JP4967803B2 - Method for manufacturing photoelectric composite substrate - Google Patents
Method for manufacturing photoelectric composite substrate Download PDFInfo
- Publication number
- JP4967803B2 JP4967803B2 JP2007133496A JP2007133496A JP4967803B2 JP 4967803 B2 JP4967803 B2 JP 4967803B2 JP 2007133496 A JP2007133496 A JP 2007133496A JP 2007133496 A JP2007133496 A JP 2007133496A JP 4967803 B2 JP4967803 B2 JP 4967803B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- optical path
- path conversion
- conversion component
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Description
本発明は、光を利用して信号を伝送する交換装置、通信装置、及び情報処理装置等に用いられる光導波路の表面に光電変換素子を実装するために有用な90度光路変換部品およびその製造方法と、光導波路および90度光路変換部品を用いて基板表面に光電変換素子を高密度実装し高速大容量伝送が可能な表面実装光電気複合基板に関する。 The present invention relates to a 90-degree optical path conversion component useful for mounting a photoelectric conversion element on the surface of an optical waveguide used in an exchange device, a communication device, an information processing device, and the like for transmitting a signal using light, and its manufacture. The present invention relates to a method and a surface-mounted photoelectric composite substrate capable of high-speed and large-capacity transmission by mounting photoelectric conversion elements on a substrate surface with high density using an optical waveguide and a 90-degree optical path conversion component.
近年、情報通信装置の進展に伴いこれらの装置内における信号線の容量不足が問題となりつつある。これを解消する為に装置内部のプリント基板の銅による電気配線の一部を光ファイバー又は光導波路に置き換え、電気信号の代わりに光信号を利用する事が検討され始めている。装置内部においては装置間を接続する場合と異なり、高密度光配線を限られたスペースに収容する必要がある為、
一般的にはICやマルチチップモジュールと同じようにレーザダイオードやフォトダイオードなどの光電素子を基板表面に実装し、電気配線板と同一基板に光配線を積層するなどの方法が検討されている。
In recent years, with the progress of information communication devices, a shortage of signal line capacity in these devices has become a problem. In order to solve this problem, it has begun to consider using an optical signal instead of an electrical signal by replacing a part of the copper electrical wiring on the printed circuit board inside the apparatus with an optical fiber or an optical waveguide. Unlike the case of connecting between devices inside the device, it is necessary to accommodate high-density optical wiring in a limited space.
In general, a method of mounting a photoelectric element such as a laser diode or a photodiode on the surface of a substrate and laminating optical wiring on the same substrate as an electric wiring board, as in the case of an IC or a multichip module, has been studied.
光導波路が電気配線と同一の基板上で積層された光・電気配線基板は高密度かつ高速動作実装が可能であり、小型化の観点から望ましい構造であるが、光導波路の光軸をレーザダイオードやフォトダイオードなどの光電素子と光学的に結合させる為に、90°光路変換技術が必要になる。 An optical / electrical wiring board in which optical waveguides are stacked on the same substrate as the electrical wiring is capable of high-density and high-speed mounting and is a desirable structure from the viewpoint of miniaturization. In order to optically couple with a photoelectric element such as a photo diode or a photodiode, a 90 ° optical path conversion technique is required.
90°光路変換に対しては光導波路自体へメカニカルな加工装置を用いて斜め45°の切り込みを入れ、空気との屈折率の違いを利用し90°全反射面を形成する方法(例えば、非特許文献1参照)が提案されている。しかしながら、45°反射面の形成では光導波路への切削領域が広範囲に及ぶ為、高密度実装に不利と指摘されていた。 For 90 ° optical path conversion, a method of forming a 90 ° total reflection surface by using a mechanical processing device to incline 45 ° into the optical waveguide itself and utilizing the difference in refractive index from air (for example, non-reflection) Patent Document 1) has been proposed. However, it has been pointed out that the formation of a 45 ° reflective surface is disadvantageous for high-density mounting because the cutting area to the optical waveguide is extensive.
この問題を解決する為の手段として本発明者等が光プリント基板の任意の場所に、局所的にプリズム状の45°ミラーを設置することや光ファイバーの先端を微細に断裁したピン状の一方の端面を45°加工し、これを90°光路変換の為の反射面として光電素子のとの結合に利用する方法が提案されている(例えば、非特許文献1及び2参照)。これらの方法は表面高密度実装の問題を解決できると考えられているが、45°反射面での光信号の漏れに起因した損失がまだ十分解決できておらず、信頼性の観点から、実用化するうえで課題となっていた。 As a means for solving this problem, the present inventors locally installed a prism-like 45 ° mirror at an arbitrary place on the optical printed circuit board, or one of the pin-like shapes obtained by finely cutting the tip of the optical fiber. A method has been proposed in which the end face is processed at 45 °, and this is used for coupling with a photoelectric element as a reflection surface for 90 ° optical path conversion (see, for example, Non-Patent Documents 1 and 2). These methods are thought to solve the problem of high-density surface mounting, but the loss due to optical signal leakage at the 45 ° reflective surface has not been sufficiently solved, and is practical from the viewpoint of reliability. It became a problem in becoming.
以下に公知文献を記す。
本発明は、係る従来技術の状況に鑑みてなされもので、信号損失特性が極めて小さく、表面高密度実装と高速動作可能で、且つ高い生産性を達成できる光路変換部品の製造方法並びにその部品と光表面実装導波路であり、情報伝達の信頼性を確保した高密度実装、小型化が可能な光電気複合基板及びその製造方法を提供する事にある。 The present invention has been made in view of the state of the related art, and has an extremely small signal loss characteristic, a high-density surface mounting and high-speed operation, and a method for manufacturing an optical path conversion component capable of achieving high productivity, and the component. It is an optical surface-mounting waveguide, and an object is to provide an optoelectric composite substrate capable of high-density mounting and miniaturization in which reliability of information transmission is ensured, and a manufacturing method thereof.
上記課題を解決するために請求項1記載の発明は、第1の基板上に形成した光導波路の表面に垂直で壁面に前記光導波路のコアの断面が露出する穴を形成する第1の工程と、次に、コアとクラッドを有し一端にほぼ45度の角度の傾斜面を有する第1の光学繊維と第2の光学繊維が、概ね90度の角度で配置され、前記傾斜面同士を重ね合わせてパルス励起レーザ光で前記傾斜面同士が熔着されL字型の複合体を成し、前記L字型複合体の角部の外側部分の一部が前記コアの光軸の交差位置まで除去され前記第1の光学繊維と前記第2の光学繊維の前記コアの断面が露出された反射面を有し、前記反射面に金属膜が形成され、前記金属膜により前記第1の光学繊維と前記第2の光学繊維の前記コアの光路の方向が変換されるように光結合された構造を有する90度光路変換部品を、該90度光路変換部品の前記第1の光学繊維のコアの光軸を前記光導波路のコアの光軸に一致させて前記穴へ埋設し光学接着剤により固定する第2の工程と、前記第1の工程および前記第2の工程に並行して、第2の基板に、前記穴に位置を合わせたスルーホールを形成する第3の工程と、次に、前記スルーホールを、前記90度光路変換部品の前記第2の光学繊維に嵌め合わせるように、前記第2の基板を前記第1の基板に重ね合わせ一体化させる第4の工程とを有することを特徴とする光電気複合基板の製造方法である。
In order to solve the above-mentioned problem, the invention according to claim 1 is a first step of forming a hole in the wall surface perpendicular to the surface of the optical waveguide formed on the first substrate and exposing the cross section of the core of the optical waveguide. Then, a first optical fiber and a second optical fiber having a core and a clad and having an inclined surface with an angle of approximately 45 degrees at one end are arranged at an angle of approximately 90 degrees, and the inclined surfaces are The inclined surfaces are overlapped with each other by pulse excitation laser light to form an L-shaped composite, and a part of the outer portion of the corner of the L-shaped composite is the crossing position of the optical axis of the core. And the first optical fiber and the second optical fiber have a reflecting surface in which a cross section of the core is exposed, a metal film is formed on the reflecting surface, and the first optical fiber is formed by the metal film. Optically coupled so that the direction of the optical path of the core of the fiber and the second optical fiber is changed 90 degree optical path conversion part having a structure, by the first optical fiber core of the optical axis is aligned with the optical axis of the core of the optical waveguide embedded into the hole optical adhesive of the 90-degree optical path conversion parts A second step of fixing, a third step of forming a through hole aligned with the hole in the second substrate in parallel with the first step and the second step; and And a fourth step of stacking and integrating the second substrate with the first substrate so that the through hole is fitted to the second optical fiber of the 90-degree optical path conversion component. A method for manufacturing an optoelectric composite substrate, characterized in that:
本発明に係る90度光路変換部品の製造方法によれば、傾斜面を有する光学繊維同士を熱源に非接触で周辺領域に熱ストレスを与える事無く瞬時にスポット溶接できる。また、双方の該光学繊維同士を、光軸を合わせた状態をモニターしながら熔着できる為、光結合の損失を生じる原因になる位置ズレを最小に抑制することが可能であり、光路を90度変換し光損失が小さな90度光路変換部品が得られる。更に、粉塵等の発生もなく熔着強度が高い為、高タクトで再現性よい製造が可能になる。すなわち、従来に比べ低コストで製造でき、高い信頼性を有する90度光路変換部品を提供できる。また、この90度光路変換部品を埋設して形成した光電気複合基板は、それに電子部品を半田付けする熱ストレスが加わっても容易には光結合が外れない安定した光結合を保持でき、また、低損失な90度光路変換部品を光電気複合基板の任意の位置に埋設できるため、高密度且つ損失の極めて少ない優れた信頼性を有する光電気複合基板が得られる効果がある。
According to the method for manufacturing a 90-degree optical path conversion component according to the present invention, optical fibers having inclined surfaces can be spot-welded instantaneously without contact with a heat source and without applying thermal stress to the peripheral region. In addition, since both the optical fibers can be welded while monitoring the state in which the optical axes are aligned, it is possible to minimize the positional deviation that causes the loss of optical coupling, and the optical path can be reduced to 90. A 90-degree optical path conversion component with small optical loss is obtained. Furthermore, since there is no generation of dust or the like and the welding strength is high, it is possible to manufacture with high tact and good reproducibility. That is, it is possible to provide a 90-degree optical path conversion component that can be manufactured at a lower cost than the conventional one and has high reliability. In addition, the photoelectric composite substrate formed by embedding the 90-degree optical path conversion component can maintain a stable optical coupling that does not easily break the optical coupling even when a thermal stress is applied to the electronic component. Since the low-loss 90-degree optical path conversion component can be embedded at an arbitrary position of the photoelectric composite substrate, there is an effect that a photoelectric composite substrate having high density and excellent reliability with very little loss can be obtained.
