Nothing Special   »   [go: up one dir, main page]

JP4954911B2 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP4954911B2
JP4954911B2 JP2008016791A JP2008016791A JP4954911B2 JP 4954911 B2 JP4954911 B2 JP 4954911B2 JP 2008016791 A JP2008016791 A JP 2008016791A JP 2008016791 A JP2008016791 A JP 2008016791A JP 4954911 B2 JP4954911 B2 JP 4954911B2
Authority
JP
Japan
Prior art keywords
display
light
display device
reflective
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008016791A
Other languages
English (en)
Other versions
JP2008171011A (ja
Inventor
精一 三ツ井
正章 加邉
禎裕 酒匂
秀樹 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008016791A priority Critical patent/JP4954911B2/ja
Publication of JP2008171011A publication Critical patent/JP2008171011A/ja
Application granted granted Critical
Publication of JP4954911B2 publication Critical patent/JP4954911B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、ワードプロセッサ、ノート型パソコン等の情報機器や、各種映像機
器およびゲーム機器、携帯型VTR、デジタルカメラ等に使用される薄型、軽量の表示装置に関し、特に屋外、屋内共に使用される表示装置や、自動車、航空機、船舶等の照明条件の変化の激しい環境で使用される表示装置に関するものである。
電気的に表示内容の書き換えが可能な表示装置としては、自ら発光する発光型と、周囲光を利用する非発光型とがある。薄型、軽量の発光型表示装置として、従来エレクト・ロルミネッセンス(EL)素子やプラズマ・ディスプレイ・パネル(PDP)等が実用化されており、非発光型表示装置としては液晶ディスプレイが実用化されている。
前記発光型表示装置の1つである無機および有機ELデイスプレイは、液晶ディスプレイの欠点であるコントラストの低さや、視野角の狭さ等を容易に解決できるので、これに代わる薄型ディスプレイとして盛んに研究されている。
図25は、上述の有機ELディスプレイ素子の構造を例示する断面図である。図25において、有機EL素子1は、透明基板(例えばガラス基板)2上に、ITO(Indium tin oxide)透明電極3、ホール輸送層4、発光層5、電子輸送層6、陰極(例えばアルミニウム電極)7等を、例えば真空蒸着法で順次成膜したものである。陽極である透明電極3と陰極7との間に直流電圧8を選択的に印加すると、透明電極3から注入されたホールはホール輸送層4を経て、また陰極7から注入された電子は電子輸送層6を経て、発光層5に達し、ここで電子とホールが再結合して所定波長の発光を生じ、透明基板2の側から発光光Lが観察できる。
発光層5の材料は、例えばアルミニウムや亜鉛の錯体化合物を含有させることができるが、実質的にアルミニウム錯体のみからなる層(但し、複数種のアルミニウム錯体の併用が可能)であってよいし、亜鉛錯体のみからなる層(但し、複数種の亜鉛錯体の併用が可能)であってもよいし、これらの錯体化合物に蛍光物質を添加したものであってもよい。
ところでこの構造の場合、発光輝度に比べて使用環境の周囲光が強い場合、透明基板2側から入射した周囲光が陰極7で反射されて、発光していない状態、すなわち黒状態の輝度が高くなり、コントラストが著しく低下し、表示が識別できなくなるウォッシュアウト現象と呼ばれる現象が発生するという欠点があった。そこで、このような周囲光の反射をいかに抑えるかが、重要な課題であった。
この課題を解決する手段として、特開平9−127885号公報には、図26に示すように偏光板9と1/4波長板10を組み合わせた円偏光手段11を透明基板2の前面に設ける構造が提案されている。このような構造にすると、透明基板2側から入射して偏光板9と1/4波長板10を通過した周囲光は円偏光となり、有機EL素子の陰極(アルミ電極)7で反射されると逆極性の円偏光となる。この逆極性の円偏光は再び1/4波長板10を通過する際、偏光板9の吸収軸と平行な直線偏光となるため、偏光板9によって吸収されるので周囲光の反射は抑えられ、良好なコントラストを得る事が出来る。これにより、金属電極の鏡面反射による像の写り込みと、コントラストの低下を防止することができる。
また現在、カラーディスプレイとしては非発光型の液晶表示装置が実用に付されている。特に広く用いられているものは、背景に光源を配置した透過型液晶表示装置で、他の表示装置に比較して特に薄型、軽量であるため各種分野に用途が拡大している。しかし、液晶素子の透過率変調に用いる消費電力は少ないが、表示内容によらず常に背景照明(バックライト)を点灯させるために多量の電力を消費し、結果的には比較的大きな電力を必要とする。さらに、透過型カラー液晶表示装置においても、周囲光が非常に強く、相対的に表示光輝度が低い場合には、表示の識別が困難になるため、この解決のためにバックライトの光量を増強しようとすると、より多くの電力を消費するという問題点を有する。
以上のような発光型表示装置や透過型液晶表示装置に対比して、反射型液晶表示装置は、周囲光量に比例した表示光が得られるため、原理的にウォッシュアウト現象を起こさないという特徴がある。さらに、バックライトを必要としないため、照明光源用の電力が不要である利点も有している。ところが、反射型液晶表示装置では、反射光を表示に利用するので、逆に周囲光の弱い環境下で表示内容の識別が困難であるという問題点がある。特に、カラー表示を実現するためにカラーフィルタを用いると、カラーフィルタが光を吸収するため、更に表示が暗くなり、この問題は顕著になる。
この反射型液晶表示装置を周囲光の弱い環境で使用するために、反射型液晶表示装置の表示面側から照明をおこなう、いわゆるフロントライト照明装置が提案されている。例えば特開平11−249132号公報や特開平11−249133号公報には、反射型液晶表示装置の観察者側基板上にフロントライトとして有機EL素子を備える構造が提案されている。また、特開平10一125461号公報には、液晶表示装置の背面にバックライトとして有機EL素子を配置し、有機EL素子の金属電極が反射板を兼ねる構造が提案されている。さらに同公報には、透明有機EL素子を反射型液晶表示装置の上に配置し、補助光源として用いる構造も提案されている。
特開平9−127885号公報(平成9年5月16日公開) 特開平11−249132号公報(平成11年9月17日公開) 特開平11−249133号公報(平成11年9月17日公開) 特開平10一125461号公報(平成10年5月15日公開)
特開平9−127885号公報に開示された技術においては、円偏光手段を設ける事により、ウォッシュアウト現象は低減される。しかしながら、これは周囲光を積極的に表示に利用するものではなく、さらに円偏光板を用いると、EL素子の発光光は無偏光であるので、偏光板によって約50%吸収され、出射強度、発光効率共に約半分になる。このように、偏光板と位相差板を組み合わせた周囲光反射防止手段を備えた素子は、そうでない素子に比べ、外部に出射される光強度、および発光効率が約半分になってしまうという課題があった。
特開平11−249132号公報や特開平11−249133号公報に開示された技術おいては、表示電極以外の領域に有機EL素子を備えているため、実効的な開口率が低下する問題がある。さらにマグネシウム・インジウム合金からなる陰極が観察者側に形成されるため、外部光の反射が起こり、コントラストを低下させてしまう課題があった。またこれらの公報には、有機EL素子はフロントライトとしての使い方しか言及されていない。
特開平10−125461号公報に開示された技術においては、有機EL素子の陰極と反射板を兼ねているため鏡面表示になり、明るくかつ視野角の広い白表示が得られない課題がある。さらに透明有機EL素子を反射型液晶表示素子の前面に配置する構造では、周囲光の反射による表示劣化が起こり良好な表示を得ることが出来ない。また、この公報で開示された、表示装置に重ねて使用される押圧感知入力装置(タッチパネル)は、それ自身が周囲光を反射して視認性を悪化させる問題を有し、特に反射型液晶表示装置においてその傾向が顕著である。
ところで、以上に述べた有機EL素子の発光は無偏光発光である。最近では偏光発光をする有機EL材料も研究されており、EmielPeetersらは、右円偏光の強度をIとし左円偏光の強度をIとし、
g=2(I−I)/(I十I
と定義したとき、g≠0となる、円偏光発光をする材料を開発していることが報告されている(J.Am.Chem.Soc.1997,119,9909−9910)。しかしながら、これを用いる最適なデバイス構造は開示されていない。
本発明は上述の課題を解決するために、反射型表示装置における薄型、軽量という特長を損なうことなく、周囲光と共にEL素子の発光光を表示に使用して、暗所および明所両方において視認性に優れた表示を実現することを目的とする。
また、発光型表示装置としても周囲光を表示に利用できる新規な構造を提供し、周囲光が明るい環境下では、発光型素子の表示輝度を低下させても、表示素子としては反射型液晶の明るさ寄与分により良好な表示性能を確保することによって、一層の省エネルギーを図ることを目的とする。
さらに、表示装置にタッチパネルを設けても周囲光の反射なく良好な表示を実現することを目的とする。
本発明は、円偏光手段とEL素子の特徴を活かし、光反射手段を有する反射型表示素子と組み合わせることにより、従来とは全く異なる新しいタイプのマルチシーン・ディスプレイを提供する。さらに、薄型でしかも軽量であるという特長を損なうことなく、晴天下の屋外においても、暗所においても表示情報を良好に視認できる表示装置を提供する。また周囲環境に応じてユーザが各種表示方式を自由に選択できる新しいタイプのディスプレイを提供する。
即ち、本発明による表示装置は、自然光から左右回りいずれかの概ね円偏光を選択的に透過する円偏光手段とEL素子とを有し、前記EL素子の背面に少なくとも光反射手段を有する反射型表示素子を設ける構成とする。
本発明の表示装置は、EL素子と、前記EL素子の背面に設けられ、少なくとも光反射手段を有する反射型表示素子とを備えた表示装置において、前記EL素子と反射型表示素子とが独立に表示の制御が可能であることを特徴としている。
上記のように、本発明では、EL素子と反射型表示素子(例えば電気泳動表示素子)とを組み合わせ、かつこれら両素子の表示を独立して制御可能な構成とすることにより、反射型表示装置における薄型、軽量という特長を損なうことなく、周囲光と共にEL素子の発光光を表示に使用して、暗所および明所両方において視認性に優れた表示を実現している。
本発明の第2の特徴的構成は、前記反射型表示素子が、少なくとも一方が透明基板である2枚の基板に挟持された液晶または無機物の複屈折変調層からなることである。
本発明の第3の特徴的構成は、前記EL素子の発光層が無機材料あるいは有機材料からなることである。
本発明の第4の特徴的構成は、前記円偏光手段が、1枚の偏光板と少なくとも1枚の位相差板からなることである。
以上のような特徴的構成とすることによって、周囲光が暗い環境ではEL素子による明度の高い表示が実現し、周囲光が強い環境では反射型表示素子が周囲光に比例して明度を変化させるため、表示内容の認識が容易になり、従来の発光表示装置や透過型液晶表示装置で生じたウォッシュアウト現象が生じない。
本発明の第5の特徴的構成は、上述の特徴的構成に加えて、前記EL素子の基板が反射型表示素子の基板を兼ねることである。この構成により、より薄型化、軽量化が可能となる。
本発明の第6の特徴的構成は、上述の特徴的構成に加えて、EL素子を駆動する能動素子と反射型表示素子を駆動する能動素子を同一基板上に形成することである。この構成により、更に薄型化、軽量化が可能となる。
本発明の第7の特徴的構成は、上述の第2の特徴的構成に加えて、前記複屈折変調層に入射した概ね円偏光が、反射面ではそのまま円偏光となり、反射後出射面では反対回りの円偏光となる状態を暗状態とし、前記複屈折変調層に入射した概ね円偏光が、反射面では直線偏光となり、反射後出射面では入射時と同じ向きの円偏光となる状態を明状態とすることである。この構成により、よりコントラストが高く、利用効率が高い表示装置が実現できる。
本発明の第8の特徴的構成は、上述の第3の特徴的構成に加えて、前記EL素子を、光学的に透明な基板上に、少なくとも、透明電極、有機ホール輸送層および/または有機電子輸送層、有機発光層、金属電極および封止層を順次積層して形成し、前記金属電極の透過率を50%以上とすることである。この構成により、より明るい表示装置が実現できる。
本発明の第9の特徴的構成は、上述の特徴的構成に加えて、前記EL素子の画素が明表示のときに、それに対応する前記反射型表示素子の画素が明表示を同時に表示し、EL素子の画素が暗表示のときに、それに対応する反射型表示素子の画素が暗表示を同時に表示することである。この構成によって、視認性が確保される。
本発明の第10の特徴的構成は、上述の第1から第8の何れかの特徴的構成に加えて、前記EL素子の画素の発光、非発光の表示状態によらず、前記反射型表示素子のすべての画素が常に暗表示を表示することである。この構成によって、視認性が確保される。
本発明の第11の特徴的構成は、上述の第1から第8の何れかの特徴的構成に加えて、前記EL素子のすべての画素が常に非発光状態であり、前記反射型表示素子の画素が明から暗表示を表示することである。この構成によって、視認性確保と消費電力の低減が実現される。
本発明による表示装置は、反射型表示素子を利用しているので、従来の反射型液晶表示装置における低消費電力という特徴を持っている。しかし、同時に消費電力の大きなEL素子を用いて、これを点灯状態に保ち続けることは、消費電力の増大を招く。そこで、用いる環境によって上記第9から第11の何れかの特徴的構成を用いることが、低消費電力と視認性を両立するために特に有効である。
本発明の第12の特徴的構成は、上述の第4の特徴的構成に加えて、前記円偏光手段を、前記EL素子側から順に、基板法線方向のリタデーションが100nm以上180nm以下に設定された第1の光学位相差補償板と、基板法線方向のリタデーションが200nm以上360nm以下に設定された第2の光学位相差補償板と、直線偏光板とから構成し、かつ前記直線偏光板の透過軸または吸収軸と前記第1の光学位相差補償板の遅相軸とのなす角度をθ1として前記直線偏光板の透過軸または吸収軸と前記第2の光学位相差補償板の遅相軸とのなす角度をθ2としたとき|2×θ2−θ1|の値が35度以上55度以下とすることである。即ち、本願発明者らは、反射型表示素子に良好な円偏光を入射することが可能となる上記の各数値範囲を実験により求めた。この構成により、反射型表示素子に良好な円偏光を入射することが可能となる。
本発明の第13の特徴的構成は、上述の第4の特徴的構成に加えて、前記円偏光手段を、前記EL素子側から順に、光学位相差補償板の基板法線方向のリターデーションが100nm以上180nm以下に設定された第1の光学位相差補償板と、基板法線方向のリターデーションが200nm以上360nm以下に設定された第2の光学位相差補償板と、基板法線方向のリターデーションが200nm以上360nm以下に設定された第3の光学位相差補償板と、1枚の偏光板とから構成し、前記偏光板の透過軸または吸収軸と前記第1、第2、第3の光学位相差補償板の遅相軸のなす角度をそれぞれθ1、θ2、θ3とした時、
35°≦|2×θ3−θ2−θ1|≦55°
が成立するように、偏光板および光学位相差補償板を配置することである。即ち、本願発明者らは、反射型表示素子にさらに良好な円偏光を入射することが可能となる上記の各数値範囲を実験により求めた。この構成により、反射型表示素子にさらに良好な円偏光を入射することが可能となる。
本発明の第14の特徴的構成は、上述の第2の特徴的構成に加えて、反射型表示素子における光反射性を有する手段として第1の基板に光反射膜を設け、該光反射膜が、なめらかで連続的に変化する凹凸形状を有し、かつ導電性材料から成ることである。この構成により、不要な散乱が無く、平坦な鏡面と同様に偏光に対する撹乱作用(偏光解消作用)を持たない、即ち偏光に対してその偏光性を保持する拡散性反射板が実現された。これは、拡散性の無い鏡面性の反射板を使用して表示装置前面に散乱板を配置した場合と比べ、表示特性が格段に向上する。少なくとも反射型表示素子が観察者側と反対側の基板に光反射性膜を有して反射表示する場合に、該反射性膜がなめらかな凹凸形状を有することは、反射表示の鏡面性防止の手段として有効である。
本発明の第15の特徴的構成は、上述の第2の特徴的構成に加えて、反射型表示素子における前記反射膜が無機誘電体ミラーあるいは有機ホログラム反射板からなることである。この構成により、良好なカラー表示が実現できる。
本発明の第16の特徴的構成は、上述の特徴的構成に加えて、カラーフィルタ層を前記円偏光手段の背面に形成することである。この構成により、良好なフルカラー表示が実現できる。
本発明の第17の特徴的構成は、上述の特徴的構成に加えて、前記反射型表示素子面に重ねて配置される押圧座標検出型入力装置を前記円偏光手段の背面に配置することである。円偏光手段を通過して概ね円偏光となった入射光は、偏光状態の変化を伴わない界面反射等の各種反射があったとしても、その反射光は出射時に偏光板で吸収される。そのため、このような構成とすると、携帯機器の入力装置として有効な感圧式入力装置(タッチパネル)の反射光が視認性の悪化を生じさせない。このように反射防止したタッチパネルと組み合わせることにより、表示装置として、該タッチパネルを通過した円偏光を有効に利用できる。
本発明の第18の特徴的構成は、上述の第3の特徴的構成に加えて、右円偏光の強度をI、左円偏光の強度をIとし、g=2(I−I)/(I+I)を定義した場合、少なくとも、g≠0である光を前記EL素子が発光することである。この構成により、EL素子の発光光をより有効に利用できる。
本発明によれば、反射型表示装置の欠点であった周囲光が微弱もしくは全くない暗所でも、EL素子を点灯することにより使用することが可能となり、反射型表示装置の適用環境を大幅に拡大することができる。またEL素子を用いて表示した場合にも、周囲光を取り込んで表示に利用するため、従来には無い周囲の明るさに自動的に適応する表示素子が実現できる。
以下、本発明の実施例を図面を参照して詳細に説明するが、本発明が以下の実施例に限定されるものでないことは言うまでもない。
本発明によれば、周囲環境依存型の表示装置が実現できる。
本発明の表示装置は、上記の如く、EL素子の背面に反射型表示素子が配置され、観察者側に円偏光手段が設けられており、EL素子が前記反射型表示素子の表示照明用かつ表示素子として働く。あるいは、EL素子の背面に反射型表示素子が設けられ、EL素子と反射型表示素子とが独立に表示の制御が可能である。
したがって、EL素子の発光光が反射型表示素子の側へ十分な量で反射し、表示装置の出射光の光量を増大することが可能となる。こうして、薄型、軽量でどのような照明環境下においても良好な表示が可能な表示装置が実現される。
また、反射型表示素子の視認性が周囲光に依存する昼間においても前記EL素子を表示照明かつ表示素子として作用させることもでき、暗所においてはこのEL素子を発光させて反射型表示素子の表示情報を視認することができる。発光型素子であるにも関わらず、周囲光を利用することができ、周囲環境に依存した視認性が実現できる。
また、前面に円偏光手段を設けた構成では、暗状態での黒浮きが見られず、加えて、界面の反射を無くすことができるため、コントラストの高い表示が可能となる。このような構造により、周囲環境に応じてユーザが各種表示形態を自由に選択できる新しいタイプのディスプレイを提供することが出来る。
さらに、偏光発光する発光層を用いることにより、さらに効率よく発光した光を外部に取り出すことができる。
(実施例1)
図1は、本発明による表示装置12の第1の実施例の構造を表わす概略断面図
である。透過型のEL素子13の背面に反射型表示素子14を一体に設け、観察者15側には、円偏光手段16を設ける。EL素子13と円偏光手段16とは対向配置されている。
これらの素子13、14は、ここでは単純マトリックス駆動方式で説明するが、アクティブマトリックス方式で駆動することもできる。また、EL素子として有機EL素子を、また反射型表示素子として液晶を用いた反射型液晶表示素子を用いており、円偏光手段としては偏光板17と1/4波長板18を積層しているが、これらに限定されるものではない。
EL素子13は透明基板19上に発光層5が形成され、更に透明な基板20で被覆されて、その透明基板20を反射型表示素子14の前面透明基板21に密着させた一体化構造になっている。一方の反射型表示素子は、透明基板21と透明基板22の間に液晶23を挟持している。透明基板21には透明電極24が形成され、基板22には、反射電極25が形成されている。
このような構造とすることにより、図1において矢印で示すように、明表示の場合に発光層5で発光した光は、直接観察者15側に出射する直接光L1と供に、液晶層23を透過し反射電極25で反射された反射光L2として、観察者側に出射する。また、周囲光L3はEL素子13を透過して、反射型表示素子14の反射電極25で反射して観察者側に出射する。すなわち、観察者はL1,L2に加えてL3を表示に利用できるため、非常に明るい表示が可能である。
暗表示の場合には、EL素子13は発光せず、さらに、周囲光L3は液晶層で変調されて観察者には到達せず、良好な暗状態が実現できる。円偏光手段16を設けたので、それより背面に形成される陽極や陰極、基板等の界面の反射光はすべて円偏光手段16により吸収されるため、非常に視認性の良い表示装置が実現できる。さらに好ましくは、円偏光手段16の表面にも反射防止膜やアンチグレア処理を施すことが望ましい。
次に図1の各構成要素の構造についてより詳細に説明する。
図2は、図1のEL素子13のより詳細な断面図である。EL素子13の基板19、20は光学的に透明な材質であって、例えばプラスチック、ガラス、セラミック等の適宜の材料が使用できる。基板20の厚さは反射型表示素子14の表示情報の画質を損なわないためにできるだけ薄くするのが望ましい。また陽極の透明電極3は、ITO、SnO等の光透過性の導電性材料が使用できる。
電界発光性の有機薄膜であるホール輸送層4、発光層5、電子輸送層6は、電界発光を得る層構成として従来公知の種々の構成を用いることができる。また、陰極側の金属電極7の材料としては、Li、Mg、Ca等の活性な金属とAg、Al、In等の金属との合金或いは、積層した構造が使用できる。特に本発明では、透過型のEL素子が要求されるため、陰極をできるだけ薄く、透明性が高くなるように形成する。本実施例では、10nm形成して、透過率80%を得ている。この場合抵抗が高くて問題なら、陰極の金属電極7の上に透明電極としてさらにITO電極を積層してもよい。陰極の金属電極7の透過率が50%以上あれば、良好で効率の高い表示装置が実現できる。上記の積層体を封止基板(透明基板)20により全体を覆う。基板20の材料としては、気密性が保たれれば適宜の材料を使用することができる。
こうして、陽極の透明電極3と陰極7との間に直流電圧8を選択的に印加すると、透明電極3から注入されたホールがホール輸送層4を経て、陰極7から注入された電子が電子輸送層6を経て、発光層5において電子−ホールの再結合を生じ、ここから所定波長の発光が生じ、透明基板19および20の両側から発光光L1とL2が観察できる。
発光層5の材料系としては、種々のものが適用可能である。例えば、ベンゾチアゾール系,ベンゾイミダゾール系,ベンゾオキサゾール系等の螢光増白剤、金属キレート化オキシノイド化合物、スチリルベンゼン系化合物等を挙げることができる。上記発光材料を用いた発光層は、例えば蒸着法、スピンコート法、キャスト法、LB法、印刷法等の公知の方法により薄膜化することにより形成できる。本実施例では、発光層に白色発光体を用いたが、これに限らずRBG発光と公知の材料が使用できる。
図3は、図1の反射型表示素子14のより詳細な断面図である。反射型表示素子14は、透明基板21、22と、ツイスト液晶層23と、透明電極24、反射電極(光反射手段)25、凹凸膜28と、配向膜26、27から構成される。例えば、ガラスから成る透明基板21、22間に、誘電率異方性が正であるツイスト液晶層23を設ける。透明基板21、22上には透明電極24および反射電極25上を設け、それぞれの電極上には配向膜26、27を形成する。
この配向膜の表面には、液晶層23の液晶分子が基板に対して平行に配向するように、例えばラビング処理等で配向処理を施す。この場合、電圧無印加状態で、液晶のツイスト角は、一例として63度に設定される。液晶の複屈折と液晶層厚の積(μm単位、以下△ndと略する)は0.205である。これは1/4波長条件を満たしていれば、どんな液晶層にも適用できる。
この1/4波長条件とは、円偏光が液晶層に入射し、通過した後直線偏光となる条件である。液晶層の配向状態を電界で制御することにより、以下の明と暗の状態を実現することができる。液晶層に入射した概ね円偏光が、反射面ではそのまま円偏光となり、反射後出射面では反対回りの円偏光となる状態を暗状態とし、前記液晶層に入射した概ね円偏光が、反射面では直線偏光となり、反射後出射面では入射時と同じ向きの円偏光となる状態を明状態とすることができるまた、液晶としては誘電率異方性が負のネマティック液晶やスメクティック液晶も適用できる。
透明電極24は、例えばITOによって形成される。一方、反射電極25にはアルミニウムや銀等の金属を用いる。本発明では、電極25に反射機能を持たせているが、これに限定されず基板22の外側に反射手段を形成しても良い。例えば、ホログラム反射膜や誘電体多層膜ミラー等の光反射性を有する反射膜を使用しても良い。
電極25に反射性を付加する本実施例では、反射光の偏光性を保存する程度に滑らかな凹凸形状を有する凹凸膜28を形成して、視認性を良好にしている。この滑らかな凹凸は、所定のマスクと感光性樹脂を用いることにより作製可能である。液晶の配向を乱さない程度として、高さは2μm以下が望ましい。このように反射膜に適度に拡散性と指向性を付与することにより、周囲光を有効に利用でき、明るい反射型表示素子が実現できる。
電極24と25には、電圧印加手段(図示せず)が接続され、表示内容に即した電圧によって表示が制御される。電極24と25には、液晶層に電界を発生するために電圧を印加するが、例えば、液晶素子の外部から表示部に直接電圧を印加してもよく、TFT素子、MIM等のアクティブ素子を配置してもよい。この場合、液晶層には誘電率異方性が正であるネマティック液晶を用いる。
これら図2に示すEL素子13と図3に示す反射型表示素子14の2つを密着させ、さらに円偏光手段16を観察者15側に配置した構造を図4に示す。図4は図1に示した本発明による表示装置12の構造をより詳細に示したものである。EL素子13は透明なので、このような構造に限らず、基板19を反射表示素子14に密着させてもよい。また、円偏光手段16は、観察者側に配置するのが望ましいが、これに限らず、反射型表示素子14の前面であれば、いずれの位置に配置しても良い。例えば、円偏光手段16を透明基板20と21の間に配置することも可能である。
次に、本発明による表示装置の動作を、周囲光の状況により場合分けして説明する。図5は周囲光が十分で、EL素子を発光させない場合の動作を示す。この場合は周囲光のみ利用し、反射型表示素子のみ駆動する。(図5(a))に示す明表示状態の場合、偏光板17と1/4波長板18を通過した円偏光がツイストした液晶層23に入射する。この円偏光はツイスト液晶層23を通過して直線偏光に変換され、反射膜25で反射され、直線偏光のまま再度ツイストした液晶層を通過することによって偏波面の回転が入射時と同一の方向の円偏光となり、偏光板をそのまま出射し、明表示となる。
一方、(図5(b))に示す暗表示状態の場合、電圧印加状態では液晶層はツイスト配向を解き、電界方向に沿って配向する。同じく偏光板と1/4波長板を通過した円偏光が液晶層に入射する。入射した円偏光は、液晶層23を通過し、何も偏光変化を受けず、円偏光のまま反射膜25に入射する。反射膜25で反射された円偏光は反対向きの円偏光となり、再び液晶層23、1/4波長板18に入射する。すると円偏光は入射時と90度変換された直線偏光になり、偏光板17で吸収され、暗表示となる。
次にEL素子のみ駆動した場合の動作を、図6および図7を参照して周囲光とEL素子で発光した光とに分けてそれぞれ説明する。図6はこの場合の反射型表示素子の動作を示し、全面において、表示データによらず、常に暗状態に設定する。周囲光L3は、表示の明暗の状態によらず、つねに円偏光手段16で吸収されるため、周囲光によるコントラスト低下は起こらない。一方、発光層5の発光光は無偏光なので液晶層23を通過しても無偏光のままである。
図7(a)に示すように、発光状態の時には、観察者側に発光したL1と反射板側に発光したL2とも円偏光手段16を通過する際に、約半分の光が吸収されるが、残りは通過するため明表示となる。図7(b)に示すようにEL素子が発光しない場合は当然表示も暗表示となる。
次に、EL素子と反射型表示素子を同時に駆動した場合について図8(a)(b)を用いて説明する。この場合周囲光L3は、図5で説明したように反射型表示素子が動作することにより有効に利用され、発光層5で発光した発光光L1およびL2も、図7で説明したように表示に有効に利用される。即ち明表示状態では、周囲光に加えて発光光も利用され、暗表示状態では、周囲光の映り込みが無く、発光もしないため良好な暗表示が実現できる。
ここでは明表示と暗表示の状態のみを説明したが、中間調に関しても原理的には同様であり、良好な中間調表示が実現できる。
上記の表示装置12に用いたEL素子13は、手動または自動で、明るい環境ではOFFにし、暗い環境ではONにすることができ、その切り換えには種々の手動式スイッチや、光センサー等を用いることができる。また反射型表示素子14に対しては表示用光源として働くが、本発明のEL素子には、単純マトリックスやアクティブマトリックスの電極が形成され、表示データにより、1つ1つの画素を点灯制御して、EL素子13のみで表示内容を表示することができる。これは、全面ONかOFFの切り替えをするだけの単なる導光板であった従来のフロントライトと全く異なる構造である。
このように、本発明によれば、周囲光の状態により、反射型表示素子のみ駆動、EL素子のみ駆動、さらに両方同時駆動という3タイプの表示方式が可能な、薄型、軽量の表示装置が実現可能である。
(実施例2)
図9は、本発明の表示装置において、EL素子32の発光層31にRGBの発
光パターンを形成することにより、発光時にフルカラー表示を可能とする構成を示す。その他の基本的な構成は実施例1と同様である。
このような発光層31の形成は、例えば赤色の発光を生じる有機層と電極の積層体を真空蒸着で形成した後、マスクを平行移動させ、緑色の発光を生じる別の有機層と電極を真空蒸着で積層し、そして、さらにマスクを平行移動させ、青色の発光を生じる別の有機層と電極を積層すればよい。
発光層31の具体的な形成方法の一例を説明すると、緑色発光を得るための有機層の膜形成は、膜形成部分に対応する開口部を設けた蒸着マスクをガラス基板と蒸発源の間に挿入し、ホール輸送層としてN,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)1,1’−ビフェニル−4,4’−ジアミン(以下、単にTPDと称する)を、1.33×10−4Pa(10−6Torr)の真空下で、抵抗加熱法により0.2〜0.4nm/sの蒸発速度で20nmの厚さに蒸着する。そして、この上に電子輸送層と発光を兼ねるトリス(8−ヒドロキシキノリン)アルミニウム(以下、単にAIq3と称する)を、0.2〜0.4nm/sの蒸発速度で40nmの厚さに抵抗加熱法により真空蒸着し、電子輸送層を形成する。
赤色発光を得るには、例えば、電子輸送性材料であるAlq3中に赤色発光の色素、例えば、4−ジシアノメチレン−6−(p−ジメチルアミノスチリル)−2−メチル−4H−ピラン(以下、単にDCMと称する)やナイルレッド、ペリレンジイミド誘導体を含ませることにより実現が可能である。青色発光を得るには例えば、青色蛍光を発する材料をホール輸送材料として用い電子輸送材料と積層する。
カソードの金属電極としてはMg−Ag(30:1)合金を用い、光の透過性を確保するために1Onmの厚さに形成する。抵抗値が高くて問題のある場合には、ITO膜を積層してもよい。RGBのパターニング方法は、ここで用いたマスク蒸着に限らず、インクジェット法や熱転写法の適用も可能である。
こうしてRGBを発光する発光層31が完成し、EL素子32を得る。このような構成により、EL素子に電圧を印可して発光させた場合にフルカラー表示が可能となる。一方、EL素子に電圧を印加しない場合には、反射型表示素子は良好な白黒表示となる。いずれの場合にも周囲光によるコントラスト低下は起こらず、良好な表示特性が得られる。発光層31のみを駆動した場合にはコントラスト100、反射型表示素子14のみを駆動した場合にはコントラスト20、両方同時に駆動した場合にはコントラスト80が得られた。また、この実施例の表示装置30では、反射膜25の形成面が液晶層23側なので、視差のない高精細な表示が得られた。
(実施例3)
次に図10は、本発明の表示装置において、EL素子32の発光層31にRGBの発光パターンを形成し、さらに反射型表示素子34の透明基板21上にカラーフィルタ層35を設けることにより、前記いずれの表示方式の場合でもフルカラー表示が可能な構成を示す。その他の基本的な構成は実施例2と同様である。
図において、表示装置33は、実施例2の表示装置30とほぼ同様の構成であるが、ガラス基板21の上に赤、緑、青の光を透過する顔料分散方式のカラーフィルタ層35を形成することを特徴とする。カラーフィルタ層35は、赤のカラーフィルタ、緑のカラーフィルタおよび青のカラーフィルタがそれぞれ1絵素中の単一の画素に対応し、赤、緑、青のカラーフィルタがストライプ状に配列されている。そして、カラーフィルタ層35の上に平坦化膜36を形成し、その上に透明電極24を形成し、表示電極とする。
本実施例ではカラーフィルタ層35には顔料分散法を適用し、以下のようにして形成する。まず、透明な感光性樹脂の中に赤色の顔料が均一に分散された感光性着色レジストを、ガラス基板21上に塗布する。本実施例では一例として、富士フィルムオーリン(株)社製のCR2000をスピンコート法により650回転で2.0μm形成した。その後、80℃でプリベークし、所定のマスクを用いて露光、現像し、最後に220度で30分ベークし赤のパターンを形成する。さらに、富士フィルムオーリン(株)社製のCG2000、CB2000を用いて同じプロセスで緑、青のパタ…ンを形成し、カラーフィルタ層35を形成する。また場合によっては、赤、緑、青のカラーフィルタパターンの間にブラックマトリックスを形成することもできる。その場合には、同じく富士フィルムオーリン(株)社製のブラックレジストCK2000の適用が可能である。
カラーフィルタの色設計はデバイスを構成する上で非常に重要である。例えば本実施例のような反射型表示素子のカラーフィルタ層35においては、図10に示すように入射した周囲光L3は往復2回カラーフィルタ層を通過する。そのため、このことを考慮してカラーフィルタの濃度を設計する。また、カラーフィルタの製造方法は、顔料分散型に限定されず、例えば電着法でも可能である。また、カラーフィルタの形成位置は、基板21に限らず、EL素子側の基板19や20でも良い。さらに、発光層31に接していても良く、この場合発光層の陽極を電着カラーフィルタ形成用の電極として用いることも可能である。即ち、カラーフィルタの形成場所は、円偏光手段16の後方であれば何処でも良い。
本実施例によれば、EL素子にRBGの発光層を設け、反射型表示素子34にカラーフィルタ層35を形成することにより、色再現性範囲の広いマルチカラーあるいはフルカラー表示が可能となる。また本構成では、発光層31の発光特性とカラーフィルタ層35の特性のピーク波長を合わせることにより、色純度が高まり、効率が向上する。
(実施例4)
次に図11は、本発明の表示装置において、EL素子32の発光層31にRGBの発光パターンを形成し、さらに反射型表示素子38の透明基板22上に反射型カラーフィルタ層39を設けることにより、前記いずれの表示方式の場合でもフルカラー表示が可能な構成を示す。その他の基本的な構成は実施例3と同様である。
図において、反射型カラーフィルタ層39の上には平坦化層40、その上には透明電極41としてITOを形成し、反射型カラーフィルタ層39の背面には光吸収層42を形成する。
光反射タイプのカラーフィルタとしては有機の体積ホログラム光学カラーフィルタあるいは無機ダイクロイックミラーが適用できるが、この場合にはその背面に光吸収層を設けることが必要である。光吸収層の形成位置は、反射型カラーフィルタの背面であれば何処でも良い。例えば、直接反射型カラーフィルタと接しても良いし、本実施例のように透明基板22の背面に形成しても良い。
以上のように薄型、軽量の表示装置37が実現され、例えば、昼間など反射型表示素子38の表示が外部光に依存する場合でも、EL素子32を反射型表示素子38の表示照明かつ表示素子として作用させることができる。そして、夜間など暗い場所においてはEL素子を発光させて表示情報を視認することができる。
(実施例5)
次に図12は、本発明の表示装置において、EL素子44に円偏光発光をする発光層45を用いた表示装置43を示す。その他の基本的な構成は実施例3と同様である。円偏光発光層45からは、右回りの円偏光発光L4とL5が発光する。円偏光発光が右回りか左回りかは材料組成やその処理により制御することができ、本実施例では、右回りの円偏光発光をするようにしている。
次に円偏光発光層の形成方法について説明する。円偏光発光材料として
Poly{2,5−bis[(S)−2−methylbutoxy]−1,4−phenylene}vinylene}−co−{[2,5−bis[(3R,3S)−(3,7−dimethyloctyl)oxy]−1,4−phenylene]vinylene}
を合成する。これをchloroform:0−dichlorobenzene=7:1の溶液に4mg/mLの割合で混ぜた溶液を用意し、これを、厚さ100nm(1000Å)のITOをスパッタにより成膜したガラス基板上に、窒素雰囲気下でスピンコートする。その後60℃でベークし溶媒を揮発させた後、その上からアルミ電極を蒸着により形成する。
この素子のITO側を陽極とし、アルミ側を陰極とし電圧を20V印加したところ、g値は波長600nmの発光光で、−1.1×10−1であった。
ここでg値とは、右円偏光の強度をI、左円偏光の強度をIとし
g=2(I−I)/(I十I
として定義した。
この値から、波長600nmの光の強度を1に規格化すると、I=0.47、I=0.53であることが計算される。このように、円偏光発光していることが確認された。
次に、この表示装置の光利用効率について図13(a)(b)を参照して説明する。円偏光手段16は入射光を右まわりの円偏光にするように設定されており、周囲光L3は円偏光手段16を通過して右回りの円偏光となり、液晶層23に入射する。
ここで、円偏光発光層45が発光すると、右回りの円偏光L4とL5を発光する。従って液晶層23には、周囲光L3の右回り円偏光と、円偏光発光層45の円偏光L5が合わさり、入射することになる。ツイストした液晶層は、右回り円偏光から直線偏光へ変換されるように設定されており、反射膜25上では直線偏光となる。反射した光は再びツイストした液晶層と1/4波長板18を通過することによって偏波面が入射時と同一の方向の直線偏光となり、偏光板17をそのまま透過して明表示となる。一方、観察者側に発光したL4は、右回りの円偏光であるので、そのまま円偏光手段16を通過して明表示となる。
このように偏光発光することにより、光の取り出し効率は、無偏光発光に比べて2倍となり、良好な明状態が実現できる。偏光発光層45が発光しない場合には、実施例1と同様良好な暗状態が実現できる。このように、g≠0となる円偏光発光する偏光発光層45を用いて表示装置43を構成すると、より効率よく発光光を取り出せる。
(実施例6)
次に図14は、本発明の表示装置において、EL素子13の発光層5を被覆する透明基板と反射型表示素子14の前面透明基板が1枚の基板47として一体化された表示装置46を示す。その他の基本的な構成は実施例1と同様である。この構成により、さらに薄型化と軽量化ができる。
(実施例7)
次に図15は、本発明の表示装置において、EL素子の発光層5と液晶層23を駆動するための透明電極24が同一透明基板19上に形成されている表示装置48を示す。この構成は2枚の基板だけで構成できるので、より一層の薄型化、軽量化ができる。図15は1つの画素のみ拡大した断面図である。
透明基板19上に、発光層5を制御する能動素子49と液晶層23を制御する能動素子50を設ける。能動素子49、50の上に透明な保護膜60を形成し、コンタクトホール61を介して能動素子50と液晶を駆動する透明電極24を接続する。能動素子としてはTFT(Thin Film Transistor)に代表される3端子素子、MIM(metal−insulator−metal)に代表される2端子のアクティブマトリックス素子が適用可能である。
この構成では、液晶を駆動する電極の1つである反射電極25と発光層を駆動する電極の1つである陰極は共通化していないので、様々な工夫が反射電極25に施せる利点がある。例えば、これに限らないが、実施例1で詳細に述べた凹凸膜の形成や、実施例4で詳細に説明した反射型カラーフィルタの適用等が可能である。
(実施例8)
図1に示す構成の円偏光手段16において、偏光板17と複数枚の位相差板を用いることによって、さらに広い帯域で円偏光を得ることができる。本実施例では、2枚または3枚用いることによりさらに表示コントラストが向上する。
具体的な構成を図16乃至図19に示す。図16に、第1の光学位相差補償板51と第2の光学位相差補償板52の位相差が、表示装置の入射光の方位から観察した場合、それぞれ135nmと270nmとなるように配置した場合について示す。図17において、θ1(偏光板透過軸方位53と第1の光学位相差補償板の遅相軸方位54のなす角度)=75°、θ2(偏光板透過軸方位53と第2の光学位相差補償板の遅相軸方位55のなす角度)=15°となるように配置した場合、表示装置に入射した光は偏光板17と光学位相差補償板52および光学位相差補償板51を通過して、可視光波長領域で概ね右回り円偏光となる。
即ち、この円偏光手段16は、EL素子13側から順に、基板法線方向のリタデーションが100nm以上180nm以下に設定された第1の光学位相差補償板51と、基板法線方向のリタデーションが200nm以上360nm以下に設定された第2の光学位相差補償板52と、直線偏光板(偏光板17)とからなる。また、前記直線偏光板の透過軸または吸収軸と第1の光学位相差補償板51の遅相軸とのなす角度をθ1として前記直線偏光板の透過軸または吸収軸と前記第2の光学位相差補償板52の遅相軸とのなす角度をθ2としたとき、
35°≦|2×θ2−θ1|≦55°
が成立するように、直線偏光板(偏光板17)および光学位相差補償板51、52が配置されている。
また、図18に、第1の光学位相差補償板51、第2の光学位相差補償板52および第3の光学位相差補償板56との位相差がそれぞれ、135nm、270nm、270nmとなるように配置した3枚の光学位相差補償板を有する円偏光板の構成を示す。図19に示すように、その設置角度をθ1(偏光板透過軸方位53と第1の光学位相差補償板の遅相軸方位54のなす角度)=100.2°、θ2(偏光板透過軸方位53と第2の光学位相差補償板の遅相軸方位55のなす角度)=34.2°、θ3(偏光板透過軸方位53と第3の光学位相差補償板の遅相軸方位57のなす角度)=6.5°となるように配置した場合、表示装置に入射した光は偏光板17と光学位相差補償板56、52、51を通過して、2枚の光学位相差補償板を用いる場合よりも、さらに広帯域な波長で円偏光になる。
即ち、この円偏光手段16は、EL素子13側から順に、光学位相差補償板の基板法線方向のリターデーションが100nm以上180nm以下に設定された第1の光学位相差補償板51と、第1の光学位相差補償板51の上に配置され、かつ基板法線方向のリターデーションが200nm以上360nm以下に設定された第2の光学位相差補償板52と、第2の光学位相差補償板52の上に配置され、かつ基板法線方向のリターデーションが200nm以上360nm以下に設定された第3の光学位相差補償板56と、第3の光学位相差補償板56上に配置された1枚の偏光板17とを具備している。また、前記偏光板17の透過軸または吸収軸と前記第1、第2、第3の光学位相差補償板51、52、56の遅相軸のなす角度をそれぞれθ1、θ2、θ3としたとき、
35°≦|2×θ3−θ2−θ1|≦55°
が成立するように、偏光板17および光学位相差補償板51、52、56が配置されている。
以上述べた実施例では光学位相差補償板として、1軸性の延伸フィルムを用いたが、2軸性、すなわち3次元的に屈折率を制御できる位相差フィルムや液晶ポリマーから作製した位相差フィルムも適用でき、視野角が拡大できる。
(実施例9)
次に図20は、本発明の表示装置の主な利用分野である携帯機器における情報
入力手段として、タッチパネル(押圧座標検出型入力装置)59を円偏光手段16の背面に設けた表示装置58を示す。また比較用に、図21にタッチパネル59を表示装置の観察者側に設けた従来の構成61を示す。
従来の構成61ではタッチパネルの反射光成分が直接観察されて大きく視認性を劣化させる。この反射光は、押圧位置検出用透明電極に狭持された空隙によるものだけでなく、タッチパネル支持基板と偏光板17との狭持された空隙によっても生じていた。一方本実施例の構成58では、そのような反射光成分はまったく観察されず、タッチパネルを設けない場合と同様の非常に良好な表示を示した。タッチパネルの押圧位置検出用透明電極に狭持された空隙による反射光も観察されず、さらに押圧力伝達防止用空隙とタッチパネル支持基板、およびEL素子の基板19の界面による反射も観察されず、円偏光状態を有効に表示に利用できる入力装置一体型表示装置が実現できた。
以上、本発明の実施例を説明したが、上述の実施例以外にも本発明の技術的思想に基づいて種々に変形が可能である。
EL素子の電源としては太陽電池と二次電池との組み合わせを用いてよい。また、EL素子として、無機ELや発光ダイオードを用いてもよい。
また、各実施例に使用した有機EL素子の種類は上述の実施例に限定されるものではなく、組み合わせを変えてもよく、液晶素子の種類も前述の実施例に限定されるものではない。なお、上述の実施例では液晶素子を用いて説明したが、これに限らず、光−電気変換機能を伴う無機物の複屈折率変調層の適用も可能である。例えば、液晶層23の替わりに、他の光電子素子であるPLZTを用いることも可能である。このPLZTは、電気光学セラミックスの一つであり、透明性と複屈折性を示す。また、このPLZTは、一般式(Pb1−xLa)(Zr1−yTi1−x/4(0<x≦0.3,0<y≦1.0)として表現される強誘電性の透明物質であり、ランタンをドープしたチタン酸ジルコン酸鉛とも表現できる。この物質では、前記各成分の組成比に応じてさまざまな、光学的な特性(Δnc)を電界により制御できる。
また、表示画面の一部のみEL素子を発光させることも可能である。例えば、画面中で動画を一部分に表示する場合にはその部分に対応するEL素子の発光強度を上げて、輝度の高い表示を実現し、その他の部分は文字情報の見易い輝度に調整してもよい。これは映像を見る最適輝度と文字情報を見る最適輝度が異なるためで、従来は画面の中の表示内容による部分的な輝度調節は困難であった。
(実施例10)
本発明のさらに他の実施例を図22および図23に基づいて以下に説明する。図22は、本発明の第10の実施例における表示装置70の概略図である。なお、同図に示すEL素子13は、詳細には例えば図2に示す構造を有していてもよい。
この表示装置70では、EL素子(電界発光素子)13の背面に電気泳動表示素子71が対向配置され、これら両者が一体に設けられている。EL素子13は少なくとも一部に透過部分を有している。なお、これらEL素子13および電気泳動表示素子71については、以下に単純マトリックス駆動方式にて駆動する場合を示すが、アクティブマトリックス方式で駆動することもできる。EL素子13としては、例えば有機EL素子を使用可能である。また、電気泳動表示素子71は反射型表示素子の一例である。
EL素子13は、透明基板19上に発光層5が形成され、この発光層5が透明基板20にて被覆されている。この透明基板20は電気泳動表示素子71の前面透明基板21に密着させており、EL素子13と電気泳動表示素子71とが一体化された構造になっている。
反射型表示素子としての電気泳動表示素子71は、透明基板21と透明基板22との間に電気泳動層72を挟持している。透明基板21の内面には透明電極24が形成され、透明基板22の内面には透明電極25が形成されている。
図22に矢印で示すように、表示装置70の明状態の場合において、発光層5で発光した光は、直接出射する直接光L1、および電気泳動層72で反射されて出射する反射光L2として、観察者15側に出射する。また、周囲光L3は、EL素子13を通過して電気泳動表示素子71の電気泳動層72に入射し、ここで反射されて観察者15側に出射する。すなわち、表示装置70では、直接光L1および反射光L2に加えて周囲光L3を表示に利用できるため、非常に明るい表示が可能である。また、暗表示の場合において、発光層5は発光せず、さらに、周囲光L3は電気泳動層72で吸収されて観察者には到達しない。したがって、良好な暗状態が実現できる。
本実施例の表示装置70では、上記のように、反射型表示装置として、偏光板を用いず電圧の印加により媒体中の荷電顔料が移動することを利用した電気泳動表示素子71を使用している。
ここで、上記電気泳動表示素子71について詳細に説明する。
図23には電気泳動表示素子71の断面図を示す。この電気泳動表示素子71では、少なくとも一方が透光性を有する2枚の例えばガラス基板21、22が互いに所定間隔をおいて対向している。これらガラス基板21、22の対向する内面側には、一対をなす平面状のITO等の透明電極24、25が形成されている。
上記2枚のガラス基板21、22の間には電気泳動層72が挟持されている。この電気泳動層72は、例えば黒色に着色された着色分散媒73と、この着色分散媒73に分散して配されている帯電した例えば白色顔料74とがマイクロカプセル化させている。なお、白色顔料74は着色分散媒73の一部分、例えば球状をなす着色分散媒73の半球面部分に配されている。
このような電気泳動表示素子71では、上記一対の透明電極24、25に対し、例えば図23の明状態に示すように、上側の透明電極24にプラス、下側の透明電極25にマイナスの電圧を印加すると、着色分散媒73中に分散している負に帯電した白色顔料74がクーロン力によって陽極(透明電極24)に向かって電気泳動し、白色顔料74が上側の陽極(透明電極24)に付着する。このような状態の電気泳動表示素子71を観察者15がガラス基板21側から観察すると、白色顔料74が付着して層を形成した部分は透明電極24とガラス基板21とを介して白色に見えることになる。
一方、透明電極24、25への印加電圧の極性を逆にすれば、図23の暗状態に示すように、白色顔料74は反対側の透明電極25に付着して層を形成する。したがって、観察者15が電気泳動表示素子71をガラス基板21から観察すると、白色顔料74が黒色分散媒73の背後に隠れるので、電気泳動表示素子71は黒色に見えることになる。
また、電圧の印加を停止すると、透明電極25に付着した白色顔料層74は、その付着状態を維持するので、白色顔料層74が透明電極25に一旦付着した後は、付着状態を維持する電圧を印加する以外は特に電圧を印加する必要がなくなる。このように、表示装置70では偏光板を使用しないので、明るい反射型表示装置となる。
EL素子13については、実施例1において用いた図2の構造をそのまま適用可能である。なお、同図は表示装置12におけるEL素子13のみ取り出した断面図である。同図のEL素子13において、透明基板19,20は光学的に透明な材質であることが必要であり、例えばプラスチック、ガラス、セラミックや他の透明な材料を適宜使用できる。透明基板20の厚さは、電気泳動表示素子71(反射型表示素子14)の表示情報の画質を損なわないために、できるだけ薄くするのが望ましい。また、陽極となる透明電極3には、ITO、Sn O等の光透過性の導電性材料が使用できる。
本実施例の表示装置70において、EL素子13は、例えば、明るい昼間にOFFにし、暗所においてONにして使用する。その駆動方法は例えば手動式(手動式スイッチによる切り替え方式)であり、この場合、手動式スイッチの構造は種々のものを適用可能である。また、上記駆動方法は、例えば光センサーを用いて自動的に切り換えることができる方式にすることも可能である。また、EL素子13は、電気泳動表示素子71に対する表示用光源の機能を備える一方、電界発光素子13のみによる表示も可能である。
なお、一般に言われるフロントライトは、導光板タイプのものであり、表示内容によって表示状態が切り替わることはなく、全面ONかOFFの切り替えをするのみである。したがって、EL素子13を備えた本発明の表示装置は、フロントライトを備えた従来の表示装置とは全く異なる。即ち、本発明の表示装置が備えるEL素子13は、単純マトリックス駆動やアクティブマトリックスの電極が形成され、表示データにより、1つ1つの画素を点灯制御するものである。
上記のように、表示装置70では、外光の状態により、電気泳動表示素子71のみ駆動、EL素子13のみ駆動、さらに両方同時駆動という3タイプの表示形態が可能である。さらに、薄型、軽量とすることができる。
(実施例11)
本発明のさらに他の実施例を図24に基づいて以下に説明する。
図24は、本発明の第11の実施例における表示装置80の概略図である。同図に示すように、表示装置80では、EL素子(電界発光素子)の発光層5と電気泳動層72を駆動するための透明電極24とが同一の透明基板19上に形成されている。したがって、表示装置80は透明基板が2枚の基板(透明基板19と透明基板22)だけで構成されるため、より薄くし、軽量化が実現できる。なお、図24は1つの画素のみ拡大した断面図である。
表示装置80において、透明基板19上には、発光層5を制御する能動素子49と電気泳動層72を制御する能動素子50とが設けられている。能動素子49、50の上には透明な保護膜60が形成され、コンタクトホール61を介して能動素子50と電気泳動層73を駆動する透明電極24とが接続されている。
能動素子49、50としてはTFT(Thin Film Transistor)に代表される3端子素子、MIM(metal−nsulator−metal)に代表される2端子のアクティブマトリックス素子の適用が可能である。本実施例では、発光層5と電気泳動層72とを個々の例えばTFT(能動素子49、50)にて独立に制御することが可能である。TFTの個数については、発光層5を制御するために複数個使用されるのがより好ましい。
反射型表示素子としては、以上説明したような、1枚の偏光板を用いた液晶表示素子、あるいは電気泳動表示素子ばかりでなく、偏光板を用いないゲストホスト液晶やいわゆるジリコンディスプレイとよばれるツイストボール式のもの、あるいはトナーが電界で移動するトナーディスプレイの反射型ディスプレイ等であっても本発明の表示装置への適用は可能である。
本発明による表示装置の第1の実施例の概略断面図である。 図1のEL素子のより詳細な断面図である。 図1の反射型表示素子のより詳細な断面図である。 図1の表示装置のより詳細な断面図である。 図5(a)は、図1に示した表示装置における、EL素子を発光させない場合の周囲光による明表示状態の表示動作説明図、図5(b)は、同暗表示状態の表示動作説明図である。 図1に示した表示装置における、EL素子のみ駆動される場合のその発光光および周囲光による表示動作説明図である。 図7(a)は、図1に示した表示装置における、EL素子のみ駆動される場合の明表示状態の表示動作説明図、図7(b)は同暗表示状態の表示動作説明図である。 図8(a)は、図1に示した表示装置における、EL素子および反射型表示素子が駆動される場合の明表示状態の表示動作説明図、図8(b)は同暗表示状態の表示動作説明図である。 本発明による表示装置の第2の実施例の概略断面図である。 本発明による表示装置の第3の実施例の概略断面図である。 本発明による表示装置の第4の実施例の概略断面図である。 本発明による表示装置の第5の実施例の概略断面図である。 図13(a)は、図12に示した偏光発光を用いた表示装置における明表示状態の表示動作説明図、図13(b)は同暗表示状態の表示動作説明図である。 本発明による表示装置の第6の実施例の概略断面図である。 本発明による表示装置の第7の実施例の概略断面図である。 本発明による表示装置のさらに他の実施例における、光学位相差補償板を2枚用いた円偏光手段の断面図である。 図16の円偏光手段の偏光板と光学位相差補償板の設定方位を示す図である。 本発明による表示装置のさらに他の実施例における、光学位相差補償板を3枚用いた円偏光手段の断面図である。 図18の円偏光手段の偏光板と光学位相差補償板の設定方位を示す図である。 本発明の表示装置において、タッチパネルを円偏光手段の背面に設けた構成を示す断面図である。 従来の表示装置において、タッチパネルを表示装置の前面に設けた構成を示す断面図である。 本発明による表示装置のさらに他の実施例を示す概略断面図である。 図22に示した電気泳動表示素子の動作説明図である。 本発明による表示装置のさらに他の実施例を示す概略断面図である。 従来のEL素子の断面図である。 従来の反射防止を施したEL素子の断面図である。
符号の説明
1 有機EL素子
2 透明基板
3 透明電極
4 ホール輸送層
5 発光層
6 電子輸送層
7 陰極
8 電源
9 偏光板
10 1/4波長板
11 円偏光手段
12 表示装置
13 EL素子
14 反射型表示素子
15 観察者
16 円偏光手段
17 偏光板
18 1/4波長板
19〜22 透明基板
23 液晶層
24 透明電極
25 反射電極(光反射手段)
26,27 配向膜
28 凹凸膜

Claims (19)

  1. 外部光から左右回りいずれかの概ね円偏光を選択的に透過する円偏光手段と、光透過性のEL素子とを有し、前記EL素子の背面に反射型表示素子を有し、
    前記EL素子と前記反射型表示素子とに共用される透明基板、および前記EL素子を駆動する能動素子と前記反射型表示素子を駆動する能動素子とを備え、これら両能動素子が前記透明基板における同一の面に形成されていることを特徴とする表示装置。
  2. EL素子と、前記EL素子の背面に設けられ、光反射手段を有する反射型表示素子とを備えた表示装置において、
    前記EL素子と反射型表示素子とが独立に表示の制御が可能であり、
    前記EL素子と前記反射型表示素子とに共用される透明基板、および前記EL素子を駆動する能動素子と前記反射型表示素子を駆動する能動素子とを備え、これら両能動素子が前記透明基板における同一の面に形成されていることを特徴とする表示装置。
  3. 前記反射型表示素子が、少なくとも一方が透明基板である2枚の基板に挟持された液晶または無機物の複屈折変調層から構成される請求項1または2に記載の表示装置。
  4. 前記EL素子の発光層が無機材料あるいは有機材料から構成されることを特徴とする請求項1または2に記載の表示装置。
  5. 前記円偏光手段が、1枚の偏光板と少なくとも1枚の位相差板からなることを特徴とする請求項1に記載の表示装置。
  6. 前記EL素子の基板が前記反射型表示素子の基板を兼ねている、請求項1から5のいずれか1項に記載の表示装置。
  7. 前記複屈折変調層に入射した概ね円偏光が、反射面ではそのまま円偏光となり、反射後出射面では反対の円偏光となる状態を暗状態とし、前記複屈折変調層に入射した概ね円偏光が、反射面では直線偏光となり、反射後出射面では入射時と同じ向きの円偏光となる状態を明状態とすることを特徴とする請求項3に記載の表示装置。
  8. 前記EL素子が、光学的に透明な基板上に、少なくとも、透明電極、有機ホール輸送層、有機発光層、有機電子輸送層、金属電極および封止層が順次積層されており、前記金属電極の透過率が50%以上であることを特徴とする請求項4に記載の表示装置。
  9. 請求項1から8のいずれか1項に記載の表示装置において、
    前記EL素子の画素が明表示のときに、それに対応する前記反射型表示素子の画素が明表示を同時に表示し、EL素子の画素が暗表示のときに、それに対応する反射型表示素子の画素が暗表示を同時に表示することを特徴とする表示装置。
  10. 請求項1から8のいずれか1項に記載の表示装置において、
    前記EL素子の画素の発光、非発光の表示状態によらず、前記反射型表示素子のすべての画素が常に暗表示を表示することを特徴とする表示装置。
  11. 請求項1から8のいずれか1項に記載の表示装置において、
    前記EL素子のすべての画素が常に非発光状態であり、かつ前記反射型表示素子の画素が明および暗表示を表示することを特徴とする表示装置。
  12. 請求項5に記載の表示装置において、
    前記円偏光手段が、2枚の光学位相差補償板から構成され、前記EL素子側から順に、基板法線方向のリタデーションが100nm以上180nm以下に設定された第1の光学位相差補償板と、基板法線方向のリタデーションが200nm以上360nm以下に設定された第2の光学位相差補償板と、直線偏光板とからなり、かつ前記直線偏光板の透過軸または吸収軸と前記第1の光学位相差補償板の遅相軸とのなす角度をθ1として前記直線偏光板の透過軸または吸収軸と前記第2の光学位相差補償板の遅相軸とのなす角度をθ2としたとき、
    35°≦|2×θ2−θ1|≦55°
    が成立するように、偏光板および光学位相差補償板が配置されていることを特徴とする表示装置。
  13. 請求項5に記載の表示装置において、
    前記円偏光手段が、3枚の光学位相差補償板から構成され、前記EL素子側から順に、光学位相差補償板の基板法線方向のリターデーションが100nm以上180nm以下に設定された第1の光学位相差補償板と、第1の光学位相差補償板の上に配置され、かつ基板法線方向のリターデーションが200nm以上360nm以下に設定された第2の光学位相差補償板と、第2の光学位相差補償板の上に配置され、かつ基板法線方向のリターデーションが200nm以上360nm以下に設定された第3の光学位相差補償板と、第3の光学位相差補償板上に配置された1枚の偏光板とを具備しており、前記偏光板の透過軸または吸収軸と前記第1、第2、第3の光学位相差補償板の遅相軸のなす角度をそれぞれθ1、θ2、θ3としたとき、
    35°≦|2×θ3−θ2−θ1|≦55°
    が成立するように、偏光板および光学位相差補償板が配置されていることを特徴とする表示装置。
  14. 請求項3に記載の表示装置において、
    前記反射型表示素子が光反射膜を備えており、該光反射膜が、なめらかで連続的に変化する凹凸形状を有し、導電性材料から成ることを特徴とする表示装置。
  15. 請求項3に記載の表示装置において、
    前記反射型表示素子が光反射膜を備えており、該光反射膜が、無機誘電体ミラーあるいは有機ホログラム反射板から構成されることを特徴とする表示装置。
  16. 請求項1、3から15のいずれか1項に記載の表示装置において、
    更に、カラーフィルタ層を前記円偏光手段の背面に形成することを特徴とする表示装置。
  17. 請求項1、3から16のいずれか1項に記載の表示装置において、
    更に、押圧座標検出型入力装置を、前記円偏光手段の背面に具備することを特徴とする表示装置。
  18. 前記EL素子の発光層が無機材料あるいは有機材料から構成され、
    前記EL素子が、右円偏光の強度をIR、左円偏光の強度をILとし、g=2(IL−IR)/(IL+IR)と定義した場合、少なくとも、g≠0である光を発光することを特徴とする請求項1に記載の表示装置。
  19. 反射型表示素子が、電気泳動表示素子からなることを特徴とする請求項2に記載の表示装置。
JP2008016791A 2001-02-20 2008-01-28 表示装置 Expired - Fee Related JP4954911B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016791A JP4954911B2 (ja) 2001-02-20 2008-01-28 表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001043234 2001-02-20
JP2001043234 2001-02-20
JP2008016791A JP4954911B2 (ja) 2001-02-20 2008-01-28 表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002031448A Division JP4202030B2 (ja) 2001-02-20 2002-02-07 表示装置

Publications (2)

Publication Number Publication Date
JP2008171011A JP2008171011A (ja) 2008-07-24
JP4954911B2 true JP4954911B2 (ja) 2012-06-20

Family

ID=39699073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016791A Expired - Fee Related JP4954911B2 (ja) 2001-02-20 2008-01-28 表示装置

Country Status (1)

Country Link
JP (1) JP4954911B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097453B1 (ko) * 2008-09-09 2011-12-23 네오뷰코오롱 주식회사 키패드 장치, 이를 구비하는 모바일 기기 및 키패드 제어 방법
KR101322951B1 (ko) 2009-03-27 2013-10-29 엘지디스플레이 주식회사 유기전계발광표시장치
US20120257144A1 (en) * 2009-12-28 2012-10-11 Sharp Kabushiki Kaisha Light guiding unit, lighting device, and display device
JP2011145391A (ja) * 2010-01-13 2011-07-28 Seiko Epson Corp 電気泳動表示装置及び電子機器
DE102010041331A1 (de) * 2010-09-24 2012-03-29 Siemens Aktiengesellschaft Ladungsträgermodulation zur Farb- und Helligkeitsabstimmung in organischen Leuchtdioden
EP2963506B1 (fr) * 2014-07-04 2019-03-20 The Swatch Group Research and Development Ltd. Ensemble d'affichage comprenant deux dispositifs d'affichage superposés
EP3006994B1 (fr) * 2014-10-10 2018-02-14 The Swatch Group Research and Development Ltd. Ensemble d'affichage comprenant deux dispositifs d'affichage superposés
JP7415561B2 (ja) * 2020-01-06 2024-01-17 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置および電子機器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582644B2 (ja) * 1989-08-10 1997-02-19 富士写真フイルム株式会社 平面型画像表示装置
JPH05173193A (ja) * 1991-12-25 1993-07-13 Dainippon Printing Co Ltd 電気泳動表示用の分散系およびその分散系を用いた電気泳動表示素子
JP3681192B2 (ja) * 1995-02-06 2005-08-10 出光興産株式会社 複合素子型表示装置
JPH08321380A (ja) * 1995-05-25 1996-12-03 Chisso Corp 有機電界発光素子
JPH09127885A (ja) * 1995-10-30 1997-05-16 Sony Corp 表示素子
JPH1054911A (ja) * 1996-06-05 1998-02-24 Toppan Printing Co Ltd ホログラム反射板とそれを用いた反射型液晶表示装置
JPH10206887A (ja) * 1997-01-17 1998-08-07 Sony Corp 反射型液晶ディスプレイパネル及びその製造方法
JPH10213799A (ja) * 1997-01-29 1998-08-11 Casio Comput Co Ltd 液晶表示装置
JP2001356340A (ja) * 1997-04-23 2001-12-26 Sharp Corp タッチパネル一体型反射型液晶表示装置
JP3710722B2 (ja) * 1997-04-23 2005-10-26 シャープ株式会社 反射型液晶表示装置
JP3399869B2 (ja) * 1999-01-21 2003-04-21 シャープ株式会社 液晶表示装置
JP3640008B2 (ja) * 1999-02-23 2005-04-20 シャープ株式会社 液晶表示装置用反射板、該反射板の製造方法及び反射型液晶表示装置
JP3797007B2 (ja) * 1999-03-15 2006-07-12 セイコーエプソン株式会社 液晶装置および電子機器
JP3487782B2 (ja) * 1999-03-17 2004-01-19 株式会社日立製作所 液晶表示装置
JP2001035653A (ja) * 1999-07-21 2001-02-09 Nec Corp 有機elパネルとそのフィルタ
JP2002140022A (ja) * 2000-11-01 2002-05-17 Matsushita Electric Ind Co Ltd 表示装置および表示装置の製造方法

Also Published As

Publication number Publication date
JP2008171011A (ja) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4202030B2 (ja) 表示装置
US6841803B2 (en) Display device
JP4954911B2 (ja) 表示装置
US7012365B2 (en) Light-emitting device and light-emitting display with a polarization separator between an emissive layer and a phase plate
JP4027164B2 (ja) 表示装置
US7732809B2 (en) Light emitting display providing with compensated cholesteric reflective polarizer for improved contrast even in high ambient light or large viewing angle
US6900458B2 (en) Transflective display having an OLED backlight
KR20180003244A (ko) 휘도 향상을 위한 광학부재 및 이를 구비한 유기전계발광 표시장치
US7034911B2 (en) Display
CN107179638B (zh) 一种显示面板及其控制方法、显示装置
JP4608768B2 (ja) 液晶表示装置
JP3672060B2 (ja) 反射型液晶装置
KR20050007155A (ko) 디스플레이 장치
CN105974649A (zh) 一种显示装置及显示方法
JP4034981B2 (ja) 発光素子内在型液晶表示素子
KR100813828B1 (ko) 액정표시장치
US12100789B2 (en) Display device
JP2005292597A (ja) 表示装置
TWI378418B (en) Transflective display device
JP2004163583A (ja) 電気光学装置及び電子機器

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees