Nothing Special   »   [go: up one dir, main page]

JP4965311B2 - Constriction detection control method for consumable electrode AC arc welding - Google Patents

Constriction detection control method for consumable electrode AC arc welding Download PDF

Info

Publication number
JP4965311B2
JP4965311B2 JP2007086277A JP2007086277A JP4965311B2 JP 4965311 B2 JP4965311 B2 JP 4965311B2 JP 2007086277 A JP2007086277 A JP 2007086277A JP 2007086277 A JP2007086277 A JP 2007086277A JP 4965311 B2 JP4965311 B2 JP 4965311B2
Authority
JP
Japan
Prior art keywords
value
reference value
electrode
squeezing
constriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007086277A
Other languages
Japanese (ja)
Other versions
JP2008253997A (en
Inventor
哲生 恵良
太志 西坂
裕康 水取
章博 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2007086277A priority Critical patent/JP4965311B2/en
Priority to CN2008100815365A priority patent/CN101264543B/en
Priority to US12/072,964 priority patent/US8067714B2/en
Publication of JP2008253997A publication Critical patent/JP2008253997A/en
Application granted granted Critical
Publication of JP4965311B2 publication Critical patent/JP4965311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Description

本発明は、消耗電極交流アーク溶接において短絡期間中の溶滴のくびれ現象を検出して溶接電流を急減させて溶接品質を向上させるための消耗電極交流アーク溶接のくびれ検出制御方法に関するものである。   The present invention relates to a constriction detection control method for consumable electrode AC arc welding for detecting a constriction phenomenon of droplets during a short-circuit period in consumable electrode AC arc welding to rapidly reduce the welding current and improve welding quality. .

図5は、短絡期間Tsとアーク期間Taとを繰り返す消耗電極アーク溶接における電流・電圧波形及び溶滴移行を示す図である。同図(A)は消耗電極(以下、溶接ワイヤ1という)を通電する溶接電流Iwの時間変化を示し、同図(B)は溶接ワイヤ1・母材2間に印加する溶接電圧Vwの時間変化を示し、同図(C)〜(E)は溶滴1aの移行の様子を示す。以下、同図を参照して説明する。   FIG. 5 is a diagram showing current / voltage waveforms and droplet transfer in consumable electrode arc welding in which the short-circuit period Ts and the arc period Ta are repeated. FIG. 4A shows the change over time in the welding current Iw for energizing the consumable electrode (hereinafter referred to as welding wire 1), and FIG. 4B shows the time of the welding voltage Vw applied between the welding wire 1 and the base material 2. FIG. FIGS. 3C to 3E show the transition of the droplet 1a. Hereinafter, a description will be given with reference to FIG.

時刻t1〜t3の短絡期間Ts中は溶接ワイヤ1先端の溶滴1aが母材2と短絡した状態にあり、同図(A)に示すように、溶接電流Iwは次第に増加し、同図(B)に示すように、溶接電圧Vwは短絡状態にあるために数V程度の低い値となる。同図(C)に示すように、時刻t1において溶滴1aが母材2と接触して短絡状態に入る。その後、同図(D)に示すように、溶滴1aを通電する溶接電流Iwによる電磁的ピンチ力によって溶滴1a上部にくびれ1bが発生する。そしてこのくびれ1bが急速に進行して、時刻t3において同図(E)に示すように、溶滴1aは溶接ワイヤ1から溶融池2aへと移行しアーク3が再発生する。   During the short-circuit period Ts from time t1 to t3, the droplet 1a at the tip of the welding wire 1 is short-circuited with the base material 2, and as shown in FIG. As shown in B), since the welding voltage Vw is in a short circuit state, the welding voltage Vw becomes a low value of about several volts. As shown in FIG. 5C, the droplet 1a comes into contact with the base material 2 at a time t1 to enter a short circuit state. Thereafter, as shown in FIG. 4D, a constriction 1b is generated at the upper part of the droplet 1a by an electromagnetic pinch force generated by a welding current Iw for energizing the droplet 1a. And this constriction 1b advances rapidly, and as shown to the same figure (E) at the time t3, the droplet 1a transfers from the welding wire 1 to the molten pool 2a, and the arc 3 regenerates.

上記のくびれ現象が発生すると、数百μs程度の極短時間後に短絡が開放されてアーク3が再発生する。すなわち、このくびれ現象は短絡開放の前兆現象となる。くびれ1bが発生すると、溶接電流Iwの通電路がくびれ部分で狭くなるために、くびれ部分の抵抗値が増大する。この抵抗値の増大は、くびれが進行してくびれ部分がより狭くなるほど大きくなる。したがって、短絡期間Ts中において溶接ワイヤ1・母材2間の抵抗値の変化を検出することでくびれ現象の発生及び進行を検出することができる。この抵抗値の変化は、(溶接電圧Vw)/(溶接電流Iw)によって算出することができる。また、上述したように、くびれ発生時間は極短時間であるために、同図(A)に示すように、この期間中の溶接電流Iwの変化は小さい。このために、抵抗値の変化に代えて溶接電圧Vwの変化によってもくびれ現象の発生を検出することができる。具体的なくびれ検出方法としては、短絡期間Ts中の抵抗値又は溶接電圧値Vwの変化率(微分値)を算出し、この変化率が予め定めたくびれ検出基準値に達したことによってくびれ検出を行う方法がある。また、他の方法として、同図(B)に示すように、短絡期間Ts中のくびれ発生前の安定した短絡電圧値Vsからの電圧上昇値ΔVを算出し、時刻t2においてこの電圧上昇値ΔVが予め定めたくびれ検出基準値Vtnに達したことによってくびれ検出を行う方法がある。以下の説明では、くびれ検出方法が上記の電圧上昇値ΔVによる場合について説明するが、従来から種々提案されている他の方法であっても良い。時刻t3のアーク再発生の検出は、溶接電圧Vwが短絡/アーク判別値Vta以上になったことを判別して簡単に行うことができる。ちなみに、Vw<Vtaの期間が短絡期間Tsとなり、Vw≧Vtaの期間がアーク期間Taとなる。時刻t2〜t3のくびれ発生を検出してからアーク再発生までの時間を、以下くびれ検出期間Tnと呼ぶことにする。時刻t3においてアークが再発生すると、同図(A)に示すように、溶接電流Iwは急上昇した後になだらかに減少し、同図(B)に示すように、溶接電圧Vwは数十V程度のアーク電圧値になる。時刻t3〜t4のアーク期間Ta中は、溶接ワイヤ1先端が溶融されて溶滴1aが形成される。以後、時刻t1〜t4の期間の動作を繰り返す。   When the above-mentioned constriction phenomenon occurs, the short circuit is released after an extremely short time of about several hundred μs, and the arc 3 is regenerated. That is, this constriction phenomenon is a precursor of short circuit opening. When the constriction 1b occurs, the conduction path of the welding current Iw becomes narrow at the constricted portion, and the resistance value of the constricted portion increases. The increase in the resistance value increases as the constriction progresses and the constricted portion becomes narrower. Therefore, the occurrence and progress of the constriction phenomenon can be detected by detecting the change in resistance value between the welding wire 1 and the base material 2 during the short-circuit period Ts. This change in resistance value can be calculated by (welding voltage Vw) / (welding current Iw). Further, as described above, since the constriction occurrence time is extremely short, the change in the welding current Iw during this period is small as shown in FIG. For this reason, the occurrence of the constriction phenomenon can be detected by the change of the welding voltage Vw instead of the change of the resistance value. As a specific necking detection method, a change rate (differential value) of the resistance value or the welding voltage value Vw during the short-circuit period Ts is calculated, and the necking detection is performed when the rate of change reaches a predetermined necking detection reference value. There is a way to do. As another method, as shown in FIG. 5B, a voltage increase value ΔV from a stable short-circuit voltage value Vs before occurrence of constriction during the short-circuit period Ts is calculated, and this voltage increase value ΔV is calculated at time t2. There is a method of detecting the squeezing when the squeezing reaches a predetermined squeezing detection reference value Vtn. In the following description, a case in which the squeezing detection method is based on the above-described voltage increase value ΔV will be described, but other methods that have been proposed in the past may be used. Detection of arc reoccurrence at time t3 can be easily performed by determining that the welding voltage Vw has become equal to or greater than the short circuit / arc determination value Vta. Incidentally, the period of Vw <Vta is the short circuit period Ts, and the period of Vw ≧ Vta is the arc period Ta. The time from the occurrence of squeezing at times t2 to t3 to the reoccurrence of the arc is hereinafter referred to as a squeezing detection period Tn. When the arc is regenerated at the time t3, the welding current Iw gradually decreases after rapidly increasing as shown in FIG. 9A, and the welding voltage Vw is about several tens of volts as shown in FIG. Arc voltage value. During the arc period Ta from time t3 to t4, the tip of the welding wire 1 is melted to form a droplet 1a. Thereafter, the operation in the period from time t1 to t4 is repeated.

上述した短絡を伴う溶接では、時刻t3においてアーク3が再発生したときのアーク再発生時電流値Iaが大電流値であると、アーク3から溶融池2aへのアーク力が急峻に大きくなり、大量のスパッタが発生する。すなわち、アーク再発生時電流値Iaの値に略比例してスパッタ発生量が増加する。したがって、スパッタの発生を抑制するためには、このアーク再発生時電流値Iaを小さくする必要がある。このための方法として、上記のくびれ現象の発生を検出して溶接電流Iwを急減させてアーク再発生時電流値Iaを小さくするくびれ検出制御方法を付加した溶接電源が従来から種々提案されている。以下、この従来技術について説明する。   In the welding with short circuit described above, when the arc regeneration current value Ia when the arc 3 is regenerated at the time t3 is a large current value, the arc force from the arc 3 to the molten pool 2a increases sharply. A large amount of spatter is generated. That is, the amount of spatter generated increases substantially in proportion to the current value Ia at the time of arc re-generation. Therefore, in order to suppress the occurrence of sputtering, it is necessary to reduce the current value Ia at the time of arc re-occurrence. As a method for this, various welding power sources have been proposed in which a constriction detection control method is added to detect the occurrence of the above-mentioned constriction phenomenon, to rapidly reduce the welding current Iw and to reduce the current value Ia at the time of arc reoccurrence. . Hereinafter, this prior art will be described.

図6は、従来技術のくびれ検出制御方法を採用した溶接電源のブロック図である。溶接電源PSは、一般的な消耗電極アーク溶接用の溶接電源である。トランジスタTRは出力に直列に挿入され、それと並列に抵抗器Rが接続されている。電圧検出回路VDは、溶接電圧Vwを検出して、電圧検出信号Vdを出力する。くびれ検出回路NDは、この電圧検出信号Vdを入力として、短絡期間Ts中に上述した電圧上昇値ΔVが予め定めたくびれ検出基準値Vtnに達した時点でHighレベルにセットされ、上記の電圧検出信号Vdの値が予め定めた短絡/アーク判別値Vtaに達した時点でLowレベルにリセットされるくびれ検出信号Ndを出力する。すなわち、このくびれ検出信号Ndは、上述したくびれ検出期間Tnの間Highレベルになる。駆動回路DRは、このくびれ検出信号NdがLowレベルのとき(非くびれ検出時)は上記のトランジスタTRをオン状態にする駆動信号Drを出力する。したがって、上記のトランジスタTRは、上記のくびれ検出信号NdがHighレベルのとき(くびれ検出時)はオフ状態になる。   FIG. 6 is a block diagram of a welding power source employing a squeezing detection control method of the prior art. The welding power source PS is a general welding power source for consumable electrode arc welding. The transistor TR is inserted in series with the output, and a resistor R is connected in parallel therewith. The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The squeezing detection circuit ND receives this voltage detection signal Vd, and is set to a high level when the above-mentioned voltage rise value ΔV reaches a predetermined squeezing detection reference value Vtn during the short-circuit period Ts. When the value of the signal Vd reaches a predetermined short-circuit / arc discrimination value Vta, a squeezing detection signal Nd that is reset to a low level is output. In other words, the squeezing detection signal Nd becomes High level during the above-described squeezing detection period Tn. When the squeezing detection signal Nd is at a low level (when non-necking is detected), the driving circuit DR outputs a driving signal Dr that turns on the transistor TR. Therefore, the transistor TR is turned off when the squeezing detection signal Nd is at a high level (when squeezing is detected).

図7は、上記の溶接電源の各信号のタイミングチャートである。同図(A)は溶接電流Iwを示し、同図(B)は溶接電圧Vwを示し、同図(C)はくびれ検出信号Ndを示し、同図(D)は駆動信号Drを示す。以下、同図を参照して説明する。   FIG. 7 is a timing chart of each signal of the welding power source. (A) shows the welding current Iw, (B) shows the welding voltage Vw, (C) shows the squeezing detection signal Nd, and (D) shows the drive signal Dr. Hereinafter, a description will be given with reference to FIG.

同図において、時刻t2〜t3のくびれ検出期間Tn以外の期間は、同図(C)に示すように、くびれ検出信号NdはLowレベルであるので、同図(D)に示すように、駆動信号DrはHighレベルになる。この結果、トランジスタTRはオン状態になるので、通常の消耗電極アーク溶接用の溶接電源と同一の動作となる。   In the figure, during the period other than the squeezing detection period Tn from time t2 to t3, the squeezing detection signal Nd is at a low level as shown in FIG. The signal Dr becomes a high level. As a result, since the transistor TR is turned on, the operation is the same as that of a normal welding power source for consumable electrode arc welding.

時刻t2において、同図(B)に示すように、短絡期間Ts中に溶接電圧Vwが上昇して電圧上昇値ΔVが予め定めたくびれ検出基準値Vtn以上になったことを検出して溶滴にくびれが発生したと判別すると、同図(C)に示すように、くびれ検出信号NdがHighレベルになる。これに応動して、同図(D)に示すように、駆動信号DrはLowレベルになるので、トランジスタTRはオフ状態になる。この結果、抵抗器Rが溶接電流Iwの通電路に挿入される。この抵抗器Rの値は短絡負荷(数十mΩ)の10倍以上大きな値に設定されるために、同図(A)に示すように、溶接電源内の直流リアクトル及びケーブルのリアクトルに蓄積されたエネルギーが急放電されて溶接電流Iwは急激に減少する。時刻t3において、短絡が開放されてアークが再発生すると、同図(B)に示すように、溶接電圧Vwが予め定めた短絡/アーク判別値Vta以上になる。これを検出して、同図(C)に示すように、くびれ検出信号NdはLowレベルになり、同図(D)に示すように、駆動信号DrはHighレベルになる。この結果、トランジスタTRはオン状態になり、通常の消耗電極アーク溶接の制御となる。この動作によって、アーク再発生時(時刻t3)のアーク再発生時電流値Iaを小さくすることができ、スパッタの発生を抑制することができる。   At time t2, as shown in FIG. 5B, it is detected that the welding voltage Vw has increased during the short-circuit period Ts and the voltage increase value ΔV has become equal to or greater than a predetermined squeezing detection reference value Vtn. If it is determined that constriction has occurred, the constriction detection signal Nd becomes High level as shown in FIG. In response to this, as shown in FIG. 4D, the drive signal Dr goes to a low level, so that the transistor TR is turned off. As a result, the resistor R is inserted into the energization path of the welding current Iw. Since the value of this resistor R is set to a value that is at least 10 times larger than the short-circuit load (several tens of mΩ), it is accumulated in the DC reactor in the welding power source and the cable reactor as shown in FIG. As a result, the welding current Iw decreases rapidly. At time t3, when the short circuit is released and the arc is regenerated, the welding voltage Vw becomes equal to or higher than a predetermined short circuit / arc discrimination value Vta as shown in FIG. By detecting this, the squeezing detection signal Nd becomes the Low level as shown in FIG. 5C, and the drive signal Dr becomes the High level as shown in FIG. As a result, the transistor TR is turned on, and normal consumable electrode arc welding is controlled. By this operation, the arc regeneration current value Ia at the time of arc regeneration (time t3) can be reduced, and the occurrence of sputtering can be suppressed.

上記の説明は、直流の消耗電極アーク溶接の場合であるが、短絡を伴う消耗電極交流アーク溶接においても同様である。以下、消耗電極交流アーク溶接のくびれ検出制御方法について説明する。   The above description is for the case of DC consumable electrode arc welding, but the same applies to consumable electrode AC arc welding with short circuit. A constriction detection control method for consumable electrode AC arc welding will be described below.

図8は、消耗電極交流アーク溶接のくびれ検出制御方法を示す電流・電圧波形図である。同図(A)は極性切換信号Spnを示し、同図(B)は溶接電流Iwを示し、同図(C)は溶接電圧Vwを示す。以下、同図を参照して説明する。   FIG. 8 is a current / voltage waveform diagram showing a constriction detection control method for consumable electrode AC arc welding. (A) shows the polarity switching signal Spn, (B) shows the welding current Iw, and (C) shows the welding voltage Vw. Hereinafter, a description will be given with reference to FIG.

極性切換信号Spnは、同図(A)に示すように、予め定めた電極プラス極性期間Tepの間はHighレベルとなり、予め定めた電極マイナス極性期間Tenの間はLowレベルになる。溶接電源の出力極性は、この極性切換信号Spnに従って切り換わる。同図(B)及び同図(C)において、0A又は0Vから上が電極プラス極性EPを示し、下が電極マイナス極性ENを示す。また、溶接電流Iw及び溶接電圧Vwの値は、特に記載しない限り各々の極性における絶対値のことを表すものとする。   The polarity switching signal Spn is at a high level during a predetermined electrode plus polarity period Tep and is at a low level during a predetermined electrode minus polarity period Ten, as shown in FIG. The output polarity of the welding power source is switched according to this polarity switching signal Spn. In FIG. 5B and FIG. 6C, the upper side from 0A or 0V indicates the electrode positive polarity EP, and the lower side indicates the electrode negative polarity EN. Moreover, unless otherwise indicated, the values of the welding current Iw and the welding voltage Vw represent absolute values in the respective polarities.

電極プラス極性期間Tep中の時刻t1において短絡が発生すると、同図(B)に示すように、溶接電流Iwが増加し、同図(C)に示すように、溶接電圧Vwは数V程度の低い短絡電圧値Vsとなる。短絡期間Ts中に溶滴にくびれが発生すると、同図(C)に示すように、溶接電圧Vwは増加して時刻t2において電圧上昇値ΔVがくびれ検出基準値Vtnに達する。これに応動して、同図(B)に示すように、溶接電流Iwは急減する。そして、時刻t3においてアークが再発生する。このアーク再発生時の電流値Iaが低い値であるので、スパッタの発生は非常に少なくなる。アーク期間Ta中は、同図(B)に示すように、溶接電流Iwは急上昇した後に緩やかに減少し、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値となる。電極プラス極性期間Tepの間、上記の動作を繰り返す。電極プラス極性期間Tepは数百ms程度に設定されることが多いので、1期間中の短絡回数は数回から数十回程度である。   When a short circuit occurs at time t1 during the electrode positive polarity period Tep, the welding current Iw increases as shown in FIG. 5B, and the welding voltage Vw is about several volts as shown in FIG. The short-circuit voltage value Vs becomes low. When constriction occurs in the droplet during the short-circuit period Ts, the welding voltage Vw increases and the voltage increase value ΔV reaches the constriction detection reference value Vtn at time t2, as shown in FIG. In response to this, the welding current Iw rapidly decreases as shown in FIG. Then, the arc is regenerated at time t3. Since the current value Ia at the time of this arc re-generation is a low value, the occurrence of spatter becomes very small. During the arc period Ta, as shown in FIG. 5B, the welding current Iw suddenly increases and then gradually decreases. As shown in FIG. 5C, the welding voltage Vw is an arc voltage value of several tens of volts. Become. The above operation is repeated during the electrode positive polarity period Tep. Since the electrode positive polarity period Tep is often set to about several hundred ms, the number of short circuits during one period is about several to several tens.

時刻t5において、同図(A)に示すように、極性切換信号SpnがLowレベルに変化すると、溶接電源の出力極性は電極マイナス極性ENにに切り換わる。時刻t5に短絡が発生して短絡期間Tsになると。上記と同様に、溶接電流Iwは増加し溶接電圧Vwは低い値の短絡電圧値Vsになる。溶滴にくびれが発生して時刻t6において、同図(C)に示すように、電圧上昇値ΔVが上記のくびれ検出基準値Vtnに達すると、同図(B)に示すように、溶接電流Iwは急減する。そして、時刻t7においてアークが再発生すると、同図(B)に示すように、溶接電流Iwは急上昇した後に緩やかに減少し、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値になる。この場合も、時刻t7のアーク再発生時電流値Iaが低い値であるので、スパッタの発生は非常に少なくなる。電極マイナス極性期間Ten中、上記の動作を繰り返す。この電極マイナス極性期間Tenも数百ms程度に設定されるので、1期間の短絡回数は上記と同様に数回から数十回程度である。   At time t5, as shown in FIG. 5A, when the polarity switching signal Spn changes to the low level, the output polarity of the welding power source is switched to the electrode negative polarity EN. When a short circuit occurs at time t5 and a short circuit period Ts is reached. Similarly to the above, the welding current Iw increases and the welding voltage Vw becomes a short-circuit voltage value Vs having a low value. When the constriction occurs in the droplet at time t6, when the voltage rise value ΔV reaches the above constriction detection reference value Vtn as shown in FIG. 10C, the welding current is shown in FIG. Iw decreases rapidly. When the arc is regenerated at time t7, the welding current Iw increases rapidly as shown in FIG. 5B, and then gradually decreases. As shown in FIG. 5C, the welding voltage Vw is several tens of volts. Arc voltage value. Also in this case, since the current value Ia at the time of arc re-occurrence at time t7 is a low value, the occurrence of spatter becomes very small. The above operation is repeated during the electrode negative polarity period Ten. Since this electrode negative polarity period Ten is also set to about several hundred ms, the number of short circuits in one period is several to several tens as in the above.

上述したように、消耗電極交流アーク溶接においてもくびれ検出制御を行うことで、スパッタの発生を大幅に削減することができ高品質な溶接が可能となる。   As described above, by performing constriction detection control even in consumable electrode AC arc welding, the occurrence of spatter can be significantly reduced, and high-quality welding can be achieved.

上述したくびれ検出制御においては、的確にくびれ現象の発生を検出することが、スパッタを大幅に低減して高品質な溶接ができるかの要点となる。したがって、くびれ検出の感度(くびれ検出基準値Vtnの設定)を種々の溶接条件ごとに適正化する必要がある。溶接条件としては、被溶接物の材質、継手、溶接姿勢、ワイヤ突出し長さ、送給速度、溶接速度等多数の条件がある。これらの溶接条件ごとにくびれ検出基準値Vtnを適正化するために、従来技術では、図7に示すように、くびれ検出期間Tn又はアーク再発生時電流Iaをフィードバック制御して目標値になるようにくびれ検出基準値Vtnを自動調整する方法が使用されている。また、溶接電源のパネルにくびれ検出基準値Vtnの調整ツマミを設けたものもある。(従来技術の例としては、特許文献1、2を参照。)   In the squeezing detection control described above, accurately detecting the occurrence of a squeezing phenomenon is the main point of whether or not high quality welding can be achieved by greatly reducing spatter. Therefore, it is necessary to optimize the sensitivity of the necking detection (setting of the necking detection reference value Vtn) for each of various welding conditions. As welding conditions, there are a number of conditions such as the material of the workpiece, the joint, the welding posture, the wire protrusion length, the feeding speed, and the welding speed. In order to optimize the squeezing detection reference value Vtn for each of these welding conditions, as shown in FIG. 7, in the prior art, the squeezing detection period Tn or the arc regeneration current Ia is feedback-controlled so as to become a target value. A method of automatically adjusting the necking detection reference value Vtn is used. There is also a panel of a welding power source in which a constriction detection reference value Vtn adjustment knob is provided. (See Patent Documents 1 and 2 for examples of the prior art.)

特開2004−114088号公報JP 2004-114088 A 特開2006−28万1219号公報JP 2006-281219 A

上述した従来技術の消耗電極交流アーク溶接のくびれ検出制御方法では、交流の溶接電圧Vwの絶対値を検出して溶接電源の定電圧制御及びくびれ検出制御に使用している。これは制御回路において直流信号とした方が処理が容易になるためである。したがって、消耗電極交流アーク溶接のくびれ検出制御方法においても、溶接条件ごとのくびれ検出基準値Vtnは1つの値に設定されるのが通常である。このために、電極プラス極性期間Tep及び電極マイナス極性期間Ten共に同一のくびれ検出基準値Vtnに設定されていた。   In the constriction detection control method of the consumable electrode AC arc welding of the prior art described above, the absolute value of the AC welding voltage Vw is detected and used for constant voltage control and constriction detection control of the welding power source. This is because the processing becomes easier when a DC signal is used in the control circuit. Therefore, also in the constriction detection control method of consumable electrode AC arc welding, the constriction detection reference value Vtn for each welding condition is usually set to one value. For this reason, the same squeezing detection reference value Vtn is set for both the electrode positive polarity period Tep and the electrode negative polarity period Ten.

しかし、電極プラス極性EPと電極マイナス極性ENとでは、溶滴の形成状態及びくびれの発生状態が大きく異なっている。この結果、くびれ検出感度であるくびれ検出基準値Vtnを電極プラス極性EPで適正化すると電極マイナス極性ENでは適正でない状態となり、その逆も同様である。また、上述したくびれ検出基準値Vtnの適正化方法を使用しても、溶接条件ごとには適正化されるが、極性ごとには適正化されない。このために。消耗電極交流アーク溶接においては、スパッタ発生量の削減効果が十分でない場合があった。   However, the electrode positive polarity EP and the electrode negative polarity EN are greatly different in the formation state of the droplets and the state of occurrence of the constriction. As a result, if the squeezing detection reference value Vtn, which is the squeezing detection sensitivity, is optimized with the electrode plus polarity EP, the electrode minus polarity EN is not suitable, and vice versa. Even if the above-described method for optimizing the squeezing detection reference value Vtn is used, it is optimized for each welding condition but not for each polarity. For this. In consumable electrode AC arc welding, the effect of reducing the amount of spatter generated may not be sufficient.

そこで、本発明は、消耗電極交流アーク溶接においてくびれ検出感度を適正化することができスパッタ発生量の削減効果を最大限発揮させることができる消耗電極交流アーク溶接のくびれ検出制御方法を提供することを目的とする。   Therefore, the present invention provides a constriction detection control method for consumable electrode AC arc welding that can optimize the constriction detection sensitivity in consumable electrode AC arc welding and can maximize the effect of reducing the amount of spatter generated. With the goal.

上述した課題を解決するために、第1の発明は、溶接電源の出力を電極プラス極性と電極マイナス極性とに交互に切り換えると共に前記両極性中は消耗電極と母材との間でアーク発生状態と短絡状態とを繰り返す消耗電極交流アーク溶接にあって、前記両極性中に短絡状態からアークが再発生する前兆現象である溶滴のくびれ現象を消耗電極・母材間の電圧値又は抵抗値の変化がくびれ検出基準値に達したことによって検出し、このくびれ現象を検出すると短絡負荷に通電する溶接電流を急減させて低電流値の状態でアークが再発生するように出力制御する消耗電極交流アーク溶接のくびれ検出制御方法において、
前記くびれ検出基準値を、前記電極プラス極性中は第1くびれ検出基準値に設定し、前記電極マイナス極性中は前記第1くびれ検出基準値の絶対値とは異なった値の第2くびれ検出基準値に設定し、これら第1及び第2くびれ検出基準値は各々対応する極性での溶接状態が良好になるように設定されることを特徴とする消耗電極交流アーク溶接のくびれ検出制御方法である。
In order to solve the above-described problem, the first invention is to alternately switch the output of the welding power source between an electrode positive polarity and an electrode negative polarity, and an arc is generated between the consumable electrode and the base material during the both polarities. In consumable electrode AC arc welding that repeats a short circuit and a short circuit state, the voltage or resistance value between the consumable electrode and the base material is a constriction phenomenon of droplets, which is a precursor to the occurrence of an arc again from the short circuit state in both polarities. A consumable electrode that controls the output so that the arc is regenerated at a low current value by rapidly reducing the welding current that is applied to the short-circuit load when this change is detected by detecting that the change has reached the squeezing detection reference value. In the constriction detection control method of AC arc welding,
The squeezing detection reference value is set to a first squeezing detection reference value during the electrode positive polarity, and a second squeezing detection reference having a value different from the absolute value of the first squeezing detection reference value during the electrode negative polarity. The constriction detection control method for consumable electrode AC arc welding is characterized in that the first and second squeezing detection reference values are set so that the welding state with the corresponding polarity is good. .

第2の発明は、前記第1くびれ検出基準値の絶対値を前記第2くびれ検出基準値の絶対値よりも小さな値に設定する、ことを特徴とする第1の発明記載の消耗電極交流アーク溶接のくびれ検出制御方法である。   According to a second aspect of the present invention, the absolute value of the first squeezing detection reference value is set to a value smaller than the absolute value of the second squeezing detection reference value. This is a welding necking detection control method.

第3の発明は、前記第2くびれ検出基準値は、前記第1くびれ検出基準値を入力とする予め定めた関数によって設定される、ことを特徴とする第1又は第2の発明記載の消耗電極交流アーク溶接のくびれ検出制御方法である。   According to a third aspect of the invention, the second squeezing detection reference value is set by a predetermined function that receives the first squeezing detection reference value as input. This is a constriction detection control method for electrode AC arc welding.

第4の発明は、極性が切り換わった時点から短絡発生が所定回数に達するまでの期間中は、前記くびれ検出基準値の絶対値を前記第1くびれ検出基準値の絶対値と前記第2くびれ検出基準値の絶対値との中間値に設定する、ことを特徴とする第1〜第3の発明のいずれか1項に記載の消耗電極交流アーク溶接のくびれ検出制御方法である。   According to a fourth aspect of the present invention, the absolute value of the squeezing detection reference value is set to the absolute value of the first squeezing detection reference value and the second squeezing value during a period from when the polarity is switched until the occurrence of a short circuit reaches a predetermined number of times. The constriction detection control method for consumable electrode AC arc welding according to any one of the first to third inventions, wherein the constriction electrode is set to an intermediate value with respect to an absolute value of a detection reference value.

第5の発明は、前記くびれ検出時点からアークが再発生する時点までの期間であるくびれ検出期間を前記電極プラス極性中と前記電極マイナス極性中とに分けて検出し、
前記第1くびれ検出基準値は前記電極プラス極性中のくびれ検出期間が予め定めた第1くびれ検出期間設定値と等しくなるように自動設定され、
前記第2くびれ検出基準値は前記電極マイナス極性中のくびれ検出期間が予め定めた第2くびれ検出期間設定値と等しくなるように自動設定される、ことを特徴とする第1又は第4の発明記載の消耗電極交流アーク溶接のくびれ検出制御方法である。
In a fifth aspect of the invention, a constriction detection period, which is a period from the constriction detection time point to a time point when an arc is regenerated, is detected separately for the electrode positive polarity and the electrode negative polarity,
The first squeezing detection reference value is automatically set so that a squeezing detection period in the electrode plus polarity is equal to a predetermined first squeezing detection period setting value,
The second squeezing detection reference value is automatically set so that a squeezing detection period in the negative polarity of the electrode is equal to a predetermined second squeezing detection period setting value. It is a constriction detection control method of the consumable electrode alternating current arc welding of description.

本発明によれば、各極性ごとにくびれ検出基準値を適正値に設定することによって、消耗電極交流アーク溶接におけるくびれ検出制御を安定化させることができる。このために、消耗電極交流アーク溶接において、スパッタ発生量を大幅に削減することができ、高品質溶接を行うことができる。   According to the present invention, the squeezing detection control in the consumable electrode AC arc welding can be stabilized by setting the squeezing detection reference value to an appropriate value for each polarity. For this reason, in the consumable electrode AC arc welding, the amount of spatter can be greatly reduced, and high-quality welding can be performed.

さらに、第3の発明によれば、第2くびれ検出基準値を、第1くびれ検出基準値を入力とする予め定めた関数によって設定することによって、上記の効果に加えて、溶接条件ごとの第2くびれ検出基準値の設定が容易になる。   Furthermore, according to the third invention, the second squeezing detection reference value is set by a predetermined function having the first squeezing detection reference value as an input. Setting of the 2-necking detection reference value becomes easy.

さらに、第4の発明によれば、極性が切り換わった時点から短絡発生が所定回数に達するまでの期間中は、くびれ検出基準値の絶対値を第1くびれ検出基準値の絶対値と第2くびれ検出基準値の絶対値との中間値に設定することによって、極性切換時の過渡的な状態においてもくびれ検出制御を安定化することができる。このために、スパッタの削減効果がさらに大きくなる。   Further, according to the fourth invention, during the period from when the polarity is switched until the occurrence of the short circuit reaches a predetermined number of times, the absolute value of the squeezing detection reference value is set to the absolute value of the first squeezing detection reference value and the second value. By setting an intermediate value with the absolute value of the squeezing detection reference value, squeezing detection control can be stabilized even in a transient state at the time of polarity switching. For this reason, the sputter reduction effect is further increased.

さらに、第5の発明によれば、第1くびれ検出基準値及び第2くびれ検出基準値をくびれ検出期間を利用して自動設定することによって常に適正値に設定することができるので、設定の手間を大幅に低減し、かつ,安定した低スパッタ制御性能を得ることができる.   Furthermore, according to the fifth aspect, the first squeezing detection reference value and the second squeezing detection reference value can be always set to appropriate values by automatically setting using the squeezing detection period. Can be greatly reduced, and stable low sputter control performance can be obtained.

以下に本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態に係る消耗電極交流アーク溶接のくびれ検出制御方法を搭載した溶接電源のブロック図である。以下、同図を参照して各回路について説明する。   FIG. 1 is a block diagram of a welding power source equipped with a constriction detection control method for consumable electrode AC arc welding according to an embodiment of the present invention. Hereinafter, each circuit will be described with reference to FIG.

インバータ回路INVは、3相200V等の商用電源を整流し、後述するパルス幅変調信号Pwmに従ってインバータ制御して高周波交流を出力する。高周波変圧器INTは、この高周波交流電圧を溶接に適した電圧に降圧する。2次整流器D2a〜D2dは、降圧された高周波交流を整流して、正及び負の直流電圧を出力する。リアクトルWLは、この直流電圧を平滑する。   The inverter circuit INV rectifies a commercial power source such as a three-phase 200V, and outputs high-frequency alternating current by performing inverter control according to a pulse width modulation signal Pwm described later. The high frequency transformer INT steps down the high frequency AC voltage to a voltage suitable for welding. Secondary rectifiers D2a to D2d rectify the stepped-down high-frequency alternating current and output positive and negative direct-current voltages. The reactor WL smoothes this DC voltage.

電極プラス極性スイッチング素子PTR及び電極マイナス極性スイッチング素子NTRは、上記の正負出力を電極プラス極性EP又は電極マイナス極性ENに切り換える。電極プラス極性スイッチング素子PTRが導通状態になると溶接電源の出力は電極プラス極性EPとなり、他方、電極マイナス極性スイッチング素子NTRが導通状態になると電極マイナス極性ENとなる。   The electrode positive polarity switching element PTR and the electrode negative polarity switching element NTR switch the positive / negative output to the electrode positive polarity EP or the electrode negative polarity EN. When the electrode positive polarity switching element PTR becomes conductive, the output of the welding power source becomes the electrode positive polarity EP, while when the electrode negative polarity switching element NTR becomes conductive, the output becomes the electrode negative polarity EN.

第1スイッチング素子TR1と第1抵抗器R1とを直列に接続した回路を上記の電極プラス極性スイッチング素子PTRに並列に接続し、さらに、第2スイッチング素子TR2と第2抵抗器R2とを直列に接続した回路を上記の電極マイナス極性スイッチング素子NTRに並列に接続する。   A circuit in which the first switching element TR1 and the first resistor R1 are connected in series is connected in parallel to the electrode positive polarity switching element PTR, and further, the second switching element TR2 and the second resistor R2 are connected in series. The connected circuit is connected in parallel to the electrode negative polarity switching element NTR.

溶接ワイヤ1はワイヤ送給装置の送給ロール5の回転によって溶接トーチ4を通って送給されて、母材2との間にアーク3が発生し、アーク3には交流の溶接電圧Vw及び溶接電流Iwが供給される。   The welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 of the wire feeding device, and an arc 3 is generated between the welding wire 1 and the base material 2. A welding current Iw is supplied.

電圧検出回路VDは、交流の溶接電圧Vwを検出して絶対値に変換して電圧検出信号Vdを出力する。短絡判別回路SDは、この電圧検出信号Vdを入力として短絡判別信号Sdを出力する。くびれ検出基準値設定回路VTNは、この短絡判別信号Sd及び外部からの極性切換信号Spnを入力として、図2で後述するように、極性切換信号SpnがHighレベル(電極プラス極性EP)のときは予め定めた第1くびれ検出基準値Vtn1をくびれ検出基準値信号Vtnとして出力し、Lowレベル(電極マイナス極性EN)のときは予め定めた第2くびれ検出基準値Vtn2をくびれ検出基準値信号Vtnとして出力する。さらに、極性が切り換わった時点から上記の短絡判別信号Sdによって短絡の発生をカウントし、その値が所定回数に達するまでは第3くびれ検出基準値Vtn3を上記のくびれ検出基準値信号Vtnとして出力する。この第3くびれ検出基準値Vtn3は、第1くびれ検出基準値Vtn1と第2くびれ検出基準値Vtn2との中間値として設定され、例えば、Vtn3=(Vtn1+Vtn2)/2に設定する。くびれ検出回路NDは、溶接ワイヤ1と母材2との間が短絡状態からアーク状態へと移行する前兆である溶滴のくびれの発生を上述した電圧上昇値ΔVがこのくびれ検出基準値信号Vtnの値に達したことによって検出して、くびれ検出信号Ndを出力する。電極プラス極性スイッチング素子駆動回路EPDは、電源外部からの極性切換信号Spnが電極プラス極性に対応する設定信号(Highレベル)であり、かつ、上記のくびれ検出信号Ndが出力されていない期間(Lowレベルの期間)のみ上記の電極プラス極性スイッチング素子PTRを導通状態にする電極プラス極性スイッチング素子駆動信号Epdを出力する。電極マイナス極性スイッチング素子駆動回路ENDは、上記の極性切換信号Spnが電極マイナス極性に対応する設定信号(Lowレベル)であり、かつ、上記のくびれ検出信号Ndが出力されていない期間(Lowレベルの期間)のみ上記の電極マイナス極性スイッチング素子NTRを導通状態にする電極マイナス極性スイッチング素子駆動信号Endを出力する。   The voltage detection circuit VD detects an AC welding voltage Vw, converts it to an absolute value, and outputs a voltage detection signal Vd. The short circuit determination circuit SD receives the voltage detection signal Vd and outputs a short circuit determination signal Sd. The squeezing detection reference value setting circuit VTN receives the short-circuit determination signal Sd and the polarity switching signal Spn from the outside, and when the polarity switching signal Spn is at a high level (electrode plus polarity EP) as will be described later with reference to FIG. A predetermined first squeezing detection reference value Vtn1 is output as a squeezing detection reference value signal Vtn. When the level is low (electrode negative polarity EN), a predetermined second squeezing detection reference value Vtn2 is used as a squeezing detection reference value signal Vtn. Output. Further, the occurrence of a short circuit is counted from the time when the polarity is switched by the short circuit determination signal Sd, and the third squeezing detection reference value Vtn3 is output as the squeezing detection reference value signal Vtn until the value reaches a predetermined number of times. To do. The third squeezing detection reference value Vtn3 is set as an intermediate value between the first squeezing detection reference value Vtn1 and the second squeezing detection reference value Vtn2, for example, Vtn3 = (Vtn1 + Vtn2) / 2. In the squeezing detection circuit ND, the voltage rise value ΔV described above is the squeezing detection reference value signal Vtn for the occurrence of the squeezing of the droplet, which is a precursor to the transition between the welding wire 1 and the base metal 2 from the short circuit state to the arc state. , And a squeezing detection signal Nd is output. In the electrode positive polarity switching element drive circuit EPD, the polarity switching signal Spn from the outside of the power source is a setting signal (High level) corresponding to the electrode positive polarity, and the above-described squeezing detection signal Nd is not output (Low). The electrode plus polarity switching element drive signal Epd for turning on the electrode plus polarity switching element PTR is output only during the level period). The electrode negative polarity switching element drive circuit END is a period (Low level) in which the polarity switching signal Spn is a setting signal (Low level) corresponding to the electrode negative polarity and the squeezing detection signal Nd is not output. The electrode minus polarity switching element drive signal End that makes the electrode minus polarity switching element NTR conductive is output only during (period).

第1スイッチング素子駆動回路DV1は、上記の極性切換信号Spnが電極プラス極性に対応する設定信号(Highレベル)であり、かつ、上記のくびれ検出信号Ndが出力されている期間(Highレベルの期間)のみ上記の第1スイッチング素子TR1を導通状態にする第1スイッチング素子駆動信号Dv1を出力する。第2スイッチング素子駆動回路DV2は、上記の極性切換信号Spnが電極マイナス極性に対応する設定信号(Lowレベル)であり、かつ、上記のくびれ検出信号Ndが出力されている期間(Highレベルの期間)のみ上記の第2スイッチング素子TR2を導通状態にする第2スイッチング素子駆動信号Dv2を出力する。   The first switching element driving circuit DV1 has a period (High level period) in which the polarity switching signal Spn is a setting signal (High level) corresponding to the electrode positive polarity and the squeezing detection signal Nd is output. ) Only outputs the first switching element drive signal Dv1 that makes the first switching element TR1 conductive. The second switching element drive circuit DV2 has a period (High level period) in which the polarity switching signal Spn is a setting signal (Low level) corresponding to the negative polarity of the electrode and the squeezing detection signal Nd is output. ) Only outputs the second switching element drive signal Dv2 that makes the second switching element TR2 conductive.

したがって、極性切換信号SpnがHighレベル(電極プラス極性)のときは上記の電極プラス極性スイッチング素子PTRが導通状態になり、溶接電流IwはPTR→溶接ワイヤ1→母材2→リアクトルWLの経路で通電する。この状態でくびれ検出信号Ndが出力されると(Highレベル)、上記のインバータ回路INVの動作を停止すると共に、上記の電極プラス極性スイッチング素子PTRをオフ状態にし、他方、第1スイッチング素子TR1を導通状態にする。これによって、リアクトルWLに蓄積されていたエネルギーはR1→TR1→溶接ワイヤ1→母材2→リアクトルWLの経路で放電される。この放電の速度はリアクトルWLのインダクタンス値L[H]及び第1抵抗器R1の抵抗値R[Ω]によって(L/R)の値に略比例する。通常、第1抵抗器R1を挿入しない場合の電源内部抵抗値は0.01〜0.05Ω程度であり、他方、第1抵抗器R1の抵抗値R=0.5Ω程度を選択すると、放電速度(電流急減速度)は約10倍以上速くなる。極性切換信号SpnがLowレベル(電極マイナス極性)の場合も上記と同様にして電流を急減させている。   Therefore, when the polarity switching signal Spn is at a high level (electrode plus polarity), the electrode plus polarity switching element PTR is in a conductive state, and the welding current Iw is in the path of PTR → welding wire 1 → base material 2 → reactor WL. Energize. When the squeezing detection signal Nd is output in this state (High level), the operation of the inverter circuit INV is stopped, the electrode positive polarity switching element PTR is turned off, and the first switching element TR1 is turned on. Make it conductive. As a result, the energy accumulated in the reactor WL is discharged through a route of R1 → TR1 → welding wire 1 → base material 2 → reactor WL. The discharge speed is substantially proportional to the value of (L / R) depending on the inductance value L [H] of the reactor WL and the resistance value R [Ω] of the first resistor R1. Usually, the internal resistance value of the power supply when the first resistor R1 is not inserted is about 0.01 to 0.05Ω. On the other hand, if the resistance value R = about 0.5Ω of the first resistor R1 is selected, the discharge rate The (current rapid deceleration) is about 10 times faster. Even when the polarity switching signal Spn is at the low level (electrode negative polarity), the current is rapidly decreased in the same manner as described above.

電流検出回路IDは、交流の溶接電流Iwを検出して絶対値に変換して電流検出信号Idを出力する。電圧設定回路VRは、所望値の電圧設定信号Vrを出力する。電流設定回路IRは、上記のくびれ検出信号Ndを入力として、短絡期間の溶接電流Iwを設定するための電流設定信号Irを出力する。こに電流設定信号Irは、上記のくびれ検出信号NdがHighレベル(くびれ検出期間Tn)中は数十Aの低電流値となる。電圧誤差増幅回路EVは、上記の電圧設定信号Vrと上記の電圧検出信号Vdとの誤差を増幅して電圧誤差増幅信号Evを出力する。電流誤差増幅回路EIは、上記の電流設定信号Irと上記の電流検出信号Idとの誤差を増幅して電流誤差増幅信号Eiを出力する。外部特性切換回路SCは、上記の短絡判別信号SdがLowレベル(アーク期間)のときはa側に切り換わり上記の電圧誤差増幅信号Evを誤差増幅信号Eaとして出力し、Highレベル(短絡期間)のときはb側に切り換わり上記の電流誤差増幅信号Eiを誤差増幅信号Eaとして出力する。これによって、アーク期間中は定電圧特性となり、短絡期間中は定電流特性となる。パルス幅変調回路PWMは、上記の誤差増幅信号Eaを入力として、上記のインバータ回路INVをパルス幅変調制御するためのパルス幅変調信号Pwmを出力する。   The current detection circuit ID detects an AC welding current Iw, converts it to an absolute value, and outputs a current detection signal Id. The voltage setting circuit VR outputs a voltage setting signal Vr having a desired value. The current setting circuit IR outputs the current setting signal Ir for setting the welding current Iw during the short-circuit period with the squeezing detection signal Nd as an input. The current setting signal Ir has a low current value of several tens of A while the squeezing detection signal Nd is at a high level (squeezing detection period Tn). The voltage error amplification circuit EV amplifies an error between the voltage setting signal Vr and the voltage detection signal Vd and outputs a voltage error amplification signal Ev. The current error amplification circuit EI amplifies an error between the current setting signal Ir and the current detection signal Id and outputs a current error amplification signal Ei. When the short circuit determination signal Sd is at the low level (arc period), the external characteristic switching circuit SC switches to the a side and outputs the voltage error amplification signal Ev as the error amplification signal Ea, and the high level (short circuit period). In this case, the current error amplified signal Ei is output as the error amplified signal Ea by switching to the b side. This provides constant voltage characteristics during the arc period and constant current characteristics during the short circuit period. The pulse width modulation circuit PWM receives the error amplification signal Ea as an input, and outputs a pulse width modulation signal Pwm for performing pulse width modulation control on the inverter circuit INV.

図2は、上述した図1の溶接電源装置における各信号のタイミングチャートである。同図(A)は極性切換信号Spnを示し、同図(B)は溶接電流IWを示し、同図(C)は溶接電圧Vwを示し、同図(D)は短絡判別信号Sdを示し、同図(E)はくびれ検出信号Ndを示し、同図(F)はくびれ検出基準値信号Vtnを示し、同図(G)は電極プラス極性スイッチング素子駆動信号Epdを示し、同図(H)は第1スイッチング素子駆動信号Dv1を示し、同図(I)は電極マイナス極性スイッチング素子駆動信号Endを示し、同図(J)は第2スイッチング素子駆動信号Dv2を示す。同図(F)に示す波形上の1〜3の数字は第1くびれ検出基準値Vtn1、第2くびれ検出基準値Vtn2及び第3くびれ検出基準値Vtn3を略記している。ここで、第3くびれ検出基準値Vtn3の値は、第1くびれ検出基準値Vtn1と第2くびれ検出基準値Vtn2との中間値であり、極性が切り換わってから1回目の短絡期間Tsのくびれ検出基準値信号Vtnの値はこの第3くびれ検出基準値Vtn3になる。2回目以降の短絡期間Tsのくびれ検出基準値信号Vtnの値は、各々の極性に対応した第1くびれ検出基準値Vtn1又は第2くびれ検出基準値Vtn2になる。以下、同図を参照して説明する。   FIG. 2 is a timing chart of each signal in the welding power supply apparatus of FIG. 1 described above. (A) shows the polarity switching signal Spn, (B) shows the welding current IW, (C) shows the welding voltage Vw, (D) shows the short circuit determination signal Sd, (E) shows the squeezing detection signal Nd, (F) shows the squeezing detection reference value signal Vtn, (G) shows the electrode positive polarity switching element drive signal Epd, (H) Represents the first switching element drive signal Dv1, FIG. 10I represents the electrode negative polarity switching element drive signal End, and FIG. 10J represents the second switching element drive signal Dv2. Numbers 1 to 3 on the waveform shown in FIG. 6F abbreviate the first squeezing detection reference value Vtn1, the second squeezing detection reference value Vtn2, and the third squeezing detection reference value Vtn3. Here, the value of the third squeezing detection reference value Vtn3 is an intermediate value between the first squeezing detection reference value Vtn1 and the second squeezing detection reference value Vtn2, and the squeezing in the first short-circuit period Ts after the polarity is switched. The value of the detection reference value signal Vtn becomes the third squeezing detection reference value Vtn3. The value of the squeezing detection reference value signal Vtn in the second and subsequent short-circuit periods Ts becomes the first squeezing detection reference value Vtn1 or the second squeezing detection reference value Vtn2 corresponding to each polarity. Hereinafter, a description will be given with reference to FIG.

(1)電極プラス極性期間Tep中の動作
時刻t1において、同図(A)に示すように、極性切換信号SpnがHighレベルに変化すると、これに応動して、同図(G)に示すように、電極プラス極性スイッチング素子駆動信号Epvが出力(Highレベル)されるので、電極プラス極性スイッチング素子PTRが導通状態になり、溶接電源の出力は電極プラス極性EPになる。このとき、同図(H)に示すように、第1スイッチング素子駆動信号Dv1はLowレベルであるので、第1スイッチング素子TR1はオフ状態にある。また、同図(D)に示すように、極性切換後1回目の短絡判別信号SdがHighレベルであるので、同図(F)に示すように、くびれ検出基準値信号Vtnの値は上記の第3くびれ検出基準値Vtn3になる。
(1) Operation during Electrode Plus Polarity Period Tep At time t1, as shown in (A) of the figure, when the polarity switching signal Spn changes to High level, it responds to this as shown in (G) of the figure. In addition, since the electrode positive polarity switching element drive signal Epv is output (High level), the electrode positive polarity switching element PTR becomes conductive, and the output of the welding power source becomes the electrode positive polarity EP. At this time, as shown in FIG. 5H, the first switching element drive signal Dv1 is at the low level, so the first switching element TR1 is in the OFF state. Further, as shown in FIG. 4D, since the first short-circuit determination signal Sd after switching the polarity is at a high level, the value of the squeezing detection reference value signal Vtn is as described above, as shown in FIG. The third necking detection reference value Vtn3 is obtained.

時刻t2において、同図(C)に示すように、溶接電圧Vwの電圧上昇値ΔVがくびれ検出基準値信号Vtnの値(現時点では第3くびれ検出基準値Vtn3)に達すると。同図(E)に示すように、くびれ検出信号NdがHighレベルになる。これに応動して、同図(G)に示すように、電極プラス極性スイッチング素子駆動信号EpvはLowレベルになるので、電極プラス極性スイッチング素子PTRはオフ状態になる。同時に、同図(H)に示すように、第1スイッチング素子駆動信号Dv1が出力(Highレベル)されるので、第1スイッチング素子TR1が導通状態になる。このために、図1で上述したように、電極プラス極性電流の通電路に第1抵抗器R1が挿入されるので、電極プラス極性電流は急減して低電流値になる。この状態で、時刻t3においてアークが再発生するので、スパッタ発生量は削減される。   When the voltage increase value ΔV of the welding voltage Vw reaches the value of the squeezing detection reference value signal Vtn (currently the third squeezing detection reference value Vtn3) as shown in FIG. As shown in FIG. 5E, the squeezing detection signal Nd becomes High level. In response to this, as shown in FIG. 5G, the electrode positive polarity switching element drive signal Epv is at the low level, so that the electrode positive polarity switching element PTR is turned off. At the same time, as shown in FIG. 5H, the first switching element drive signal Dv1 is output (High level), so that the first switching element TR1 becomes conductive. For this reason, as described above with reference to FIG. 1, the first resistor R1 is inserted into the electrode positive-polarity current path, so that the electrode-positive polarity current rapidly decreases to a low current value. In this state, the arc is regenerated at time t3, so that the amount of spatter generated is reduced.

時刻t3においてアークが再発生すると、同図(D)に示すように、短絡判別信号SdはLowレベル(アーク期間Ta)になる。これに応動して、同図(G)に示すように、電極プラス極性スイッチング素子駆動信号Epdが出力(Highレベル)されるので、電極プラス極性スイッチング素子PTRは導通状態になる。同時に、同図(H)に示すように、第1スイッチング素子駆動信号Dv1はLowレベルになるので、第1スイッチング素子TR1はオフ状態になる。同図(B)に示すように、溶接電流Iwはアークが再発生すると急上昇しその後は緩やかに減少する。また、時刻t3において、1回目の短絡が終了するので、同図(F)に示すように、くびれ検出基準値信号Vtnの値は上記の第1くびれ検出基準値Vtn1になり、時刻t5の電極プラス極性期間Tepが終了するまではこの値を維持する。上記の短絡期間Ts(時刻t1〜t3)中は、溶接電源は定電流制御になるために、図1で上述した電流設定信号Irによって設定される電流が通電する。そして、時刻t2〜t3のくびれ検出期間Tn中は、この電流設定信号Irの値は低い値になるので、溶接電流値Iwも低い値になる。他方、アーク期間Ta(時刻t3〜t4)中は、溶接電源は定電圧制御になる。   When the arc is regenerated at time t3, the short circuit determination signal Sd is at the low level (arc period Ta) as shown in FIG. In response to this, as shown in FIG. 5G, the electrode positive polarity switching element drive signal Epd is output (High level), so that the electrode positive polarity switching element PTR becomes conductive. At the same time, as shown in FIG. 5H, the first switching element drive signal Dv1 is at the low level, so that the first switching element TR1 is turned off. As shown in FIG. 5B, the welding current Iw increases rapidly when the arc is regenerated, and then gradually decreases. Further, since the first short circuit is completed at time t3, the value of the squeezing detection reference value signal Vtn becomes the first squeezing detection reference value Vtn1 as shown in FIG. This value is maintained until the positive polarity period Tep ends. During the short-circuit period Ts (time t1 to t3), the welding power source is under constant current control, so that the current set by the current setting signal Ir described above with reference to FIG. Then, during the squeezing detection period Tn from time t2 to t3, the value of the current setting signal Ir becomes a low value, so that the welding current value Iw also becomes a low value. On the other hand, during the arc period Ta (time t3 to t4), the welding power source is under constant voltage control.

時刻t4〜t5の期間は、上記の動作を繰り返す。ただし、この期間中のくびれ検出基準値信号Vtnの値は、同図(F)に示すように、第1くびれ検出基準値Vtn1になる。   The above operation is repeated during the period from time t4 to t5. However, the value of the squeezing detection reference value signal Vtn during this period becomes the first squeezing detection reference value Vtn1, as shown in FIG.

(2)電極マイナス極性期間Tenの動作
時刻t5において、同図(A)に示すように、極性切換信号SpnはLowレベルに変化すると、同図(G)に示すように、電極プラス極性スイッチング素子駆動信号EpvはLowレベルになるので電極プラス極性スイッチング素子PTRはオフ状態になり、同図(I)に示すように、電極マイナス極性スイッチング素子駆動信号Endが出力(Highレベル)されるので電極マイナス極性スイッチング素子NTRは導通状態になり、溶接電源の出力は電極マイナス極性ENに切り換わる。そして、1回目の短絡期間Ts(時刻t5〜t7)のくびれ検出基準値信号Vtnは、同図(F)に示すように、上記の第3くびれ検出基準値Vtn3になる。時刻t6において、同図(C)に示すように、溶接電圧Vwの上昇値ΔVが上記の第3くびれ検出基準値Vtn3に達すると、同図(F)に示すように、くびれ検出信号NdがHighレベルになる。これに応動して、同図(I)に示すように、電極マイナス極性スイッチング素子駆動信号EndはLowレベルになるので、電極マイナス極性スイッチング素子NTRはオフ状態になる。同時に、同図(J)に示すように、第2スイッチング素子駆動信号Dv2が出力(Highレベル)されるので、第2スイッチング素子TR2は導通状態になる。このために、電極マイナス極性電流の通電路に第2抵抗器R2が挿入されるので、電流は急減し低い値になる。この状態で、時刻t7においてアークが再発生すると、同図(D)に示すように、短絡判別信号SdはLowレベルになる。これに応動して、同図(I)に示すように、電極マイナス極性スイッチング素子駆動信号Endが出力されるので、電極マイナス極性スイッチング素子NTRは導通状態になる。同時に、同図(J)に示すように、第2スイッチング素子駆動信号Dv2はLowレベルになるので、第2スイッチング素子TR2はオフ状態になる。
(2) Operation in Electrode Negative Polarity Period Ten At time t5, when the polarity switching signal Spn changes to the low level as shown in FIG. 6A, the electrode positive polarity switching element is shown in FIG. Since the drive signal Epv is at the low level, the electrode positive polarity switching element PTR is turned off, and the electrode minus polarity switching element drive signal End is output (high level) as shown in FIG. The polarity switching element NTR becomes conductive, and the output of the welding power source is switched to the electrode minus polarity EN. Then, the squeezing detection reference value signal Vtn in the first short-circuit period Ts (time t5 to t7) becomes the third squeezing detection reference value Vtn3 as shown in FIG. At time t6, when the increase value ΔV of the welding voltage Vw reaches the third squeezing detection reference value Vtn3 as shown in FIG. 10C, the squeezing detection signal Nd is changed as shown in FIG. Becomes High level. In response to this, as shown in FIG. 5I, the electrode minus polarity switching element drive signal End is at the low level, so that the electrode minus polarity switching element NTR is turned off. At the same time, as shown in FIG. 6J, the second switching element drive signal Dv2 is output (High level), so that the second switching element TR2 becomes conductive. For this reason, since the second resistor R2 is inserted into the current path of the electrode negative polarity current, the current rapidly decreases and becomes a low value. In this state, when the arc is regenerated at time t7, the short circuit determination signal Sd becomes the low level as shown in FIG. In response to this, as shown in FIG. 5I, the electrode minus polarity switching element drive signal End is output, so that the electrode minus polarity switching element NTR becomes conductive. At the same time, as shown in FIG. 6J, the second switching element drive signal Dv2 is at the low level, so that the second switching element TR2 is turned off.

時刻t7において1回目の短絡期間Tsが終了すると。同図(F)に示すように、くびれ検出基準値信号Vtnの値は上記の第2くびれ検出基準値Vtn2になり、時刻t9の電極マイナス極性期間Ten中維持される。したがって、2回目以降の短絡期間Tsにおけるくびれ検出基準値信号Vtnの値は上記の第2くびれ検出基準値Vtn2になる。時刻t8〜t9の期間の動作は、時刻t5〜t8の期間の動作と同一である。   When the first short-circuit period Ts ends at time t7. As shown in FIG. 5F, the value of the squeezing detection reference value signal Vtn becomes the second squeezing detection reference value Vtn2, and is maintained during the electrode minus polarity period Ten at time t9. Therefore, the value of the squeezing detection reference value signal Vtn in the second and subsequent short-circuit periods Ts becomes the second squeezing detection reference value Vtn2. The operation during the period from time t8 to t9 is the same as the operation during the period from time t5 to t8.

図3は、各々の極性EP、ENにおけるくびれ検出基準値Vtnの適正値を例示する図である。同図の横軸は送給速度(cm/min)を示し、縦軸はくびれ検出基準値Vtnの適正値(V)を示す。同図は、鉄鋼材料の溶接ワイヤを使用して送給速度を変化させたときの各極性におけるくびれ検出基準値Vtnの適正値である。   FIG. 3 is a diagram exemplifying appropriate values of the squeezing detection reference value Vtn for each polarity EP and EN. In the figure, the horizontal axis indicates the feeding speed (cm / min), and the vertical axis indicates the appropriate value (V) of the squeezing detection reference value Vtn. The figure shows appropriate values of the squeezing detection reference value Vtn in each polarity when the feed speed is changed using a steel material welding wire.

同図から明らかなように、同一の溶接条件において、くびれ検出基準値Vtnの適正値は、電極プラス極性EPのときの方が電極マイナス極性ENのときよりも小さな値になる。くびれ検出基準値Vtnの値が小さいほど検出感度は高くなる。したがって、くびれ検出の感度は電極プラス極性EPの方が高く設定される。この理由は、送給速度が同一であれば、電極マイナス極性ENの方が平均電流は大きくなり溶滴サイズも大きくなる。さらには、電極マイナス極性EN時の溶滴移行は電極プラス極性EP時に比べて安定性が劣っている。これらの要因から、電極マイナス極性EN時は検出感度を低く設定する方が良い。   As is apparent from the figure, under the same welding conditions, the appropriate value of the squeezing detection reference value Vtn is smaller when the electrode plus polarity EP is smaller than when the electrode minus polarity EN is present. The detection sensitivity increases as the value of the squeezing detection reference value Vtn decreases. Therefore, the sensitivity of the constriction detection is set higher for the electrode plus polarity EP. This is because if the feed speed is the same, the electrode negative polarity EN has a larger average current and a larger droplet size. Furthermore, the droplet transfer at the time of electrode negative polarity EN is inferior in stability to that at the time of electrode positive polarity EP. Because of these factors, it is better to set the detection sensitivity low when the electrode has negative polarity EN.

上述したように、電極マイナス極性EP時と電極マイナス極性EN時とではくびれの形成状態がことなるので、くびれ検出基準値Vtnは各々の極性に適した異なる値に設定する必要がある。そのときに、くびれ検出基準値Vtnは、電極プラス極性EP時の方が小さく(感度が低く)設定する。さらに、極性切換時点から短絡の発生が所定回数内であるときは、くびれ検出基準値Vtnを上記の電極プラス極性EP時のくびれ検出基準値と電極マイナス極性EN時のくびれ検出基準値の中間値に設定する。これは、極性切換時点から所定短絡回数まではくびれの形成状態が過渡的な状態にあるためである。すなわち、電極プラス極性EPから電極マイナス極性ENに切り換わった時点から所定短絡回数までは、くびれの形成状態が電極プラス極性EP時の形成状態から電極マイナス極性EN時の形成状態へと過渡的に変化するためである。   As described above, since the constriction formation state differs between the electrode negative polarity EP and the electrode negative polarity EN, it is necessary to set the constriction detection reference value Vtn to a different value suitable for each polarity. At that time, the squeezing detection reference value Vtn is set to be smaller (sensitivity is lower) at the time of electrode plus polarity EP. Furthermore, when the occurrence of a short circuit is within a predetermined number of times from the time of polarity switching, the squeezing detection reference value Vtn is an intermediate value between the squeezing detection reference value at the time of the electrode positive polarity EP and the squeezing detection reference value at the time of the electrode negative polarity EN. Set to. This is because the constriction formation state is in a transitional state from the time of polarity switching to the predetermined number of short circuits. That is, from the time when the electrode positive polarity EP is switched to the electrode negative polarity EN until the predetermined number of short-circuits, the constriction formation state transits transiently from the formation state at the electrode positive polarity EP to the formation state at the electrode negative polarity EN. Because it changes.

上述した実施の形態では、極性切換後1回目の短絡期間のみ第3くびれ検出基準値Vtn3を使用する場合について説明したが、1〜十数回の範囲で所定回数の短絡期間中使用しても良い。また、上述した図3において、第1くびれ検出基準値Vtn1が入力されたときに予め定めた関数によって第2くびれ検出基準値Vtn2を自動設定するようにしても良い。さらに、各極性ごとにくびれ検出期間Tn又はアーク再発生時電流値Iaが目標値になるようにくびれ検出基準値Vtn1、Vtn2を自動調整しても良い。さらに、電極プラス極性EPから電極マイナス極性ENで切り換えるときと、逆に電極マイナス極性ENから電極プラス極性EPへと切り換えるときとで、第3くびれ検出基準値Vtn3の値を異なる値に設定しても良い。さらに、極性切換後の所定短絡回数に代えて所定期間としても良い。本実施の形態では、消耗電極交流アーク溶接として、短絡移行溶接の場合を例示したが、短絡を伴うグロビュール移行溶接、短絡を伴うパルスアーク溶接、短絡を伴うスプレー移行溶接等にも適用することができる。   In the above-described embodiment, the case where the third constriction detection reference value Vtn3 is used only during the first short-circuit period after polarity switching has been described. good. In FIG. 3 described above, the second squeezing detection reference value Vtn2 may be automatically set by a predetermined function when the first squeezing detection reference value Vtn1 is input. Furthermore, the squeezing detection reference values Vtn1 and Vtn2 may be automatically adjusted so that the squeezing detection period Tn or the arc regeneration occurrence current value Ia becomes the target value for each polarity. Furthermore, the value of the third squeezing detection reference value Vtn3 is set to a different value when switching from the electrode plus polarity EP to the electrode minus polarity EN and when switching from the electrode minus polarity EN to the electrode plus polarity EP. Also good. Further, a predetermined period may be used instead of the predetermined number of short circuits after polarity switching. In the present embodiment, the case of short-circuit transfer welding is exemplified as consumable electrode AC arc welding, but it can also be applied to globule transfer welding with short circuit, pulse arc welding with short circuit, spray transfer welding with short circuit, and the like. it can.

以下に、くびれ検出期間tnを利用して第1くびれ検出基準値Vtn1及び第2くびれ検出基準値Vtn2を適正値に自動設定する場合について説明する。図4は、図1で上述した溶接電源にこの自動設定機能を追加するための回路のブロック図である。同図は、図1に示す第1くびれ検出基準値Vtn1及び第2くびれ検出基準値Vtn2を自動設定するために追加される回路である。以下、同図を参照して説明する。   The case where the first squeezing detection reference value Vtn1 and the second squeezing detection reference value Vtn2 are automatically set to appropriate values using the squeezing detection period tn will be described below. FIG. 4 is a block diagram of a circuit for adding this automatic setting function to the welding power source described above with reference to FIG. This figure is a circuit added to automatically set the first squeezing detection reference value Vtn1 and the second squeezing detection reference value Vtn2 shown in FIG. Hereinafter, a description will be given with reference to FIG.

同図に示す回路は、図1で上述した極性切換信号Spn及びくびれ検出信号Ndを入力として、第1くびれ検出基準値信号Vtn1及び第2くびれ検出基準値信号Vtn2を出力する。くびれ検出期間検出回路TNDは、上記の極性切換信号Spn及びくびれ検出信号Ndを入力として、電極プラス極性EP中のくびれ検出期間の時間長さの移動平均値を算出し第1くびれ検出期間信号Tn1として出力し、さらに、電極マイナス極性EN中のくびれ検出期間の時間長さの移動平均値を算出し第2くびれ検出期間信号Tn2として出力する。ここで、上記のくびれ検出信号Ndは、くびれ検出期間の間Highレベルになる信号であるので、このHighレベルの期間を計測することによってくびれ検出期間を検出することができる。   The circuit shown in the figure receives the polarity switching signal Spn and the squeezing detection signal Nd described above with reference to FIG. 1, and outputs a first squeezing detection reference value signal Vtn1 and a second squeezing detection reference value signal Vtn2. The squeezing detection period detection circuit TND receives the polarity switching signal Spn and the squeezing detection signal Nd, calculates a moving average value of the time length of the squeezing detection period in the electrode positive polarity EP, and calculates a first squeezing detection period signal Tn1. Further, a moving average value of the length of the squeezing detection period in the electrode negative polarity EN is calculated and output as a second squeezing detection period signal Tn2. Here, since the squeezing detection signal Nd is a signal that is at a high level during the squeezing detection period, the squeezing detection period can be detected by measuring the high level period.

第1くびれ検出期間設定回路TNR1は、予め定めた第1くびれ検出期間設定信号Tnr1を出力する。第1期間誤差増幅回路ET1は、上記の第1くびれ検出期間設定信号Tnr1と第1くびれ検出期間信号Tn1との誤差を増幅して、第1期間誤差増幅信号ΔT1を出力する。第1くびれ検出基準値設定回路VTN1は、この第1期間誤差増幅信号ΔT1を積分して、第1くびれ検出基準値信号Vtn1を出力する。   The first squeezing detection period setting circuit TNR1 outputs a predetermined first squeezing detection period setting signal Tnr1. The first period error amplification circuit ET1 amplifies the error between the first squeezing detection period setting signal Tnr1 and the first squeezing detection period signal Tn1, and outputs a first period error amplification signal ΔT1. The first squeezing detection reference value setting circuit VTN1 integrates the first period error amplification signal ΔT1 and outputs a first squeezing detection reference value signal Vtn1.

第2くびれ検出期間設定回路TNR2は、予め定めた第2くびれ検出期間設定信号Tnr2を出力する。第2期間誤差増幅回路ET2は、上記の第2くびれ検出期間設定信号Tnr2と第2くびれ検出期間信号Tn2との誤差を増幅して、第2期間誤差増幅信号ΔT2を出力する。第2くびれ検出基準値設定回路VTN2は、この第2期間誤差増幅信号ΔT2を積分して、第2くびれ検出基準値信号Vtn2を出力する。   The second squeezing detection period setting circuit TNR2 outputs a predetermined second squeezing detection period setting signal Tnr2. The second period error amplification circuit ET2 amplifies the error between the second squeezing detection period setting signal Tnr2 and the second squeezing detection period signal Tn2, and outputs a second period error amplification signal ΔT2. The second squeezing detection reference value setting circuit VTN2 integrates the second period error amplification signal ΔT2 and outputs a second squeezing detection reference value signal Vtn2.

上記において、くびれ検出基準値が適正値に設定されているときは、くびれ検出期間も所定値に略収束する。このくびれ検出期間の収束値は極性によって異なっている。電極プラス極性EPのときのくびれ検出期間の目標値(第1くびれ検出期間設定信号Tnr1)を設定し、電極プラス極性EP中のくびれ検出期間(第1くびれ検出期間信号Tn1)がこの目標値と等しくなるように第1くびれ検出基準値信号Vtn1を自動設定する。同様に、電極マイナス極性ENのときのくびれ検出期間の目標値(第2くびれ検出期間設定信号Tnr2)を設定し、電極マイナス極性EN中のくびれ検出期間(第2くびれ検出期間信号Tn2うに第2くびれ検出基準値信号Vtn2を自動設定する。   In the above, when the squeezing detection reference value is set to an appropriate value, the squeezing detection period substantially converges to a predetermined value. The convergence value of the squeezing detection period varies depending on the polarity. A target value for the squeezing detection period (first squeezing detection period setting signal Tnr1) when the electrode is positive polarity EP is set, and the squeezing detection period (first squeezing detection period signal Tn1) in the electrode positive polarity EP is set to this target value. The first squeezing detection reference value signal Vtn1 is automatically set to be equal. Similarly, a target value for the squeezing detection period (second squeezing detection period setting signal Tnr2) when the electrode has negative polarity EN is set, and the squeezing detection period (second squeezing detection period signal Tn2) in the electrode negative polarity EN is set to the second value. The necking detection reference value signal Vtn2 is automatically set.

上述した実施の形態によれば、各極性ごとにくびれ検出基準値を適正値に設定することによって、消耗電極交流アーク溶接におけるくびれ検出制御を安定化させることができる。このために、消耗電極交流アーク溶接において、スパッタ発生量を大幅に削減することができ、高品質溶接を行うことができる。   According to the embodiment described above, the squeezing detection control in the consumable electrode AC arc welding can be stabilized by setting the squeezing detection reference value to an appropriate value for each polarity. For this reason, in the consumable electrode AC arc welding, the amount of spatter can be greatly reduced, and high-quality welding can be performed.

さらに、第2くびれ検出基準値を、第1くびれ検出基準値を入力とする予め定めた関数によって設定することによって、上記の効果に加えて、溶接条件ごとの第2くびれ検出基準値の設定が容易になる。   Furthermore, by setting the second squeezing detection reference value by a predetermined function that receives the first squeezing detection reference value, in addition to the above effects, the second squeezing detection reference value can be set for each welding condition. It becomes easy.

さらに、極性が切り換わった時点から短絡発生が所定回数に達するまでの期間中は、くびれ検出基準値の絶対値を第1くびれ検出基準値の絶対値と第2くびれ検出基準値の絶対値との中間値に設定することによって、極性切換時の過渡的な状態においてもくびれ検出制御を安定化することができる。このために、スパッタの削減効果がさらに大きくなる。   Further, during the period from when the polarity is switched until the occurrence of the short circuit reaches a predetermined number of times, the absolute value of the squeezing detection reference value is set to the absolute value of the first squeezing detection reference value and the absolute value of the second squeezing detection reference value. By setting to the intermediate value, the squeezing detection control can be stabilized even in a transient state at the time of polarity switching. For this reason, the sputter reduction effect is further increased.

さらに、第1くびれ検出基準値及び第2くびれ検出基準値をくびれ検出期間を利用して自動設定することによって常に適正値に設定することができるので、設定の手間を大幅に低減し、かつ,安定した低スパッタ制御性能を得ることができる.   Furthermore, since the first squeezing detection reference value and the second squeezing detection reference value can be always set to appropriate values by automatically setting using the squeezing detection period, the setting labor is greatly reduced, and Stable low spatter control performance can be obtained.

本発明の実施の形態に係る消耗電極交流アーク溶接のくびれ検出制御方法を搭載した溶接電源のブロック図である。It is a block diagram of the welding power source carrying the constriction detection control method of the consumable electrode alternating current arc welding which concerns on embodiment of this invention. 図1の各信号のタイミングチャートである。It is a timing chart of each signal of FIG. 電極プラス極性EP及び電極マイナス極性ENにおけるくびれ検出基準値の適正値を示す図である。It is a figure which shows the appropriate value of the squeezing detection reference value in the electrode positive polarity EP and the electrode negative polarity EN. 本発明の実施の形態に係る第1くびれ検出基準値Vtn1及び第2くびれ検出基準値Vtn2を自動設定するために図1に追加される回路のブロック図である。FIG. 3 is a block diagram of a circuit added to FIG. 1 for automatically setting a first squeezing detection reference value Vtn1 and a second squeezing detection reference value Vtn2 according to an embodiment of the present invention. 従来技術における消耗電極アーク溶接の電流・電圧波形及び溶滴移行状態を示す図である。It is a figure which shows the electric current and voltage waveform and droplet transfer state of consumable electrode arc welding in a prior art. 従来技術におけるくびれ検出制御を搭載した溶接電源のブロック図である。It is a block diagram of the welding power supply carrying the constriction detection control in a prior art. 図6の各信号のタイミングチャートである。It is a timing chart of each signal of FIG. 従来技術における消耗電極交流アーク溶接のくびれ検出制御方法を示す電流・電圧波形図である。It is an electric current / voltage waveform diagram which shows the constriction detection control method of consumable electrode alternating current arc welding in a prior art.

符号の説明Explanation of symbols

1 溶接ワイヤ
1a 溶滴
1b くびれ
2 母材
2a 溶融池
3 アーク
4 溶接トーチ
5 送給ロール
D2a〜D2d 2次整流器
DR 駆動回路
Dr 駆動信号
DV1 第1スイッチング素子駆動回路
Dv1 第1スイッチング素子駆動信号
DV2 第2スイッチング素子駆動回路
Dv2 第2スイッチング素子駆動信号
Ea 誤差増幅信号
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
EN 電極マイナス極性
END 電極マイナス極性スイッチング素子駆動回路
End 電極マイナス極性スイッチング素子駆動信号
EP 電極プラス極性
EPD 電極プラス極性スイッチング素子駆動回路
Epd 電極プラス極性スイッチング素子駆動信号
ET1 第1期間誤差増幅回路
ET2 第2期間誤差増幅回路
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
Ia アーク再発生時電流
ID 電流検出回路
Id 電流検出信号
INT 高周波変圧器
INV インバータ回路
IR 電流設定回路
Ir 電流設定信号
Iw 溶接電流
ND くびれ検出回路
Nd くびれ検出信号
NTR 電極マイナス極性スイッチング素子
PS 溶接電源
PTR 電極プラス極性スイッチング素子
PWM パルス幅変調回路
Pwm パルス幅変調信号
R 抵抗器
R1 第1抵抗器
R2 第2抵抗器
SC 外部特性切換回路
SD 短絡判別回路
Sd 短絡判別信号
Spn 極性切換信号
Ta アーク期間
Ten 電極マイナス極性期間
Tep 電極プラス極性期間
Tn くびれ検出期間
Tn1 第1くびれ検出期間信号
Tn2 第2くびれ検出期間信号
TND くびれ検出期間検出回路
TNR1 第1くびれ検出期間設定回路
Tnr1 第1くびれ検出期間設定信号
TNR2 第2くびれ検出期間設定回路
Tnr2 第2くびれ検出期間設定信号
TR トランジスタ
TR1 第1スイッチング素子
TR2 第2スイッチング素子
Ts 短絡期間
VD 電圧検出回路
Vd 電圧検出信号
VR 電圧設定回路
Vr 電圧設定信号
Vs 短絡電圧値
Vta 短絡/アーク判別値
VTN くびれ検出基準値設定回路
Vtn くびれ検出基準値(信号)
VTN1 第1くびれ検出基準値設定回路
Vtn1 第1くびれ検出基準値(信号)
VTN2 第2くびれ検出基準値設定回路
Vtn2 第2くびれ検出基準値(信号)
Vtn3 第3くびれ検出基準値
Vw 溶接電圧
WL リアクトル
ΔT1 第1期間誤差増幅信号
ΔT2 第2期間誤差増幅信号
ΔV 電圧上昇値
1 welding wire 1a droplet 1b constriction 2 base material 2a molten pool 3 arc 4 welding torch 5 feed rolls D2a to D2d secondary rectifier DR drive circuit Dr drive signal DV1 first switching element drive circuit DV1 first switching element drive signal DV2 Second switching element drive circuit Dv2 Second switching element drive signal Ea Error amplification signal EI Current error amplification circuit Ei Current error amplification signal EN Electrode minus polarity END Electrode minus polarity switching element drive circuit End Electrode minus polarity switching element drive signal EP Electrode plus Polarity EPD electrode plus polarity switching element drive circuit Epd electrode plus polarity switching element drive signal ET1 first period error amplification circuit ET2 second period error amplification circuit EV voltage error amplification circuit Ev voltage error amplification signal Ia current ID upon arc regeneration Detection circuit Id Current detection signal INT High frequency transformer INV Inverter circuit IR Current setting circuit Ir Current setting signal Iw Welding current ND Necking detection circuit Nd Necking detection signal NTR Electrode negative polarity switching element PS Welding power supply PTR Electrode positive polarity switching element PWM Pulse width Modulation circuit Pwm Pulse width modulation signal R Resistor R1 First resistor R2 Second resistor SC External characteristic switching circuit SD Short circuit determination circuit Sd Short circuit determination signal Spn Polarity switching signal Ta Arc period Ten Electrode negative polarity period Tep Electrode positive polarity period Tn Constriction Detection Period Tn1 First Constriction Detection Period Signal Tn2 Second Constriction Detection Period Signal TND Constriction Detection Period Detection Circuit TNR1 First Constriction Detection Period Setting Circuit Tnr1 First Constriction Detection Period Setting Signal TNR2 Second Constriction Detection Period Setting Circuit Tnr2 2 Constriction detection Setting signal TR Transistor TR1 First switching element TR2 Second switching element Ts Short-circuit period VD Voltage detection circuit Vd Voltage detection signal VR Voltage setting circuit Vr Voltage setting signal Vs Short-circuit voltage value Vta Short-circuit / arc discrimination value VTN Constriction detection reference value setting Circuit Vtn Necking detection reference value (signal)
VTN1 first squeezing detection reference value setting circuit Vtn1 first squeezing detection reference value (signal)
VTN2 Second squeezing detection reference value setting circuit Vtn2 Second squeezing detection reference value (signal)
Vtn3 Third constriction detection reference value Vw Welding voltage WL Reactor ΔT1 First period error amplification signal ΔT2 Second period error amplification signal ΔV Voltage rise value

Claims (5)

溶接電源の出力を電極プラス極性と電極マイナス極性とに交互に切り換えると共に前記両極性中は消耗電極と母材との間でアーク発生状態と短絡状態とを繰り返す消耗電極交流アーク溶接にあって、前記両極性中に短絡状態からアークが再発生する前兆現象である溶滴のくびれ現象を消耗電極・母材間の電圧値又は抵抗値の変化がくびれ検出基準値に達したことによって検出し、このくびれ現象を検出すると短絡負荷に通電する溶接電流を急減させて低電流値の状態でアークが再発生するように出力制御する消耗電極交流アーク溶接のくびれ検出制御方法において、
前記くびれ検出基準値を、前記電極プラス極性中は第1くびれ検出基準値に設定し、前記電極マイナス極性中は前記第1くびれ検出基準値の絶対値とは異なった値の第2くびれ検出基準値に設定し、これら第1及び第2くびれ検出基準値は各々対応する極性での溶接状態が良好になるように設定されることを特徴とする消耗電極交流アーク溶接のくびれ検出制御方法。
In the consumable electrode AC arc welding in which the output of the welding power source is alternately switched between the electrode positive polarity and the electrode negative polarity and the arc generation state and the short-circuit state are repeated between the consumable electrode and the base material during both the polarities, Detecting the constriction phenomenon of the droplet, which is a precursor to the arc re-occurring from the short-circuit state during both polarities, when the change in the voltage value or resistance value between the consumable electrode and the base material reaches the constriction detection reference value, In this constriction detection control method for consumable electrode AC arc welding, which controls the output so that the arc is regenerated at a low current value by rapidly reducing the welding current flowing to the short-circuit load when this constriction phenomenon is detected.
The squeezing detection reference value is set to a first squeezing detection reference value during the electrode positive polarity, and a second squeezing detection reference having a value different from the absolute value of the first squeezing detection reference value during the electrode negative polarity. A constriction detection control method for consumable electrode AC arc welding, wherein the first and second squeezing detection reference values are set so that the welding state with a corresponding polarity is good.
前記第1くびれ検出基準値の絶対値を前記第2くびれ検出基準値の絶対値よりも小さな値に設定する、ことを特徴とする請求項1記載の消耗電極交流アーク溶接のくびれ検出制御方法。   2. The constriction detection control method for consumable electrode AC arc welding according to claim 1, wherein the absolute value of the first constriction detection reference value is set to a value smaller than the absolute value of the second constriction detection reference value. 前記第2くびれ検出基準値は、前記第1くびれ検出基準値を入力とする予め定めた関数によって設定される、ことを特徴とする請求項1又は2記載の消耗電極交流アーク溶接のくびれ検出制御方法。   3. The constriction detection control for consumable electrode AC arc welding according to claim 1, wherein the second constriction detection reference value is set by a predetermined function having the first constriction detection reference value as an input. Method. 極性が切り換わった時点から短絡発生が所定回数に達するまでの期間中は、前記くびれ検出基準値の絶対値を前記第1くびれ検出基準値の絶対値と前記第2くびれ検出基準値の絶対値との中間値に設定する、ことを特徴とする請求項1〜3のいずれか1項に記載の消耗電極交流アーク溶接のくびれ検出制御方法。   The absolute value of the squeezing detection reference value is the absolute value of the first squeezing detection reference value and the absolute value of the second squeezing detection reference value during a period from when the polarity is switched to when the occurrence of a short circuit reaches a predetermined number of times. The constriction detection control method for consumable electrode AC arc welding according to any one of claims 1 to 3, wherein the constriction detection control method is used. 前記くびれ検出時点からアークが再発生する時点までの期間であるくびれ検出期間を前記電極プラス極性中と前記電極マイナス極性中とに分けて検出し、
前記第1くびれ検出基準値は前記電極プラス極性中のくびれ検出期間が予め定めた第1くびれ検出期間設定値と等しくなるように自動設定され、
前記第2くびれ検出基準値は前記電極マイナス極性中のくびれ検出期間が予め定めた第2くびれ検出期間設定値と等しくなるように自動設定される、ことを特徴とする請求項1又は4記載の消耗電極交流アーク溶接のくびれ検出制御方法。
Detecting a constriction detection period, which is a period from the constriction detection time to a time when the arc is regenerated, separately for the electrode positive polarity and the electrode negative polarity,
The first squeezing detection reference value is automatically set so that a squeezing detection period in the electrode plus polarity is equal to a predetermined first squeezing detection period setting value,
5. The second squeezing detection reference value is automatically set so that a squeezing detection period in the electrode negative polarity is equal to a predetermined second squeezing detection period setting value. Constriction detection control method for consumable electrode AC arc welding.
JP2007086277A 2007-03-12 2007-03-29 Constriction detection control method for consumable electrode AC arc welding Active JP4965311B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007086277A JP4965311B2 (en) 2007-03-12 2007-03-29 Constriction detection control method for consumable electrode AC arc welding
CN2008100815365A CN101264543B (en) 2007-03-12 2008-02-28 Squeezing detection control method for consumable electrode arc welding
US12/072,964 US8067714B2 (en) 2007-03-12 2008-02-29 Squeezing detection control method for consumable electrode arc welding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007061369 2007-03-12
JP2007061369 2007-03-12
JP2007086277A JP4965311B2 (en) 2007-03-12 2007-03-29 Constriction detection control method for consumable electrode AC arc welding

Publications (2)

Publication Number Publication Date
JP2008253997A JP2008253997A (en) 2008-10-23
JP4965311B2 true JP4965311B2 (en) 2012-07-04

Family

ID=39978123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086277A Active JP4965311B2 (en) 2007-03-12 2007-03-29 Constriction detection control method for consumable electrode AC arc welding

Country Status (2)

Country Link
JP (1) JP4965311B2 (en)
CN (1) CN101264543B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2402105B1 (en) * 2009-08-28 2016-02-10 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding device
EP2431119B2 (en) * 2010-02-23 2024-08-07 Panasonic Intellectual Property Management Co., Ltd. Alternating-current welding method and alternating-current welding device
CN102233470B (en) * 2010-04-26 2014-12-31 株式会社大亨 Necking detection and control method of melting electrode and electric arc welding
JP5557249B2 (en) * 2010-06-16 2014-07-23 株式会社ダイヘン Feed control method for arc welding with short circuit
JP5545996B2 (en) * 2010-08-31 2014-07-09 株式会社ダイヘン Constriction detection control method for consumable electrode arc welding
JP5851798B2 (en) * 2011-10-28 2016-02-03 株式会社ダイヘン Current control method for constriction detection in consumable electrode arc welding
JP5907614B2 (en) * 2012-02-24 2016-04-26 株式会社ダイヘン Consumable electrode arc welding control method
JP5918061B2 (en) * 2012-07-30 2016-05-18 株式会社ダイヘン Consumable electrode arc welding control method
US9120172B2 (en) * 2012-09-24 2015-09-01 Lincoln Global, Inc. Systems and methods providing controlled AC arc welding processes
JP6112605B2 (en) * 2013-05-30 2017-04-12 株式会社ダイヘン Necking detection control method for welding power source
US12005530B2 (en) * 2016-10-24 2024-06-11 Daihen Corporation AC pulse arc welding control method
CN111001902B (en) * 2020-03-09 2020-07-07 杭州凯尔达电焊机有限公司 Welding control circuit and alternating current welding power supply
WO2022004218A1 (en) * 2020-06-30 2022-01-06 パナソニックIpマネジメント株式会社 Ac arc welding method
CN112653337A (en) * 2020-12-24 2021-04-13 唐山松下产业机器有限公司 Alternating current chopping control circuit, control method, device and medium
CN115441706B (en) * 2022-09-26 2024-05-31 上海铼钠克数控科技有限公司 PWM generation method and circuit, driver control method, motor and system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205875A (en) * 1988-02-10 1989-08-18 Kobe Steel Ltd Method and device for controlling consumable electrode arc welding
JP3049337B2 (en) * 1990-06-18 2000-06-05 大阪電気株式会社 Pulse arc welding method and pulse arc welding apparatus using this method
JPH10328837A (en) * 1997-03-31 1998-12-15 Daihen Corp Ac pulse mig welding method and welding equipment
JP3641174B2 (en) * 1999-11-24 2005-04-20 株式会社ダイヘン AC pulse arc welding control method and welding power source apparatus
JP4846898B2 (en) * 2000-09-12 2011-12-28 株式会社ダイヘン AC pulse arc welding control method and welding power source apparatus
JP4739641B2 (en) * 2002-09-26 2011-08-03 株式会社ダイヘン Power supply device for short-circuit arc welding and robot welding device
JP4875311B2 (en) * 2005-03-11 2012-02-15 株式会社ダイヘン Current control method for constriction detection in consumable electrode arc welding
JP4907892B2 (en) * 2005-03-31 2012-04-04 株式会社ダイヘン Constriction detection control method for consumable electrode arc welding

Also Published As

Publication number Publication date
CN101264543A (en) 2008-09-17
JP2008253997A (en) 2008-10-23
CN101264543B (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4965311B2 (en) Constriction detection control method for consumable electrode AC arc welding
US8067714B2 (en) Squeezing detection control method for consumable electrode arc welding
JP5038206B2 (en) Constriction detection control method for consumable electrode arc welding
CN101058124B (en) Polarity switching control method for consumable electrode AC pulse arc welding
JP4950819B2 (en) AC consumable electrode short-circuit arc welding method
JP4739641B2 (en) Power supply device for short-circuit arc welding and robot welding device
JP5840921B2 (en) Constriction detection control method for consumable electrode arc welding
JP5770047B2 (en) Welding equipment
JP2008238251A (en) Feeding control method of consumable electrode ac arc welding
JP5808947B2 (en) Constriction detection control method for consumable electrode arc welding
JP2014083571A (en) Welding current control method during short-circuit period
JP5026289B2 (en) Short-circuit detection method for consumable electrode arc welding
JP2007075827A (en) Method of detecting/controlling constriction in consumable electrode arc welding
JP5545996B2 (en) Constriction detection control method for consumable electrode arc welding
JP5851798B2 (en) Current control method for constriction detection in consumable electrode arc welding
CN101264544B (en) Output control method for consumable electrode AC arc welding power supply
JP2015036146A (en) Welding current control method during short circuit period
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP5349152B2 (en) AC pulse arc welding control method
JPH0127825B2 (en)
JP2022185998A (en) Arc-welding power source
JP2022185997A (en) Pulse arc welding power source
JP5706710B2 (en) 2-wire welding control method
JP2022143142A (en) Arc-welding device
JP2022099369A (en) Consumable electrode arc welding power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R150 Certificate of patent or registration of utility model

Ref document number: 4965311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250