更に、本発明に係る光路変換部品及び光電気複合配線基板によれば、光配線層を多層化する事によって基板表面に実装される光電変換素子を高密度化することが可能になる。積層によって構成された多層光導波路間の信号伝送は、傾斜面を有するコア及びクラッドからなる伝送路構造を有する光路変換部品により、略90°光路変換される事から、異なる層間を伝送させても光電素子の光信号を減衰させることなく伝送できる。即ち、高速大容量の情報伝送を高い信頼性で実現できる光電気複合基板を提供できる。 Furthermore, according to the optical path conversion component and the photoelectric composite wiring board according to the present invention, it is possible to increase the density of photoelectric conversion elements mounted on the substrate surface by multilayering the optical wiring layer. Signal transmission between multi-layered optical waveguides composed of laminated layers is optically routed by approximately 90 ° by an optical path conversion component having a transmission path structure consisting of a core and a clad having inclined surfaces. The optical signal of the photoelectric element can be transmitted without being attenuated. That is, it is possible to provide a photoelectric composite substrate capable of realizing high-speed and large-capacity information transmission with high reliability.
以下に、図面を参照しながら、本実施に係る光路変換部品の製造方法及びその形態について説明する。なお、以下の説明において同一の要素については同一の符号を付してその説明を省略する。 Hereinafter, a method for manufacturing an optical path conversion component and its form according to the present embodiment will be described with reference to the drawings. In the following description, the same elements are denoted by the same reference numerals and description thereof is omitted.
本発明は光導波路と表面実装光電素子を、低損失で90度相互に光結合させる為の光路変換部品及びそれを用いた光電気複合基板に係り、該光路変換部品はコア及びクラッドからなる伝送路構造を有する光学繊維同士を熔着して製造されている。本発明では低損失90度光路変換部品を光導波路の任意の位置に埋設できる為、表面実装する光電素子の高集積化に対応できる。表面高密度実装に関しては、光導波路と光電変換素子と90度光路変換部品のそれぞれを相互に光軸が合うように実装する。これにより、結合損失や光信号のモード変換を抑制できる。更に、基板表面へ実装する光電変換素子の高密度化においては、光配線層を多層化する事により、基板表面上に配置される光電変換素子の位置レイアウトや実装数量の制約をも解消することが可能になる。本発明の90度光路変換部品では、伝送路構造を有する為に部品長を長くしても、損失の極めて少ない優れた伝送特性を得ることができる。従って、光配線層を多層化し、90度光路変換部品が長くなっても、信号の損失が殆ど発生しない利点がある。本90度光路変換部品、或いは多層光配線層の構造によって高密度且つ高速動作可能な優れた信頼性を有する光電気複合基板の提供が可能になる。 The present invention relates to an optical path conversion component for optically coupling an optical waveguide and a surface-mounted photoelectric element to each other by 90 degrees with low loss, and an optoelectric composite substrate using the optical path conversion component, the optical path conversion component comprising a core and a cladding. It is manufactured by welding optical fibers having a path structure. In the present invention, since the low-loss 90-degree optical path conversion component can be embedded in an arbitrary position of the optical waveguide, it can cope with high integration of the surface-mounted photoelectric element. For high-density surface mounting, the optical waveguide, the photoelectric conversion element, and the 90-degree optical path conversion component are mounted so that their optical axes are aligned with each other. Thereby, coupling loss and mode conversion of an optical signal can be suppressed. Furthermore, in order to increase the density of photoelectric conversion elements mounted on the substrate surface, it is possible to eliminate restrictions on the position layout and mounting quantity of the photoelectric conversion elements arranged on the substrate surface by multilayering the optical wiring layer. Is possible. Since the 90-degree optical path conversion component of the present invention has a transmission path structure, excellent transmission characteristics with very little loss can be obtained even if the length of the component is increased. Therefore, even if the optical wiring layer is multilayered and the 90 ° optical path conversion component becomes long, there is an advantage that almost no signal loss occurs. The structure of the 90-degree optical path conversion component or the multilayer optical wiring layer makes it possible to provide a photoelectric composite substrate having excellent reliability capable of high-density and high-speed operation.
以下に、好ましい実施の形態を挙げて、本発明を更に詳細に説明する。光表面実装導波路に埋設され、導波路と光電素子とを90°光接続する本発明の光導波路部品は、第1の光学繊維と第2の光学繊維を結合して構成され、それらの光学繊維は、ガラス、石英、セラミックスなどの無機材料またはポリイミド、エポキシ、ポリメチルメタクリレートなど各種有機材料から構成される光学繊維である。更に、光路変換部品の屈折率を光導波路のコア及びクラッドの屈折率とそれぞれ概ね一致させれば、光路変換部品と光導波路の接続境界において光信号の放射・散乱・反射を解消でき低損失となるため好ましい。 Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. An optical waveguide component of the present invention embedded in an optical surface mount waveguide and optically connecting the waveguide and the photoelectric element by 90 ° is formed by combining the first optical fiber and the second optical fiber, and the optical The fiber is an optical fiber composed of an inorganic material such as glass, quartz, and ceramics, or various organic materials such as polyimide, epoxy, and polymethyl methacrylate. Furthermore, if the refractive index of the optical path conversion component is approximately the same as the refractive index of the core and cladding of the optical waveguide, the radiation, scattering, and reflection of the optical signal can be eliminated at the connection boundary between the optical path conversion component and the optical waveguide. Therefore, it is preferable.
無機材料としては、例えばカリソーダ、ソーダ石灰、アルカリ亜鉛硼珪酸、アルミノ珪酸、ガラスセラミック、硼珪酸、ソーダ亜鉛、ソーダバリウム、バリウム硼珪酸、高鉛、ソーダバリウム珪酸、96%珪酸、石英ガラス、チタン珪酸、鉛珪酸等が挙げられる。これらは珪石、硼酸、酸化ランタン、酸化ガドリニウム、酸化ニオブ、酸化ジルコニウム、酸化アルミニウム、酸化バリウム、ガリウム、ナトリウム、カルシウム、リサージ(一酸化鉛)などを原料とし、屈折率などの光学特性に応じて2~15種類の範囲で適合したものが利用できる。 Examples of inorganic materials include potassium soda, soda lime, alkali zinc borosilicate, aluminosilicate, glass ceramic, borosilicate, soda zinc, soda barium, barium borosilicate, high lead, soda barium silicate, 96% silicic acid, quartz glass, and titanium. Examples thereof include silicic acid and lead silicic acid. These are made from silica, boric acid, lanthanum oxide, gadolinium oxide, niobium oxide, zirconium oxide, aluminum oxide, barium oxide, gallium, sodium, calcium, risurge (lead monoxide), etc., depending on the optical properties such as refractive index. Those suitable for 2 to 15 types can be used.
本発明に係る光路変換部品を図1に示す。図中符号2は高屈折率繊維、3低屈折率繊維からなり、コア、及びクラッドからなる伝送路構造を有している。 An optical path conversion component according to the present invention is shown in FIG. Reference numeral 2 in the figure is composed of a high refractive index fiber and a low refractive index fiber, and has a transmission path structure including a core and a cladding.
図1は本発明の実施形態である光路変換部品の概略であり、光の進行を90°変換する状態を示している。本実施の形態の光路変換部品1は、光を伝搬する高屈折率部2が低屈折率部3中に設けられており、この高屈折率部2の一部を含む一角に金属反射面付の反射面4が形成されている。ここで、反射面4は光を全反射させる為に蒸着・スパッタ等によりAu、Ag、Cu、Al、Cr、Rhなどの金属薄膜が成膜処理されている。そして、光路変換部品1は、外部の光電素子からの光信号を入射する入射口5、光路変換部品1内で90°光路変換された光を出射する出射口6とを備え、入射口5にVCSEL(面発光レーザ)などの半導体レーザが、出射口6に光導波路のコア及びクラッドが接続される。 FIG. 1 is an outline of an optical path conversion component according to an embodiment of the present invention, and shows a state in which the progress of light is converted by 90 °. In the optical path conversion component 1 of the present embodiment, a high refractive index portion 2 that propagates light is provided in a low refractive index portion 3, and a metal reflection surface is provided at one corner including a part of the high refractive index portion 2. The reflective surface 4 is formed. Here, in order to totally reflect the light, the reflective surface 4 is formed with a metal thin film such as Au, Ag, Cu, Al, Cr, Rh by vapor deposition / sputtering or the like. The optical path conversion component 1 includes an incident port 5 that receives an optical signal from an external photoelectric element, and an output port 6 that emits light that has undergone a 90 ° optical path conversion in the optical path conversion component 1. In a semiconductor laser such as VCSEL (surface emitting laser), the core and clad of the optical waveguide are connected to the exit port 6.
入射口5から入射した高屈折率部2の光信号は反射面4により90°光路変換され、再び高屈折率部2を伝搬し出射口6から光導波路に信号を入射する。この構造により、基板表面或いは光導波路表面に実装する光電素子の光信号を光路変換部品内に伝搬させ光導波路へ入射、或いは光導波路からの出射した光信号を光電変換素子へ受信させる事ができる。 The optical signal of the high refractive index portion 2 incident from the incident port 5 is optically path-shifted by 90 ° by the reflection surface 4, propagates again through the high refractive index portion 2, and enters the optical waveguide from the output port 6. With this structure, the optical signal of the photoelectric element mounted on the surface of the substrate or the surface of the optical waveguide can be propagated into the optical path conversion component and incident on the optical waveguide, or the optical signal emitted from the optical waveguide can be received by the photoelectric conversion element. .
また、光配線層を積層する場合において入射口5には、上層に配置される光配線層中の光路変換部品である出射口6からの伝送信号を受け、上下光配線層間で信号伝送が行われる。或いは、下層に位置する光配線中の光路変換部品である出射口6から、上層に位置する光配線層中の光路変換部品である入射口5が伝送信号を受けて、上下光配線層間で信号伝送を行う事ができる。 In addition, when the optical wiring layers are stacked, the incident port 5 receives a transmission signal from the output port 6 which is an optical path conversion component in the optical wiring layer disposed in the upper layer, and performs signal transmission between the upper and lower optical wiring layers. Is called. Alternatively, the incident port 5, which is an optical path conversion component in the optical wiring layer located in the upper layer, receives the transmission signal from the exit port 6, which is the optical path conversion component in the optical wiring positioned in the lower layer, and the signal is transmitted between the upper and lower optical wiring layers. Transmission can be performed.
本発明の90度光路変換部品の外形・サイズは埋設側光導波路の膜厚、コアサイズ、コアピッチに応じて数十μm〜数百μmの円柱、四角柱、多角柱など適宜変更して利用可能であるが、これらの少なくとも1部に反射面が設けられている。 The external shape and size of the 90-degree optical path conversion component of the present invention can be used by appropriately changing a cylinder, square column, polygonal column of several tens to several hundreds of μm according to the film thickness, core size, and core pitch of the buried optical waveguide. However, a reflective surface is provided on at least a part of these.
光学繊維の形成方法としては、石英ガラス製の種棒の先端を酸素水素火炎により加熱し、火炎中に原料である気化させた四塩化ケイ素と四塩化ゲルマニウムを吹き込み、加水分解反応によってガラス粉を生成させる。種棒の先端にこのガラス粉が除々に付着し溜まるのに従い、種棒を引き上げ成長点を一定に保つようにする。これを続けることで、種棒にガラスの集合体を形成する。この時原料の濃度分布と火炎の温度分布で屈折率を制御するが、光導波路のコア部とクラッド部の比屈折率にそれぞれ一致させる為に、屈折率差は一般に0.3乃至2.0%とする。 The optical fiber is formed by heating the tip of a quartz glass seed rod with an oxygen-hydrogen flame, blowing the vaporized silicon tetrachloride and germanium tetrachloride into the flame, and then hydrolyzing the glass powder. Generate. As this glass powder gradually adheres and accumulates at the tip of the seed rod, the seed rod is pulled up to keep the growth point constant. By continuing this, a glass aggregate is formed on the seed bar. At this time, the refractive index is controlled by the concentration distribution of the raw material and the temperature distribution of the flame, but the refractive index difference is generally 0.3 to 2.0 in order to match the relative refractive index of the core portion and the cladding portion of the optical waveguide. %.
次いで、酸素水素火炎中での加水分解反応によって、ガラス微粒粉の間に酸素と水素によってつくられた微量の水分を除去する為、このガラス微粒粉集合体を加熱する。更に、高温に微粒粉集合体を加熱しガラスを融合させ、中心に屈折率の高い部分を持った円柱状の透明な石英ガラスをつくる。更に、この石英ガラスを延ばし、別途溶融石英で作られた石英ガラス管の中に入れ、高温炎であぶり一体化させる。或いは、ガラス状になった原材料ガラスを白金坩堝の溶解炉にて温度1000℃から1500℃で一体化した後、徐々に冷却し、塊状や棒状、板状などの溶解方法や炉の種類により形状の異なった塊として取り出す。この他、直接ガラスに電気を通電し溶融する事も可能である。 Next, the glass fine particle aggregate is heated in order to remove a small amount of water produced by oxygen and hydrogen between the glass fine particles by a hydrolysis reaction in an oxygen hydrogen flame. Further, the fine particle aggregate is heated to a high temperature to fuse the glass, thereby producing a cylindrical transparent quartz glass having a high refractive index portion at the center. Further, this quartz glass is extended, put into a quartz glass tube made of fused silica separately, and integrated with a high temperature flame. Alternatively, the glass material glass is integrated at a temperature of 1000 ° C. to 1500 ° C. in a melting furnace of a platinum crucible, and then gradually cooled and shaped depending on the melting method such as a lump shape, rod shape, plate shape, or the type of furnace. Take out as different lumps. In addition, it is also possible to melt by applying electricity directly to the glass.
更に、溶融されたガラスを高温状態のまま金型に収容しガラス繊維の形状を得る。或いは選塊されたガラスを適当な大きさに切り出し再度加熱し柔らかくなったガラスを金型にいれて所望の形状のガラス繊維に加工してもよい(図2)。 Further, the melted glass is accommodated in a mold in a high temperature state to obtain a glass fiber shape. Alternatively, the selected glass may be cut out to an appropriate size, heated again and softened into a mold, and processed into glass fibers of a desired shape (FIG. 2).
次に、本発明の90度光路変換部品1の製造方法を説明する。上記のような光路変換部品用の光学繊維を例えば酸化セリウムやダイヤモンドパウダー研磨によって少なくとも一端をほぼ45°の角度を有する傾斜面Aとする(図3)。ここで、光学繊維としてはコア2の直径が約10μmでクラッドの直径が125μmのガラスの光学繊維を用いても良い。この45°傾斜面を有した光路変換用のガラス材を2つ準備しておき、図4に示すように、その2つの光学繊維、すなわち、第1の光学繊維と第2の光学繊維を、それらの傾斜面同士を重ね合わせるよう、略L字型に配置し、互いの傾斜面Aに露出したコア2同士の位置をX・Y・Zの3方向が一致するように互いに接触させた後、両光学繊維の光軸を合わせた状態をモニターしながら、以下に説明する高出力レーザ光をレンズにより両光学繊維の傾斜面Aの重ね合わせ部に集光することで、両光学繊維の斜面Aを加熱し両光学繊維の傾斜面Aを溶着する。外径の精度が良い光学繊維を用いることで、傾斜面Aの外周を合わせるだけで良く位置合わせでき、また、レーザにより非接触で接合部のみを加熱できるので接合部の周辺領域へ熱ストレスを与える事なく、位置ズレによる光結合の損失が少ない90度光路変換部品1が製造できる。高出力レーザには、赤外線を放出するYAG(イットリウム・アルミニウム・ガーネット)レーザ或いはルビーレーザなどの固体レーザを用いる事ができる。具体的にはNd:YAGレーザ波長1.06μm、Nd:YAGレーザにKTPやADPなどの非線形結晶を用い発生させる第2高調波(波長0.532μm)、Er:YAGレーザ(発振波長2.94μm)、Tm:YAG(波長2.08μm)、Ho:YAG(波長2.01μm)、COレーザ(波長5.2μm)、CO2レーザ(波長10.6μm)等があげられる。 Next, the manufacturing method of the 90 degree | times optical path conversion component 1 of this invention is demonstrated. The optical fiber for an optical path conversion component as described above is formed into an inclined surface A having an angle of approximately 45 ° at least one end by, for example, cerium oxide or diamond powder polishing (FIG. 3). Here, as the optical fiber, a glass optical fiber having a core 2 having a diameter of about 10 μm and a cladding having a diameter of 125 μm may be used. Two glass materials for optical path conversion having an inclined surface of 45 ° are prepared, and as shown in FIG. 4, the two optical fibers, that is, the first optical fiber and the second optical fiber, After placing the inclined surfaces in a substantially L shape so that the inclined surfaces overlap each other, the positions of the cores 2 exposed on the inclined surfaces A are brought into contact with each other so that the three directions of X, Y, and Z coincide. The high-power laser beam described below is condensed on the overlapping portion of the inclined surfaces A of the two optical fibers by the lens while monitoring the state in which the optical axes of the two optical fibers are aligned. A is heated and the inclined surface A of both optical fibers is welded. By using an optical fiber with good outer diameter accuracy, it is possible to align just by aligning the outer periphery of the inclined surface A, and it is possible to heat only the bonded portion without contact with the laser, so that thermal stress is applied to the peripheral region of the bonded portion. Without giving, the 90-degree optical path conversion component 1 with less optical coupling loss due to misalignment can be manufactured. As the high-power laser, a solid-state laser such as a YAG (yttrium, aluminum, garnet) laser or a ruby laser that emits infrared rays can be used. Specifically, the Nd: YAG laser wavelength is 1.06 μm, the second harmonic (wavelength is 0.532 μm) generated by using a nonlinear crystal such as KTP or ADP in the Nd: YAG laser, and the Er: YAG laser (oscillation wavelength is 2.94 μm). ), Tm: YAG (wavelength 2.08 μm), Ho: YAG (wavelength 2.01 μm), CO laser (wavelength 5.2 μm), CO 2 laser (wavelength 10.6 μm), and the like.
これらは、レーザの照射時間(パルス幅)をより高精度に制御する事により、高い出力のレーザの短時間照射が可能となる。パルス幅が50〜500μs程度のワンショットのパルス励起レーザ光が望ましい。パルス幅が50μs未満の場合は、レーザのエネルギーがパルス幅に比例して減少するため十分な熔着性能が得られない。パルス幅が500μsを超える場合は、レーザのエネルギーが飽和し、熔着性能が変わらないので、熔着作業のスループットを上げるため、レーザのパルス幅は500μs以下にすることが望ましい。このレーザの連続発振の為にはアークランプやレーザダイオードで強烈な閃光を与えて励起するのが好ましく、レーザダイオード励起の場合は非常に効率が高いレーザを得ることが可能である。取り出せるレーザ光線の波長は前記の通り赤外線領域となるが、熔着される材料、即ち光路変換用光学繊維が石英系の場合は赤外波長帯の光を吸収するが、該光学繊維の吸収特性に応じて、非線形結晶と呼ばれる光学結晶に通すことにより緑色等に変換しても良い。あるいは、非線形結晶の両端にミラーを設けて増幅させ可視光変換しても良い。またこの場合、レーザの照射時間(パルス幅)をより高精度に制御できる装置を用いる事で、高い出力で短時間照射が可能になる。レーザの出力は、0.1〜数10J程度の範囲で設定する事が好ましい。この場合、ピーク出力はワット換算すると瞬間的に数百キロワットから数メガワットものレーザ光となり、レンズで集光しスポット径を数百μmから数mmの範囲に設定する事により、光学繊維の結着面(第1の光学繊維と第2の光学繊維の傾斜面同士)のみの温度が瞬時に1000〜1500℃に達し、光学繊維同士の熔着が可能となる。代表的な工程を挙げれば、Xeフラッシュランプによるパルス光励起で、楕円リフレクターによりCrTmHo:YAG結晶へ効率よく集光させる。フラッシュランプの駆動部分は全半導体化された高電圧充電電源、点燈用高電圧電源、高電圧放電回路からなり、マイクロコンピューターにより制御されパルス動作させる。レーザ出力はパルス幅150〜250μs程度とし、Nd:YAGレーザ波長1.06μmで、ビーム出力150キロワットの条件で、高屈折率部2のサイズ40μm径、低屈折率部3のサイズ125μm径の光学繊維同士をL字型に熔着製造する(図4)。 These devices enable high-power laser irradiation in a short time by controlling the laser irradiation time (pulse width) with higher accuracy. One-shot pulse excitation laser light having a pulse width of about 50 to 500 μs is desirable. When the pulse width is less than 50 μs, the laser energy decreases in proportion to the pulse width, so that sufficient welding performance cannot be obtained. When the pulse width exceeds 500 μs, the laser energy is saturated and the welding performance does not change. Therefore, in order to increase the throughput of the welding operation, the laser pulse width is preferably 500 μs or less. For the continuous oscillation of this laser, it is preferable to excite it by applying intense flashlight with an arc lamp or a laser diode. In the case of laser diode excitation, it is possible to obtain a laser with very high efficiency. The wavelength of the laser beam that can be extracted is in the infrared region as described above, but when the material to be welded, that is, the optical fiber for optical path conversion is quartz, it absorbs light in the infrared wavelength band, but the absorption characteristics of the optical fiber In accordance with the above, it may be converted to green or the like by passing through an optical crystal called a nonlinear crystal. Alternatively, mirrors may be provided at both ends of the nonlinear crystal for amplification and visible light conversion. Further, in this case, by using an apparatus that can control the laser irradiation time (pulse width) with higher accuracy, it is possible to perform irradiation with a high output for a short time. The laser output is preferably set within a range of about 0.1 to several tens of J. In this case, when converted to watts, the peak output instantaneously becomes a laser beam of several hundred kilowatts to several megawatts, and is condensed by a lens and the spot diameter is set in the range of several hundred μm to several mm, thereby binding optical fibers. The temperature of only the surfaces (the inclined surfaces of the first optical fiber and the second optical fiber) instantaneously reaches 1000 to 1500 ° C., so that the optical fibers can be welded together. If a typical process is mentioned, it will be efficiently condensed to a CrTmHo: YAG crystal with an elliptic reflector by the pulsed light excitation by a Xe flash lamp. The driving part of the flash lamp is composed of a high-voltage charging power source, a high-voltage power source for lighting, and a high-voltage discharging circuit that are made into a semiconductor, and are controlled by a microcomputer to operate a pulse. The laser output is set to a pulse width of about 150 to 250 μs, an Nd: YAG laser wavelength of 1.06 μm, a beam output of 150 kilowatts, the high refractive index portion 2 having a size of 40 μm and the low refractive index portion 3 having a size of 125 μm. The fibers are welded together in an L shape (FIG. 4).
本発明のレーザ熔着では、熔着部周辺に熱ストレスを与えない、微細な部分や構造物の熔着が可能で、熔着強度が高くシール性に優れる効果がある。また、高い再現性、粉塵等の発生がない効果がある。特に、本発明ではワンショットで溶着するため量産性に優れる効果がある。 In the laser welding of the present invention, fine portions and structures can be welded without applying thermal stress around the welded portion, and there is an effect that the welding strength is high and the sealing property is excellent. In addition, there is an effect that there is no high reproducibility and generation of dust. In particular, the present invention has an effect of being excellent in mass productivity because it is welded in one shot.
上記熔着としては、前記以外に超音波熔着機・振動熔着機・熱版熔着機・赤外線熔着機を用いることが可能であり、適宜強度を確保しながら高精度熔着を達成できると同時に、高速タクトの安定した生産を実現する事が可能になる。 In addition to the above welding methods, ultrasonic welding machines, vibration welding machines, hot plate welding machines, and infrared welding machines can be used, and high-precision welding is achieved while ensuring adequate strength. At the same time, stable production of high-speed tact can be realized.
前記の如く光学繊維同士をL字型に接合させた後、L字型光学繊維のコーナー部を、第1の光学繊維と第2の光学繊維のコア2の光軸の交差位置まで(つまり屈折率の高い伝送路が少なくとも一部露出するまで)再び研磨し反射面4を形成する(図5)。最後に、反射面4へAuなどの金属膜を蒸着し、本光路変換部品を完成させる。 After the optical fibers are joined to each other in an L shape as described above, the corner portion of the L-shaped optical fiber reaches the intersection of the optical axes of the cores 2 of the first optical fiber and the second optical fiber (that is, refraction). The reflecting surface 4 is formed by polishing again (until at least a part of the high-rate transmission line is exposed) (FIG. 5). Finally, a metal film such as Au is deposited on the reflecting surface 4 to complete the optical path conversion component.
尚、2つの光学繊維同士をレーザ熔着する前に機械的にL字型に保持したまま、コーナー部を屈折率の高い伝送路が少なくとも一部露出するまで研磨した後、調芯機を用いて双方の光軸が一致するようX・Y・Z軸合わせを行い、該傾斜面同士をレーザ熔着、反射面4へ金属膜を蒸着して、本光路変換部品を完成させるといった製造工程を適宜採用してもよい。 Before the laser welding of the two optical fibers, the corner portion is polished until at least part of the transmission path with a high refractive index is exposed while using a centering machine while being held in an L shape mechanically. The X, Y, and Z axes are aligned so that both optical axes coincide with each other, the inclined surfaces are laser welded, a metal film is deposited on the reflecting surface 4, and the optical path conversion component is completed. You may employ | adopt suitably.
傾斜面同士を互いに接触させ、L字型に接触させたガラス繊維状の光路変換部品は、光導波路や表面実装光電変換部品に応じて、長さの異なる光路変換部品として適宜利用できる(図6〜8)。 The glass fiber-shaped optical path conversion component in which the inclined surfaces are brought into contact with each other and in an L shape can be appropriately used as an optical path conversion component having a different length depending on the optical waveguide or the surface-mounted photoelectric conversion component (FIG. 6). ~ 8).
また、本発明において光路変換部品を埋設する光導波路が複数線路で構成されている場合、それぞれの線路に対応させて光路変換部品を設置できるが、部品サイズ自体を拡大し、光信号の変換方向にそった伝送路を部品中に複数構成させるアレイ状としても特に問題はない(図9)。 In the present invention, when the optical waveguide in which the optical path conversion component is embedded is composed of a plurality of lines, the optical path conversion component can be installed corresponding to each line, but the component size itself is enlarged, and the optical signal conversion direction is increased. There is no particular problem even if an array is formed in which a plurality of transmission paths along the line are configured in the part (FIG. 9).
光路変換部品を埋設する側の光導波路については、光ファイバで実証済みのように波長1.3μmにおいて0.1dB/cm以下を達成している無機材料系の石英導波路や、低温プロセスで製造可能な各種高分子材料系導波路を用いることが可能である。本発明において導波路構成は無機材料、高分子材料どちらでもよいが、コア部とクラッド部の比屈折率差が0.3乃至2.0%で、トータル膜厚が10μm以上の高分子材料が好ましい。導波路を構成するコアの形状は円形或いは矩形であり、サイズ5〜100μmであることが好ましい。5〜100μm以外になると単一の反射角をもった光信号の伝搬(シングルモード)や複数の反射角をもった光信号の伝搬(マルチモード)の為の位相条件を満たすことが難しくなるからである。一方、クラッド膜厚は上部、下部共に5μm以上である事が好ましい。膜厚5μm以下ではコア内を伝搬する光信号がクラッドへ放射されてしまい易く、損失を招く原因となるからである。 The optical waveguide on the side where the optical path conversion component is embedded is manufactured using an inorganic material-based quartz waveguide that achieves 0.1 dB / cm or less at a wavelength of 1.3 μm as demonstrated by optical fibers, or a low-temperature process. It is possible to use various possible polymer material-based waveguides. In the present invention, the waveguide structure may be either an inorganic material or a polymer material, but a polymer material having a relative refractive index difference of 0.3 to 2.0% between the core portion and the clad portion and a total film thickness of 10 μm or more is used. preferable. The shape of the core constituting the waveguide is circular or rectangular and is preferably 5 to 100 μm in size. If it is other than 5 to 100 μm, it becomes difficult to satisfy the phase condition for propagation of an optical signal having a single reflection angle (single mode) and propagation of an optical signal having multiple reflection angles (multimode). It is. On the other hand, the clad film thickness is preferably 5 μm or more for both the upper part and the lower part. This is because if the film thickness is 5 μm or less, an optical signal propagating in the core is likely to be radiated to the cladding, which causes a loss.
上記光導波路の具体的な材料としては、例えば、コアが重水素化ポリメチルメタクリレート(d−PMMA)またはフッ素化ポリメチルメタクリレートであり、コア部よりも屈折率が低いクラッドがエポキシ樹脂である。コア部にPMMAを用いた場合には、PMMA中に多量に含まれるCH基による1.55μm帯における光吸収損失のすそのために光信号の赤外線レーザの伝搬損失が大きくなってしまうが、重水素化することにより両波長での損失は小さくできるからである。 As a specific material of the optical waveguide, for example, the core is deuterated polymethyl methacrylate (d-PMMA) or fluorinated polymethyl methacrylate, and the clad whose refractive index is lower than that of the core portion is epoxy resin. When PMMA is used for the core part, the propagation loss of the infrared laser of the optical signal increases due to the light absorption loss in the 1.55 μm band due to the CH group contained in the PMMA in large quantities. This is because loss at both wavelengths can be reduced.
一方、クラッドとして用いるエポキシ樹脂はフェノールAとエピクロルヒドリンの縮合生成物、或いはビスフェノールAに代えてビスフェノールFやポリグリコール等を基本とした樹脂である。エポキシ樹脂をクラッドに用いることで、コアとクラッドの屈折率差制御、耐環境性、ハンダ熱耐性、クラッドとしての塗布性など光導波路に対する各種要求特性を満足できるからである。尚、本実施の形態では必ずしも上記の高分子材料に限定された訳ではなく、吸収損失の小さいその他の高分子材料が利用可能である。 On the other hand, the epoxy resin used as the clad is a condensation product of phenol A and epichlorohydrin, or a resin based on bisphenol F or polyglycol instead of bisphenol A. This is because by using an epoxy resin for the clad, various required characteristics for the optical waveguide, such as a refractive index difference control between the core and the clad, environment resistance, solder heat resistance, coatability as the clad, can be satisfied. In the present embodiment, the polymer material is not necessarily limited to the above-described polymer material, and other polymer materials having a small absorption loss can be used.
高分子光導波路の製造方法としては、例えば、導波路パターン形成にフォトレジストを塗布して、反応性イオンエッチングを用いる方法、紫外線硬化する官能基を有した脂肪族環状エポキシ樹脂を用い紫外線照射により硬化を行い、直接パターニングする方法が挙げられる。また、導波路構造としては埋め込み型が好ましいが、特に限定される訳ではない。 As a method for producing a polymer optical waveguide, for example, a method in which a photoresist is applied to form a waveguide pattern and reactive ion etching is used, or an aliphatic cyclic epoxy resin having an ultraviolet curing functional group is used for ultraviolet irradiation. A method of performing curing and directly patterning may be mentioned. The waveguide structure is preferably a buried type, but is not particularly limited.
光電気複合基板に要求される仕様の中には、基板表面に実装される光電素子の高密度実装や、ビットレート(伝送速度)の異なる信号に対応できる事などが挙げられる。光電変換素子の高密度実装に対しては、通常直線で形成される光配線が1層のみだと光配線のコア同士が交差してしまうことから限界がある。また、伝送速度の速い高ビットレートが必要な光配線には、シングルモード光配線が適しており、低ビットレートで良い場合はマルチモード光配線が好ましい。 Among the specifications required for the opto-electric composite substrate, there are a high-density mounting of photoelectric elements mounted on the surface of the substrate and a capability to cope with signals having different bit rates (transmission speeds). For high-density mounting of photoelectric conversion elements, there is a limit because the cores of the optical wiring cross each other if there is only one layer of optical wiring formed in a straight line. In addition, a single mode optical wiring is suitable for an optical wiring that requires a high transmission rate and a high bit rate, and a multimode optical wiring is preferable when a low bit rate is acceptable.
通常光配線層を形成する場合、光配線として光導波路を用いた場合には、工程上同一層には同種の光導波路を形成するのが一般的である。少なくとも、単一膜をパターニングしてコアを形成する限り、コアの屈折率と高さは同一にせざるを得ない。従って、異種の光配線を設けるには、光配線を多層化しビットレート毎に異なる光配線層を伝送させることが望ましい。 Usually, when forming an optical wiring layer, when an optical waveguide is used as the optical wiring, it is common to form the same type of optical waveguide in the same layer in the process. As long as the core is formed by patterning a single film, the refractive index and height of the core must be the same. Therefore, in order to provide different types of optical wiring, it is desirable to make the optical wiring multilayer and to transmit different optical wiring layers for each bit rate.
そして、高ビットレートが必要な光配線をシングルモード光配線層に、遅くてよい光配線をマルチモード光配線に配置する。 Then, an optical wiring that requires a high bit rate is disposed in the single mode optical wiring layer, and an optical wiring that may be delayed is disposed in the multimode optical wiring.
光導波路へ光路変換部品を任意の位置に埋設するために形成するスルーホール空間は、機械的なドリルを用いることやレーザ(CO2、エキシマ、フェムト秒等)照射或いは光導波路表面にフォトレジストパターンを形成して、反応性イオンエッチングする等の手法を用いる事ができる。代表的な工程を挙げればKrFエキシマレーザで、ビーム出力15W、発振周波数600pps(Pulse Per Second)、パルスエネルギー30mJ/パルス、照射エネルギー密度1J/cm2(結像レンズ0.385倍)の条件で、コアサイズ40μm角、上下クラッド厚各30μmの光導波路に対して孔径150μmのスルーホール7を形成できる(図10)。 The through-hole space that is formed to embed the optical path conversion component in the optical waveguide at an arbitrary position uses a mechanical drill, laser (CO 2 , excimer, femtosecond, etc.) irradiation, or a photoresist pattern on the surface of the optical waveguide. And a method such as reactive ion etching can be used. A typical process is a KrF excimer laser under conditions of a beam output of 15 W, an oscillation frequency of 600 pps (Pulse Per Second), a pulse energy of 30 mJ / pulse, and an irradiation energy density of 1 J / cm 2 (imaging lens 0.385 times). A through hole 7 having a hole diameter of 150 μm can be formed in an optical waveguide having a core size of 40 μm square and upper and lower cladding thicknesses of 30 μm each (FIG. 10).
多層光配線において光路変換部品を任意の位置に埋設する為に形成するスルーホール空間は、シングルモード光配線層とマルチモード光配線を予め別々に形成しておき、それぞれ必要な位置に必要な数量を上記機械的なドリルやレーザ照射によって、任意に形成しておき、光路変換部品の埋め込みを実施する。 The through-hole space that is formed to embed the optical path conversion component in an arbitrary position in the multilayer optical wiring has a single-mode optical wiring layer and a multi-mode optical wiring formed separately in advance, and the required quantity at each required position. Is formed arbitrarily by the mechanical drill or laser irradiation, and the optical path conversion component is embedded.
その後、90度光路変換部品が埋設された光配線層どうしの貼合わせを行うことで実現できる。尚、光配線層の貼合わせにおいて上層光配線層と下層光配線層とを90度光路変換部品を用いて光接続する場合は、表面実装光電変換素子を実装する場合と同様、X軸、Y軸、Z軸方向の光軸調整を行い多層光配線層内部を自在に信号伝送することが可能になる。 Then, it can implement | achieve by bonding together the optical wiring layer by which 90 degree | times optical path conversion components were embed | buried. When optically connecting the upper optical wiring layer and the lower optical wiring layer using a 90-degree optical path conversion component in the bonding of the optical wiring layers, the X-axis and Y-axis are the same as when the surface-mount photoelectric conversion element is mounted. It is possible to adjust the optical axes in the axial and Z-axis directions and freely transmit signals within the multilayer optical wiring layer.
或いは、多層光配線を形成した後、必要な位置に必要な数量のスルーホール空間を形成し90度光路変換部品を埋設し、基板表面へ光電変換素子を実装することも可能である。 Alternatively, after forming the multi-layer optical wiring, it is also possible to form a necessary number of through-hole spaces at necessary positions, embed a 90-degree optical path conversion component, and mount the photoelectric conversion element on the substrate surface.
本発明の光導波路表面に実装される光電素子としては高周波数特性、低電圧特性の例えば波長0.85μmのVCSEL(面発光レーザ)や0.65μmの半導体レーザ、1.3μmの通信用レーザを用いることが出来る。これらにより電気信号を光信号に変換し、光路変換部品を介して光導波路内へ光信号を送信する。また、光信号を再び電気信号に変換するフォトダイオードは、例えば、光導電効果や光起電力効果で検出するpn接合フォトダイオード、pinフォトダイオード、ショットキー障壁型フォトダイオード、アバランシェ増幅型フォトダイオード、及びフォトトランジスタを用いることができる。これらもまた、各種レーザと同様に光導波路表面に実装し、光導波路中の光信号を光路変換部品を介して受光することができる。また、場合によって、CdSセル(硫化カドミウムセル)などの光導電効果を利用した光センサーを用いても良い。 As a photoelectric device mounted on the surface of the optical waveguide of the present invention, for example, VCSEL (surface emitting laser) having a wavelength of 0.85 μm, a 0.65 μm semiconductor laser, and a 1.3 μm communication laser having high frequency characteristics and low voltage characteristics are used. Can be used. Thus, the electrical signal is converted into an optical signal, and the optical signal is transmitted into the optical waveguide through the optical path conversion component. In addition, photodiodes that convert optical signals into electrical signals again include, for example, pn junction photodiodes, pin photodiodes, Schottky barrier photodiodes, avalanche amplification photodiodes that are detected by a photoconductive effect or a photovoltaic effect, In addition, a phototransistor can be used. These can also be mounted on the surface of the optical waveguide in the same manner as various lasers, and an optical signal in the optical waveguide can be received through the optical path conversion component. In some cases, a photosensor using a photoconductive effect such as a CdS cell (cadmium sulfide cell) may be used.
図18、図19、図20は光路変換部品1を光導波路8のスルーホール7へ光学接着剤19を用いて埋設し、この表面へデータ伝送用の波長850nmの垂直共振器型面発光レーザ(VCSEL)12及び受光径80μmInGaAs−Pinフォトダイオード13を実装した状態を示している。面発光レーザ12及びフォトダイオード13はチップ部品型でパッケージ内へ下向きに実装され、電極14が金錫ペースト15等で光導波路8やLSI16、セラミック基板11の電極配線17と接合されている。 18, 19, and 20, the optical path conversion component 1 is embedded in the through hole 7 of the optical waveguide 8 using an optical adhesive 19, and a vertical cavity surface emitting laser (wavelength 850 nm for data transmission) is embedded in this surface ( VCSEL) 12 and a light receiving diameter of 80 μm InGaAs-Pin photodiode 13 are mounted. The surface emitting laser 12 and the photodiode 13 are chip parts and are mounted downward in the package, and the electrode 14 is bonded to the optical waveguide 8, the LSI 16, and the electrode wiring 17 of the ceramic substrate 11 with a gold tin paste 15 or the like.
光導波路8の任意の場所に適度のクリアランス領域を設けて形成したスルーホール7に、光路変換部品1を設置する際には、光路変換部品1の側面や上面などに形成されたアライメントマークを頼りに、光導波路8の縦方向、横方向及び深さ方向で光軸すれを生じないように調整する。或いは、調芯器を用い光導波路8と光路変換部品1の光軸を損失が最小になるようにモニタリングしながら位置合わせをした後、光学接着剤などで高精度に固定し、次いで、面発光レーザ、フォトダイオードを実装してもよい。 When the optical path conversion component 1 is installed in the through hole 7 formed with an appropriate clearance region at an arbitrary position of the optical waveguide 8, the alignment marks formed on the side surface and the upper surface of the optical path conversion component 1 are relied on. In addition, the optical waveguide 8 is adjusted so that the optical axis is not shifted in the vertical direction, the horizontal direction, and the depth direction. Alternatively, after aligning the optical waveguide 8 and the optical axis of the optical path conversion component 1 while monitoring the optical axis so as to minimize the loss using an aligner, it is fixed with an optical adhesive or the like, and then surface emitting. A laser or a photodiode may be mounted.
本実施例によれば、90度光路変換部品1の内部は、単にミラー面が形成設置されたプリズム部品などに比べ、光伝送構造を有している事から、光信号を外部に漏らさずに伝送でき、表面実装光路変換部品へ送信、受信が可能になる。この結果、90度光路変換部品での接続損失は、出力信号が入力信号に対して90%以上となり、従来報告されてきた50%程度の損失から飛躍的に改善され、実用化に多大な効果があることが確かめられた。また、本実施の形態の90度光路変換部品は、互いに90度の角度で配置された第1の光学繊維と第2の光学繊維の傾斜面A同士がレーザ光で溶着されたL字型の複合体で、その第1の光学繊維と第2の光学繊維のコア9の光路が、そのL字の角部の外側部分を第1の光学繊維と第2の光学繊維のコア9の光軸の交差位置まで除去して形成した反射面4の金属膜で90度方向変換して光結合させた90度光路変換部品1を、光導波路8の穴7aと第2の基板20のスルーホールに埋設して光導波路8のコア9の光軸と第1の光学繊維の光軸を一致させて両者を光結合させ、光学接着剤19で接着固定したため、この上に光電変換素子や電子部品をはんだ付けする熱ストレスが加わっても容易には光結合が外れない安定した光結合が得られる効果がある。また、光導波路8の上層に第2の基板20を設置することで、電子部品を光・電気配線板にはんだ付けする際の熱が光導波路8へ伝わるのを第2の基板20が遮り光導波路8を保護するので、光導波路8の材料に耐熱性があるポリイミド以外の材料を用いた光・電気配線板でも、電子部品のはんだ付けに耐え、信頼性を高くする効果がある。 According to this embodiment, the interior of the 90-degree optical path conversion component 1 has an optical transmission structure as compared with a prism component or the like on which a mirror surface is simply formed, so that an optical signal is not leaked to the outside. Transmission is possible, and transmission and reception to the surface-mount optical path conversion component becomes possible. As a result, the connection loss in the 90-degree optical path conversion component is 90% or more of the output signal with respect to the input signal, which is dramatically improved from the previously reported loss of about 50%, and has a great effect on practical use. It was confirmed that there is. In addition, the 90-degree optical path conversion component of the present embodiment is an L-shaped type in which the inclined surfaces A of the first optical fiber and the second optical fiber disposed at an angle of 90 degrees are welded with laser light. In the composite, the optical path of the core 9 of the first optical fiber and the second optical fiber is the optical axis of the core 9 of the first optical fiber and the second optical fiber at the outer portion of the L-shaped corner. The 90-degree optical path conversion component 1 that is 90-degree direction-converted and optically coupled by the metal film of the reflecting surface 4 formed by removing the crossing position is formed in the hole 7 a of the optical waveguide 8 and the through-hole of the second substrate 20. Since the optical axis of the core 9 of the optical waveguide 8 and the optical axis of the first optical fiber coincide with each other and are optically coupled and bonded and fixed with the optical adhesive 19, the photoelectric conversion element and the electronic component are placed on this. Even if heat stress is applied to the solder, the optical coupling is not easily removed. There is. Further, by installing the second substrate 20 on the upper layer of the optical waveguide 8, the second substrate 20 blocks light from being transmitted to the optical waveguide 8 when the electronic component is soldered to the optical / electrical wiring board. Since the waveguide 8 is protected, even an optical / electrical wiring board using a material other than heat-resistant polyimide as the material of the optical waveguide 8 has an effect of withstanding the soldering of electronic parts and increasing the reliability.
(本実施の形態および比較例の90度光路変換部品の光結合特性)
本発明の光路変換部品を用いた90°光路変換は低損失な光表面実装が可能になる事から、各種光路変換実装技術と比較した。比較にはNo1として図11に示すように光導波路自体にセラミックブレードで切れ込みを形成し、切れ込み面で信号を全反射させる実装モデル、No2として図12に示すように、光導波路8のコア9のパターンが形成された位置のクラッド10の面に垂直な穴7aを形成し、その穴7a中にプリズム状ミラー23を設置した実装モデルとした。No3として図13に示すように、光導波路8のコア9のパターンが形成された位置のクラッド10の面に垂直な穴7aを形成し、その穴7a中に90度光路変換部品1を設置した。尚、この90度光路変換部品1は光学繊維を酸化セリウムやダイヤモンドパウダー研磨によって少なくとも一端をほぼ45°の角度を有する傾斜面を形成し、この45°傾斜面を有した光路変換用ガラス材の傾斜面同士をX・Y・Zの3方向が一致するように互いに光学接着剤で接着し光路変換部品を製造した実装モデルとした。No4は図14に示す本発明の光路変換部品であり第1の基板20上に光導波路8のクラッド10を形成し、その上にコア9のパターンを形成し、そのコア9のパターンを上側のクラッド10で覆って光導波路8を形成し、その光導波路8のコア9が形成された位置のクラッド10の面に垂直な上下のクラッド10とコア9を貫く穴7aを形成した。本発明のレーザ熔着による90度光路変換部品1を穴7aの中に埋設し光学接着剤19を用いて接着することで固定する。その第1の基板20と光導波路8と90度光路変換部品1を嵌め合わせて被せ第1の基板20と光導波路8と90度光路変換部品1と第2の基板20を一体化させた実装モデルにした。No5として図17に示すように、実装モデルNo4で示した光導波路8を積層した構造とした。但し、光路変換部品1としては45°反射面が上下2個所に有する1を用いている。以上の5種類の実装モデルを比較した。光導波路、光路変換部品は共に、コア径40μm×40μm、クラッド径125μm×125μm、コア屈折率1.489、クラッド屈折率1.471、比屈折率差1.2%である。送受信ともに光路変換部品および光導波路のコア中を信号光線21(波長0.85μm)が一様に励振するように入射させ90°光路変換した後の伝搬光を、光導波路8端面あるいは、光路変換部品1、プリズム23近傍へ、受光面積40μm×40μmのディテクタ22を設置し、信号強度を測定した。解析結果を表1、図15、図16に示す。尚、数値は入射光を100%に対して、ディテクタ受光光となっている、コア径40μmのMMF−SI(Multi Mode Fiber-Step Index)を光路変換部品上にVCSELなどの受光素子(波長0.85μm)を搭載し光導波路側面へディテクタ22を設置した送信の場合、他の部品に比べて各段に損失が小さく98%を達成できた。本発明の90度光路変換部品では、導波路構造を有しており、また、45°傾斜面で光信号が全反射するため、発光素子或いは受光素子、90度光路変換部品、光導波路それぞれの界面で光信号が損失せずに伝搬できるからである。
(Optical coupling characteristics of 90 degree optical path conversion component of this embodiment and comparative example)
Since 90 ° optical path conversion using the optical path conversion component of the present invention enables low-loss optical surface mounting, it was compared with various optical path conversion mounting techniques. For comparison, as shown in FIG. 11 as No. 1, a mounting model in which a slit is formed in the optical waveguide itself with a ceramic blade and the signal is totally reflected on the cut surface, and as No. 2, the core 9 of the optical waveguide 8 is shown in FIG. A mounting model in which a hole 7a perpendicular to the surface of the clad 10 at the position where the pattern was formed was formed and a prismatic mirror 23 was installed in the hole 7a was used. As No. 3 shown in FIG. 13, a hole 7a perpendicular to the surface of the cladding 10 at the position where the pattern of the core 9 of the optical waveguide 8 was formed was formed, and the 90-degree optical path conversion component 1 was installed in the hole 7a. . The 90-degree optical path converting component 1 is formed by polishing an optical fiber with cerium oxide or diamond powder to form an inclined surface having an angle of approximately 45 ° at least at one end, and an optical path converting glass material having the 45 ° inclined surface. An inclined path was bonded to each other with an optical adhesive so that the three directions of X, Y, and Z coincided with each other, and an optical path conversion component was manufactured. No. 4 is the optical path conversion component of the present invention shown in FIG. 14, in which the cladding 10 of the optical waveguide 8 is formed on the first substrate 20, the pattern of the core 9 is formed thereon, and the pattern of the core 9 is formed on the upper side. The optical waveguide 8 was formed by covering with the clad 10, and the upper and lower clads 10 perpendicular to the surface of the clad 10 at the position where the core 9 of the optical waveguide 8 was formed and a hole 7a penetrating the core 9 were formed. The 90-degree optical path conversion component 1 by laser welding of the present invention is embedded in the hole 7 a and fixed by bonding using an optical adhesive 19. The first substrate 20, the optical waveguide 8, and the 90-degree optical path conversion component 1 are fitted and covered, and the first substrate 20, the optical waveguide 8, the 90-degree optical path conversion component 1, and the second substrate 20 are integrated. Made a model. As No5, as shown in FIG. 17, it was set as the structure which laminated | stacked the optical waveguide 8 shown by mounting model No4. However, as the optical path conversion component 1, 1 having 45 ° reflecting surfaces in two upper and lower portions is used. The above five types of mounting models were compared. Both the optical waveguide and the optical path conversion component have a core diameter of 40 μm × 40 μm, a cladding diameter of 125 μm × 125 μm, a core refractive index of 1.489, a cladding refractive index of 1.471, and a relative refractive index difference of 1.2%. In both transmission and reception, the light beam 21 (wavelength 0.85 μm) enters the optical path conversion component and the core of the optical waveguide so as to be uniformly excited, and the propagating light after 90 ° optical path conversion is applied to the end face of the optical waveguide 8 or the optical path conversion. A detector 22 having a light receiving area of 40 μm × 40 μm was installed near the component 1 and the prism 23, and the signal intensity was measured. The analysis results are shown in Table 1, FIG. 15, and FIG. The numerical value is 100% of incident light and is a detector light receiving light. An MMF-SI (Multi Mode Fiber-Step Index) having a core diameter of 40 μm is placed on an optical path conversion component such as a VCSEL (wavelength 0). .85 μm) and transmission with the detector 22 installed on the side surface of the optical waveguide, the loss was small at each stage compared to other components, and 98% was achieved. The 90-degree optical path conversion component of the present invention has a waveguide structure, and the optical signal is totally reflected on a 45 ° inclined surface. Therefore, each of the light-emitting element or the light-receiving element, the 90-degree optical path conversion component, and the optical waveguide This is because an optical signal can propagate without loss at the interface.
以上、本発明の方法によって製造した光路変換部品を導波路の任意の領域に埋設し、その表面に光電素子を実装した光電気複合基板を製造した実装モデルは図18、図19、図20に示したとおりである。 The mounting models for manufacturing the optoelectric composite substrate in which the optical path conversion component manufactured by the method of the present invention is embedded in an arbitrary region of the waveguide and the photoelectric element is mounted on the surface thereof are shown in FIGS. As shown.
表1、図15、図16には本発明の光路変換部品の90°光路変換の信号伝送特性及び、本発明の多層(2層)光配線層の90°光路変換の信号伝送特性を測定した結果を示した。光路変換部品上にVCSELなどの発光素子(波長0.85μm)を搭載し導波路側面へディテクタ22を設置した送信の場合、多層(2層)光配線の信号伝送特性は94%(送信)を達成する事が出来た。また、多層(2層)光配線において下層に構成された光導波路側面から信号を送信し、光路変換部品1上にディテクタ22を設け受光した場合も同様に、各段に損失が小さく96%(受信)を達成する事が出来た。 Table 1, FIG. 15 and FIG. 16 show the signal transmission characteristics of 90 ° optical path conversion of the optical path conversion component of the present invention and the signal transmission characteristics of 90 ° optical path conversion of the multilayer (two layers) optical wiring layer of the present invention. Results are shown. In the case of transmission in which a light emitting element such as VCSEL (wavelength 0.85 μm) is mounted on the optical path conversion component and the detector 22 is installed on the side surface of the waveguide, the signal transmission characteristic of the multilayer (two layers) optical wiring is 94% (transmission). I was able to achieve it. Similarly, when a signal is transmitted from the side surface of the optical waveguide formed in the lower layer in the multilayer (two-layer) optical wiring, and the detector 22 is provided on the optical path conversion component 1, the loss is small at each stage and 96% ( Received).
なお、光路変換部品1は両端を45°角度を有する傾斜面を形成し、この45°傾斜面を有した光路変換用のガラス材をX・Y・Zの3方向が一致するようにレーザ熔着した構造となっている。 The optical path conversion component 1 has inclined surfaces having an angle of 45 ° at both ends, and the glass material for optical path conversion having the 45 ° inclined surface is laser-melted so that the three directions of X, Y, and Z coincide. It has a worn structure.
本発明の90度光路変換部品では、導波路構造を有しており、また、45°傾斜面で光信号が全反射するため、発光素子或いは受光素子、90度光路変換部品、光導波路それぞれの界面で光信号が損失せずに伝搬できるからである。 The 90-degree optical path conversion component of the present invention has a waveguide structure, and the optical signal is totally reflected on a 45 ° inclined surface. Therefore, each of the light-emitting element or the light-receiving element, the 90-degree optical path conversion component, and the optical waveguide This is because an optical signal can propagate without loss at the interface.
以上、多層光配線の任意の位置に本発明の光路変換部品を埋設した光電気複合基板の実装モデルを図18、図19に示した。本構造では表面実装光電素子の高密度化によって次世代の高速大容量情報伝送技術の提供が可能になり、情報処理機器や携帯端末機器への高速伝送に普及に寄与できる多層光電気配線複合基板を提供できる。 The mounting model of the photoelectric composite substrate in which the optical path conversion component of the present invention is embedded at an arbitrary position of the multilayer optical wiring is shown in FIGS. With this structure, it is possible to provide next-generation high-speed and large-capacity information transmission technology by increasing the density of surface-mounted photoelectric elements, and it can contribute to the spread of high-speed transmission to information processing equipment and portable terminal devices. Can provide.
本発明は、次世代の高速大容量情報伝送技術として、光導波路の表面に光電素子を実装した光電気複合配線板であり、光を利用して信号を伝送する交換装置、通信装置、あるいは高性能化が進む情報処理機器や携帯端末での利用が可能である。また、光情報伝送の損失が極めて小さく、高信頼性で各種ビットレートで高速大容量情報伝送技術の提供が実現できる。 The present invention is an opto-electric composite wiring board in which a photoelectric element is mounted on the surface of an optical waveguide as a next-generation high-speed and large-capacity information transmission technology. It can be used in information processing equipment and portable terminals whose performance is increasing. In addition, the loss of optical information transmission is extremely small, and it is possible to provide a high-speed and large-capacity information transmission technology at various bit rates with high reliability.
1・・・光路変換部品
2・・・高屈折率部
3・・・低屈性率部
4・・・反射面
5・・・入射口
6・・・出射口
7・・・スルーホール
7a・・穴
8・・・光導波路
9・・・コア
10・・・クラッド
11・・・セラミック基板
12・・・面発光レーザ(VCSEL)
13・・・フォトダイオード
14・・・電極
15・・・金錫ペースト
16・・・LSI
17・・・Driver
18・・・Receiver
19・・・光学接着剤
20・・・基板
21・・・光信号
22・・・ディテクタ
23・・・プリズム
DESCRIPTION OF SYMBOLS 1 ... Optical path conversion component 2 ... High refractive index part 3 ... Low-refractive-index part 4 ... Reflecting surface 5 ... Entrance 6 ... Output 7 ... Through-hole 7a -Hole 8 ... Optical waveguide 9 ... Core 10 ... Cladding 11 ... Ceramic substrate 12 ... Surface emitting laser (VCSEL)
13 ... Photodiode 14 ... Electrode 15 ... Gold-tin paste 16 ... LSI
17 ... Driver
18 ... Receiver
19 ... Optical adhesive 20 ... Substrate 21 ... Optical signal 22 ... Detector 23 ... Prism
Claims (1)
A first step of forming a hole in the core of the cross-section of the optical waveguide on the wall perpendicular to the surface of the optical waveguide formed on the first substrate is exposed, then, substantially at one end has a core and a cladding 45 The first optical fiber and the second optical fiber having inclined surfaces of an angle of about 90 degrees are arranged at an angle of approximately 90 degrees, and the inclined surfaces are overlapped with each other by pulse excitation laser light. Forming an L-shaped composite, and a part of the outer portion of the corner of the L-shaped composite is removed to the crossing position of the optical axis of the core, and the first optical fiber and the second optical A cross-section of the core of the fiber is exposed, a metal film is formed on the reflection surface, and the metal film forms a direction of an optical path of the core of the first optical fiber and the second optical fiber There the 90-degree optical path conversion part having a light coupling structure to be converted, the 90-degree optical A second step in which the optical axis of the core of the first optical fiber of the conversion part is made to coincide with the optical axis of the core of the optical waveguide and is embedded in the hole and fixed with an optical adhesive; the first step; In parallel with the second step, a third step of forming a through hole in the second substrate aligned with the hole, and then, the through hole is formed in the 90-degree optical path conversion component. And a fourth step of superimposing and integrating the second substrate on the first substrate so as to be fitted onto the second optical fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007133496A JP4967803B2 (en) | 2006-05-18 | 2007-05-18 | Method for manufacturing photoelectric composite substrate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006138643 | 2006-05-18 | ||
JP2006138643 | 2006-05-18 | ||
JP2007133496A JP4967803B2 (en) | 2006-05-18 | 2007-05-18 | Method for manufacturing photoelectric composite substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007334343A JP2007334343A (en) | 2007-12-27 |
JP4967803B2 true JP4967803B2 (en) | 2012-07-04 |
Family
ID=38933820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007133496A Expired - Fee Related JP4967803B2 (en) | 2006-05-18 | 2007-05-18 | Method for manufacturing photoelectric composite substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4967803B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104049315B (en) * | 2013-03-11 | 2017-06-16 | 赛恩倍吉科技顾问(深圳)有限公司 | Optical communication device |
TW201439621A (en) * | 2013-04-03 | 2014-10-16 | Hon Hai Prec Ind Co Ltd | Optical communication device |
KR102396005B1 (en) | 2013-10-21 | 2022-05-10 | 닛산 가가쿠 가부시키가이샤 | Method for manufacturing optical waveguide |
WO2015132849A1 (en) * | 2014-03-03 | 2015-09-11 | 株式会社日立製作所 | Photoelectric conversion module and information device using same |
JP6525240B2 (en) * | 2014-10-24 | 2019-06-05 | 日東電工株式会社 | Opto-electric hybrid board and its manufacturing method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971418A (en) * | 1989-08-31 | 1990-11-20 | At&T Bell Laboratories | Apparatus and method for making low-loss permanent optical fiber splices |
JPH07306332A (en) * | 1994-03-18 | 1995-11-21 | Japan Energy Corp | Apparatus and method for production of optical fiber type optical parts |
US6414262B1 (en) * | 1999-11-03 | 2002-07-02 | Nanyang Technological University | Method and apparatus for laser splicing of optical fibers |
JP4540275B2 (en) * | 2000-12-22 | 2010-09-08 | イビデン株式会社 | IC chip mounting substrate and manufacturing method of IC chip mounting substrate |
JP2003131081A (en) * | 2001-10-23 | 2003-05-08 | Canon Inc | Semiconductor device, photoelectric combined substrate, method for manufacturing the same, and electronics device using the same |
SE522255C2 (en) * | 2002-02-26 | 2004-01-27 | Ericsson Telefon Ab L M | Apparatus and method for melting the ends of two optical fibers |
JP2004191903A (en) * | 2002-10-17 | 2004-07-08 | Toppan Printing Co Ltd | Optical path conversion component and its manufacturing method, and optical surface mounting waveguide using the same |
JP3887371B2 (en) * | 2003-11-27 | 2007-02-28 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Optical transmission board, optical transmission board manufacturing method, and opto-electric integrated circuit |
JP4511291B2 (en) * | 2004-09-07 | 2010-07-28 | 学校法人東海大学 | Manufacturing method of optical connection device and optical connection device |
-
2007
- 2007-05-18 JP JP2007133496A patent/JP4967803B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007334343A (en) | 2007-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101520530B (en) | Novel sideward coupling optical fiber component and processing method thereof | |
EP1359441B1 (en) | Method of manufacturing an optical-electrical wiring board | |
US9692205B2 (en) | Semiconductor laser module | |
JP2005157128A (en) | Optical transmission substrate, method for manufacturing optical transmission substrate, and photoelectric integrated circuit | |
JP4967803B2 (en) | Method for manufacturing photoelectric composite substrate | |
US7242822B2 (en) | Optical connection board and optical signal transmission | |
CN107942450B (en) | A kind of coupling package silicon photon chip | |
JP2002169042A (en) | Optical waveguide coupling structure, optical waveguide and its manufacturing method, and optical device part having optical waveguide and its manufacturing method | |
JP2008015434A (en) | Optical module and its manufacturing method | |
JPWO2007114316A1 (en) | OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL ELECTRONIC HYBRID SUBSTRATE | |
JP2006330697A (en) | Optical coupling structure, substrate with built-in optical transmission function, and method for manufacturing such substrate | |
WO2022246917A1 (en) | Cob process-based planar multi-channel single-fiber bidirectional device | |
JP5244585B2 (en) | OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE | |
JP2004191903A (en) | Optical path conversion component and its manufacturing method, and optical surface mounting waveguide using the same | |
AU2010363044A1 (en) | Photonics module and method of manufacturing | |
JP2004233687A (en) | Optical waveguide substrate and optical module | |
JP2006039255A (en) | Optical coupling device and its manufacturing method | |
JP2004094070A (en) | Optical path converting parts and optical surface mounted waveguide using the parts | |
JP2004334003A (en) | Manufacture method of optical coupler and optical recording device | |
WO2012114785A1 (en) | Fiber mount device, optical module using same, and optical module manufacturing method | |
JP2006251046A (en) | Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method | |
JP4222133B2 (en) | Method for manufacturing optical path conversion element and method for manufacturing optical integrated circuit | |
JP2006052992A (en) | Inspection method of optical waveguide wiring board or photoelectric mixed mounting circuit board | |
WO2024199324A1 (en) | Optical chip, photoelectric conversion apparatus, co-packaged optics chip and optical communication device | |
JP2001221933A (en) | Optical fiber and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100423 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111011 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120306 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120319 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |