorption index (above ( In Formula 1), at least one of the salt concentration absorption index when the constant salt concentration aqueous solution is a 0.9 mass% sodium chloride aqueous solution is a water absorbing agent of 0.90 or more. In these third to sixth salt concentration absorption indexes, the value is particularly preferably 0.95 or more, and the upper limit is usually 1.20 or less, and further 1.10 or less.

また、本発明の粒子状吸水剤は、上記の特定の粒子径と第一塩濃度吸収指数とに加えて、さらに好ましくは、第一塩濃度吸収指数から第六塩濃度吸収指数までの平均値である平均塩濃度吸収指数指数が0.90以上であり、その値は特に好ましくは0.95以上であり、その上限は通常1.20以下、さらには1.10以下である。さらに、上記の平均塩濃度吸収指数の標準偏差は、好ましくは0〜0.100の範囲内であり、より好ましくは0〜0.50の範囲内である。   The particulate water-absorbing agent of the present invention is more preferably an average value from the first salt concentration absorption index to the sixth salt concentration absorption index in addition to the specific particle diameter and the first salt concentration absorption index. The average salt concentration absorption index index is 0.90 or more, the value is particularly preferably 0.95 or more, and the upper limit is usually 1.20 or less, and further 1.10 or less. Further, the standard deviation of the average salt concentration absorption index is preferably in the range of 0 to 0.100, more preferably in the range of 0 to 0.50.

また、本発明の粒子状吸水剤は、上記の特定の粒子径と第一塩濃度吸収指数とに加えて、さらに好ましくは、下記(式2)
(耐塩性指数)=(一定塩濃度水溶液に対する無荷重下吸収倍率)/(イオン交換水に対する無荷重下吸収倍率) ・・(式2)
(式中、無荷重下吸収倍率は、大過剰の一定塩濃度水溶液またはイオン交換水に、60分間浸漬した場合の吸収倍率である)にて、一定塩濃度が0.10質量%塩化ナトリウム水溶液である場合の耐塩性指数である第一耐塩性指数が、0.40以上である。上記第一耐塩性指数の下限は、好ましくは0.50以上であり、その上限は通常1.20以下、さらには1.10以下の範囲である。
In addition to the specific particle size and the first salt concentration absorption index, the particulate water-absorbing agent of the present invention is more preferably the following (formula 2).
(Salt tolerance index) = (absorption capacity under no load with respect to a constant salt concentration aqueous solution) / (absorption capacity under no load with respect to ion-exchanged water) (Equation 2)
(In the formula, the absorption capacity under no load is the absorption capacity when immersed in a large excess of constant salt concentration aqueous solution or ion-exchanged water for 60 minutes), and the constant salt concentration is 0.10 mass% sodium chloride aqueous solution. The first salt tolerance index, which is the salt tolerance index in the case of, is 0.40 or more. The lower limit of the first salt tolerance index is preferably 0.50 or more, and the upper limit thereof is usually 1.20 or less, and more preferably 1.10 or less.

本発明の粒子状吸水剤の無荷重下吸収倍率は、前述の範囲(15〜27g/g)に調整される。また、0.90質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)が、通常10〜27g/g、好ましくは12〜27g/g、より好ましくは15〜27g/g、さらに好ましくは17〜25g/g、特に好ましくは18〜22g/gである。   The absorption capacity under load of the particulate water-absorbing agent of the present invention is adjusted to the above-mentioned range (15 to 27 g / g). Moreover, the unloading absorption capacity | capacitance (60 minute value) with respect to 0.90 mass% sodium chloride aqueous solution is 10-27 g / g normally, Preferably it is 12-27 g / g, More preferably, it is 15-27 g / g, More preferably It is 17 to 25 g / g, particularly preferably 18 to 22 g / g.

さらに本発明の粒子状吸水剤は、ゲル通液指数(Gel Permeability Index/略称GPI、単位:10−7×cm×s×g−1、以下では単位を省略する)が10以上であることが好ましい。本発明者は、従来の吸水剤の問題を鋭意検討した結果、従来の吸水剤では前記ゲル通液指数(GPI)が塩濃度(生活環境や吸収体中での液の移動とイオン交換に伴う塩濃度変化)や圧力(体重や姿勢による荷重変化)の上昇で大きく低下し、膨潤後、尿等の吸収液に対する通液性に非常に大きな影響を与えることが見出された。しかし、本発明の粒子状吸水剤では、塩濃度の変化や圧力の変化(有無)に関わらず、ゲル間の通液性が安定的に良好であり、よって、本発明の粒子状吸水剤を用いた場合、吸収体に液を十分に行き渡らせ(液拡散面積の向上)、さらに、吸収体の吸液量を増大させ、液の漏れを防止することができる。GPIは、より好ましくは15以上、さらに好ましくは20以上である。なお、GPIについては実施例で後述する。 Further, the particulate water-absorbing agent of the present invention has a gel permeability index (Gel Permeability Index / abbreviation GPI, unit: 10 −7 × cm 3 × s × g −1 , hereinafter omitted units) of 10 or more. Is preferred. As a result of earnestly examining the problem of the conventional water-absorbing agent, the present inventor has found that the gel water permeability index (GPI) in the conventional water-absorbing agent is related to salt concentration (living movement and ion exchange in the living environment and the absorbent body). It has been found that it greatly decreases with the increase in salt concentration) and pressure (change in load due to body weight and posture), and has a great influence on the fluid permeability to absorption liquid such as urine after swelling. However, in the particulate water-absorbing agent of the present invention, the liquid permeability between the gels is stably good regardless of changes in salt concentration or pressure (presence / absence). When used, it is possible to sufficiently spread the liquid to the absorber (improvement of the liquid diffusion area), further increase the liquid absorption amount of the absorber, and prevent leakage of the liquid. GPI is more preferably 15 or more, and still more preferably 20 or more. GPI will be described later in the embodiment.

本発明の粒子状吸水剤は、GPIが2.07kPaでイオン交換水に対して10以上、好ましくは15以上、さらに好ましくは20以上を示し、従来の吸水剤のGPI値である0〜1に比べて格段に高いGPI値を示し、加圧力の増加に対する低下も少ない。また、2.07kPaでの0.3〜0.9質量%での塩化ナトリウム水溶液に対しても、GPIが10以上、好ましくは20以上であり、より好ましくは50以上であり、さらに好ましくは100以上であり、特に好ましくは150以上であり、従来のGPI値である0〜数十に比べて格段に高いGPI値を示し、上記塩濃度の増加に対する低下も少ない。さらに、4.83kPaでの0.7質量%の塩化ナトリウム水溶液に対して、GPIが10以上、好ましくは15以上、さらに好ましくは20以上を示し、従来の吸水剤のGPI値である0〜1に比べて格段に高いGPI値を示し、上記塩濃度の増加に対する低下も少ない。特に、2.07kPaでの0.3〜0.9質量%の塩化ナトリウム水溶液に対するGPI値は変化が少なく安定し、かつ150以上と高い値を示す。このように、本発明の粒子状吸水剤は圧力や塩濃度の変化に関わらず、安定的に高いGPIを示し、吸収体として実使用した場合も優れた吸収性能(高い拡散面積と高い吸収量)を発揮する。   The particulate water-absorbing agent of the present invention has a GPI of 2.07 kPa and 10 or more, preferably 15 or more, more preferably 20 or more with respect to ion-exchanged water. Compared to the GPI value, it is much lower than the increase in pressure. Also, the GPI is 10 or more, preferably 20 or more, more preferably 50 or more, even more preferably 100 with respect to a sodium chloride aqueous solution of 0.3 to 0.9 mass% at 2.07 kPa. Above, particularly preferably 150 or more, a GPI value much higher than the conventional GPI value of 0 to several tens, and a decrease with respect to the increase in the salt concentration is small. Furthermore, GPI is 10 or more, preferably 15 or more, and more preferably 20 or more with respect to a 0.7% by mass sodium chloride aqueous solution at 4.83 kPa. The GPI value is remarkably high compared to the above, and the decrease with respect to the increase in the salt concentration is small. In particular, the GPI value for a 0.3-0.9 mass% sodium chloride aqueous solution at 2.07 kPa is stable with little change and shows a high value of 150 or more. As described above, the particulate water-absorbing agent of the present invention stably exhibits high GPI regardless of changes in pressure and salt concentration, and has excellent absorption performance even when actually used as an absorbent (high diffusion area and high absorption amount). ).

さらに、本発明の粒子状吸水剤は、好ましくはイオン交換水に対する4.83kPaでの加圧下吸収倍率(60分値)が50g/g以上、より好ましくは60g/g以上、さらに好ましくは70g/g以上という優れた吸水能を示す。なお、加圧下吸収倍率の上限値は特に限定されず高い値であることが好ましいが、製造コスト等の経済性とのバランスから、上限値は200g/gであることが好ましく、150g/gであることがより好ましい。   Furthermore, the particulate water-absorbing agent of the present invention preferably has an absorption capacity (60-minute value) under pressure at 4.83 kPa against ion-exchanged water of 50 g / g or more, more preferably 60 g / g or more, and still more preferably 70 g / g. Excellent water absorption capacity of g or more. The upper limit of the absorption capacity under pressure is not particularly limited and is preferably a high value. However, the upper limit is preferably 200 g / g and 150 g / g from the balance with economics such as manufacturing costs. More preferably.

すなわち、本発明は、以下の新規な粒子状吸水剤をも提供する。水溶性不飽和単量体の架橋重合体である吸水性樹脂を主成分とする粒子状吸水剤であって、850μm未満で106μm以上の粒子径を有する粒子状の吸水性樹脂が、上記粒子状吸水剤に含まれる吸水性樹脂の全質量に対して、90質量%以上であり、4.83kPaの加圧下にて、イオン交換水に60分間浸漬した場合の吸収倍率である加圧下吸収倍率が、50g/g以上である粒子状吸水剤を提供する。かかる粒子状吸水剤は、イオン交換水に対して従来になく高い吸水能を有し、低い塩濃度で特に優れた吸水能を示す。かかる粒子状吸水剤は、好ましくは、前述の塩濃度吸収指数、耐塩性指数、平均塩濃度吸収指数およびその標準偏差、ゲル通液指数を示す。   That is, the present invention also provides the following novel particulate water-absorbing agent. A particulate water-absorbing agent mainly composed of a water-absorbing resin that is a crosslinked polymer of a water-soluble unsaturated monomer, wherein the particulate water-absorbing resin having a particle diameter of less than 850 μm and 106 μm or more is the above particulate Absorption capacity under pressure, which is an absorption capacity when immersed in ion-exchanged water for 60 minutes under a pressure of 4.83 kPa, with respect to the total weight of the water-absorbent resin contained in the water-absorbing agent. , 50 g / g or more of the particulate water-absorbing agent. Such a particulate water-absorbing agent has an unprecedented high water-absorbing ability with respect to ion-exchanged water, and exhibits particularly excellent water-absorbing ability at a low salt concentration. Such a particulate water-absorbing agent preferably exhibits the above-described salt concentration absorption index, salt resistance index, average salt concentration absorption index and its standard deviation, and gel permeation index.

〔他の添加剤〕
本発明においては、表面処理としての表面架橋とは別に、必要に応じてさらにその他の添加剤(以下、他の添加剤と記載する)を加えてもよい。すなわち、上記他の添加剤としては、消臭剤、抗菌剤、香料、発泡剤、顔料、染料、親水性短繊維、可塑剤、粘着剤、界面活性剤、肥料、酸化剤、還元剤、水、塩類、キレート剤、殺菌剤、ポリエチレングリコールやポリエチレンイミンなどの親水性高分子、パラフィンなどの疎水性高分子、ポリエチレンやポリプロピレンなどの熱可塑性樹脂、ポリエステル樹脂やユリア樹脂などの熱硬化性樹脂等を添加する等、吸水性樹脂に種々の機能を付与するための添加工程、好ましくは表面への添加工程を含んでいてもよい。
[Other additives]
In the present invention, in addition to the surface cross-linking as the surface treatment, other additives (hereinafter referred to as other additives) may be added as necessary. That is, the other additives include deodorants, antibacterial agents, fragrances, foaming agents, pigments, dyes, hydrophilic short fibers, plasticizers, adhesives, surfactants, fertilizers, oxidizing agents, reducing agents, water , Salts, chelating agents, bactericides, hydrophilic polymers such as polyethylene glycol and polyethyleneimine, hydrophobic polymers such as paraffin, thermoplastic resins such as polyethylene and polypropylene, thermosetting resins such as polyester resins and urea resins, etc. An addition step for imparting various functions to the water-absorbent resin, preferably an addition step to the surface, may be included.

これらの添加剤の使用量は、吸水性樹脂100質量部に対して通常0〜30質量部、好ましくは0〜10質量部の範囲、より好ましくは0〜1質量部の範囲である。   The usage-amount of these additives is 0-30 mass parts normally with respect to 100 mass parts of water absorbing resin, Preferably it is the range of 0-10 mass parts, More preferably, it is the range of 0-1 mass part.

〔粒子状吸水剤の用途〕
本発明の粒子状吸水剤は、塩濃度にかかわらず安定的に吸収を示す。そのため、農園芸保水剤、工業用保水剤、吸湿剤、除湿剤、建材などで広く用いられるが、特に好ましくは、紙おむつ、生理用ナプキンなどに代表される、糞、尿ないし血液の吸収用衛生材料用いられる。
[Use of particulate water-absorbing agent]
The particulate water-absorbing agent of the present invention stably absorbs regardless of the salt concentration. Therefore, it is widely used in agricultural and horticultural water retention agents, industrial water retention agents, hygroscopic agents, dehumidifying agents, building materials, etc., but particularly preferably, hygiene for absorption of feces, urine or blood, represented by paper diapers, sanitary napkins, etc. Material used.

すなわち、本発明の粒子状吸水剤は各種物性にバランスよく優れ安定しているため、吸収用衛生材料としては、コア濃度比(下記(式3))で規定される粒子状吸水剤の濃度(吸水性樹脂および繊維基材の合計に対する吸水性樹脂の重量比)が高濃度、好ましくは30〜100質量%、より好ましくは40〜100質量%の範囲、さらに好ましくは50〜95質量%で使用可能である。   That is, since the particulate water-absorbing agent of the present invention is balanced and excellent in various physical properties, the hygienic material for absorption is a concentration of the particulate water-absorbing agent defined by the core concentration ratio (Equation 3 below) ( The weight ratio of the water-absorbent resin to the total of the water-absorbent resin and the fiber substrate is high, preferably 30 to 100% by mass, more preferably 40 to 100% by mass, and still more preferably 50 to 95% by mass. Is possible.

(コア濃度比)=(粒子状吸水剤の質量)/((粒子状吸水剤の質量)+(繊維材料の質量)) ・・(式3)
また、衛生材料中の吸収体(吸収コア/吸水剤を複合化して成型したものを指す)の構造は特に制限はなく、例えば、シート状に成形した親水性繊維材料の間に吸水剤を配する、いわゆるサンドイッチ構造の吸収体や、親水性繊維材料と吸水剤を混合したものを成形した、いわゆるブレンド構造の吸収体が挙げられる。
(Core concentration ratio) = (mass of particulate water-absorbing agent) / ((mass of particulate water-absorbing agent) + (mass of fiber material)) (Equation 3)
Further, the structure of the absorbent body in hygienic materials (referred to a composite molded of absorbent core / water absorbent) is not particularly limited. For example, a water absorbent is disposed between hydrophilic fiber materials molded into a sheet shape. There are so-called sandwich structure absorbers and so-called blend structure absorbers formed by mixing a hydrophilic fiber material and a water-absorbing agent.

本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.

以下、実施例および比較例により、本発明を更に詳細に説明するが、本発明はその要旨を超えない限りこれらの実施例等に限定されるものではない。また、特に記載ない場合、「部」は質量部(重量部)を意味する。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples etc., unless the summary is exceeded. Unless otherwise specified, “parts” means parts by mass (parts by weight).

なお、特に記載のない場合、測定は25℃±1℃の気温および液温で行い、部屋の雰囲気は常圧、50%未満の相対湿度で行った。   Unless otherwise specified, the measurement was performed at an air temperature and a liquid temperature of 25 ° C. ± 1 ° C., and the room atmosphere was measured at normal pressure and a relative humidity of less than 50%.

さらに、後述する吸水剤又は吸水性樹脂の上記のパラメータ測定に際しては、通常そのままの吸水剤または吸水性樹脂を用いて測定を行った。ただし、吸水剤または吸水性樹脂が過度に吸湿している場合、すなわち、例えば、おむつ等の吸収物品から採取した吸水剤または吸水性樹脂については、例えば60℃で恒量になるまで減圧乾燥する等によって、適宜乾燥し、含水率を7±1質量%以下、好ましくは5±1質量%以下に調整して測定を行った。   Furthermore, when measuring the above-described parameters of the water-absorbing agent or water-absorbing resin described later, the measurement was usually performed using the water-absorbing agent or water-absorbing resin as it was. However, when the water-absorbing agent or the water-absorbing resin is excessively hygroscopic, that is, for example, the water-absorbing agent or the water-absorbing resin collected from an absorbent article such as a diaper is dried under reduced pressure at, for example, 60 ° C. The water content was adjusted to 7 ± 1% by mass or less, preferably 5 ± 1% by mass or less.

<吸収溶液の調製>
本発明では、吸水性樹脂ないし吸水剤(粒子状吸水剤)の吸収特性を評価するために、下記濃度を有する塩濃度の異なるイオン交換水ないし塩化ナトリウム水溶液を使用した。
<Preparation of absorption solution>
In the present invention, in order to evaluate the absorption characteristics of the water-absorbent resin or water-absorbing agent (particulate water-absorbing agent), ion-exchanged water or sodium chloride aqueous solution having the following concentrations and different salt concentrations were used.

吸収溶液S0:イオン交換水
吸収溶液S1:0.10質量(重量)%塩化ナトリウム水溶液
吸収溶液S2:0.20質量(重量)%塩化ナトリウム水溶液
吸収溶液S3:0.30質量(重量)%塩化ナトリウム水溶液
吸収溶液S4:0.40質量(重量)%塩化ナトリウム水溶液
吸収溶液S5:0.50質量(重量)%塩化ナトリウム水溶液
吸収溶液S6:0.70質量(重量)%塩化ナトリウム水溶液
吸収溶液S7:0.90質量(重量)%塩化ナトリウム水溶液
<吸収倍率(無加圧下で60分の吸収倍率(GV,Gel Volume))>
吸水性樹脂(または吸水剤)0.20gを不織布製の袋(60mm×60mm)に均一に入れ、大過剰(100g以上)の前記S0〜S7の吸収溶液中に浸漬した。そして、60分後に袋を引き上げ、遠心分離機を用いて250Gで3分間水切りを行った後、袋の重量W2(g)を測定した。
Absorbing solution S0: ion-exchanged water Absorbing solution S1: 0.10 mass (wt)% sodium chloride aqueous solution Absorbing solution S2: 0.20 mass (wt)% sodium chloride aqueous solution Absorbing solution S3: 0.30 mass (wt)% chloride Sodium aqueous solution Absorbing solution S4: 0.40 mass (wt)% sodium chloride aqueous solution Absorbing solution S5: 0.50 mass (wt)% sodium chloride aqueous solution Absorbing solution S6: 0.70 mass (wt)% sodium chloride aqueous solution Absorbing solution S7 : 0.90 mass (weight)% sodium chloride aqueous solution <absorption capacity (absorption capacity (GV, Gel Volume) for 60 minutes under no pressure)>
0.20 g of water-absorbing resin (or water-absorbing agent) was evenly placed in a non-woven bag (60 mm × 60 mm) and immersed in a large excess (100 g or more) of the S0 to S7 absorbing solution. And after 60 minutes, the bag was pulled up, drained at 250 G for 3 minutes using a centrifuge, and the weight W2 (g) of the bag was measured.

なお、上記袋の重量W2(g)が15(g)を超えるといった、吸水性樹脂(または吸水剤)の膨潤倍率が高い場合には、上記不織布製の袋に投入する吸水性樹脂(または吸水剤)の投入量を0.20g以下となるように適宜調整した。すなわち、前記吸収溶液S0〜S3を用いる場合には、上記袋への吸水性樹脂(または吸水剤)の投入量を0.01〜0.05gとし、前記吸収溶液S4・S5を用いる場合には、上記袋への吸水性樹脂(または吸水剤)の投入量を0.05〜0.15gとし、前記吸収溶液S6・S7を用いる場合には、上記袋への吸水性樹脂(または吸水剤)の投入量を0.10〜0.20gとして、上記袋の重量W2(g)が5〜15(g)となるように調整した。   In addition, when the swelling ratio of the water absorbent resin (or water absorbent) is high such that the weight W2 (g) of the bag exceeds 15 (g), the water absorbent resin (or water absorbent) put into the non-woven bag. The amount of the agent) was adjusted appropriately so that it was 0.20 g or less. That is, when the absorbent solutions S0 to S3 are used, the amount of the water-absorbing resin (or water absorbent) to be added to the bag is 0.01 to 0.05 g, and when the absorbent solutions S4 and S5 are used. When the amount of water-absorbing resin (or water-absorbing agent) introduced into the bag is 0.05 to 0.15 g and the absorbing solutions S6 and S7 are used, the water-absorbing resin (or water-absorbing agent) into the bag is used. Was adjusted so that the weight W2 (g) of the bag was 5 to 15 (g).

また、同様の操作を吸水性樹脂(吸水剤)を用いないで行い、そのときの重量W1(g)を測定した。そして、これら重量W1、W2から、下記(式4)に従って吸収倍率(g/g)を算出した。   Further, the same operation was performed without using a water absorbent resin (water absorbent), and the weight W1 (g) at that time was measured. And from these weights W1 and W2, the absorption capacity (g / g) was calculated according to the following (formula 4).

吸収倍率(g/g)=(重量W2(g)−重量W1(g))/吸水性樹脂(または吸水剤)の重量(g) ・・(式4)
<加圧下吸収倍率(AAP)>
内径60mmのプラスチック支持円筒の底に、ステンレス製400メッシュ標準篩(目開き38μm)を融着させ、該篩上に吸水性樹脂ないし吸水剤0.9000gを均一に散布した。該吸水性樹脂ないし吸水剤に対して4.83kPa(0.7psi)の荷重を均一に加えることができるように調整された、外径が60mmよりわずかに小さく、支持円筒に隙間が生じず、かつ上下の動きが妨げられないピストンと荷重とをこの順に、吸水性樹脂ないし吸水剤上に載置し、この測定一式の質量Wa(g)を測定した。直径150mmのぺトリ皿の内側に、直径90mmのガラスフィルター(株式会社相互理化学硝子製作所製、細孔直径100〜120μm)を置き、前記吸収溶液をガラスフィルターの上面と同じレベルになるように加えた。
Absorption capacity (g / g) = (weight W2 (g) −weight W1 (g)) / weight of water-absorbing resin (or water-absorbing agent) (g) (Formula 4)
<Absorption capacity under pressure (AAP)>
A stainless steel 400 mesh standard sieve (aperture 38 μm) was fused to the bottom of a plastic support cylinder having an inner diameter of 60 mm, and 0.9000 g of a water absorbent resin or a water absorbent was uniformly sprayed on the sieve. Adjusted so that a load of 4.83 kPa (0.7 psi) can be uniformly applied to the water-absorbing resin or water-absorbing agent, the outer diameter is slightly smaller than 60 mm, and there is no gap in the support cylinder, In addition, a piston and a load that are not hindered from moving up and down were placed in this order on a water absorbent resin or a water absorbent, and the mass Wa (g) of this measurement set was measured. Place a glass filter with a diameter of 90 mm (manufactured by Mutual Riken Glass Co., Ltd., pore diameter: 100 to 120 μm) inside a petri dish with a diameter of 150 mm, and add the absorbing solution so as to be at the same level as the upper surface of the glass filter. It was.

その上に、直径90mmのろ紙1枚(ADVANTAEC東洋株式会社、品名:定量ろ紙Qualitative Filter Papers(JIS P 3801、No.2)、厚さ0.26mm、保留粒子径5μm)を載せ、ろ紙表面が全て濡れるようにし、かつ過剰の液を除いた。   On top of that, a sheet of 90 mm diameter filter paper (ADVANTAEC Toyo Co., Ltd., product name: quantitative filter paper Qualitative Filter Papers (JIS P 3801, No. 2), thickness 0.26 mm, retained particle diameter 5 μm) is placed. All were wetted and excess liquid was removed.

上記測定装置一式を、前記湿ったろ紙上に載せ、接触した液を荷重下で吸収させた。1時間後、測定装置一式を持ち上げ、その質量Wb(g)測定した。そしてWa、Wbから、下記(式5)に従って、加圧下吸収倍率(g/g)を算出した。   The set of measuring devices was placed on the wet filter paper, and the contacted liquid was absorbed under load. After 1 hour, the measuring device set was lifted and its mass Wb (g) was measured. Then, the absorption capacity under load (g / g) was calculated from Wa and Wb according to the following (formula 5).

加圧下吸収倍率(g/g)=(Wb(g)−Wa(g))/吸水性樹脂ないし吸水剤の質量(0.9000)g) ・・(式5)
<塩濃度吸収指数>
本発明の塩濃度吸収指数は、前記した手法で求めた各吸収溶液(S0、S1〜S7)の加圧下吸収倍率と、無荷重下吸収倍率とに基づき、下式
塩濃度吸収指数)=(一定塩濃度水溶液に対する4.83kPaでの加圧下吸収倍率)/(一定塩濃度水溶液に対する無荷重下吸収倍率) ・・(式1)
に従って算出した。なお、上記(式1)中、加圧下吸収倍率は、4.83kPaの加圧下にて、一定塩濃度水溶液に60分間浸漬(接触)した場合の吸収倍率であり、上記無荷重下吸収倍率は、無加圧下にて、大過剰の一定塩濃度水溶液に60分間浸漬した場合の吸収倍率である。
Absorption capacity under pressure (g / g) = (Wb (g) -Wa (g)) / mass of water absorbent resin or water absorbent (0.9000) g) (Equation 5)
<Salt concentration absorption index>
The salt concentration absorption index of the present invention is based on the absorption capacity under load and the absorption capacity under no load of each absorption solution (S0, S1 to S7) obtained by the above-described method. Absorption capacity under pressure at a constant salt concentration aqueous solution at 4.83 kPa) / (absorption capacity under no load for a constant salt concentration aqueous solution) (Equation 1)
Calculated according to In the above (Formula 1), the absorption capacity under pressure is the absorption capacity when immersed (contacted) in a constant salt concentration aqueous solution for 60 minutes under a pressure of 4.83 kPa, and the absorption capacity under no load is The absorption ratio when immersed in a large excess of a constant salt concentration aqueous solution for 60 minutes under no pressure.

ここで、第一塩濃度吸収指数は、上記(式1)にて、一定塩濃度水溶液がイオン交換水である場合の塩濃度吸収指数である。以下、同様に、第二塩濃度吸収指数は、(式1)にて、一定塩濃度水溶液が0.10質量%塩化ナトリウム水溶液である場合、第三塩濃度吸収指数は、(式1)にて、一定塩濃度水溶液が0.30質量%塩化ナトリウム水溶液である場合、第四塩濃度吸収指数は、(式1)にて、一定塩濃度水溶液が0.50質量%塩化ナトリウム水溶液である場合、第五塩濃度吸収指数は、(式1)にて、一定塩濃度水溶液が0.70質量%塩化ナトリウム水溶液である場合、第六塩濃度吸収指数は、(式1)にて、一定塩濃度水溶液が0.90質量%塩化ナトリウム水溶液である場合、の塩濃度吸収指数である。   Here, the first salt concentration absorption index is a salt concentration absorption index when the constant salt concentration aqueous solution is ion-exchanged water in the above (Equation 1). Hereinafter, similarly, when the constant salt concentration aqueous solution is a 0.10% by mass sodium chloride aqueous solution in (Formula 1), the third salt concentration absorption index is (Formula 1). When the constant salt concentration aqueous solution is 0.30% by mass sodium chloride aqueous solution, the fourth salt concentration absorption index is (Formula 1) when the constant salt concentration aqueous solution is 0.50% by mass sodium chloride aqueous solution. The fifth salt concentration absorption index is (Expression 1), and when the constant salt concentration aqueous solution is a 0.70 mass% sodium chloride aqueous solution, the sixth salt concentration absorption index is (constant salt) When the concentration aqueous solution is a 0.90% by mass sodium chloride aqueous solution, the salt concentration absorption index is as follows.

<耐塩性指数>
前記した手法による無荷重下での吸収倍率の測定結果をもとに、下記(式2)
(耐塩性指数)=(一定塩濃度水溶液に対する無荷重下吸収倍率)/(イオン交換水に対する無荷重下吸収倍率) ・・(式2)
(式中、無荷重下吸収倍率は、大過剰の一定塩濃度水溶液またはイオン交換水に、60分間浸漬した場合の吸収倍率である)に従って、耐塩性指数を求めた。ここで、第一耐塩性指数とは、上記(式2)にて、一定塩濃度が0.10質量%塩化ナトリム水溶液である場合の耐塩性指数である。
<Salt tolerance index>
Based on the measurement result of the absorption capacity under no load by the method described above, the following (Formula 2)
(Salt tolerance index) = (absorption capacity under no load with respect to a constant salt concentration aqueous solution) / (absorption capacity under no load with respect to ion-exchanged water) (Equation 2)
(In the formula, the absorption capacity under no load is the absorption capacity when immersed in a large excess of a constant salt concentration aqueous solution or ion-exchanged water for 60 minutes), and the salt tolerance index was determined. Here, the first salt tolerance index is a salt tolerance index when the constant salt concentration is a 0.10% by mass sodium chloride aqueous solution in the above (Equation 2).

<重量(質量)平均粒子径>
吸水性樹脂ないし吸水剤を、850μm、710μm、600μm、500μm、425μm、300μm、212μm、150μm、106μm、75μmなどのJIS標準ふるいで篩い分けし、残留百分率を対数確率紙にプロットした。これにより、重量平均粒子径(D50)を読み取った。
<Weight (mass) average particle size>
The water-absorbing resin or water-absorbing agent was sieved with JIS standard sieves such as 850 μm, 710 μm, 600 μm, 500 μm, 425 μm, 300 μm, 212 μm, 150 μm, 106 μm, and 75 μm, and the residual percentage was plotted on logarithmic probability paper. Thereby, the weight average particle diameter (D50) was read.

篩い分けは、吸水性樹脂粉末ないし吸水剤10.00gを、目開き850μm、710μm、600μm、500μm、425μm、300μm、212μm、150μm、106μm、75μmなどのJIS標準ふるい(The IIDA TESTING SIEVE:内径80mm)に仕込み、ロータップ型のふるい振盪機(株式会社飯田製作所製ES−65型ふるい振盪機)により10分間分級した。なお、重量平均粒子径(D50)とは、米国特許5051259号公報などにあるように、上記ふるい振盪機で10分間分級した場合に、粒子全体の50重量%が分級される際に使用された、標準ふるいの粒子径のことである。   For screening, a water-absorbing resin powder or a water-absorbing agent 10.00 g is applied to a JIS standard sieve having a mesh size of 850 μm, 710 μm, 600 μm, 500 μm, 425 μm, 300 μm, 212 μm, 150 μm, 106 μm, 75 μm, etc. (The IIDA TESTING SIVE: inner diameter 80 mm ) And classified for 10 minutes using a low-tap type sieve shaker (ES-65 type sieve shaker manufactured by Iida Seisakusho Co., Ltd.). The weight average particle diameter (D50) is used when 50% by weight of the whole particles are classified when classified for 10 minutes by the above-mentioned sieve shaker as described in US Pat. No. 5,051,259. It is the particle size of the standard sieve.

<水可溶分成分量(可溶分量)>
250mL容量の蓋付きプラスチック容器に、0.900質量%塩化ナトリウム水溶液184.3gを測り取り、該水溶液中に吸水性樹脂ないし吸水剤1.00gを加えて、全長40mm×直径8mmの大きさの撹拌子(例えば、株式会社相互理化学硝子製の撹拌子A)を用いて渦の深みが約2cmになるように(例えば、250〜350rpm)、マグネチックスターラーによって16時間攪拌することにより吸水性樹脂ないし吸水剤中の可溶分を抽出した。この抽出液を、濾紙1枚(ADVANTEC東洋株式会社、品名:定量ろ紙Qualitative Filter Papers(JIS P 3801、No.2)、厚さ0.26mm、保留粒子径5μm)を用いて濾過することにより得られた濾液の50.0gを測り取り、測定溶液とした。
<Water-soluble component amount (soluble component)>
Weigh out 184.3 g of 0.900 mass% sodium chloride aqueous solution in a 250 mL capacity plastic container with a lid, add 1.00 g of a water-absorbing resin or water-absorbing agent to the aqueous solution, and have a total length of 40 mm × diameter of 8 mm. By using a stirrer (for example, a stirrer A manufactured by Mutual Chemical Glass Co., Ltd.) so that the vortex depth is about 2 cm (for example, 250 to 350 rpm), the water absorbent resin is stirred for 16 hours with a magnetic stirrer. The soluble content in the water-absorbing agent was extracted. This extract is obtained by filtering using one filter paper (ADVANTEC Toyo Co., Ltd., product name: quantitative filter paper Qualitative Filter Papers (JIS P 3801, No. 2), thickness 0.26 mm, retention particle diameter 5 μm). 50.0 g of the obtained filtrate was measured and used as a measurement solution.

次いで、吸水性樹脂ないし吸水剤が添加されていない生理食塩水を、まず、0.1NのNaOH水溶液を用いて、pH10まで滴定を行い、その後、0.1NのHCl水溶液でpH2.7まで滴定して、空滴定量([bNaOH]mL、[bHCl]mL)を得た。   Subsequently, the physiological saline to which the water-absorbing resin or water-absorbing agent is not added is first titrated to pH 10 using 0.1N NaOH aqueous solution, and then titrated to pH 2.7 with 0.1N HCl aqueous solution. To obtain an empty titer ([bNaOH] mL, [bHCl] mL).

上記と同様の滴定操作を、上記の測定溶液についても行うことにより、滴定量([NaOH]mL、[HCl]mL)を求めた。   Titrations ([NaOH] mL, [HCl] mL) were determined by performing the same titration operation as described above for the measurement solution.

その後、上記空滴定量、および、測定溶液の滴定量に基づいて、吸水性樹脂ないし吸水剤中の可溶分量を算出した。すなわち、例えば既知量のアクリル酸とそのナトリウム塩からなる吸水性樹脂ないし吸水剤の場合、そのモノマーの平均分子量と上記操作により得られた滴定量をもとに、吸水性樹脂ないし吸水剤中の可溶分量を下記(式6.1)により算出することができる。   Thereafter, the amount of soluble components in the water-absorbent resin or the water-absorbing agent was calculated based on the above-described empty titration amount and the titration amount of the measurement solution. That is, for example, in the case of a water-absorbing resin or water-absorbing agent comprising a known amount of acrylic acid and its sodium salt, based on the average molecular weight of the monomer and the titration amount obtained by the above operation, The amount of soluble component can be calculated by the following (formula 6.1).

可溶分(重量%)=0.1×(平均分子量)×184.3×100×([HCl]−[bHCl])/1000/1.0/50.0 ・・(式6.1)
また、未知量の成分からなる吸水性樹脂ないし吸水剤を用いる場合には、上記の滴定から、下記(式6.2)に基づいて求めた中和率を用いて、モノマーの平均分子量を算出し、吸水性樹脂ないし吸水剤中の可溶分量を上記(式6.1)によって算出する。
Soluble content (% by weight) = 0.1 × (average molecular weight) × 184.3 × 100 × ([HCl] − [bHCl]) / 1000 / 1.0 / 50.0 (formula 6.1)
When a water-absorbing resin or water-absorbing agent comprising an unknown amount of component is used, the average molecular weight of the monomer is calculated using the neutralization rate obtained from the above titration based on (Equation 6.2) below. Then, the soluble content in the water-absorbing resin or water-absorbing agent is calculated by the above (formula 6.1).

中和率(mol%)=(1−([NaOH]−[bNaOH])/([HCl]−[bHCl]))×100 ・・(式6.2)
<吸収物品の性能評価(キューピー人形テスト)>
性能評価用の吸収物品は、下記の方法により作成した。すなわち、まず、後述の実施例および比較例で得られた吸水性樹脂(吸水剤)50重量部と、木材粉砕パルプ50重量部とを、ミキサーを用いて乾式混合した。次いで、得られた混合物を、400メッシュ(目の大きさ38μm)に形成されたワイヤースクリーン上に、バッチ型空気抄造装置を用いて空気抄造することにより、120mm×400mmの大きさのウェブに成形した。さらに、このウェブを圧力2kg/cm2(196.14kPa)で5秒間プレスすることにより、坪量が約0.047g/cm2の吸収体を得た。
Neutralization rate (mol%) = (1 − ([NaOH] − [bNaOH]) / ([HCl] − [bHCl])) × 100 (Equation 6.2)
<Performance evaluation of absorbent articles (Cuppy doll test)>
An absorbent article for performance evaluation was prepared by the following method. That is, first, 50 parts by weight of the water-absorbent resin (water-absorbing agent) obtained in Examples and Comparative Examples described later and 50 parts by weight of pulverized wood pulp were dry-mixed using a mixer. Next, the resulting mixture is formed into a 120 mm × 400 mm web by air-making on a wire screen formed to 400 mesh (mesh size: 38 μm) using a batch type air-making machine. did. Further, this web was pressed at a pressure of 2 kg / cm 2 (196.14 kPa) for 5 seconds to obtain an absorbent having a basis weight of about 0.047 g / cm 2 .

続いて、不透液性のポリプロピレンからなり、いわゆるレッグギャザーを有するバックシート(液不透過性シート)、上記の吸収体、および、透液性のポリプロピレンからなるトップシート(液透過性シート)を、両面テープを用いてこの順に互いに貼着すると共に、この貼着物に2つのいわゆるテープファスナーを取り付けることにより、吸収物品(紙オムツ)を得た。   Subsequently, a back sheet (liquid impermeable sheet) made of liquid impervious polypropylene and having a so-called leg gather, the above-described absorber, and a top sheet (liquid permeable sheet) made of liquid permeable polypropylene. Then, while adhering to each other in this order using a double-sided tape, two so-called tape fasteners were attached to the adhered product to obtain an absorbent article (paper diaper).

上記の吸収物品を、いわゆるキューピー人形(Kewpie Doll、体長55cm、重量5kg)に装着し、該キューピー人形をうつ伏せ状態にした後、吸収物品とキューピー人形との間にチューブを差込み、人体にて排尿を行う位置に相当する位置に、前記S0〜S7から選ばれるいずれかの吸収溶液を37℃に加温した後、1回当たり50mLとして、20分間隔で注入した。そして、注入した吸収溶液が吸収物品に吸収されなくなって外部に漏れ出した時点で、上記の注入動作を終了し、このときまでに注入した吸収溶液の量を測定した。   The above absorbent article is attached to a so-called cupie doll (Kewpie Doll, body length 55 cm, weight 5 kg). After the cupy doll is turned down, a tube is inserted between the absorbent article and the cupie doll and urination is performed by the human body. One of the absorbing solutions selected from S0 to S7 was heated to 37 ° C. at a position corresponding to the position for performing the step, and then poured into 20 mL at 20 minute intervals. Then, when the injected absorbent solution was not absorbed by the absorbent article and leaked to the outside, the above injection operation was terminated, and the amount of the absorbed solution injected up to this time was measured.

上記S0〜S7の吸収溶液のそれぞれについて、上記の測定を4回繰り返し、得られた4つの測定値の平均値を求め、この平均値を、上記S0〜S7の吸収溶液に対する吸収溶液の吸収量(以下、QP吸収量(g))として、それぞれ算出した。そして、キューピー人形テストでの上記QP吸収量が多い程、吸収物品の性能が良好であると評価した。   For each of the absorbing solutions of S0 to S7, the above measurement is repeated four times, an average value of the four measured values obtained is obtained, and this average value is the amount of absorption of the absorbing solution with respect to the absorbing solution of S0 to S7. (Hereinafter, QP absorption (g)) was calculated. And it evaluated that the performance of an absorbent article was so favorable that there was much said QP absorption amount in a cupy doll test.

さらに、上記吸収溶液の注入後、吸収物品の四隅を粘着テープで固定し、吸収物品の上記トップシートだけを切り出して除去し、液注入側から、使用後の吸収体が観察できるような状態にした。続いて、液注入側から見て、吸収体中で吸収に使用された吸収体部分の寸法を測定し、拡散率(%)を求めた。該拡散率(%)は、吸収体中に使用された部分の面積を、吸収体の全体の面積で除することにより算出した。   Furthermore, after injection of the absorbent solution, the four corners of the absorbent article are fixed with adhesive tape, and only the top sheet of the absorbent article is cut out and removed, so that the absorbent after use can be observed from the liquid injection side. did. Subsequently, as viewed from the liquid injection side, the size of the absorber portion used for absorption in the absorber was measured, and the diffusivity (%) was obtained. The diffusivity (%) was calculated by dividing the area of the portion used in the absorber by the total area of the absorber.

上記したように、QP吸収量の算出のために、吸収溶液の量の測定を4回繰り返し行っているので、該測定毎に上記の拡散率(%)を求め、得られた4つの拡散率(%)の平均値を、上記S0〜S7の吸収溶液に対するQP拡散率(%)として、それぞれ算出した。そして、QP拡散率(%)が高い程、吸収物品の性能が良好であると評価した。   As described above, since the measurement of the amount of the absorbing solution is repeated four times for the calculation of the QP absorption amount, the diffusivity (%) is obtained for each measurement, and the obtained four diffusivities are obtained. The average value of (%) was calculated as the QP diffusion rate (%) for the absorbing solutions of S0 to S7. And it evaluated that the performance of an absorbent article was so favorable that QP spreading | diffusion rate (%) was high.

<ゲル通液指数(Gel Permeability Index/GPI)>
国際特許WO9522356(日本国公表特許公報「特表平9−509591号公報」に対応)に記載の生理食塩水流れ誘導性試験装置を使用し、膨潤溶液および通液溶液として、上記したイオン交換水および塩化ナトリウム水溶液S0〜S7を使用して、ゲル通液指数(GPI)を算出した。
<Gel Permeability Index / GPI>
Using the physiological saline flow-inductive test apparatus described in International Patent WO952356 (corresponding to Japanese Published Patent Publication “Special Table No. 9-509591”), the above-mentioned ion-exchanged water is used as a swelling solution and a solution-flowing solution. And the gel flow index (GPI) was calculated using sodium chloride aqueous solution S0-S7.

すなわち、図1に示すように、GPI測定用の測定装置は、通液溶液33を収容するタンク31と、吸水性樹脂または吸水剤を膨潤させてなるゲル層44に対する通液を行うセル41と、ゲルを通過した通液溶液を捕集する捕集容器48と、捕集された通液溶液の重量を測定する上皿天秤49とを備えている。   That is, as shown in FIG. 1, the measuring device for GPI measurement includes a tank 31 that stores a liquid passing solution 33, and a cell 41 that passes through a gel layer 44 formed by swelling a water absorbing resin or a water absorbing agent. , A collecting container 48 for collecting the liquid passing solution that has passed through the gel, and an upper pan balance 49 for measuring the weight of the collected liquid flowing solution.

上記タンク31には、ガラス管32が挿入されており、該ガラス管32の下端は、セル41内に供給された通液溶液が、ゲル層44の底部から5cm上の高さに維持されるように、配置した。また、上記タンク31中の通液溶液33は、コック35を備えたL字管34を通じて、セル41へ供給される。   A glass tube 32 is inserted into the tank 31, and the liquid passing solution supplied into the cell 41 is maintained at a height of 5 cm above the bottom of the gel layer 44 at the lower end of the glass tube 32. Arranged. Further, the liquid passing solution 33 in the tank 31 is supplied to the cell 41 through an L-shaped tube 34 provided with a cock 35.

上記セル41は、吸水性樹脂または吸水剤を膨潤して得られたゲル層44に通液溶液を通過させるための容器である。該セル41は、内径が6cmであり、下部の底面にはNo.400ステンレス製金網(目開き38μm)42が設置されている。また、上記セル41には、ゲル層44表面に押し当てられるピストン46が設けられている。該ピストン46は、その下部には、通液溶液が通過するのに十分な穴47が設けられ、底部には、吸水性樹脂または吸水剤、あるいは、その膨潤ゲルが、穴47へ入り込まないように透過性の良いガラスフィルター45が取り付けてある。なお、上記セル41は、該セル41を乗せるための台の上に置かれ、該セルと接する台の面は、通液溶液の透過を妨げないステンレス製の金網43となっている。   The cell 41 is a container for allowing the liquid passing solution to pass through the gel layer 44 obtained by swelling the water absorbent resin or the water absorbent. The cell 41 has an inner diameter of 6 cm. A 400 stainless steel wire mesh (mesh opening 38 μm) 42 is installed. The cell 41 is provided with a piston 46 that is pressed against the surface of the gel layer 44. The piston 46 is provided with a hole 47 in the lower part thereof through which the liquid passing solution passes, and a water-absorbing resin or a water-absorbing agent or a swelling gel thereof is prevented from entering the hole 47 at the bottom part. A glass filter 45 with good permeability is attached. The cell 41 is placed on a table on which the cell 41 is placed, and the surface of the table in contact with the cell is a stainless steel wire mesh 43 that does not prevent the permeation of the liquid solution.

上記セル41が配置される上記金網43の下には、通過した通液溶液を補集する捕集容器48が配置されており、該補集容器48は上皿天秤49の上に設置されている。上記捕集容器48に捕集された通液溶液の重量は、上皿天秤49で測定される。   Under the wire mesh 43 where the cell 41 is disposed, a collection container 48 for collecting the passed liquid solution is disposed. The collection container 48 is installed on an upper pan balance 49. Yes. The weight of the liquid solution collected in the collection container 48 is measured by an upper pan balance 49.

上記の測定装置を用いて、GPIを測定する場合には、以下のように行う。すなわち、セル41内にて均一の高さとなるように入れた吸水性樹脂または吸水剤(0.900g)を、膨潤溶液中、所定の加圧下(0.3psi(2.07kPa)または0.7psi(4.83kPa))で60分間膨潤させ、該膨潤によって吸水性樹脂または吸水剤がゲル化してなるゲル層44の高さを記録した。続いて、上記膨潤時の圧力と同じ加圧下にて、一定の静水圧でタンク31から通液溶液を供給して、上記ゲル層44中を通液させる。なお、使用する通液溶液は、膨潤時に使用した膨潤溶液と同じもの(イオン交換水または同じ濃度の塩化ナトリウム水溶液)を使用した。例えば、膨潤時にS0溶液を使用した場合は、通液溶液にS0溶液を使用した。   When GPI is measured using the above measuring apparatus, it is performed as follows. That is, the water-absorbing resin or water-absorbing agent (0.900 g) put in the cell 41 so as to have a uniform height is placed in the swelling solution under a predetermined pressure (0.3 psi (2.07 kPa) or 0.7 psi). (4.83 kPa)) for 60 minutes, and the height of the gel layer 44 formed by gelation of the water-absorbing resin or water-absorbing agent by the swelling was recorded. Subsequently, the liquid solution is supplied from the tank 31 at a constant hydrostatic pressure under the same pressure as the pressure at the time of swelling, and the gel layer 44 is allowed to flow. In addition, the same solution (ion exchange water or sodium chloride aqueous solution of the same density | concentration) as the swelling solution used at the time of swelling was used for the liquid passing solution to be used. For example, when the S0 solution was used at the time of swelling, the S0 solution was used as the liquid passing solution.

次に、コンピューターと天秤を用い、時間の関数として20秒間隔で、ゲル層44(図1)を通過する通液溶液の量(g)を10分間記録する。膨潤してなるゲル層44(主に、ゲルの粒子間)を通過する通液溶液の流速F(t)は、所定時間内にゲル層44を通過した通液溶液の重量である増加重量(g)を、上記所定時間である増加時間(s)で除したものであり、単位はg/sである。 Next, using a computer and a balance, the amount (g) of the solution passing through the gel layer 44 (FIG. 1) is recorded for 10 minutes at intervals of 20 seconds as a function of time. The flow rate F s (t) of the solution passing through the swollen gel layer 44 (mainly between the gel particles) is an increased weight that is the weight of the solution passing through the gel layer 44 within a predetermined time. (G) is divided by the increase time (s), which is the predetermined time, and the unit is g / s.

ゲル通液指数(GPI)は、一定の静水圧と安定した流速が得られた時間をtとし、tと通液溶液の量を記録した10分間との間に得たデータ(流速F(t))だけを使用して、下記(式7)に基づいて、算出する。なお、(式7)中のF(t=0)の値、つまりゲル層44を通る最初の流速F(t=0)は、上記流速F(t)対時間t(tと上記10分間との間の時間)のプロットを、最小2乗法によって外挿して得られるt=0での値を用いる。 Gel liquid passing Index (GPI) is the time when the constant hydrostatic pressure and the stable flow rate are obtained and t s, t s and the data obtained (flow rate F between the 10 minutes the amount of passed through the solution was recorded s (t)) is used to calculate based on (Equation 7) below. Incidentally, the first flow rate F s (t = 0) through the value, i.e. the gel layer 44 of F s (Equation 7) in (t = 0) is the aforementioned velocity F s (t) versus time t (t s The value at t = 0 obtained by extrapolating the plot of (time between the above 10 minutes) by the least square method is used.

GPI=(F(t=0)×L)/(ρ×A×ΔP)
=(F(t=0)×L)/139506 ・・(式7)
ここで、GPI値の単位は、10−7×cm×s×g−1であり、
:ゲル層の高さ(cm)
ρ:NaCl溶液の密度(g/cm
A:セル41中のゲル層上側の面積(28.27cm
ΔP:ゲル層にかかる静水圧(4920dyne/cm
を表す。
GPI = (F s (t = 0) × L 0 ) / (ρ × A × ΔP)
= (F s (t = 0) × L 0 ) / 139506 (Equation 7)
Here, the unit of the GPI value is 10 −7 × cm 3 × s × g −1 ,
L 0 : height of the gel layer (cm)
ρ: Density of NaCl solution (g / cm 3 )
A: Area above the gel layer in the cell 41 (28.27 cm 2 )
ΔP: hydrostatic pressure applied to the gel layer (4920 dyne / cm 2 )
Represents.

<参考例1>
プロトアネモネンおよびフルフラールがND(non-Detactable/1ppm未満)で、且つ、p−メトキシフェノール50ppm(対アクリル酸の重量)を含有するアクリル酸を、苛性ソーダで中和して得られた、71.3モル%の中和率を有するアクリル酸ナトリウムの水溶液4500g(単量体濃度39重量%)に、ポリエチレングリコールジアクリレート(エチレンオキシドの平均付加モル数8)14.6gを溶解し、反応液(1)とした。
<Reference Example 1>
71. Obtained by neutralizing acrylic acid containing protoanemonene and furfural with ND (non-Detactable / 1 ppm and less than 50 ppm p-methoxyphenol (weight of acrylic acid) with caustic soda, In 4500 g of an aqueous solution of sodium acrylate having a neutralization rate of 3 mol% (monomer concentration: 39% by weight), 14.6 g of polyethylene glycol diacrylate (average number of moles of ethylene oxide added 8) was dissolved, and the reaction solution (1 ).

次に、この反応液(1)を、窒素ガス雰囲気下で30分間脱気した。続いて、シグマ型羽根を2本有する内容積10Lのジャケット付きステンレス製双腕型ニーダーに蓋を付けて形成した反応器に、脱気した上記反応液(1)を供給し、該反応液(1)を30℃に保ちながら、窒素ガス置換した。その後、窒素ガス置換した反応液(1)を撹拌しながら、過硫酸ナトリウム2.46gおよびL−アスコルビン酸0.10gを水溶液で添加したところ、約1分後に重合が開始された。そして、30℃〜90℃で重合を行い、重合を開始して60分後に、含水ゲル状架橋重合体(1)を得た。   Next, this reaction liquid (1) was deaerated for 30 minutes in a nitrogen gas atmosphere. Subsequently, the degassed reaction liquid (1) was supplied to a reactor formed by attaching a lid to a stainless steel double-armed kneader with an internal volume of 10 L having two sigma blades, and the reaction liquid ( While maintaining 1) at 30 ° C., nitrogen gas substitution was performed. Thereafter, 2.46 g of sodium persulfate and 0.10 g of L-ascorbic acid were added as an aqueous solution while stirring the reaction liquid (1) purged with nitrogen gas, and polymerization was started after about 1 minute. Then, polymerization was carried out at 30 ° C. to 90 ° C., and after 60 minutes from the start of polymerization, a hydrogel crosslinked polymer (1) was obtained.

得られた含水ゲル状架橋重合体(1)は、その径が約5mmに細分化されていた。この細分化された含水ゲル状架橋重合体(1)を50メッシュ(目開き300μm)の金網上に広げ、150℃で90分間熱風乾燥した。得られた乾燥重合体(1)を、振動ミルを用いて粉砕し、さらに20メッシュ(目開き850μm)の金網で分級および調合することにより、不定形破砕状の吸水性樹脂粒子(a)を得た。   The obtained hydrogel crosslinked polymer (1) had a diameter of about 5 mm. This finely divided hydrogel crosslinked polymer (1) was spread on a 50 mesh (mesh opening 300 μm) wire net and dried with hot air at 150 ° C. for 90 minutes. The obtained dried polymer (1) is pulverized using a vibration mill, and further classified and prepared with a 20 mesh (mesh 850 μm) wire mesh, whereby the irregularly crushed water-absorbent resin particles (a) are obtained. Obtained.

<参考例2>
プロトアネモネンおよびフルフラールがNDで、且つ、p−メトキシフェノール50ppm(対アクリル酸の重量)を含有するアクリル酸を、苛性ソーダで中和して得られた、60.0モル%の中和率を有するアクリル酸ナトリウムの水溶液5200g(単量体濃度39重量%)に、ポリエチレングリコールジアクリレート(エチレンオキシドの平均付加モル数8)11.7gを溶解し、反応液(2)とした。
<Reference Example 2>
A neutralization rate of 60.0 mol% obtained by neutralizing acrylic acid containing protoanemonene and furfural ND and p-methoxyphenol 50 ppm (weight of acrylic acid) with caustic soda was obtained. 11.7 g of polyethylene glycol diacrylate (average number of moles of ethylene oxide added 8) was dissolved in 5200 g of an aqueous solution of sodium acrylate having a monomer concentration of 39% by weight to obtain a reaction solution (2).

次に、この反応液(2)を上記参考例1と同様に脱気した後、参考例1で説明したステンレス製双腕型ニーダーに蓋を付けて形成した反応器中で、30℃に保ちながら、窒素ガス置換した。その後、窒素ガス置換した反応液(2)を撹拌しながら、過硫酸ナトリウム2.88gおよびL−アスコルビン酸0.10gを水溶液で添加したところ、約1分後に重合が開始された。そして、30℃〜90℃で重合を行い、重合を開始して60分後に、含水ゲル状架橋重合体(2)(約5mmに細分化)を得、次いで参考例1と同様に乾燥した。   Next, this reaction liquid (2) was degassed in the same manner as in Reference Example 1, and then kept at 30 ° C. in a reactor formed by attaching a lid to the stainless steel double-arm kneader described in Reference Example 1. While replacing with nitrogen gas. Thereafter, 2.88 g of sodium persulfate and 0.10 g of L-ascorbic acid were added as an aqueous solution while stirring the reaction liquid (2) purged with nitrogen gas, and polymerization was started after about 1 minute. Then, polymerization was carried out at 30 ° C. to 90 ° C., and after 60 minutes from the start of polymerization, a hydrogel crosslinked polymer (2) (subdivided into about 5 mm) was obtained, and then dried in the same manner as in Reference Example 1.

得られた乾燥重合体(2)を振動ミルで粉砕し、さらに20メッシュ(目開き850μm)の金網で分級・調合することにより、不定形破砕状の吸水性樹脂粒子(b)を得た。   The obtained dried polymer (2) was pulverized with a vibration mill, and further classified and prepared with a 20 mesh (mesh 850 μm) wire mesh to obtain amorphous crushed water-absorbent resin particles (b).

<参考例3>
プロトアネモネンおよびフルフラールがNDで、且つ、p−メトキシフェノール50ppm(対アクリル酸の重量)を含有するアクリル酸を、苛性ソーダで中和して得られた、75.0モル%の中和率を有するアクリル酸ナトリウムの水溶液5650g(単量体濃度37重量%)に、ポリエチレングリコールジアクリレート(エチレンオキシドの平均付加モル数8)58.5gを溶解し、反応液(3)とした。
<Reference Example 3>
A neutralization ratio of 75.0 mol% obtained by neutralizing acrylic acid containing protoanemonene and furfural with ND and p-methoxyphenol 50 ppm (weight of acrylic acid) with caustic soda was obtained. 58.5 g of polyethylene glycol diacrylate (average added mole number of ethylene oxide 8) was dissolved in 5650 g of an aqueous solution of sodium acrylate having a monomer concentration of 37% by weight to obtain a reaction solution (3).

次に、この反応液(3)を上記参考例1、2と同様に脱気した後、参考例1、2で説明したステンレス製双腕型ニーダーに蓋を付けて形成した反応器中で、30℃に保ちながら、窒素ガス置換した。その後、窒素ガス置換した反応液(3)を撹拌しながら、過硫酸ナトリウム 2.88gおよびL−アスコルビン酸0.10gを水溶液で添加したところ、約1分後に重合が開始された。そして、30℃〜90℃で重合を行い、重合を開始して60分後に含水ゲル状架橋重合体(3)(約5mmに細分化)を得、次いで参考例1、2と同様に乾燥した。   Next, after this reaction liquid (3) was degassed in the same manner as in Reference Examples 1 and 2, the reactor was formed by attaching a lid to the stainless steel double arm kneader described in Reference Examples 1 and 2. While maintaining at 30 ° C., nitrogen gas substitution was performed. Thereafter, 2.88 g of sodium persulfate and 0.10 g of L-ascorbic acid were added as an aqueous solution while stirring the reaction solution (3) purged with nitrogen gas, and polymerization was started after about 1 minute. Then, polymerization was performed at 30 ° C. to 90 ° C., and after 60 minutes from the start of polymerization, a hydrogel crosslinked polymer (3) (subdivided into about 5 mm) was obtained, and then dried in the same manner as in Reference Examples 1 and 2. .

得られた乾燥重合体(3)を振動ミルで粉砕し、さらに20メッシュ(目開き850μm)の金網で分級・調合することにより、不定形破砕状の吸水性樹脂粒子(c)を得た。   The obtained dried polymer (3) was pulverized with a vibration mill, and further classified and prepared with a 20 mesh (mesh 850 μm) wire mesh to obtain irregularly crushed water-absorbent resin particles (c).

<参考例4>
プロトアネモネンおよびフルフラールがNDで、且つ、p−メトキシフェノール50ppm(対アクリル酸の重量)を含有するアクリル酸を、苛性ソーダで中和して得られた、75.0モル%の中和率を有するアクリル酸ナトリウムの水溶液5330g(単量体濃度33重量%)に、ポリエチレングリコールジアクリレート(エチレンオキシドの平均付加モル数8)4.4gを溶解し、反応液(4)とした。
<Reference Example 4>
A neutralization ratio of 75.0 mol% obtained by neutralizing acrylic acid containing protoanemonene and furfural with ND and p-methoxyphenol 50 ppm (weight of acrylic acid) with caustic soda was obtained. 4.4 g of polyethylene glycol diacrylate (average number of moles of ethylene oxide added 8) was dissolved in 5330 g of an aqueous solution of sodium acrylate having a monomer concentration of 33% by weight to obtain a reaction solution (4).

次に、この反応液(4)を参考例1〜3と同様に脱気した後、参考例1〜3で説明したステンレス製双腕型ニーダーに蓋を付けて形成した反応器中で、30℃に保ちながら、窒素ガス置換した。その後、窒素ガス置換した反応液(4)を撹拌しながら、過硫酸ナトリウム 2.88gおよびL−アスコルビン酸0.10gを水溶液で添加したところ、約1分後に重合が開始された。そして、30℃〜90℃で重合を行い、重合を開始して60分後に含水ゲル状架橋重合体(4)(約5mmに細分化)を得、次いで参考例1〜3と同様に乾燥した。   Next, this reaction liquid (4) was degassed in the same manner as in Reference Examples 1 to 3, and then the reactor was formed by attaching a lid to the stainless steel double-arm kneader described in Reference Examples 1 to 3. While maintaining the temperature, the nitrogen gas was replaced. Thereafter, 2.88 g of sodium persulfate and 0.10 g of L-ascorbic acid were added as an aqueous solution while stirring the reaction liquid (4) purged with nitrogen gas, and polymerization was started after about 1 minute. Then, polymerization was performed at 30 ° C. to 90 ° C., and after 60 minutes from the start of polymerization, a hydrogel crosslinked polymer (4) (subdivided into about 5 mm) was obtained, and then dried in the same manner as in Reference Examples 1 to 3. .

得られた乾燥重合体(4)を振動ミルで粉砕し、さらに20メッシュ(目開き850μm)の金網で分級・調合することにより、不定形破砕状の吸水性樹脂粒子(d)を得た。   The obtained dried polymer (4) was pulverized with a vibration mill and further classified and prepared with a 20 mesh (mesh 850 μm) wire mesh to obtain irregularly crushed water-absorbent resin particles (d).

<参考例5>
プロトアネモネンおよびフルフラールがNDで、且つ、p−メトキシフェノール50ppm(対アクリル酸の重量)を含有するアクリル酸を、苛性ソーダで中和して得られた、60.0モル%の中和率を有するアクリル酸ナトリウムの水溶液5650g(単量体濃度37重量%)に、ポリエチレングリコールジアクリレート(エチレンオキシドの平均付加モル数8)63.0gを溶解し、反応液(5)とした。
<Reference Example 5>
A neutralization rate of 60.0 mol% obtained by neutralizing acrylic acid containing protoanemonene and furfural ND and p-methoxyphenol 50 ppm (weight of acrylic acid) with caustic soda was obtained. 63.0 g of polyethylene glycol diacrylate (average added mole number of ethylene oxide 8) was dissolved in 5650 g of an aqueous solution of sodium acrylate having a monomer concentration of 37% by weight to obtain a reaction solution (5).

次に、この反応液(5)を上記参考例1〜4と同様に脱気した後、参考例1〜4で説明したステンレス製双腕型ニーダーに蓋を付けて形成した反応器中で、30℃に保ちながら、窒素ガス置換した。その後、窒素ガス置換した反応液(3)を撹拌しながら、過硫酸ナトリウム2.88gおよびL−アスコルビン酸0.10gを水溶液で添加したところ、約1分後に重合が開始された。そして、30℃〜90℃で重合を行い、重合を開始して60分後に含水ゲル状架橋重合体(5)(約5mmに細分化)を得、次いで参考例1〜4と同様に乾燥した。   Next, after this reaction liquid (5) was degassed in the same manner as in Reference Examples 1 to 4, the reactor was formed by attaching a lid to the stainless steel double arm kneader described in Reference Examples 1 to 4. While maintaining at 30 ° C., nitrogen gas substitution was performed. Thereafter, 2.88 g of sodium persulfate and 0.10 g of L-ascorbic acid were added as an aqueous solution while stirring the reaction solution (3) purged with nitrogen gas, and polymerization was started after about 1 minute. Then, polymerization was carried out at 30 ° C. to 90 ° C., and after 60 minutes from the start of polymerization, a hydrogel crosslinked polymer (5) (subdivided into about 5 mm) was obtained, and then dried in the same manner as in Reference Examples 1 to 4. .

得られた乾燥重合体(5)を振動ミルで粉砕し、さらに20メッシュ(目開き850μm)の金網で分級・調合することにより、不定形破砕状の吸水性樹脂粒子(e)を得た。   The obtained dried polymer (5) was pulverized with a vibration mill, and further classified and prepared with a 20 mesh (mesh 850 μm) wire mesh to obtain irregularly crushed water-absorbent resin particles (e).

<参考例6>
反応液(5)を得るために用いたポリエチレングリコールジアクリレート(エチレンオキシドの平均付加モル数8)を、88.2gとする以外は、参考例5と同様の操作を行い、不定形破砕状の吸水性樹脂粒子(f)を得た。
<Reference Example 6>
The same procedure as in Reference Example 5 was performed, except that the polyethylene glycol diacrylate (average number of moles of ethylene oxide added 8) used to obtain the reaction liquid (5) was 88.2 g, and the irregularly crushed water absorption Resin particles (f) were obtained.

<実施例1>
参考例1で得られた吸水性樹脂(a)100部に、プロピレングリコール0.5部と、1,4−ブタンジオール0.3部と、水3部とからなる表面架橋剤を混合した。上記の混合物を220℃で90分間加熱処理することにより、表面処理された吸水性樹脂よりなる吸水剤(1)を得た。
<Example 1>
A surface cross-linking agent composed of 0.5 part of propylene glycol, 0.3 part of 1,4-butanediol and 3 parts of water was mixed with 100 parts of the water absorbent resin (a) obtained in Reference Example 1. The mixture was heat-treated at 220 ° C. for 90 minutes to obtain a water-absorbing agent (1) made of a surface-treated water-absorbing resin.

<実施例2>
吸水性樹脂(a)を用いる代わりに、参考例2で得られた吸水性樹脂(b)を使用する以外は、実施例1と同様の操作を行い、表面処理された吸水性樹脂よりなる吸水剤(2)を得た。
<Example 2>
Instead of using the water-absorbent resin (a), the same procedure as in Example 1 was carried out except that the water-absorbent resin (b) obtained in Reference Example 2 was used. Agent (2) was obtained.

<実施例3>
参考例3で得られた吸水性樹脂(c)100部に対して、親水性二酸化珪素(商品名アエロジル200;日本アエロジル株式会社製)0.3部をレディゲミキサー(レディゲ社製、タイプ:M5R)に投入し、330rpmで15秒間攪拌することにより、表面処理された吸水性樹脂よりなる吸水剤(3)を得た。
<Example 3>
For 100 parts of the water-absorbent resin (c) obtained in Reference Example 3, 0.3 part of hydrophilic silicon dioxide (trade name Aerosil 200; manufactured by Nippon Aerosil Co., Ltd.) M5R) and stirred at 330 rpm for 15 seconds to obtain a water-absorbing agent (3) made of a surface-treated water-absorbing resin.

<実施例4>
親水性二酸化珪素の代わりに、ステアリン酸カルシウムを使用する以外は、実施例3と同様の操作を行い、表面処理された吸水性樹脂よりなる吸水剤(4)を得た。
<Example 4>
Except for using calcium stearate instead of hydrophilic silicon dioxide, the same operation as in Example 3 was performed to obtain a water-absorbing agent (4) comprising a surface-treated water-absorbing resin.

<実施例5>
参考例5で得られた吸水性樹脂(e)100部に、プロピレングリコール0.5部と、1,4−ブタンジオール0.3部と、水3部とからなる表面架橋剤を混合した。上記の混合物を220℃で40分間加熱処理することにより、表面処理された吸水性樹脂よりなる吸水剤(5)を得た。
<Example 5>
A surface cross-linking agent composed of 0.5 part of propylene glycol, 0.3 part of 1,4-butanediol and 3 parts of water was mixed with 100 parts of the water absorbent resin (e) obtained in Reference Example 5. The mixture was heat treated at 220 ° C. for 40 minutes to obtain a water absorbing agent (5) composed of a surface treated water absorbent resin.

<実施例6>
吸水性樹脂(e)を用いる代わりに、参考例6で得られた吸水性樹脂(f)を使用する以外は、実施例5と同様の操作を行い、表面処理された吸水性樹脂よりなる吸水剤(6)を得た。
<Example 6>
Instead of using the water-absorbent resin (e), the same procedure as in Example 5 was performed, except that the water-absorbent resin (f) obtained in Reference Example 6 was used. Agent (6) was obtained.

<比較例1>
参考例1で得られた吸水性樹脂(a)100部に、プロピレングリコール0.5部と、1,4−ブタンジオール0.3部と、水3部とからなる表面架橋剤を混合した。上記の混合物を210℃で40分間加熱処理することにより、表面処理された吸水性樹脂よりなる比較吸水剤(1)を得た。
<Comparative Example 1>
A surface cross-linking agent composed of 0.5 part of propylene glycol, 0.3 part of 1,4-butanediol and 3 parts of water was mixed with 100 parts of the water absorbent resin (a) obtained in Reference Example 1. The above mixture was heat-treated at 210 ° C. for 40 minutes to obtain a comparative water-absorbing agent (1) made of a surface-treated water-absorbing resin.

<比較例2>
参考例4で得られた吸水性樹脂(d)100部に、エチレングリコールジグリシジルエーテル0.02部と、1,4−ブタンジオール0.3部と、プロピレングリコール0.4部と水2部とを混合した。上記混合物を195℃で50分加熱処理することにより、表面処理された吸水性樹脂よりなる比較吸水剤(2)を得た。
<Comparative example 2>
To 100 parts of the water absorbent resin (d) obtained in Reference Example 4, 0.02 part of ethylene glycol diglycidyl ether, 0.3 part of 1,4-butanediol, 0.4 part of propylene glycol and 2 parts of water And mixed. The said mixture was heat-processed at 195 degreeC for 50 minutes, and the comparative water absorbing agent (2) which consists of surface-treated water-absorbing resin was obtained.

<比較例3>
210℃で40分加熱処理する以外は、比較例2と同様の操作を行い、表面処理された吸水性樹脂よりなる比較吸水剤(3)を得た。
<Comparative Example 3>
Except for heat treatment at 210 ° C. for 40 minutes, the same operation as in Comparative Example 2 was performed to obtain a comparative water-absorbing agent (3) made of a surface-treated water-absorbing resin.

<比較例4>
参考例3で得られた吸水性樹脂(c)を、表面架橋剤を混合せずに220℃で90分間加熱処理することにより、比較吸水剤(4)を得た。
<Comparative example 4>
The water-absorbent resin (c) obtained in Reference Example 3 was heat-treated at 220 ° C. for 90 minutes without mixing the surface cross-linking agent to obtain a comparative water-absorbing agent (4).

<結果>
吸水性樹脂(a)〜(f)の0.90質量%塩化ナトリウム水溶液の無荷重下吸収倍率、可溶分量(重量(wt)%)、および粒度(重量(wt)%)を、表1に示す。
<Result>
Table 1 shows the absorption capacity, the soluble content (weight (wt)%), and the particle size (weight (wt)%) of 0.90 mass% sodium chloride aqueous solution of the water absorbent resins (a) to (f). Shown in

また、表面処理された吸水性樹脂よりなる吸水剤(1)〜(6)、比較吸水剤(1)〜(4)、および比較として吸水性樹脂(c)の前記吸収溶液S0〜S7に対する無荷重下吸水倍率を表2・3に、加圧下吸収倍率(AAP)、塩濃度吸収指数、塩濃度吸収指数の平均値および標準偏差を表4〜7に示す。   Further, the water-absorbing agents (1) to (6) made of the surface-treated water-absorbing resin, the comparative water-absorbing agents (1) to (4), and the water-absorbing resin (c) as a comparison with respect to the absorbing solutions S0 to S7. The absorption capacity under load is shown in Tables 2 and 3, and the absorption capacity under load (AAP), the salt concentration absorption index, the average value and the standard deviation of the salt concentration absorption index are shown in Tables 4-7.

また、吸水剤(1)(2)および比較吸水剤(1)(2)(3)を用いた吸収物品の性能評価(QP吸収量)結果を表8に示す。吸収溶液S6(0.7質量(重量)%塩化ナトリウム水溶液)を使用した場合の、吸水剤(1)と比較吸水剤(3)の圧力(0.3psi(2.07kPa)および0.7psi(4.83kPa))でのゲル通液指数を表9に示す。吸水剤(1)および比較吸水剤(3)の吸収溶液S0、S3、S6、S7を使用した場合の圧力0.3psi(2.07kPa)におけるゲル通液指数を表10に示す。吸水剤(1)および比較吸水剤(1)(3)を用いた吸収物品の性能評価(QP拡散率)結果を表11に示す。   Table 8 shows the results of performance evaluation (QP absorption amount) of absorbent articles using the water-absorbing agent (1) (2) and the comparative water-absorbing agent (1) (2) (3). Pressure (0.3 psi (2.07 kPa) and 0.7 psi) of the water absorbing agent (1) and the comparative water absorbing agent (3) when the absorbing solution S6 (0.7 mass (weight)% sodium chloride aqueous solution) is used. The gel permeation index at 4.83 kPa)) is shown in Table 9. Table 10 shows the gel permeation index at a pressure of 0.3 psi (2.07 kPa) when the absorbing solutions S0, S3, S6, and S7 of the water absorbing agent (1) and the comparative water absorbing agent (3) are used. Table 11 shows the results of performance evaluation (QP diffusion rate) of absorbent articles using the water-absorbing agent (1) and the comparative water-absorbing agent (1) (3).

さらに、表面処理された吸水性樹脂よりなる吸水剤(1)〜(6)、比較吸水剤(1)〜(4)、および比較として吸水性樹脂(c)の耐塩性指数を表12・13に示す。   Furthermore, the water-absorbing agents (1) to (6) made of the surface-treated water-absorbing resin, the comparative water-absorbing agents (1) to (4), and the salt-tolerant index of the water-absorbing resin (c) as a comparison are shown in Tables 12 and 13. Shown in

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

Figure 0004979879
Figure 0004979879

尚、発明を実施するための最良の形態の項においてなした具体的な実施態様または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する特許請求の範囲内で、いろいろと変更して実施することができるものである。   It should be noted that the specific embodiments or examples made in the best mode for carrying out the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples. The present invention should not be construed as narrowly defined but can be implemented with various modifications within the spirit of the present invention and the scope of the following claims.

本発明の粒子状吸水剤は、使用条件にかかわらず高性能を示すため、農園芸保水剤、工業用保水剤、吸湿剤、除湿剤、建材などで広く用いられる。このうち、特に好ましくは、紙おむつ、生理用ナプキンなどに代表される、糞、尿ないし血液の吸収用衛生材料用いられる。   Since the particulate water-absorbing agent of the present invention exhibits high performance regardless of use conditions, it is widely used in agricultural and horticultural water-retaining agents, industrial water-retaining agents, moisture-absorbing agents, dehumidifying agents, building materials and the like. Of these, particularly preferably used are sanitary materials for absorbing feces, urine or blood, such as disposable diapers and sanitary napkins.

ゲル通液指数の測定に用いる測定装置を示す概略断面図である。It is a schematic sectional drawing which shows the measuring apparatus used for the measurement of a gel flow index.

符号の説明Explanation of symbols

31 タンク
32 ガラス管
33 通液溶液
34 L字管
35 コック
41 セル
42 ステンレス製金網
43 金網
44 ゲル層
45 ガラスフィルター
46 ピストン
47 穴
48 捕集容器
49 上皿天秤
31 Tank 32 Glass tube 33 Liquid solution 34 L-shaped tube 35 Cock 41 Cell 42 Stainless steel wire mesh 43 Wire mesh 44 Gel layer 45 Glass filter 46 Piston 47 Hole 48 Collection container 49 Upper plate balance

Claims (16)

ポリアクリル酸塩架橋重合体が主成分である粒子状の吸水性樹脂を85〜100質量%含有する尿吸収用粒子状吸水剤であって、
(1)吸水性樹脂100質量部に対して表面改質剤0.001〜10質量部で表面改質されてなり、
上記表面改質剤が表面架橋剤および不活性添加剤からなる群より選ばれ、
(2)106μm以上、850μm未満の粒子径を有する粒子状の吸水性樹脂が、吸水性樹脂の全質量に対して90質量%以上含まれており、
(3)該粒子状吸水剤の0.9質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)が10〜27g/gであり、
(4)下記(式1)
(塩濃度吸収指数)=(一定塩濃度水溶液に対する4.83kPaでの加圧下吸収倍率)/(一定塩濃度水溶液に対する無荷重下吸収倍率) ・・(式1)
(式中、上記加圧下吸収倍率は、4.83kPaの加圧下にて、一定塩濃度水溶液に60分間浸漬した場合の吸収倍率であり、上記無荷重下吸収倍率は、無加圧下にて、一定塩濃度水溶液に60分間浸漬した場合の吸収倍率である)にて、上記一定塩濃度水溶液がイオン交換水である場合の塩濃度吸収指数である第一塩濃度吸収指数が、0.60以上、1.20以下であり、
上記(式1)中の一定塩濃度水溶液が0.10質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数である第二塩濃度吸収指数が、0.80以上、1.20以下であり、
上記(式1)中の一定塩濃度水溶液が0.30質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数である第三塩濃度吸収指数、
上記(式1)中の一定塩濃度水溶液が0.50質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数である第四塩濃度吸収指数、
上記(式1)中の一定塩濃度水溶液が0.70質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数である第五塩濃度吸収指数、
上記(式1)中の一定塩濃度水溶液が0.90質量%塩化ナトリウム水溶液である場合の塩濃度吸収指数である第六塩濃度吸収指数、
のうちの少なくとも1つが、0.90以上、1.20以下であることを特徴とする尿吸収用粒子状吸水剤。
A particulate water-absorbing agent for urine absorption containing 85 to 100% by mass of a particulate water-absorbing resin whose main component is a polyacrylate cross-linked polymer,
(1) The surface is modified with 0.001 to 10 parts by mass of a surface modifier with respect to 100 parts by mass of the water absorbent resin,
The surface modifier is selected from the group consisting of a surface cross-linking agent and an inert additive,
(2) The particulate water-absorbing resin having a particle diameter of 106 μm or more and less than 850 μm is contained in an amount of 90% by mass or more based on the total mass of the water-absorbing resin,
(3) The absorption capacity under no load (60 minutes value) of the particulate water-absorbing agent with respect to a 0.9% by mass sodium chloride aqueous solution is 10 to 27 g / g,
(4) The following (Formula 1)
(Salt concentration absorption index) = (absorption capacity under pressure at 4.83 kPa for a constant salt concentration aqueous solution) / (absorption capacity under no load for a constant salt concentration aqueous solution) (Equation 1)
(In the formula, the absorption capacity under pressure is an absorption capacity when immersed in a constant salt concentration aqueous solution for 60 minutes under a pressure of 4.83 kPa, and the absorption capacity under no load is under no pressure, The first salt concentration absorption index, which is the salt concentration absorption index when the above constant salt concentration aqueous solution is ion-exchanged water, is 0.60 or more. 1.20 or less ,
The second salt concentration absorption index, which is the salt concentration absorption index when the constant salt concentration aqueous solution in (Formula 1) is a 0.10% by mass sodium chloride aqueous solution, is 0.80 or more and 1.20 or less,
A third salt concentration absorption index which is a salt concentration absorption index when the constant salt concentration aqueous solution in the above (formula 1) is a 0.30 mass% sodium chloride aqueous solution;
A fourth salt concentration absorption index, which is a salt concentration absorption index when the constant salt concentration aqueous solution in the above (formula 1) is a 0.50 mass% sodium chloride aqueous solution,
A fifth salt concentration absorption index, which is a salt concentration absorption index when the constant salt concentration aqueous solution in (Formula 1) is a 0.70 mass% sodium chloride aqueous solution,
A sixth salt concentration absorption index which is a salt concentration absorption index when the constant salt concentration aqueous solution in the above (formula 1) is a 0.90 mass% sodium chloride aqueous solution;
A particulate water-absorbing agent for urine absorption , wherein at least one of them is 0.90 or more and 1.20 or less .
上記表面改質剤が脱水反応性表面架橋剤であることを特徴とする請求項1に記載の尿吸収用粒子状吸水剤。   The particulate water-absorbing agent for urine absorption according to claim 1, wherein the surface modifier is a dehydration-reactive surface cross-linking agent. 上記表面改質剤が不活性無機微粒子であることを特徴とする請求項1または2に記載の尿吸収用粒子状吸水剤。   The particulate water-absorbing agent for urine absorption according to claim 1 or 2, wherein the surface modifier is inert inorganic fine particles. 上記表面改質剤が脂肪酸またはその塩であることを特徴とする請求項1から3のいずれか1項に記載の尿吸収用粒子状吸水剤。   The particulate water-absorbing agent for urine absorption according to any one of claims 1 to 3, wherein the surface modifier is a fatty acid or a salt thereof. 上記尿が乳幼児又は新生児の尿であることを特徴とする請求項1から4のいずれか1項に記載の尿吸収用粒子状吸水剤。   The particulate water-absorbing agent for urine absorption according to any one of claims 1 to 4, wherein the urine is urine of an infant or a newborn. 上記第一塩濃度吸収指数、第二塩濃度吸収指数、第三塩濃度吸収指数、第四塩濃度吸収指数、第五塩濃度吸収指数、第六塩濃度吸収指数の平均値である平均塩濃度吸収指数指数が0.90以上、1.10以下であり、かつ、
上記平均塩濃度吸収指数指数の標準偏差が、0〜0.100の範囲内にあることを特徴とする請求項1から5のいずれか1項に記載の尿吸収用粒子状吸水剤。
Average salt concentration which is the average value of the above-mentioned first salt concentration absorption index, second salt concentration absorption index, third salt concentration absorption index, fourth salt concentration absorption index, fifth salt concentration absorption index, and sixth salt concentration absorption index The absorption index index is 0.90 or more and 1.10 or less, and
The particulate water-absorbing agent for urine absorption according to any one of claims 1 to 5 , wherein a standard deviation of the average salt concentration absorption index index is in a range of 0 to 0.100.
下記(式2)
(耐塩性指数)=(一定塩濃度水溶液に対する無荷重下吸収倍率)/(イオン交換水に対する無荷重下吸収倍率) ・・(式2)
(式中、無荷重下吸収倍率は、一定塩濃度水溶液またはイオン交換水に、60分間浸漬した場合の吸収倍率である)にて、上記一定塩濃度が0.10質量%塩化ナトリム水溶液である場合の耐塩性指数である第一耐塩性指数が、0.40以上、1.20以下であることを特徴とする請求項1から6のいずれか1項に記載の尿吸収用粒子状吸水剤。
Below (Formula 2)
(Salt tolerance index) = (absorption capacity under no load with respect to a constant salt concentration aqueous solution) / (absorption capacity under no load with respect to ion-exchanged water) (Equation 2)
(In the formula, the absorption capacity under no load is the absorption capacity when immersed in a constant salt concentration aqueous solution or ion-exchanged water for 60 minutes), and the above-mentioned constant salt concentration is a 0.10% by mass sodium chloride aqueous solution. The particulate salt water-absorbing agent for urine absorption according to any one of claims 1 to 6 , wherein a first salt-tolerance index, which is a salt-tolerance index in the case, is 0.40 or more and 1.20 or less. .
2.07kPaの圧力下にて、イオン交換水に対するゲル通液指数が15以上であることを特徴とする請求項1から7のいずれか1項に記載の尿吸収用粒子状吸水剤。 The particulate water-absorbing agent for urine absorption according to any one of claims 1 to 7, wherein a gel permeation index with respect to ion-exchanged water is 15 or more under a pressure of 2.07 kPa. 2.07kPaの圧力下にて、0.30質量%塩化ナトリウム水溶液に対するゲル通液指数が50以上であることを特徴とする請求項1から8のいずれか1項に記載の尿吸収用粒子状吸水剤。 The particulate form for urine absorption according to any one of claims 1 to 8, wherein a gel permeation index with respect to a 0.30 mass% sodium chloride aqueous solution is 50 or more under a pressure of 2.07 kPa. Water absorbent. 4.83kPaの圧力下にて、0.70質量%塩化ナトリウム水溶液に対するゲル通液指数が15以上であることを特徴とする請求項1から9のいずれか1項に記載の尿吸収用粒子状吸水剤。 The urine absorption particulate form according to any one of claims 1 to 9, wherein a gel permeation index with respect to a 0.70 mass% sodium chloride aqueous solution is 15 or more under a pressure of 4.83 kPa. Water absorbent. 請求項1〜10のいずれか1項に記載の尿吸収用粒子状吸水剤を含むことを特徴とする尿吸収用衛生材料。 A urine-absorbing sanitary material comprising the urine-absorbing particulate water-absorbing agent according to any one of claims 1 to 10 . 紙おむつであることを特徴とする請求項11に記載の尿吸収用衛生材料。 The sanitary material for absorption of urine according to claim 11, which is a disposable diaper. 上記尿を吸収する吸収層を備え、
上記吸収層は、下記(式3)
(コア濃度比)=(上記粒子状吸水剤の質量)/((上記粒子状吸水剤の質量)+(繊維材料の質量)) ・・(式3)
で規定されるコア濃度が、0.3以上、1.0以下であることを特徴とする請求項11または12に記載の尿吸収用衛生材料。
An absorption layer for absorbing the urine,
The absorption layer is represented by the following (formula 3)
(Core concentration ratio) = (mass of the particulate water-absorbing agent) / ((mass of the particulate water-absorbing agent) + (mass of the fiber material)) (Equation 3)
The sanitary material for absorption of urine according to claim 11 or 12, wherein the core concentration defined by the above is 0.3 or more and 1.0 or less.
請求項1〜5のいずれか1項に記載の尿吸収用粒子状吸水剤の製造方法であって、
200ppm以下のp−メトキシフェノールの存在下において、プロトアネモネンおよび/またはフルフラールが20ppm以下に低減されたアクリル酸を用いて、アクリル酸0〜50モル%及びアクリル酸塩100〜50モル%(ただし、両者の合計量は100モル%以下とする)、ならびにその他の水溶性不飽和単量体0〜30モル%を内部架橋剤と重合して得られたポリアクリル酸(塩)系架橋重合体からなる吸水性樹脂であって、106μm以上、850μm未満の粒子径の割合が90〜100質量%、0.90質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)が15〜27g/gである吸水性樹脂100質量部を、得られる吸水剤の吸水倍率が0.90質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)が10〜27g/gの範囲となるように、表面架橋剤0.001〜10質量部で表面架橋することを特徴とする製造方法。
It is a manufacturing method of the particulate water-absorbing agent for urine absorption according to any one of claims 1 to 5,
Using acrylic acid with protoanemonene and / or furfural reduced to 20 ppm or less in the presence of 200 ppm or less of p-methoxyphenol, 0 to 50 mol% of acrylic acid and 100 to 50 mol% of acrylate (with the exception of , And the total amount of both is 100 mol% or less), and polyacrylic acid (salt) -based cross-linked polymer obtained by polymerizing 0 to 30 mol% of other water-soluble unsaturated monomers with an internal cross-linking agent. The ratio of the particle diameter of 106 μm or more and less than 850 μm is 90 to 100% by mass, and the absorption capacity without load (60 minutes value) with respect to 0.90% by mass sodium chloride aqueous solution is 15 to 27 g / 100 parts by weight of the water-absorbing resin g is an absorption capacity under no load with respect to a 0.90 mass% sodium chloride aqueous solution (6 (0 minute value) The manufacturing method characterized by carrying out surface crosslinking by 0.001-10 mass parts of surface crosslinking agents so that it may become the range of 10-27 g / g.
請求項1〜5のいずれか1項に記載の尿吸収用粒子状吸水剤の製造方法であって、
200ppm以下のp−メトキシフェノールの存在下において、プロトアネモネンおよび/またはフルフラールが20ppm以下に低減されたアクリル酸を用いて、アクリル酸0〜50モル%及びアクリル酸塩100〜50モル%(ただし、両者の合計量は100モル%以下とする)、ならびにその他の水溶性不飽和単量体0〜30モル%を内部架橋剤と重合して得られたポリアクリル酸(塩)系架橋重合体からなる吸水性樹脂であって、106μm以上、850μm未満の粒子径の割合が90〜100質量%、0.90質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)が15〜27g/gである吸水性樹脂100質量部を、無機微粉末0.001〜10質量部で表面処理することを特徴とする製造方法。
It is a manufacturing method of the particulate water-absorbing agent for urine absorption according to any one of claims 1 to 5,
Using acrylic acid with protoanemonene and / or furfural reduced to 20 ppm or less in the presence of 200 ppm or less of p-methoxyphenol, 0 to 50 mol% of acrylic acid and 100 to 50 mol% of acrylate (with the exception of , And the total amount of both is 100 mol% or less), and polyacrylic acid (salt) -based cross-linked polymer obtained by polymerizing 0 to 30 mol% of other water-soluble unsaturated monomers with an internal cross-linking agent. The ratio of the particle diameter of 106 μm or more and less than 850 μm is 90 to 100% by mass, and the absorption capacity without load (60 minutes value) with respect to 0.90% by mass sodium chloride aqueous solution is 15 to 27 g / The manufacturing method characterized by surface-treating 100 mass parts of water-absorbent resin which is g with 0.001-10 mass parts of inorganic fine powder.
請求項1〜5のいずれか1項に記載の尿吸収用粒子状吸水剤の製造方法であって、
200ppm以下のp−メトキシフェノールの存在下において、プロトアネモネンおよび/またはフルフラールが20ppm以下に低減されたアクリル酸を用いて、アクリル酸0〜50モル%及びアクリル酸塩100〜50モル%(ただし、両者の合計量は100モル%以下とする)、ならびにその他の水溶性不飽和単量体0〜30モル%を内部架橋剤と重合して得られたポリアクリル酸(塩)系架橋重合体からなる吸水性樹脂であって、106μm以上、850μm未満の粒子径の割合が90〜100質量%、0.90質量%塩化ナトリウム水溶液に対する無荷重下吸収倍率(60分値)が15〜27g/gである吸水性樹脂100質量部を、脂肪酸またはその塩0.001〜10質量部で表面被覆することを特徴とする製造方法。
It is a manufacturing method of the particulate water-absorbing agent for urine absorption according to any one of claims 1 to 5,
Using acrylic acid with protoanemonene and / or furfural reduced to 20 ppm or less in the presence of 200 ppm or less of p-methoxyphenol, 0 to 50 mol% of acrylic acid and 100 to 50 mol% of acrylate (with the exception of , And the total amount of both is 100 mol% or less), and polyacrylic acid (salt) -based cross-linked polymer obtained by polymerizing 0 to 30 mol% of other water-soluble unsaturated monomers with an internal cross-linking agent. The ratio of the particle diameter of 106 μm or more and less than 850 μm is 90 to 100% by mass, and the absorption capacity without load (60 minutes value) with respect to 0.90% by mass sodium chloride aqueous solution is 15 to 27 g / The manufacturing method characterized by surface-coating 100 mass parts of water-absorbing resin which is g with a fatty acid or its salt 0.001-10 mass parts.
JP2004032501A 2003-02-10 2004-02-09 Water-absorbing agent and sanitary material using the same Expired - Lifetime JP4979879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004032501A JP4979879B2 (en) 2003-02-10 2004-02-09 Water-absorbing agent and sanitary material using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003032770 2003-02-10
JP2003032770 2003-02-10
JP2003068579 2003-03-13
JP2003068579 2003-03-13
JP2004032501A JP4979879B2 (en) 2003-02-10 2004-02-09 Water-absorbing agent and sanitary material using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010095899A Division JP2010234368A (en) 2003-02-10 2010-04-19 Water absorbent and sanitary material using the same

Publications (2)

Publication Number Publication Date
JP2004290960A JP2004290960A (en) 2004-10-21
JP4979879B2 true JP4979879B2 (en) 2012-07-18

Family

ID=33424750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032501A Expired - Lifetime JP4979879B2 (en) 2003-02-10 2004-02-09 Water-absorbing agent and sanitary material using the same

Country Status (1)

Country Link
JP (1) JP4979879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352428B2 (en) 2018-10-01 2023-09-28 三洋化成工業株式会社 Absorbent resin particles and their manufacturing method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101061145A (en) * 2004-11-17 2007-10-24 住友精化株式会社 Water absorbing resin particle, absorbing body using the same, and absorbent article
JP4965865B2 (en) * 2005-02-15 2012-07-04 株式会社日本触媒 Water-absorbing agent, absorbent article, and method for producing water-absorbing agent
ATE524501T1 (en) * 2006-03-27 2011-09-15 Nippon Catalytic Chem Ind WATER ABSORBENT RESIN HAVING IMPROVED INTERNAL STRUCTURE AND PRODUCTION PROCESS THEREOF
JP5058526B2 (en) * 2006-07-20 2012-10-24 ユニ・チャーム株式会社 Absorbent article evaluation apparatus and absorbent article evaluation method
EP2018877A1 (en) * 2007-07-27 2009-01-28 The Procter and Gamble Company Absorbent article comprising water-absorbing polymeric particles and method for the production thereof
JP5523316B2 (en) * 2007-07-27 2014-06-18 ビーエーエスエフ ソシエタス・ヨーロピア Water-absorbing polymer particles and method for producing the same
WO2009016054A2 (en) * 2007-07-27 2009-02-05 Basf Se Water-absorbing polymeric particles and method for the production thereof
EP2018876A1 (en) * 2007-07-27 2009-01-28 The Procter and Gamble Company Absorbent article comprising water-absorbing polymeric particles and method for the production thereof
JP5629529B2 (en) * 2010-08-19 2014-11-19 Sdpグローバル株式会社 Absorbent resin particles and absorbent articles
JP6282669B2 (en) * 2013-12-20 2018-02-21 株式会社日本触媒 Polyacrylic acid (salt) water-absorbing agent and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3205168B2 (en) * 1993-06-18 2001-09-04 三洋化成工業株式会社 Absorbent composition for disposable diapers
JP4380873B2 (en) * 1999-02-15 2009-12-09 株式会社日本触媒 Water absorbent resin powder and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352428B2 (en) 2018-10-01 2023-09-28 三洋化成工業株式会社 Absorbent resin particles and their manufacturing method

Also Published As

Publication number Publication date
JP2004290960A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP2010234368A (en) Water absorbent and sanitary material using the same
JP4683405B2 (en) Water-absorbing resin composition and method for producing the same
JP4920183B2 (en) Water absorbent
JP4380873B2 (en) Water absorbent resin powder and use thereof
US8846823B2 (en) Water absorbing agent and production method thereof
JP5128098B2 (en) Method for producing particulate water-absorbing agent and particulate water-absorbing agent
JP5451173B2 (en) Water-absorbing agent and sanitary material
JP5367364B2 (en) Water-absorbing agent containing water-absorbing resin as main component and method for producing the same
PL215419B1 (en) Particulate water-absorbing agent
JPH1158615A (en) Absorbent article and manufacture thereof
JP2008522760A (en) Absorbent member comprising a modified water absorbent resin for use in a diaper
JP4979879B2 (en) Water-absorbing agent and sanitary material using the same
JP5008790B2 (en) Surface-crosslinked water-absorbing resin and surface-crosslinking method of water-absorbing resin
JP4942235B2 (en) Water-absorbing agent, absorber, absorbent article, and method for measuring absorption characteristics
JP4054185B2 (en) Water-absorbing agent and method for producing water-absorbing agent
JP4799855B2 (en) Water-absorbing agent and method for producing the same, and absorbent body and absorbent article using the same
JP2010214371A (en) Water absorbent, absorber, absorbable article and method for measuring absorption properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100426

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4979879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term