JP4969083B2 - Electrolyte membrane and fuel cell - Google Patents
Electrolyte membrane and fuel cell Download PDFInfo
- Publication number
- JP4969083B2 JP4969083B2 JP2005308020A JP2005308020A JP4969083B2 JP 4969083 B2 JP4969083 B2 JP 4969083B2 JP 2005308020 A JP2005308020 A JP 2005308020A JP 2005308020 A JP2005308020 A JP 2005308020A JP 4969083 B2 JP4969083 B2 JP 4969083B2
- Authority
- JP
- Japan
- Prior art keywords
- monomer
- electrolyte membrane
- polymer
- sulfonic acid
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012528 membrane Substances 0.000 title claims description 82
- 239000003792 electrolyte Substances 0.000 title claims description 73
- 239000000446 fuel Substances 0.000 title claims description 25
- 239000000178 monomer Substances 0.000 claims description 75
- 229920000642 polymer Polymers 0.000 claims description 49
- 239000007788 liquid Substances 0.000 claims description 41
- 239000002243 precursor Substances 0.000 claims description 31
- 239000002904 solvent Substances 0.000 claims description 28
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 230000000379 polymerizing effect Effects 0.000 claims description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 117
- 230000035699 permeability Effects 0.000 description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 15
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- IRLPACMLTUPBCL-KQYNXXCUSA-N 5'-adenylyl sulfate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OS(O)(=O)=O)[C@@H](O)[C@H]1O IRLPACMLTUPBCL-KQYNXXCUSA-N 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 239000003999 initiator Substances 0.000 description 7
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229920005597 polymer membrane Polymers 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 6
- -1 polyethylene Polymers 0.000 description 5
- 238000006277 sulfonation reaction Methods 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000003505 polymerization initiator Substances 0.000 description 4
- 239000007870 radical polymerization initiator Substances 0.000 description 4
- 239000003929 acidic solution Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000012982 microporous membrane Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- BWYYYTVSBPRQCN-UHFFFAOYSA-M sodium;ethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=C BWYYYTVSBPRQCN-UHFFFAOYSA-M 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 150000003461 sulfonyl halides Chemical class 0.000 description 2
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 2
- UROHSXQUJQQUOO-UHFFFAOYSA-M (4-benzoylphenyl)methyl-trimethylazanium;chloride Chemical compound [Cl-].C1=CC(C[N+](C)(C)C)=CC=C1C(=O)C1=CC=CC=C1 UROHSXQUJQQUOO-UHFFFAOYSA-M 0.000 description 1
- GJZFGDYLJLCGHT-UHFFFAOYSA-N 1,2-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=C(CC)C(CC)=CC=C3SC2=C1 GJZFGDYLJLCGHT-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- YIKSHDNOAYSSPX-UHFFFAOYSA-N 1-propan-2-ylthioxanthen-9-one Chemical compound S1C2=CC=CC=C2C(=O)C2=C1C=CC=C2C(C)C YIKSHDNOAYSSPX-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- LZHUBCULTHIFNO-UHFFFAOYSA-N 2,4-dihydroxy-1,5-bis[4-(2-hydroxyethoxy)phenyl]-2,4-dimethylpentan-3-one Chemical compound C=1C=C(OCCO)C=CC=1CC(C)(O)C(=O)C(O)(C)CC1=CC=C(OCCO)C=C1 LZHUBCULTHIFNO-UHFFFAOYSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- NLGDWWCZQDIASO-UHFFFAOYSA-N 2-hydroxy-1-(7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-yl)-2-phenylethanone Chemical compound OC(C(=O)c1cccc2Oc12)c1ccccc1 NLGDWWCZQDIASO-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- NQSMEZJWJJVYOI-UHFFFAOYSA-N Methyl 2-benzoylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 NQSMEZJWJJVYOI-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- FLCWLOFMVFESNI-UHFFFAOYSA-N acridine-9(10H)-thione Chemical compound C1=CC=C2C(=S)C3=CC=CC=C3NC2=C1 FLCWLOFMVFESNI-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- QDVNNDYBCWZVTI-UHFFFAOYSA-N bis[4-(ethylamino)phenyl]methanone Chemical compound C1=CC(NCC)=CC=C1C(=O)C1=CC=C(NCC)C=C1 QDVNNDYBCWZVTI-UHFFFAOYSA-N 0.000 description 1
- HXTBYXIZCDULQI-UHFFFAOYSA-N bis[4-(methylamino)phenyl]methanone Chemical compound C1=CC(NC)=CC=C1C(=O)C1=CC=C(NC)C=C1 HXTBYXIZCDULQI-UHFFFAOYSA-N 0.000 description 1
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- VFNGKCDDZUSWLR-UHFFFAOYSA-N disulfuric acid Chemical compound OS(=O)(=O)OS(O)(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-M ethenesulfonate Chemical compound [O-]S(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-M 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Inorganic materials O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Conductive Materials (AREA)
- Fuel Cell (AREA)
Description
本発明は燃料電池、特に固体高分子型燃料電池及び直接メタノール型燃料電池に関する。 The present invention relates to fuel cells, and more particularly to solid polymer fuel cells and direct methanol fuel cells.
燃料電池用電解質膜として、解離性プロトンを有する官能基を含む重合体、中でも、スルホン酸基を有する重合体からなる膜が知られている。
スルホン酸基を有する重合体の具体例には、パーフルオロスルホン酸の重合体、ポリエーテルスルホン、ポリエーテルケトンやポリベンズイミダゾールなどの剛直な骨格にスルホン化によりスルホン酸基が導入された重合体、あるいは該剛直な骨格にスルホン酸基を有する側鎖を結合させた重合体、スチレンスルホン酸、ビニルスルホン酸、2−アクリルアミド−2−メチル−1−プロパンスルホン酸(以下AMPS)等の、C=C二重結合とスルホン酸基を有するモノマーの重合体、C=C二重結合とスルホン酸基を有するモノマーと、C=C二重結合を有するがスルホン酸基を有さないモノマーとを組み合わせて共重合した重合体、及び、前記重合体を、ジビニルベンゼン、N,N’−メチレンビスアクリルアミド(以下MBAA)をはじめとする、多官能性モノマー等を使用して架橋した重合体、等が挙げられる。
As an electrolyte membrane for a fuel cell, a membrane made of a polymer containing a functional group having a dissociative proton, particularly a polymer having a sulfonic acid group, is known.
Specific examples of the polymer having a sulfonic acid group include a polymer of perfluorosulfonic acid, a polymer in which a sulfonic acid group is introduced by sulfonation into a rigid skeleton such as polyethersulfone, polyetherketone, and polybenzimidazole. Or a polymer in which a side chain having a sulfonic acid group is bonded to the rigid skeleton, styrene sulfonic acid, vinyl sulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid (hereinafter referred to as AMPS), = A polymer of monomers having a C double bond and a sulfonic acid group, a monomer having a C = C double bond and a sulfonic acid group, and a monomer having a C = C double bond but no sulfonic acid group A polymer copolymerized in combination, and the polymer is mixed with divinylbenzene, N, N′-methylenebisacrylamide (hereinafter referred to as MBAA). Examples thereof include polymers crosslinked using a polyfunctional monomer or the like.
このようなスルホン酸基を有する重合体は、単独で電解質膜として、あるいは膜の乾燥−湿潤時の寸法変化を抑えたいなどの目的のため、燃料電池中で生成する水や、メタノールをはじめとする液体燃料と接触しても、寸法変化を起こしにくい基材に含浸、充填した電解質膜として使用される。 Such a polymer having a sulfonic acid group is used as an electrolyte membrane alone, or for the purpose of suppressing dimensional change during drying-wetting of the membrane, such as water generated in a fuel cell, methanol, and the like. It is used as an electrolyte membrane that is impregnated and filled in a base material that does not easily change its dimensions even when it comes into contact with liquid fuel.
これらの電解質膜は、スルホン酸基を有する重合体には熱可塑性がないため、(1)ハロゲン化スルホニル型前駆体の形でフィルム状に押出成形した後、膨潤性溶剤の存在下アルカリで加水分解を行い、酸性溶液にてイオン交換を行い、スルホン酸重合体膜とする、(2)スルホン酸重合体を溶剤に分散させ、フィルム状にキャストした後、溶剤を蒸発させ、スルホン酸重合体膜とする、(3)スルホン酸、もしくはスルホン酸塩として入手可能なモノマーを界面活性剤とともに水に溶解し、基材に含浸、重合、充填させ、必要に応じて酸溶液にてイオン交換を行い、スルホン酸重合体膜とする(例えば、特開2005−71609)、(4)スルホン化可能なモノマーを基材に含浸、重合させ、無水硫酸、クロロスルホン酸等のスルホン化剤により、スルホン化を行い、スルホン酸重合体膜とする(例えば、特開2001−135328)、等の方法により得られている。 Since these electrolyte membranes are not thermoplastic to polymers having sulfonic acid groups, (1) after extrusion into a film in the form of a sulfonyl halide precursor, the polymer is hydrolyzed with an alkali in the presence of a swellable solvent. Decompose, ion exchange with acidic solution to make sulfonic acid polymer membrane, (2) Disperse sulfonic acid polymer in solvent, cast into film, evaporate solvent, sulfonic acid polymer (3) A sulfonic acid or a monomer available as a sulfonate is dissolved in water together with a surfactant, impregnated, polymerized and filled into a substrate, and ion exchange is performed with an acid solution as necessary. To make a sulfonic acid polymer membrane (for example, JP-A-2005-71609), (4) Sulfonation of sulfuric acid anhydride, chlorosulfonic acid, etc. by impregnating and polymerizing a sulfonateable monomer on a substrate The performs sulfonated, and the sulfonic acid polymer film (e.g., JP 2001-135328), have been obtained by the method equal.
近年、固体高分子型燃料電池においては、耐久性向上のため、電解質膜の水素透過性の抑制が、直接メタノール型燃料電池においては、燃料効率や電圧の向上のため、電解質膜のメタノール透過性の抑制が求められている。電解質膜の水素透過性やメタノール透過性は、電解質膜を厚くすることにより改善可能であるが、この場合は電解質膜のプロトン伝導性が低下し、固体高分子型燃料電池及び直接メタノール型燃料電池の出力が低下するので、好ましい解決策とはいえない。 In recent years, in polymer electrolyte fuel cells, the hydrogen permeability of the electrolyte membrane has been suppressed to improve durability. In direct methanol fuel cells, the methanol permeability of the electrolyte membrane has been improved to improve fuel efficiency and voltage. There is a need to suppress this. The hydrogen permeability and methanol permeability of the electrolyte membrane can be improved by increasing the thickness of the electrolyte membrane. In this case, however, the proton conductivity of the electrolyte membrane is lowered, and the polymer electrolyte fuel cell and the direct methanol fuel cell are reduced. This is not a preferable solution.
一方、先述(1)〜(4)の方法により得られる電解質膜では、製造時に溶剤、スルホン化剤、水を使用するため、次の理由から、水素透過性やメタノール透過性の大きい部分が形成されると考えられる。
(a)水素透過性;製造時に使用した溶剤、水、スルホン化剤が抽出された、あるいは蒸発した個所が、固体高分子型燃料電池内で膜が乾燥したときに、水素透過性が大きくなりやすい。
(b)メタノール透過性;製造時に使用した溶剤、水、スルホン化剤が抽出された、あるいは蒸発した個所に、直接メタノール型燃料電池内で燃料極側がメタノール水溶液に接したときに水が浸透し、メタノール透過性が大きくなりやすい。
On the other hand, in the electrolyte membrane obtained by the method of (1) to (4) above, a solvent, a sulfonating agent, and water are used at the time of manufacture, so that a portion having high hydrogen permeability or methanol permeability is formed for the following reason. It is thought that it is done.
(A) Hydrogen permeability: When the membrane, dried in the polymer electrolyte fuel cell, where the solvent, water, sulfonating agent used in the production is extracted or evaporated, the hydrogen permeability increases. Cheap.
(B) Methanol permeability: Water penetrates when the fuel electrode side is in direct contact with the methanol aqueous solution in the methanol fuel cell where the solvent, water, and sulfonating agent used in the production are extracted or evaporated. Methanol permeability tends to increase.
先述(3)の特開2005−71609には、スルホン酸モノマーの1種であるAMPSの重合体を、メタノールを含む有機溶媒や水に対して実質的に膨潤しない多孔質基材の細孔に充填した電解質膜により、メタノール透過性を小さくすることが可能である旨の記載がある。
しかし、当該技術において、AMPSの重合体を得るためには、AMPSが水溶性の固体であるがために、AMPSと同重量程度の水でモノマーを希釈する必要があり、水を使用せずに基材内で重合させることが出来ず、電解質膜中への水素透過性やメタノール透過性の大きい部分の形成を改善したものであるとはいえない。
In JP-A-2005-71609 described above (3), a polymer of AMPS, which is one type of sulfonic acid monomer, is made into pores of a porous substrate that does not substantially swell with an organic solvent containing methanol or water. There is a description that methanol permeability can be reduced by the filled electrolyte membrane.
However, in this technology, in order to obtain an AMPS polymer, since AMPS is a water-soluble solid, it is necessary to dilute the monomer with about the same weight of water as AMPS, without using water. It cannot be said that it can be polymerized in the base material and the formation of a portion having a high hydrogen permeability or methanol permeability in the electrolyte membrane is not improved.
先述(4)の特開2001−135328には、ポリオレフィン系多孔質膜を基材とし、その細孔にスルホン酸モノマーの重合体をはじめとするプロトン解離性モノマーの重合体が充填された、低水素ガス透過性の電解質膜が開示されており、細孔の細部まで隙間なくモノマーを高密度に充填し、その後のスルホン化等の反応処理により、スルホン酸基をはじめとするプロトン解離性官能基とすることにより、低水素ガス透過性の電解質が得られるとの記載がある。
しかし、当該技術において、スルホン化等の反応処理の際、スルホン化剤等の反応剤を使用するため、反応処理中に電解質膜に浸透した反応剤を洗浄、除去する際に形成されると考えられる、水素透過性やメタノール透過性の大きい部分の形成を改善したものであるとはいえない。
In JP-A-2001-135328 of the above-mentioned (4), a polyolefin porous membrane is used as a base material, and the pores are filled with a polymer of a proton dissociating monomer such as a polymer of a sulfonic acid monomer. A hydrogen gas permeable electrolyte membrane is disclosed, and the proton dissociative functional group including a sulfonic acid group is filled by filling the monomer with a high density without any gaps to the fine pores, and subsequent reaction treatment such as sulfonation. It is described that an electrolyte having low hydrogen gas permeability can be obtained.
However, in this technology, since a reactive agent such as a sulfonating agent is used in the reaction treatment such as sulfonation, it is considered that it is formed when the reactant that has permeated the electrolyte membrane during the reaction treatment is washed and removed. Therefore, it cannot be said that the formation of a portion having high hydrogen permeability or methanol permeability is improved.
先述(3)の特開2005−71609の改良方法として、基材への電解質重合体の含浸、充填回数を増やすことにより、電解質重合体の疎水性を高くし、電解質膜の吸水性を下げる方法(例えば、WO2005/76396)が開示されており、耐久性を向上させる効果が記載されている。
しかし、当該技術において、含浸、充填回数を増やす場合も含め、多孔質基材に電解質重合体を充填する際に、多孔質基材への細孔に充填するモノマーが低粘度の場合はそのまま多孔質基材に含浸できるが、そうでない場合は、あらかじめ膨潤したゲルが多孔質基材内に形成され、燃料電池として使用する際に水やメタノールが電解質重合体を膨潤させ電解質重合体の脱落を防ぐ効果があるので、溶液、特に水溶液であることが好ましい、との記載があり、充填回数を増やす際に、積極的に製造時に溶剤や水の使用を抑え、水素透過性やメタノール透過性を抑制する方法については開示されていない。
As an improvement method of JP 2005-71609 A (3), a method of increasing the hydrophobicity of the electrolyte polymer and decreasing the water absorption of the electrolyte membrane by increasing the number of times the base material is impregnated and filled with the electrolyte polymer. (For example, WO2005 / 76396) is disclosed, and the effect of improving durability is described.
However, in this technology, including when increasing the number of impregnations and fillings, when filling the porous substrate with the electrolyte polymer, if the monomer filling the pores of the porous substrate has a low viscosity, it is porous as it is. Otherwise, a pre-swelled gel is formed in the porous substrate, and water or methanol swells the electrolyte polymer when used as a fuel cell, causing the electrolyte polymer to fall off. There is a description that a solution, particularly an aqueous solution, is preferable because it has an effect of preventing, and when increasing the number of fillings, the use of solvents and water is actively suppressed during production, and hydrogen permeability and methanol permeability are reduced. It does not disclose how to suppress.
上記問題の別の解決方法として、特開2002−83612において、耐熱性基材の細孔中に第1の重合体を化学結合させて埋め込み、更に第2の重合体を充填させることにより、高温下でも基材の骨格が膜の構造を維持し、メタノール透過性を抑制しつつ、プロトン伝導性を高めることができるとの提案がある。 As another solution to the above problem, in Japanese Patent Application Laid-Open No. 2002-83612, the first polymer is embedded by chemical bonding in the pores of the heat-resistant substrate, and further filled with the second polymer, thereby increasing the temperature. There is a proposal that the skeleton of the base material can maintain the membrane structure even underneath, and the proton conductivity can be enhanced while suppressing methanol permeability.
しかし、当該技術において、第2の重合体をモノマーから出発して充填する方法として、その後の処理により第2の重合体となる第2のモノマーを細孔内に充填した後、該細孔内で重合反応を行い第2の重合体を得て、これにより第2の重合体を細孔内に充填することにより、メタノール透過性を抑制し、細孔内の重合体溶出、流出を抑える方法が提案されているに過ぎず、第2の重合体を得る際に、積極的に製造時に溶剤や水の使用を抑え、水素透過性やメタノール透過性を抑制する方法について教示するものではない。
本発明の目的は、プロトン伝導性を低下させずに、製造時の履歴により増大する、水素透過性及びメタノール透過性を低減した電解質膜、及びこれを使用した燃料電池を提供することにある。 An object of the present invention is to provide an electrolyte membrane with reduced hydrogen permeability and methanol permeability, which increases with the history of production without lowering proton conductivity, and a fuel cell using the electrolyte membrane.
本発明者等は、上記の課題を解決すべく検討を行った結果、第1成分であるスルホン酸基を有する電解質膜前駆体に、解離性プロトンとC=C二重結合を有する解離性液状モノマーの重合体からなる第2成分が充填され、かつ該第2成分が該解離性液状モノマーを主成分とし、実質的に溶媒を含まないモノマー液の重合体からなることを特徴とする電解質膜が、プロトン伝導性を低下させずに、水素透過性及びメタノール透過性を低減し、燃料電池に好適に使用できることを見出し、本発明を完成するに至った。 As a result of studies conducted by the present inventors to solve the above-described problems, a dissociative liquid having a dissociable proton and a C═C double bond is added to the electrolyte membrane precursor having a sulfonic acid group as the first component. An electrolyte membrane characterized in that it is filled with a second component made of a monomer polymer, and the second component is made of a monomer solution polymer containing the dissociable liquid monomer as a main component and substantially free of a solvent. However, it has been found that hydrogen permeability and methanol permeability can be reduced without lowering proton conductivity and can be suitably used for a fuel cell, and the present invention has been completed.
すなわち、本発明は、
(1)第1成分であるスルホン酸基を有する電解質膜前駆体を、解離性プロトンとC=C二重結合を有する解離性液状モノマーが75mol%以上であって、溶媒を含まないモノマー液に浸漬し、モノマーを重合させることにより、第1成分にモノマーの重合体である第2成分を充填させた電解質膜、
(2)第1成分であるスルホン酸基を有する電解質膜前駆体を、解離性プロトンとC=C二重結合を有する解離性液状モノマーが75mol%以上であって、溶媒を含まないモノマー液に浸漬し、モノマーを重合させることにより、第1成分にモノマーの重合体である第2成分を充填させる電解質膜の製造方法、
(3)(1)記載の電解質膜を使用した燃料電池に係る。
That is, the present invention
(1) The electrolyte membrane precursor having a sulfonic acid group is a first component, dissociative liquid monomer having a dissociative proton and C = C double bond is not more than 75 mol%, the monomer solution containing no solvent An electrolyte membrane in which the first component is filled with the second component, which is a polymer of the monomer, by dipping and polymerizing the monomer ,
(2) The electrolyte membrane precursor having a sulfonic acid group as the first component is converted into a monomer liquid containing 75 mol% or more of a dissociable liquid monomer having a dissociative proton and a C═C double bond, and containing no solvent. A method for producing an electrolyte membrane in which a first component is filled with a second component that is a polymer of a monomer by dipping and polymerizing the monomer;
(3) The present invention relates to a fuel cell using the electrolyte membrane according to (1).
本発明の電解質膜は、第1成分であるスルホン酸基を有する電解質膜前駆体に対し、解離性液状モノマーを主成分とし、実質的に溶媒を含まないモノマー液の重合体からなる第2成分を充填することにより、電解質膜前駆体の製造時に、水や溶剤やスルホン化剤により、電解質膜前駆体に形成された、水素透過性やメタノール透過性の大きい部分に、該モノマー液が、実質的に溶媒を伴わずに重合、充填されるため、プロトン伝導性を低下させずに、水素透過性、メタノール透過性を抑制することが可能であり、燃料電池に好適に使用可能である。 The electrolyte membrane of the present invention is a second component comprising a polymer of a monomer liquid that contains a dissociable liquid monomer as a main component and substantially does not contain a solvent with respect to the electrolyte membrane precursor having a sulfonic acid group as the first component. In the production of the electrolyte membrane precursor, the monomer liquid is substantially added to the hydrogen permeable or methanol permeable portion formed in the electrolyte membrane precursor by water, a solvent or a sulfonating agent. Since the polymerization and filling without using a solvent is possible, hydrogen permeability and methanol permeability can be suppressed without lowering proton conductivity, and it can be suitably used for a fuel cell.
以下本発明を具体的に説明する。本発明の電解質膜は、第1成分であるスルホン酸基を有する電解質膜前駆体と、該電解質膜前駆体に充填された、解離性プロトンとC=C二重結合を有する液状モノマーの重合体からなる第2成分からなる電解質膜であって、該第2成分が該解離性液状モノマーを主成分とし、実質的に溶媒を含まないモノマー液の重合体からなることを特徴とする電解質膜である。更に詳しくは、本発明の電解質膜は、該第1成分である電解質膜前駆体の製造時において、水や溶剤やスルホン化剤により形成された、水素透過性やメタノール透過性の大きい部分に、該液状モノマーからなる第2成分が、実質的に溶媒を伴わないモノマー液として含浸され、重合され、充填された、プロトン伝導性を低下させずに、水素透過性及びメタノール透過性が抑制された電解質膜である。 The present invention will be specifically described below. The electrolyte membrane of the present invention includes an electrolyte membrane precursor having a sulfonic acid group as a first component, and a polymer of a liquid monomer having a dissociable proton and a C = C double bond, which is filled in the electrolyte membrane precursor. An electrolyte membrane comprising: a second component comprising: a polymer of a monomer liquid containing the dissociative liquid monomer as a main component and substantially free of a solvent. is there. More specifically, the electrolyte membrane of the present invention is formed in water, a solvent, or a sulfonating agent, which is formed with water, a solvent, or a sulfonating agent at the time of producing the electrolyte membrane precursor as the first component. The second component composed of the liquid monomer was impregnated as a monomer liquid substantially free from a solvent, polymerized, and filled, and the hydrogen permeability and methanol permeability were suppressed without reducing proton conductivity. It is an electrolyte membrane.
本発明で用いる、第1成分であるスルホン酸基を有する電解質膜前駆体は、下記(1)〜(4)いずれかの方法により得られる電解質膜前駆体である。
(1)ハロゲン化スルホニル型前駆体の形でフィルム状に押出成形した後、膨潤性溶剤の存在下アルカリで加水分解を行い、酸性溶液にてイオン交換を行い、スルホン酸重合体膜としたもの(例;パーフルオロスルホン酸重合体膜)、(2)スルホン酸重合体を溶剤に分散させ、フィルム状にキャストした後、溶剤を蒸発させ、スルホン酸重合体膜としたもの(例;スルホン化ポリエーテルスルホン膜、スルホン化ポリイミド膜、スルホン化ポリエーテルエーテルケトン膜)、(3)スルホン酸、もしくはスルホン酸塩として入手可能なモノマーを界面活性剤とともに水に溶解し、基材に含浸、重合させ、必要に応じて酸性溶液にてイオン交換を行い、スルホン酸重合体膜としたもの(例;AMPSを含浸重合したポリエチレン微多孔膜)、(4)スルホン化可能なモノマーを基材に含浸、重合させ、無水硫酸、クロロスルホン酸等のスルホン化剤により、スルホン化を行い、スルホン酸重合体膜としたもの(例;スチレン、ジビニルベンゼンを含浸重合し、スルホン化したポリエチレン微多孔膜、パーフルオロスルホン酸重合体を含浸した親水化ポリエチレン微多孔膜)。必要に応じて、(1)〜(4)いずれかの方法で得られた複数の該電解質膜前駆体を積層し組み合わせて使用してもよい。
The electrolyte membrane precursor having a sulfonic acid group as the first component used in the present invention is an electrolyte membrane precursor obtained by any one of the following methods (1) to (4).
(1) Extruded into a film in the form of a sulfonyl halide precursor, then hydrolyzed with an alkali in the presence of a swellable solvent, ion exchanged with an acidic solution, and made into a sulfonic acid polymer membrane (Example: perfluorosulfonic acid polymer membrane), (2) A sulfonic acid polymer dispersed in a solvent, cast into a film, and then evaporated to give a sulfonic acid polymer membrane (eg, sulfonation) (Polyethersulfone membrane, sulfonated polyimide membrane, sulfonated polyetheretherketone membrane), (3) A monomer available as sulfonic acid or sulfonate is dissolved in water together with a surfactant, impregnated into a substrate and polymerized If necessary, ion exchange is performed with an acidic solution to obtain a sulfonic acid polymer membrane (eg, polyethylene microporous membrane impregnated and polymerized with AMPS), 4) Impregnated base material with a sulfonateable monomer, polymerized, and sulfonated with a sulfonating agent such as sulfuric anhydride or chlorosulfonic acid to give a sulfonic acid polymer film (eg, styrene, divinylbenzene) Impregnated polymerized and sulfonated polyethylene microporous membrane, hydrofluorinated polyethylene microporous membrane impregnated with perfluorosulfonic acid polymer). If necessary, a plurality of the electrolyte membrane precursors obtained by any of the methods (1) to (4) may be laminated and used in combination.
本発明において、第2成分の重合体を構成する、解離性プロトンとC=C二重結合を有する、解離性液状モノマーの粘度は、モノマー液として使用される際に、該電解質膜前駆体への良好な含浸性を保つため、40℃で100000cP以下、より好ましくは10000cP以下、更に好ましくは1000cP以下の液状であることが好ましい。このような解離性液状モノマーの例として、ビニルスルホン酸、ビニルホスホン酸、アクリル酸、メタクリル酸、ビニル酢酸等が好ましく用いられる。また必要に応じて、これらの解離性液状モノマーを、モノマー液に複数種類併用してもよい。また必要に応じて、該解離性液状モノマーに溶解可能な、少なくとも一つのC=C二重結合を有する、非解離性モノマーを、モノマー液中で該非解離性モノマーが該解離性液状モノマーの重量を超えない範囲でモノマー液に溶解させ、共重合して併用してもよい。該モノマー液の粘度は、該電解質膜前駆体への良好な含浸性を保つため、40℃で100000cP以下、より好ましくは10000cP以下、更に好ましくは1000cP以下の液状であることが好ましい。該モノマー液が液状であることにより、水や有機溶剤などの溶媒を実質的に使用しなくても、主成分である該解離性液状モノマーと該非解離性モノマーの合計量を、好ましくは90wt%以上、より好ましくは95wt%以上の高濃度で直接該電解質膜前駆体に含浸することができ、該モノマー液を重合させ重合体としたときに、溶媒の脱落がなく、得られる電解質膜の水素透過性やメタノール透過性を抑制することが可能になる。また該解離性液状モノマーとともに、以下で触れる重合開始剤や、界面活性剤等の添加剤を少量併用してもよい。 In the present invention, the viscosity of the dissociative liquid monomer having a dissociable proton and a C═C double bond constituting the polymer of the second component is used for the electrolyte membrane precursor when used as a monomer liquid. In order to maintain a good impregnation property, it is preferable that the liquid is 100 cP or less at 40 ° C., more preferably 10,000 cP or less, and still more preferably 1000 cP or less. As examples of such dissociable liquid monomers, vinyl sulfonic acid, vinyl phosphonic acid, acrylic acid, methacrylic acid, vinyl acetic acid and the like are preferably used. If necessary, a plurality of these dissociable liquid monomers may be used in combination with the monomer liquid. If necessary, a non-dissociable monomer having at least one C═C double bond that can be dissolved in the dissociable liquid monomer is added to the weight of the dissociable liquid monomer in the monomer liquid. It may be dissolved in the monomer solution within a range not exceeding 1, copolymerized and used in combination. The viscosity of the monomer liquid is preferably a liquid of 100000 cP or less, more preferably 10,000 cP or less, and still more preferably 1000 cP or less at 40 ° C. in order to maintain good impregnation into the electrolyte membrane precursor. Since the monomer liquid is in a liquid state, the total amount of the dissociable liquid monomer and the non-dissociable monomer as main components is preferably 90 wt% even without substantially using a solvent such as water or an organic solvent. More preferably, the electrolyte membrane precursor can be directly impregnated at a high concentration of 95 wt% or more, and when the monomer liquid is polymerized to form a polymer, the solvent does not fall off, and the electrolyte membrane hydrogen obtained Permeability and methanol permeability can be suppressed. In addition to the dissociable liquid monomer, a small amount of a polymerization initiator or an additive such as a surfactant to be mentioned below may be used in combination.
本発明において、該解離液状モノマーを含み、実質的に溶媒を含まないモノマー液は、(i)高エネルギー線を照射された該電解質膜前駆体に直接、あるいは、(ii)ラジカル重合開始剤とともに、モノマー液として該電解質膜前駆体に含浸、重合されることにより、重合体となり該電解質膜前駆体に充填される。
(i)法で使用可能な高エネルギー線として、例えば、プラズマ、紫外線、電子線、γ線等、公知の高エネルギー線が使用可能である。これらの高エネルギー線は、該電解質膜前駆体を励起させ、反応開始点を生成させ、これと該モノマー液が反応するため、重合開始剤を使用しなくても、該モノマー液の重合体が形成される。
In the present invention, the monomer liquid containing the dissociated liquid monomer and substantially free of the solvent is either (i) directly on the electrolyte membrane precursor irradiated with high energy rays or (ii) together with the radical polymerization initiator. Then, the electrolyte membrane precursor is impregnated and polymerized as a monomer solution, thereby forming a polymer and filling the electrolyte membrane precursor.
As the high energy rays that can be used in the method (i), known high energy rays such as plasma, ultraviolet rays, electron beams, and γ rays can be used. These high energy rays excite the electrolyte membrane precursor to generate a reaction initiation point, which reacts with the monomer liquid, so that the polymer of the monomer liquid can be obtained without using a polymerization initiator. It is formed.
(ii)法で使用可能なラジカル重合開始剤として、公知のラジカル重合法の技術を使用することができる。具体例としては、熱開始重合、紫外線等の光開始重合等が挙げられる。熱開始重合のラジカル重合開始剤としては、次のようなものが挙げられる。
過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩。ジ−t−ブチルパーオキサイド等の有機過酸化物。これらラジカル重合開始剤は、単独で用いてもよく、また、二種類以上を併用してもよい。
As a radical polymerization initiator that can be used in the method (ii), a known radical polymerization technique can be used. Specific examples include heat-initiated polymerization and photoinitiated polymerization such as ultraviolet rays. Examples of the radical polymerization initiator for heat-initiated polymerization include the following.
Persulfates such as ammonium persulfate, potassium persulfate and sodium persulfate. Organic peroxides such as di-t-butyl peroxide. These radical polymerization initiators may be used alone or in combination of two or more.
ラジカル系光重合開始剤の具体例としては、一般に紫外線重合に利用されている、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のベンゾインエーテル系開始剤、2−ヒドロキシ−2−メチル−1−フェニルプロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、4−(2−ヒドロキシエトキシ)−フェニル(2−ヒドロキシ−2−プロピル)ケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モンフォリノプロパン−1、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン等のアセトフェノン系開始剤、o−ベンゾイル安息香酸メチル、4−ベンゾイル−4’−メチルジフェニルサルファイド、(4−ベンゾイルベンジル)トリメチルアンモニウムクロライド、4,4’−ジメチルアミノベンゾフェノン、4,4‘−ジエチルアミノベンゾフェノン等のベンゾフェノン系開始剤、イソプロピルチオキサントン、ジエチルチオキサントン、チオキサントン等のチオキサントン系開始剤、ベンジル、キノン、チオアクリドンおよびこれらの誘導体等が挙げられる。重合開始剤は、溶媒を実質的に含まずに使用する該モノマー液に直接溶解できることが好ましい。また、重合開始剤の使用量は、該モノマー液の5質量%以下であることが好ましい。 Specific examples of radical photopolymerization initiators include benzoin ether initiators such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether, which are generally used for ultraviolet polymerization, 2-hydroxy-2-methyl-1- Phenylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-mon Acetophenone-based initiators such as folinopropane-1, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1, diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, o -Methyl benzoylbenzoate, 4-ben Benzophenone initiators such as yl-4′-methyldiphenyl sulfide, (4-benzoylbenzyl) trimethylammonium chloride, 4,4′-dimethylaminobenzophenone, 4,4′-diethylaminobenzophenone, isopropylthioxanthone, diethylthioxanthone, thioxanthone, etc. And thioxanthone initiators, benzyl, quinone, thioacridone, and derivatives thereof. It is preferable that the polymerization initiator can be directly dissolved in the monomer liquid used without substantially containing a solvent. Moreover, it is preferable that the usage-amount of a polymerization initiator is 5 mass% or less of this monomer liquid.
該モノマー液は、溶媒を実質的に含まずに使用するが、更に、余分な溶媒が得られる電解質膜へ取り込まれるのを防ぐために、該モノマー液の充填前に、該電解質膜前駆体は十分乾燥されていることが好ましい。乾燥の方法としては、公知の熱風乾燥、真空乾燥が、電解質膜前駆体の変質を引き起こさない条件範囲で使用可能である。 The monomer solution is used substantially free of a solvent, but the electrolyte membrane precursor is sufficient before filling with the monomer solution to prevent excess solvent from being taken into the resulting electrolyte membrane. It is preferably dried. As a drying method, known hot air drying and vacuum drying can be used within a range of conditions that do not cause alteration of the electrolyte membrane precursor.
下記実施例、比較例にて本発明を説明する。尚本実施例は発明の範囲を限定するものではない。
プロトン伝導性の測定
40℃、水中における膜面方向のプロトン伝導度(S/cm)を、4端子法により測定した交流インピーダンスから求め、この値を膜厚み(cm)で割り、プロトン伝導性(S/cm2)とした。
メタノール透過性の測定
膜を40℃に制御されたチャンバー内のセルにセットし、膜の上面に30wt%メタノール水溶液を循環させ、膜の下面に乾燥ヘリウムを流し、メタノールを浸透気化させた。膜下面に流したヘリウムを、ガスサンプラーを設けた六方バルブにより一定間隔でサンプリングし、ガスクロマトグラフでヘリウム中のメタノール量を定量した。メタノール量の経時変化を追跡し、一定になった時点のメタノール量から、メタノール透過性を求めた。
The following examples and comparative examples illustrate the present invention. Note that this example does not limit the scope of the invention.
Measurement of proton conductivity The proton conductivity (S / cm) in the direction of the membrane surface in water at 40 ° C. was obtained from the AC impedance measured by the 4-terminal method, and this value was divided by the membrane thickness (cm) to obtain proton conductivity ( S / cm 2 ).
Measurement of methanol permeability The membrane was set in a cell in a chamber controlled at 40 ° C., a 30 wt% aqueous methanol solution was circulated on the upper surface of the membrane, dry helium was allowed to flow on the lower surface of the membrane, and methanol was permeated and vaporized. The helium flowed on the lower surface of the membrane was sampled at regular intervals by a hexagonal valve equipped with a gas sampler, and the amount of methanol in the helium was quantified with a gas chromatograph. The change in the amount of methanol over time was followed, and the methanol permeability was determined from the amount of methanol when the amount became constant.
[参考例1]
(電解質膜前駆体の作成)
ポリエチレン微多孔膜(厚み38μm、気孔率43%、透気度610秒/100cc)を、AMPS87mol%、MBAA13mol%からなるモノマー49wt%、フッ素系界面活性剤1wt%、光重合開始剤1wt%、水49wt%からなるモノマー液に浸漬し、引き上げた後、高圧水銀ランプを3分間照射し、AMPSとMBAAを重合させた。得られた電解質膜前駆体のプロトン伝導性は25S/cm2、メタノール透過性は17kg/m2・日であった。
[Reference Example 1]
(Preparation of electrolyte membrane precursor)
A polyethylene microporous film (thickness 38 μm, porosity 43%, air permeability 610 seconds / 100 cc), AMPS 87 mol%, MBAA 13 mol% monomer 49 wt%, fluorosurfactant 1 wt%, photopolymerization initiator 1 wt%, water After dipping in a monomer solution consisting of 49 wt% and pulling it up, a high pressure mercury lamp was irradiated for 3 minutes to polymerize AMPS and MBAA. The obtained electrolyte membrane precursor had a proton conductivity of 25 S / cm 2 and a methanol permeability of 17 kg / m 2 · day.
[実施例1]
参考例1の電解質膜前駆体を40℃18時間乾燥後、室温、窒素雰囲気下で100kGyのガンマ線を照射し、ビニルスルホン酸からなるモノマー液に浸漬し、引き上げたのち、50℃のオーブンで18時間加熱し、ビニルスルホン酸を重合させた。得られた電解質膜のプロトン伝導性は29S/cm2、メタノール透過性は10kg/m2・日であった。
[Example 1]
The electrolyte membrane precursor of Reference Example 1 was dried at 40 ° C. for 18 hours, irradiated with 100 kGy of gamma rays at room temperature in a nitrogen atmosphere, immersed in a monomer liquid composed of vinyl sulfonic acid, pulled up, and then heated in an oven at 50 ° C. for 18 hours. Heated for hours to polymerize vinyl sulfonic acid. The obtained electrolyte membrane had a proton conductivity of 29 S / cm 2 and a methanol permeability of 10 kg / m 2 · day.
[実施例2]
参考例1の電解質膜前駆体を40℃18時間乾燥後、室温、窒素雰囲気下で100kGyのガンマ線を照射し、ビニルスルホン酸75mol%、MBAA25mol%からなるモノマー液に浸漬し、引き上げたのち、50℃のオーブンで18時間加熱し、ビニルスルホン酸を重合させた。得られた電解質膜のプロトン伝導性は26S/cm2、メタノール透過性は9kg/m2・日であった。
[Example 2]
The electrolyte membrane precursor of Reference Example 1 was dried at 40 ° C. for 18 hours, irradiated with 100 kGy of gamma rays at room temperature in a nitrogen atmosphere, immersed in a monomer solution consisting of 75 mol% of vinyl sulfonic acid and 25 mol% of MBAA, and then pulled up. The mixture was heated in an oven at ° C for 18 hours to polymerize vinyl sulfonic acid. The obtained electrolyte membrane had proton conductivity of 26 S / cm 2 and methanol permeability of 9 kg / m 2 · day.
[比較例1]
参考例1の電解質膜前駆体を40℃18時間乾燥後、室温、窒素雰囲気下で100kGyのガンマ線を照射し、ビニルスルホン酸ナトリウム水溶液(ビニルスルホン酸ナトリウム25wt%含有)からなるモノマー液に浸漬し、引き上げたのち、50℃のオーブンで18時間加熱し、ビニルスルホン酸ナトリウムを重合させた。得られた膜を希硫酸でイオン交換し、電解質膜とした。この電解質膜のプロトン伝導性は27S/cm2、メタノール透過性は15kg/m2・日であった。
[Comparative Example 1]
The electrolyte membrane precursor of Reference Example 1 was dried at 40 ° C. for 18 hours, then irradiated with 100 kGy of gamma rays at room temperature in a nitrogen atmosphere, and immersed in a monomer solution composed of an aqueous vinyl sulfonate solution (containing 25 wt% sodium vinyl sulfonate). After being pulled up, it was heated in an oven at 50 ° C. for 18 hours to polymerize sodium vinyl sulfonate. The obtained membrane was ion-exchanged with dilute sulfuric acid to obtain an electrolyte membrane. The electrolyte membrane had proton conductivity of 27 S / cm 2 and methanol permeability of 15 kg / m 2 · day.
[比較例2]
参考例1の電解質膜前駆体を40℃18時間乾燥後、AMPS87mol%、MBAA13mol%からなるモノマー49wt%、光重合開始剤1wt%、水49wt%からなるモノマー液に浸漬し、引き上げた後、高圧水銀ランプを3分間照射し、AMPSとMBAAを重合させた。得られた電解質膜のプロトン伝導性は27S/cm2、メタノール透過性は14kg/m2・日であった。
[Comparative Example 2]
After the electrolyte membrane precursor of Reference Example 1 was dried at 40 ° C. for 18 hours, it was immersed in a monomer liquid consisting of AMPS 87 mol%, MBAA 13 mol% monomer 49 wt%, photopolymerization initiator 1 wt%, water 49 wt%, and then pulled up. A mercury lamp was irradiated for 3 minutes to polymerize AMPS and MBAA. The obtained electrolyte membrane had a proton conductivity of 27 S / cm 2 and a methanol permeability of 14 kg / m 2 · day.
本発明の電解質膜及び燃料電池は、燃料電池、特に固体高分子型燃料電池及び直接メタノール型燃料電池の分野で好適に利用できる。 The electrolyte membrane and fuel cell of the present invention can be suitably used in the field of fuel cells, particularly solid polymer fuel cells and direct methanol fuel cells.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005308020A JP4969083B2 (en) | 2005-10-24 | 2005-10-24 | Electrolyte membrane and fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005308020A JP4969083B2 (en) | 2005-10-24 | 2005-10-24 | Electrolyte membrane and fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007115609A JP2007115609A (en) | 2007-05-10 |
JP4969083B2 true JP4969083B2 (en) | 2012-07-04 |
Family
ID=38097595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005308020A Expired - Fee Related JP4969083B2 (en) | 2005-10-24 | 2005-10-24 | Electrolyte membrane and fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4969083B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4463351B2 (en) * | 1999-11-01 | 2010-05-19 | 株式会社トクヤマ | Membrane for solid polymer electrolyte fuel cell |
JP2002083612A (en) * | 2000-09-07 | 2002-03-22 | Takehisa Yamaguchi | Electrolyte film and its manufacturing method, and fuel cell and its manufacturing method |
JP2004079266A (en) * | 2002-08-13 | 2004-03-11 | Nippon Telegr & Teleph Corp <Ntt> | Electrolyte membrane for direct methanol type fuel cell and its process of manufacture |
JP2004253183A (en) * | 2003-02-18 | 2004-09-09 | Toagosei Co Ltd | Manufacturing method of electrolyte membrane, and fuel cell |
-
2005
- 2005-10-24 JP JP2005308020A patent/JP4969083B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007115609A (en) | 2007-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4979188B2 (en) | Resin containing ions or ionizable groups with small grain boundary size and improved conductivity | |
JP2002260705A (en) | Solid polymer electrolyte material, liquid composite, solid polymer fuel cell, fluorine-containing polymer and solid polymer electrolyte film consisting of fluorine-containing polymer | |
JP2002334707A (en) | Porous hydrophilic membrane | |
JP4682358B2 (en) | Method for producing functional inorganic / graft polymer hybrid ion exchange membrane and electrolyte membrane for fuel cell | |
JP4656060B2 (en) | Electrolyte membrane and fuel cell using the electrolyte membrane | |
JP4997625B2 (en) | Method for producing polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane | |
JP4247571B2 (en) | Electrolyte membrane and fuel cell using the electrolyte membrane | |
JP2011181185A (en) | Electrolyte membrane | |
JP4979236B2 (en) | Cross-linked electrolyte membrane and method for producing the same | |
JP5164149B2 (en) | Cation exchange membrane and method for producing the same | |
JP4969083B2 (en) | Electrolyte membrane and fuel cell | |
JPWO2005076396A1 (en) | Electrolyte membrane and fuel cell using the electrolyte membrane | |
KR20130050825A (en) | Organic-inorganic composite membrane and fuel cell comprising the same | |
JP4561214B2 (en) | Electrolyte membrane | |
JP2009151938A (en) | Solid polymer electrolyte membrane for fuel cell and fuel cell | |
WO2005091409A1 (en) | Electrolyte film and fuel cell | |
JP2004253336A (en) | Electrolyte film and fuel cell using it | |
AU2012264397B2 (en) | High water-content membranes | |
JP2002170580A (en) | Diaphragm for solid polymer type fuel battery | |
JP2009193725A (en) | Composite membrane and method of manufacturing the same | |
JP5036263B2 (en) | Manufacturing method of electrolyte membrane | |
JP2007280653A (en) | Composite electrolyte membrane | |
AU2012264397A1 (en) | High water-content membranes | |
KR100559260B1 (en) | New ion-exchange composite membranes using styrene-type and acrylate-type monomers and preparation process thereof | |
JP2009104810A (en) | Electrolyte membrane, membrane electrode assembly, fuel cell, and method of manufacturing electrolyte membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081008 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111226 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20111226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120403 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120403 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |