Nothing Special   »   [go: up one dir, main page]

JP4952124B2 - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP4952124B2
JP4952124B2 JP2006213772A JP2006213772A JP4952124B2 JP 4952124 B2 JP4952124 B2 JP 4952124B2 JP 2006213772 A JP2006213772 A JP 2006213772A JP 2006213772 A JP2006213772 A JP 2006213772A JP 4952124 B2 JP4952124 B2 JP 4952124B2
Authority
JP
Japan
Prior art keywords
filter
acoustic wave
surface acoustic
substrate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006213772A
Other languages
Japanese (ja)
Other versions
JP2008042498A (en
Inventor
教尊 中曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2006213772A priority Critical patent/JP4952124B2/en
Publication of JP2008042498A publication Critical patent/JP2008042498A/en
Application granted granted Critical
Publication of JP4952124B2 publication Critical patent/JP4952124B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、弾性表面波素子に関し、さらに詳しくは、球形表面を有する基材と、この基材の球形表面に弾性表面波が伝搬路を形成し、この伝搬路に弾性表面波励起手段を設けてなる弾性表面波素子に関するものである。
なお、本発明において、弾性表面波とは、境界波、回廊波、内郭を周回する表面波、弾性表面波、漏洩弾性表面波、擬似弾性表面波、擬似漏洩弾性表面波等、固体表面にエネルギーを集中させて伝搬する弾性波をいう。
The present invention relates to a surface acoustic wave device, and more specifically, a base material having a spherical surface, a surface acoustic wave propagation path is formed on the spherical surface of the base material, and surface acoustic wave excitation means is provided in the propagation path. The present invention relates to a surface acoustic wave element.
In the present invention, the surface acoustic wave refers to a boundary wave, a corridor wave, a surface wave that circulates the inner shell, a surface acoustic wave, a leaky surface acoustic wave, a pseudo surface acoustic wave, a pseudo leaky surface acoustic wave, etc. An elastic wave that propagates with concentrated energy.

弾性表面波素子は、遅延線、発信器のための発振素子または共振素子、周波数を選択するためのフィルター、化学センサー、バイオセンサーなどに使用される(例えば特許文献1参照)。   The surface acoustic wave element is used for a delay line, an oscillation element or a resonance element for a transmitter, a filter for selecting a frequency, a chemical sensor, a biosensor, and the like (see, for example, Patent Document 1).

次に、この種従来の弾性表面波素子について、図9〜図11を参照して説明する。
弾性表面波素子1は、図9〜図11に示すように、ニオブ酸リチウム単結晶からなる球形の基材2と、この基材2が実装される基板(プリント基板)3を備える。基材2の赤道上に対応する外周面には、弾性表面波が伝搬される伝搬路2aがエンドレスに形成され、この伝搬路2a上に位置する基材2の表面箇所には、伝搬路2aに沿って伝搬する弾性表面波を励起する弾性表面波励起手段4が設けられている。この弾性表面波励起手段4は、一対の櫛形電極4aから構成され、この各櫛形電極4aは、基材2の表面に形成した一対の給電端子4bに接続されている。
基板3の表面には、基材2の下端部(球の南極に相当する部分)球面が合致する形状の凹部3aが形成され、この凹部3aに基材2の下端部が係合されている。また、基板3の表面には、一対の給電端子4bに対応する信号線5aとアース線5bが基板3の左右から凹部3aに接近する方向に延在して形成され、さらに、この信号線5aとアース線5bの一端は凹部3a内に臨ませてあり、基材2をその下端部が凹部3aに嵌合されるように基板3上にセットされた時に、信号線5aおよびアース線5bの一端が対応する電極引き出し端子4bに接続されるようになっている。
また、基板3上には、基材2の周囲を囲むようにして基材2を収容する収容室6を有するフィルター支持材7が固定され、このフィルター支持材7の収容室6は、微細な孔を形成したフィルター8、または特定のガスのみを通過させたり、あるいは特定のガスが収容室6へ侵入するのを防ぐ薄膜からなるフィルターにより閉塞されている。
特開2003−115743号公報
Next, this type of conventional surface acoustic wave device will be described with reference to FIGS.
As shown in FIGS. 9 to 11, the surface acoustic wave element 1 includes a spherical base material 2 made of a lithium niobate single crystal and a substrate (printed circuit board) 3 on which the base material 2 is mounted. A propagation path 2a through which a surface acoustic wave is propagated is formed endlessly on the outer peripheral surface corresponding to the equator of the base material 2, and the propagation path 2a is formed on the surface portion of the base material 2 located on the propagation path 2a. Surface acoustic wave exciting means 4 for exciting the surface acoustic wave propagating along the surface is provided. The surface acoustic wave excitation means 4 is composed of a pair of comb electrodes 4 a, and each comb electrode 4 a is connected to a pair of power supply terminals 4 b formed on the surface of the substrate 2.
On the surface of the substrate 3, a concave portion 3a having a shape matching the spherical surface of the lower end portion (the portion corresponding to the south pole of the sphere) of the base material 2 is formed, and the lower end portion of the base material 2 is engaged with the concave portion 3a. . A signal line 5a and a ground line 5b corresponding to the pair of power supply terminals 4b are formed on the surface of the substrate 3 so as to extend from the left and right sides of the substrate 3 in a direction approaching the recess 3a. One end of the ground wire 5b faces the recess 3a, and when the base material 2 is set on the substrate 3 so that the lower end of the substrate 2 is fitted into the recess 3a, the signal wire 5a and the ground wire 5b One end is connected to the corresponding electrode lead terminal 4b.
A filter support member 7 having a storage chamber 6 for storing the base material 2 is fixed on the substrate 3 so as to surround the periphery of the base material 2. The storage chamber 6 of the filter support material 7 has fine holes. The filter 8 is blocked by the formed filter 8 or a filter made of a thin film that allows only a specific gas to pass through or prevents the specific gas from entering the storage chamber 6.
JP 2003-115743 A

このような弾性表面波素子において、弾性表面波励起手段4を構成する櫛形電極4aに高周波信号が供給されると、基材2の表面が励起されて弾性表面波が発生し、この弾性表面波は伝搬路2aに沿って多重周回する。
このような球形弾性表面波素子は、弾性表面波が伝送路2aを多重周回することで十分な弾性表面波の伝搬距離を確保できることから、球形表面への物質の付着が弾性表面波の伝搬速度やその減衰定数に影響を与えることを用いて圧力や、あるいは温度を測定する場合、平面板状の基材を用いた弾性表面波素子において、その基板の伝搬路を伝搬する弾性表面波を利用して圧力計を構成するものよりも遥かに高感度なものとなる。
In such a surface acoustic wave element, when a high frequency signal is supplied to the comb-shaped electrode 4a constituting the surface acoustic wave excitation means 4, the surface of the substrate 2 is excited to generate a surface acoustic wave. Makes multiple rounds along the propagation path 2a.
In such a spherical surface acoustic wave element, a sufficient surface acoustic wave propagation distance can be ensured by the surface acoustic wave traveling around the transmission line 2a. Therefore, the adhesion of the substance to the spherical surface causes the propagation speed of the surface acoustic wave. When measuring pressure or temperature using the influence of the damping constant and its damping constant, use surface acoustic waves propagating through the propagation path of the substrate in surface acoustic wave devices using a flat plate-like substrate Thus, the sensitivity is much higher than that of the pressure gauge.

しかし、球形弾性表面波素子以外の弾性表面波素子は、一般的に、弾性表面波が伝搬する固体表面に、弾性表面波素子の周囲に浮遊するチリなどが付着すると、これが出力に影響して測定誤差が生じることになる。そこで、球形表面へのチリなどの付着を防止するために、図9に示すように、微細な孔を有したフィルター8や薄膜からなるフィルターを用いる必要がある。
しかしながら、球形弾性表面波素子に微細な孔を有したフィルターや薄膜からなるフィルターを使用した場合、基材2が収容されているフィルター支持材7内で気体が存在できる収容室6の体積に対して、フィルターが、可能な限り大きな面積で外部の雰囲気と接触されるようにすることが、球形弾性表面波素子の応答性を早くする観点から重要になる。
However, surface acoustic wave elements other than spherical surface acoustic wave elements generally affect the output when dust or the like floating around the surface acoustic wave element adheres to the solid surface on which the surface acoustic wave propagates. Measurement error will occur. Therefore, in order to prevent dust and the like from adhering to the spherical surface, it is necessary to use a filter 8 having a fine hole or a filter made of a thin film as shown in FIG.
However, when a filter having fine holes or a filter made of a thin film is used for the spherical surface acoustic wave element, the volume of the storage chamber 6 in which gas can exist in the filter support material 7 in which the substrate 2 is stored. Thus, it is important from the viewpoint of speeding up the responsiveness of the spherical surface acoustic wave element that the filter is brought into contact with the external atmosphere as much as possible.

また、弾性表面波素子を圧力変動の大きい環境で使用する場合や、外部から高速で液体や気体がフィルターに吹き付けられる環境下では、フィルターやフィルターの固定部位に対して大きな応力がかかり、フィルターが破損されるおそれがある。
また、従来の弾性表面波素子においては、図9に示すように、外部の圧力が収容室6の内部圧力より低下した場合、この内部圧力によってフィルター8に外側に向けた力がかかり、フィルターが破損される可能性がある。さらに、弾性表面波素子の櫛形電極や、その電極から延びる電気配線からの電磁的なノイズが侵入し易いという問題がある。
In addition, when a surface acoustic wave device is used in an environment with large pressure fluctuations or in an environment where liquid or gas is sprayed onto the filter at high speed from the outside, a large stress is applied to the filter or the fixed part of the filter, and the filter There is a risk of damage.
Further, in the conventional surface acoustic wave element, as shown in FIG. 9, when the external pressure is lower than the internal pressure of the storage chamber 6, an outward force is applied to the filter 8 by this internal pressure, and the filter There is a possibility of damage. Further, there is a problem that electromagnetic noise from the comb-shaped electrode of the surface acoustic wave element and the electric wiring extending from the electrode easily enters.

本発明は、上記のような事情に鑑みてなされたもので、力学的に脆弱なフィルターであっても、これを破損することなく安定に維持できるとともに、フィルターを通しての基材と外部雰囲気との接触を良好にして応答性を向上でき、併せて、電磁的なノイズの侵入を防止できる弾性表面波素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and even a mechanically fragile filter can be stably maintained without being damaged, and the substrate through the filter and the external atmosphere can be maintained. An object of the present invention is to provide a surface acoustic wave element which can improve contact and improve responsiveness and can prevent electromagnetic noise from entering.

上記の目的を達成するために本発明の弾性表面波素子は、基板と、前記基板上に実装され弾性表面波が周回伝搬される伝搬路となる球面状の外周面を有する基材と、前記外周面に設けられ前記伝搬路に沿い前記弾性表面波を励起する弾性表面波励起手段と、前記基板上に前記基材を囲むように設けられ前記外周面の周囲に該外周面に沿って延在する収容室を形成するフィルター支持部材と、前記フィルター支持部材に取着され前記収容室内外に被測定気体が通過できるように前記収容室を閉塞する第1フィルターと、を有する弾性表面波素子において、前記第1フィルターと対向する前記基材の箇所に第1平面部が形成され、前記第1平面部と、該第1平面部に対向する前記第1フィルターの箇所とは取着され、前記第1フィルターは金属製メッシュであることを特徴とする。
また、本発明の弾性表面波素子は、基板と、前記基板上に実装され弾性表面波が周回伝搬される伝搬路となる球面状の外周面を有する基材と、前記外周面に設けられ前記伝搬路に沿い前記弾性表面波を励起する弾性表面波励起手段と、前記基板上に前記基材を囲むように設けられ前記外周面の周囲に該外周面に沿って延在する収容室を形成するフィルター支持部材と、前記フィルター支持部材に取着され前記収容室内外に被測定気体が通過できるように前記収容室を閉塞する第1フィルターと、を有する弾性表面波素子において、前記第1フィルターと対向する前記基材の箇所に第1平面部が形成され、前記第1平面部と、該第1平面部に対向する前記第1フィルターの箇所とは取着され、前記第1フィルターは、特定の気体のみを通過させ、もしくは特定の気体が前記収容室内へ侵入するのを防止する薄膜材であり、前記薄膜材は、前記櫛型電極を前記基板の配線パターンに電気的に接続するリード線を有することを特徴とする。
また、本発明の弾性表面波素子は、基板と、前記基板上に実装され弾性表面波が周回伝搬される伝搬路となる球面状の外周面を有する基材と、前記外周面に設けられ前記伝搬路に沿い前記弾性表面波を励起する弾性表面波励起手段と、前記基板上に前記基材を囲むように設けられ前記外周面の周囲に該外周面に沿って延在する収容室を形成するフィルター支持部材と、前記フィルター支持部材に取着され前記収容室内外に被測定気体が通過できるように前記収容室を閉塞する第1フィルターと、を有する弾性表面波素子において、前記第1フィルターと対向する前記基材の箇所に第1平面部が形成され、前記第1平面部と、該第1平面部に対向する前記第1フィルターの箇所とは取着され、前記第1フィルターは、金属製メッシュと、特定の気体のみを通過させもしくは特定の気体が前記収容室へ侵入するのを防止する薄膜材とを積層して構成されていることを特徴とする。
また、本発明の弾性表面波素子は、基板と、前記基板上に実装され弾性表面波が周回伝搬される伝搬路となる球面状の外周面を有する基材と、前記外周面に設けられ前記伝搬路に沿い前記弾性表面波を励起する弾性表面波励起手段と、前記基板上に前記基材を囲むように設けられ前記外周面の周囲に該外周面に沿って延在する収容室を形成するフィルター支持部材と、前記フィルター支持部材に取着され前記収容室内外に被測定気体が通過できるように前記収容室を閉塞する第1フィルターと、を有する弾性表面波素子において、前記第1フィルターと対向する前記基材の箇所に第1平面部が形成され、前記第1平面部と、該第1平面部に対向する前記第1フィルターの箇所とは取着され、前記弾性表面波励起手段は少なくとも一対の櫛型電極から構成され、前記基板に前記櫛型電極へ給電するための配線パターンが設けられ、前記第1フィルターは金属製メッシュからなり、前記フィルター支持部材は導電性材料からなり、前記一対の櫛型電極の一方が前記金属製メッシュ及び前記フィルター支持部材を介して前記基板の配線パターンに電気的に接続され、前記一対の櫛型電極の他方が前記基板の配線パターンに電気的に接続されるように構成したことを特徴とする。
また、本発明の弾性表面波素子は、基板と、前記基板上に実装され弾性表面波が周回伝搬される伝搬路となる球面状の外周面を有する基材と、前記外周面に設けられ前記伝搬路に沿い前記弾性表面波を励起する弾性表面波励起手段と、前記基板上に前記基材を囲むように設けられ前記外周面の周囲に該外周面に沿って延在する収容室を形成するフィルター支持部材と、前記フィルター支持部材に取着され前記収容室内外に被測定気体が通過できるように前記収容室を閉塞する第1フィルターと、を有する弾性表面波素子において、前記第1フィルターと対向する前記基材の箇所に第1平面部が形成され、前記第1平面部と、該第1平面部に対向する前記第1フィルターの箇所とは取着され、前記基材が前記基板に実装される箇所に、被測定気体の通過を可能とした第2フィルターが設けられ、前記基材は前記第2フィルター上に設けられ、前記基板に、前記第2フィルターを介して前記収容室に連通する開口が設けられていることを特徴とする。
In order to achieve the above object, a surface acoustic wave device according to the present invention includes a substrate, a base material that is mounted on the substrate and has a spherical outer peripheral surface that serves as a propagation path through which the surface acoustic wave is circulated. Surface acoustic wave excitation means provided on the outer peripheral surface for exciting the surface acoustic wave along the propagation path, and provided on the substrate so as to surround the base material and extending around the outer peripheral surface along the outer peripheral surface. A surface acoustic wave element comprising: a filter support member that forms an existing storage chamber; and a first filter that is attached to the filter support member and closes the storage chamber so that a gas to be measured can pass outside and inside the storage chamber. A first plane portion is formed at the location of the base material facing the first filter, and the first plane portion and the location of the first filter facing the first plane portion are attached , The first filter is made of metal Characterized in that it is a Mesh.
The surface acoustic wave device of the present invention is provided on a substrate, a base material having a spherical outer peripheral surface that is mounted on the substrate and serves as a propagation path through which the surface acoustic wave is circulated, and provided on the outer peripheral surface. A surface acoustic wave excitation means for exciting the surface acoustic wave along a propagation path and a storage chamber provided on the substrate so as to surround the base material and extending along the outer peripheral surface are formed around the outer peripheral surface. A surface acoustic wave device comprising: a filter support member configured to be closed; and a first filter that is attached to the filter support member and closes the storage chamber so that a gas to be measured can pass outside and inside the storage chamber. A first plane portion is formed at a location of the base material facing the first plane portion, and the first plane portion and the location of the first filter facing the first plane portion are attached, and the first filter is Allow only certain gases to pass Or it is a thin film material which prevents that specific gas penetrate | invades into the said storage chamber, The said thin film material has a lead wire which electrically connects the said comb-shaped electrode to the wiring pattern of the said board | substrate. .
The surface acoustic wave device of the present invention is provided on a substrate, a base material having a spherical outer peripheral surface that is mounted on the substrate and serves as a propagation path through which the surface acoustic wave is circulated, and provided on the outer peripheral surface. A surface acoustic wave excitation means for exciting the surface acoustic wave along a propagation path and a storage chamber provided on the substrate so as to surround the base material and extending along the outer peripheral surface are formed around the outer peripheral surface. A surface acoustic wave device comprising: a filter support member configured to be closed; and a first filter that is attached to the filter support member and closes the storage chamber so that a gas to be measured can pass outside and inside the storage chamber. A first plane portion is formed at a location of the base material facing the first plane portion, and the first plane portion and the location of the first filter facing the first plane portion are attached, and the first filter is Metal mesh and certain Wherein the body only passage is allowed or specific gas is constituted by laminating a film material to prevent entry into the storage chamber.
The surface acoustic wave device of the present invention is provided on a substrate, a base material having a spherical outer peripheral surface that is mounted on the substrate and serves as a propagation path through which the surface acoustic wave is circulated, and provided on the outer peripheral surface. A surface acoustic wave excitation means for exciting the surface acoustic wave along a propagation path and a storage chamber provided on the substrate so as to surround the base material and extending along the outer peripheral surface are formed around the outer peripheral surface. A surface acoustic wave device comprising: a filter support member configured to be closed; and a first filter that is attached to the filter support member and closes the storage chamber so that a gas to be measured can pass outside and inside the storage chamber. A first plane portion is formed at a location of the base material facing the first plane portion, and the first plane portion and the location of the first filter facing the first plane portion are attached, and the surface acoustic wave excitation means Is at least a pair of comb-shaped electricity A wiring pattern for supplying power to the comb-shaped electrode is provided on the substrate, the first filter is made of a metal mesh, the filter support member is made of a conductive material, and the pair of comb-shaped electrodes One of the electrodes is electrically connected to the wiring pattern of the substrate via the metal mesh and the filter support member, and the other of the pair of comb-shaped electrodes is electrically connected to the wiring pattern of the substrate It is characterized by comprising.
The surface acoustic wave device of the present invention is provided on a substrate, a base material having a spherical outer peripheral surface that is mounted on the substrate and serves as a propagation path through which the surface acoustic wave is circulated, and provided on the outer peripheral surface. A surface acoustic wave excitation means for exciting the surface acoustic wave along a propagation path and a storage chamber provided on the substrate so as to surround the base material and extending along the outer peripheral surface are formed around the outer peripheral surface. A surface acoustic wave device comprising: a filter support member configured to be closed; and a first filter that is attached to the filter support member and closes the storage chamber so that a gas to be measured can pass outside and inside the storage chamber. A first plane portion is formed at a location of the base material facing the substrate, the first plane portion and the location of the first filter facing the first plane portion are attached, and the base material is the substrate. At the location where A second filter that can pass through the substrate, the base material is provided on the second filter, and the substrate is provided with an opening that communicates with the storage chamber through the second filter. It is characterized by.

本発明の弾性表面波素子によれば、基材に平面部を設け、フィルター支持部材に取着されたフィルターを基材の平面部に更に取着して保持するようにしたので、力学的に脆弱な第1フィルターであっても、これを破損することなく安定に維持できるとともに、第1フィルターを通しての基材と外部雰囲気との接触を良好にして応答性を向上でき、かつ第1フィルターを利用して給電用配線などの電磁的作用に伴う弾性表面波素子へのノイズの侵入を防止できる。   According to the surface acoustic wave device of the present invention, the flat part is provided on the base material, and the filter attached to the filter support member is further attached and held on the flat part of the base material. Even if it is a fragile first filter, it can be stably maintained without damaging it, the contact between the base material and the external atmosphere through the first filter can be improved, and the responsiveness can be improved. By utilizing this, it is possible to prevent noise from entering the surface acoustic wave element due to electromagnetic action such as power supply wiring.

以下、本発明にかかる弾性表面波素子の実施の形態について図面を参照して説明する。なお、本発明にかかる弾性表面波素子は、以下に説明する実施の形態に限定されるものではない。   Embodiments of a surface acoustic wave device according to the present invention will be described below with reference to the drawings. The surface acoustic wave device according to the present invention is not limited to the embodiments described below.

(実施の形態1)
図1は本発明の実施の形態1における弾性表面波素子の構成を示す側面図、図2は本発明の実施の形態1における弾性表面波素子の分解斜視図である。
この実施の形態1における弾性表面波素子10は、図1及び図2に示すように、基材11、弾性表面波励起手段12、フィルター支持部材13、基板14及びフィルター15を備える。
(Embodiment 1)
1 is a side view showing the configuration of a surface acoustic wave element according to Embodiment 1 of the present invention, and FIG. 2 is an exploded perspective view of the surface acoustic wave element according to Embodiment 1 of the present invention.
As shown in FIGS. 1 and 2, the surface acoustic wave element 10 according to the first embodiment includes a base material 11, a surface acoustic wave excitation unit 12, a filter support member 13, a substrate 14, and a filter 15.

基材11は、図1及び図2に示すように、球の北極と南極の部分を弦状にカットすることで形成された円形の第1及び第2平面部11a,11bと、それら平面部11a,11bの外周縁間を接続する球面状の外周面とを有する樽型の水晶球を用いて構成されている。そして、前記外周面上で球の赤道上の箇所には、弾性表面波が周回伝搬する伝搬路11cがエンドレスに形成されている。伝搬路11cには弾性表面波励起手段12が設けられている。この弾性表面波励起手段12は、伝搬路11cに沿って伝搬する弾性表面波を励起するもので、一対の櫛型電極12a,12bから構成されている。また、櫛型電極12aの給電端子12a1は、基材11の周面から第1平面部11aに延在して形成され、櫛型電極12bの給電端子12b1は、基材11の周面から第2平面部11bに延在して形成されている。
このような基材11は、その第2平面部11bが基板14と対向するようにして基板14上に実装される。
なお、基材が水晶からなる結晶球を使用し、その赤道上に櫛型電極12a,12bを配置した場合、球の地軸(第1及び第2平面部11a及び11bの中心を通る軸線)方向に水晶のC軸が位置する。
As shown in FIGS. 1 and 2, the base material 11 includes circular first and second plane portions 11a and 11b formed by cutting the north and south pole portions of a sphere into a string shape, and the plane portions. It is comprised using the barrel-shaped crystal ball | bowl which has the spherical outer peripheral surface which connects between the outer periphery of 11a, 11b. A propagation path 11c through which a surface acoustic wave propagates around is formed endlessly at a location on the equator of the sphere on the outer peripheral surface. Surface acoustic wave excitation means 12 is provided in the propagation path 11c. The surface acoustic wave exciting means 12 excites a surface acoustic wave propagating along the propagation path 11c, and is composed of a pair of comb-shaped electrodes 12a and 12b. Further, the power supply terminal 12a1 of the comb-shaped electrode 12a is formed to extend from the peripheral surface of the base material 11 to the first flat portion 11a, and the power supply terminal 12b1 of the comb-shaped electrode 12b is It extends to the two plane portions 11b.
Such a base material 11 is mounted on the board | substrate 14 so that the 2nd plane part 11b may oppose the board | substrate 14. FIG.
When a crystal sphere made of quartz is used as the base material and the comb-shaped electrodes 12a and 12b are arranged on the equator, the direction of the sphere's ground axis (the axis passing through the centers of the first and second plane portions 11a and 11b) The crystal C-axis is located at

フィルター支持部材13は、フィルター15を支持するもので、図1及び図2に示すように、基材11の周囲を囲むようにして基板14上に半田付けなどにより固定することで実装される。すなわち、このフィルター支持部材13はアルミ等の金属材から成形され、基材11の第1、第2平面部11aと11bとの間の寸法に相当する厚さを有する直方体形状を呈し、その中央部には基材11の直径より十分に大きい径の円筒穴13aが形成されており、この円筒穴13aは基材11の収容室(以下、収容室13aという)を構成している。そして、フィルター支持部材13の一方の端面13bはフィルター15が接着される接合端面として使用され、他方の端面13cは基板14への実装用の端面として使用される。また、フィルター支持部材13の接合端面13bと基材11の第1平面部11aは面が一致する同一平面上に位置しており、フィルター支持部材13の実装用端面13cと基材11の第2平面部11bは面が一致する同一平面上に位置している。   The filter support member 13 supports the filter 15 and is mounted by being fixed to the substrate 14 by soldering or the like so as to surround the base material 11 as shown in FIGS. 1 and 2. That is, the filter support member 13 is formed from a metal material such as aluminum and has a rectangular parallelepiped shape having a thickness corresponding to the dimension between the first and second flat surface portions 11a and 11b of the base material 11, and its center. A cylindrical hole 13a having a diameter sufficiently larger than the diameter of the base material 11 is formed in the part, and this cylindrical hole 13a constitutes a storage chamber (hereinafter referred to as a storage chamber 13a) of the base material 11. One end face 13 b of the filter support member 13 is used as a joining end face to which the filter 15 is bonded, and the other end face 13 c is used as an end face for mounting on the substrate 14. Further, the joining end surface 13b of the filter support member 13 and the first flat surface portion 11a of the base material 11 are located on the same plane where the surfaces coincide with each other, and the mounting end surface 13c of the filter support member 13 and the second surface of the base material 11 The flat part 11b is located on the same plane where the surfaces coincide.

基板14はプリント基板から構成され、この基板14の部品実装面上には、図1に示すように、一対の櫛型電極12a,12bに高周波信号を供給するための信号線16及びアース線17が形成されている。信号線16には櫛型電極12bの給電端子12b1が接続され、アース線17にはフィルター支持部材13の実装用端面13cが導電性接着剤18により接続されている。なお、フィルター支持部材13と信号線16との間は電気的に絶縁されている。   The substrate 14 is composed of a printed circuit board. On the component mounting surface of the substrate 14, as shown in FIG. 1, a signal line 16 and a ground line 17 for supplying a high frequency signal to the pair of comb-shaped electrodes 12a and 12b. Is formed. A power supply terminal 12 b 1 of the comb-shaped electrode 12 b is connected to the signal line 16, and a mounting end face 13 c of the filter support member 13 is connected to the ground line 17 by a conductive adhesive 18. The filter support member 13 and the signal line 16 are electrically insulated.

フィルター15は、収容室13aへの塵埃の侵入を阻止し、被測定気体の通過が可能な金属メッシュから構成され、図1及び図2に示すように、フィルター支持部材13を平面視した際の表面積(輪郭)と同一もしくはそれより僅かに小さい表面積(輪郭)を有している。
このようなフィルター15は、フィルター支持部材13の接合端面13bと基材11の第1平面部11a及び櫛型電極12aの給電端子12a1に導電性接着剤19により接着されている。これにより、櫛型電極12aの給電端子12a1をフィルター15及びフィルター支持部材13を通してアース線17に接続され、櫛型電極12a,12bに図示省略の高周波信号源から信号線16及びアース線17を介して高周波信号が供給できるようになっている。
The filter 15 is made of a metal mesh that prevents dust from entering the storage chamber 13a and allows the gas to be measured to pass through. As shown in FIGS. 1 and 2, the filter support member 13 is viewed in plan view. The surface area (contour) is the same as or slightly smaller than the surface area (contour).
Such a filter 15 is bonded to the joint end surface 13b of the filter support member 13, the first flat surface portion 11a of the base material 11, and the power supply terminal 12a1 of the comb-shaped electrode 12a by a conductive adhesive 19. As a result, the power supply terminal 12a1 of the comb-shaped electrode 12a is connected to the ground wire 17 through the filter 15 and the filter support member 13, and the comb-shaped electrodes 12a and 12b are connected to the high-frequency signal source (not shown) via the signal line 16 and the ground wire 17. High frequency signals can be supplied.

次に、図3及び図4により基材11に櫛型電極12a,12b及び給電端子12a1,12b1を形成する場合について説明する。
まず、図3(A)に示すように、スタンプ機構の一対の給電端子用弾性版31aと31bとの間に基材11をセットした後、第1の押圧機構32aと32bを矢印A,Bの方向に動作させ、さらに、図3(B)に示すように、第2の押圧機構33aと33bを矢印C,Dの方向に動作させる。これにより、弾性版31a及び31bの版面を基材11の第1、第2平面部11a,11b及びこれに連なる周面に押し付けて、版面に塗布されている給電端子パターンを基材11に転写する。これにより、給電端子12a1,12b1を形成することができる。
給電端子12a1,12b1が形成された後は、第2の押圧機構33aと33bを後退させた後、第3の押圧機構34を矢印Eの方向に動作させて、櫛型電極用の版35を基材11の球形周面に押し付ける。これにより、版35の版面に塗布されている櫛型電極パターンを基材11に転写する。これにより、図4に示すように、基材11に給電端子12a1,12b1及び櫛型電極12a,12bを形成することができる。
Next, the case where the comb-shaped electrodes 12a and 12b and the power supply terminals 12a1 and 12b1 are formed on the base 11 will be described with reference to FIGS.
First, as shown in FIG. 3A, after the base material 11 is set between the pair of elastic plates 31a and 31b for the feeding terminals of the stamp mechanism, the first pressing mechanisms 32a and 32b are moved to the arrows A and B. Further, as shown in FIG. 3B, the second pressing mechanisms 33a and 33b are moved in the directions of arrows C and D. As a result, the plate surfaces of the elastic plates 31a and 31b are pressed against the first and second plane portions 11a and 11b of the base material 11 and the peripheral surfaces connected thereto, and the power supply terminal pattern applied to the plate surface is transferred to the base material 11 To do. As a result, the power supply terminals 12a1 and 12b1 can be formed.
After the power supply terminals 12a1 and 12b1 are formed, the second pressing mechanisms 33a and 33b are retracted, and then the third pressing mechanism 34 is operated in the direction of arrow E, so that the comb electrode plate 35 is moved. Press against the spherical peripheral surface of the substrate 11. As a result, the comb electrode pattern applied to the plate surface of the plate 35 is transferred to the substrate 11. As a result, as shown in FIG. 4, the power supply terminals 12 a 1 and 12 b 1 and the comb electrodes 12 a and 12 b can be formed on the base material 11.

このような本実施の形態1に示す弾性表面波素子によれば、基材11の北極と南極に相当する部分を弦状にカットすることで第1及び第2平面部11a,11bを形成し、基材11を囲むように基板14に実装されたフィルター支持部材13の接合端面13bにフィルター15の周縁部分を導電性接着剤19により接着するとともに、フィルター15の中央部分を基材11の第1平面部11aに更に接着するようにしたので、外部から高速で液体や気体がフィルター15に吹き付けられる環境下、またはフィルター15やフィルター15の固定部位に対して、フィルターの内部と外部の圧力差により大きな応力が作用しても、フィルター15を破損することなく安定に維持できるとともに、フィルター15を通しての基材11と外部雰囲気との接触を良好にして、弾性表面波素子の応答性を向上できでる。
また、フィルター15を金属メッシュで構成し、金属製のフィルター支持部材13を介してアース線17に接続したので、このフィルター15により給電用配線などの電磁的作用に伴う弾性表面波素子へのノイズの侵入を防止でき、ノイズに影響されない弾性表面波素子を提供できるとともに、櫛型電極12a,12bを含めた基材11に対する電磁気的なシールドが不要になる。
According to the surface acoustic wave element shown in the first embodiment, the first and second plane portions 11a and 11b are formed by cutting the portions corresponding to the north pole and the south pole of the base material 11 into a string shape. The peripheral portion of the filter 15 is adhered to the joint end surface 13b of the filter support member 13 mounted on the substrate 14 so as to surround the base material 11 with the conductive adhesive 19, and the central portion of the filter 15 is attached to the first end of the base material 11. Since it is further bonded to the flat portion 11a, the pressure difference between the inside and the outside of the filter in an environment where liquid or gas is sprayed onto the filter 15 at high speed from the outside or against the fixing portion of the filter 15 or the filter 15 Even if a larger stress is applied, the filter 15 can be stably maintained without being damaged, and the substrate 11 and the external atmosphere through the filter 15 can be maintained. By improving the contact, and is able to improve the response of the surface acoustic wave device.
In addition, since the filter 15 is made of a metal mesh and connected to the ground wire 17 via the metal filter support member 13, the filter 15 causes noise to the surface acoustic wave element due to electromagnetic action such as power supply wiring. The surface acoustic wave element that is not affected by noise can be provided, and an electromagnetic shield for the substrate 11 including the comb-shaped electrodes 12a and 12b becomes unnecessary.

(実施形態2)
次に、図5により本発明にかかる実施の形態2について説明する。
図5は本実施の形態2における弾性表面波素子の側面図である。
この図5において、上記実施の形態1と同様な構成要素には同一符号を付してその説明を省略し、実施の形態1と異なる部分を重点に述べると、図5から明らかなように、この実施の形態2に示す弾性表面波素子10は、上記実施の形態1と同様な構成の基材11、弾性表面波励起手段12、フィルター支持部材13及び基板14を備え、さらに、上記実施の形態1と異なる構成のフィルター21を備えている。
(Embodiment 2)
Next, a second embodiment according to the present invention will be described with reference to FIG.
FIG. 5 is a side view of the surface acoustic wave device according to the second embodiment.
In FIG. 5, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. When the parts different from those in the first embodiment are described with emphasis, as is apparent from FIG. 5, The surface acoustic wave element 10 shown in the second embodiment includes a base material 11, a surface acoustic wave excitation unit 12, a filter support member 13 and a substrate 14 having the same configuration as that of the first embodiment. A filter 21 having a configuration different from that of the first embodiment is provided.

フィルター21は、収容室13aへの塵埃の侵入を阻止し、かつ被測定気体である特定のガスのみを通過させ、もしくは被測定気体以外の特定のガスがフィルター支持部材13の収納室13aへ侵入するのを防止する樹脂製の薄膜材から構成される。そして、図5に示すように、フィルター支持部材13を平面視した際の表面積(輪郭)より僅かに小さい表面積(輪郭)を有している。また、フィルター21の内側表面には、櫛型電極12aに給電するためのリード線22がフィルター21の中央部分から周縁方向に延在して形成されている。
このようなフィルター21の周縁部分はフィルター支持部材13の接合端面13bに接着剤により接着され、さらに、フィルター21の中央部分は基材11の第1平面部11aに接着剤により接着されている。また、リード線22の一端は櫛型電極12aの給電端子12a1に電気的に接続されている。
また、基板14の実装表面に形成した信号線16にはリード線23を介してリード線22が接続されている。また、基板14の実装表面に形成したアース線17は櫛型電極12bの給電端子12b1に接続されている。これにより、櫛型電極12a,12bに図示省略の高周波信号源から信号線16、リード線23、リード線22及びアース線17を介して高周波信号が供給できるようになっている。
なお、フィルター支持部材13と信号線16及びアース線17との間は電気的に絶縁されている。
The filter 21 prevents dust from entering the storage chamber 13a and allows only a specific gas, which is a gas to be measured, to pass through, or a specific gas other than the gas to be measured enters the storage chamber 13a of the filter support member 13. It is comprised from the resin-made thin film material which prevents it. And as shown in FIG. 5, it has a surface area (contour) slightly smaller than the surface area (contour) when the filter support member 13 is viewed in plan view. A lead wire 22 for supplying power to the comb-shaped electrode 12 a is formed on the inner surface of the filter 21 so as to extend from the central portion of the filter 21 in the peripheral direction.
The peripheral portion of the filter 21 is bonded to the joining end surface 13b of the filter support member 13 with an adhesive, and the central portion of the filter 21 is bonded to the first flat portion 11a of the substrate 11 with an adhesive. One end of the lead wire 22 is electrically connected to the power supply terminal 12a1 of the comb electrode 12a.
A lead wire 22 is connected to the signal wire 16 formed on the mounting surface of the substrate 14 via a lead wire 23. The ground wire 17 formed on the mounting surface of the substrate 14 is connected to the power supply terminal 12b1 of the comb electrode 12b. As a result, a high frequency signal can be supplied to the comb-shaped electrodes 12 a and 12 b from a high frequency signal source (not shown) via the signal line 16, the lead wire 23, the lead wire 22, and the ground wire 17.
The filter support member 13 is electrically insulated from the signal line 16 and the ground line 17.

このような本実施の形態2に示す弾性表面波素子によれば、フィルター支持部材13の接合端面13bにフィルター21の周縁部分を接着するとともに、フィルター21の中央部分を基材11の第1平面部11aに更に接着するようにしたので、上記実施の形態1と同様に、外部から高速で液体や気体がフィルター21に吹き付けられる環境下、またはフィルター21やフィルター21の固定部位に対して、フィルターの内部と外部の圧力差により大きな応力が作用しても、フィルター21を破損することなく安定に維持できるとともに、フィルター21を通して被測定気体のみを導入して基材11と外部雰囲気との接触を良好にでき、弾性表面波素子の応答性を向上できでる。
また、本実施の形態2によれば、フィルター21の内側表面にリード線22を設けたので、櫛型電極12a,12bに対して基材11の平面部11a,12bに対応する基材11の両端側から配線することができる。
According to the surface acoustic wave element shown in the second embodiment, the peripheral portion of the filter 21 is bonded to the joint end surface 13b of the filter support member 13, and the central portion of the filter 21 is used as the first plane of the substrate 11. Since it is further bonded to the portion 11a, as in the first embodiment, in the environment where liquid or gas is sprayed on the filter 21 from the outside at a high speed, or the filter 21 or the fixed portion of the filter 21 Even if a large stress is applied due to the pressure difference between the inside and outside of the tube, the filter 21 can be maintained stably without being damaged, and only the gas to be measured is introduced through the filter 21 to contact the substrate 11 with the external atmosphere. It is possible to improve the response of the surface acoustic wave device.
Further, according to the second embodiment, since the lead wire 22 is provided on the inner surface of the filter 21, the base material 11 corresponding to the flat portions 11a and 12b of the base material 11 with respect to the comb electrodes 12a and 12b. Wiring can be performed from both ends.

(実施の形態3)
次に、図6により本発明にかかる実施の形態3について説明する。
図6は本実施の形態3における弾性表面波素子の側面図である。
この図6において、上記実施の形態1と同様な構成要素には同一符号を付してその説明を省略し、実施の形態1と異なる部分を重点に述べると、図6から明らかなように、この実施の形態3に示す弾性表面波素子10は、上記実施の形態1と同様な構成の基材11、弾性表面波励起手段12、フィルター支持部材13及び基板14を備え、さらに、上記実施の形態1と異なる構成のフィルター24を備えている。また、この実施の形態3の基材11に形成された櫛型電極12a及び12bの給電端子12a1,12b1が基板14に対向する基材11の第2平面部11b側に設けられている点が上記実施の形態1と異なる。
(Embodiment 3)
Next, Embodiment 3 according to the present invention will be described with reference to FIG.
FIG. 6 is a side view of the surface acoustic wave device according to the third embodiment.
In FIG. 6, the same components as those in the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and portions different from those in the first embodiment are described with emphasis. As is clear from FIG. 6, The surface acoustic wave element 10 shown in the third embodiment includes a base material 11, a surface acoustic wave excitation unit 12, a filter support member 13 and a substrate 14 having the same configuration as that of the first embodiment. A filter 24 having a configuration different from that of the first embodiment is provided. Further, the power supply terminals 12a1 and 12b1 of the comb-shaped electrodes 12a and 12b formed on the base material 11 of the third embodiment are provided on the second flat surface portion 11b side of the base material 11 facing the substrate 14. Different from the first embodiment.

フィルター24は、収容室13aへの塵埃の侵入を阻止し、かつ被測定気体である特定のガスのみを通過させ、もしくは被測定気体以外の特定のガスがフィルター支持部材13の収納室13aへ侵入するのを防止する樹脂製の薄膜材から構成され、そして、図6に示すように、フィルター支持部材13を平面視した際の表面積(輪郭)と同一もしくはそれより僅かに小さい表面積(輪郭)を有している。
このようなフィルター24の周縁部分はフィルター支持部材13の接合端面13bに接着剤により接着され、さらに、フィルター24の中央部分は基材11の第1平面部11aに接着剤により接着されている。
また、基板14の実装表面に形成した信号線16には櫛型電極12bの給電端子12b1が接続されている。また、基板14の実装表面に形成したアース線17は櫛型電極12aの給電端子12a1に接続されている。これにより、櫛型電極12a,12bに図示省略の高周波信号源から信号線16及びアース線17を介して高周波信号が供給できるようになっている。
The filter 24 prevents dust from entering the storage chamber 13a and allows only a specific gas that is a gas to be measured to pass through, or allows a specific gas other than the gas to be measured to enter the storage chamber 13a of the filter support member 13. As shown in FIG. 6, the surface area (contour) is the same as or slightly smaller than the surface area (contour) when the filter support member 13 is viewed in plan view. Have.
The peripheral portion of the filter 24 is bonded to the joining end surface 13b of the filter support member 13 with an adhesive, and the central portion of the filter 24 is bonded to the first flat portion 11a of the substrate 11 with an adhesive.
The power supply terminal 12b1 of the comb-shaped electrode 12b is connected to the signal line 16 formed on the mounting surface of the substrate 14. The ground wire 17 formed on the mounting surface of the substrate 14 is connected to the power supply terminal 12a1 of the comb-shaped electrode 12a. Thus, a high frequency signal can be supplied to the comb electrodes 12a and 12b from a high frequency signal source (not shown) via the signal line 16 and the ground line 17.

このような本実施の形態3に示す弾性表面波素子によれば、フィルター支持部材13の接合端面13bにフィルター24の周縁部分を接着するとともに、フィルター24の中央部分を基材11の平面部11aに更に接着するようにしたので、上記実施の形態1と同様に、外部から高速で液体や気体がフィルター24に吹き付けられる環境下、またはフィルター24やフィルター24の固定部位に対して、フィルターの内部と外部の圧力差により大きな応力が作用しても、フィルター24を破損することなく安定に維持できるとともに、フィルター24を通して被測定気体のみを導入して基材11と外部雰囲気との接触を良好にでき、弾性表面波素子の応答性を向上できでる。
また、本実施の形態3によれば、櫛型電極12a,12bに対して基板14側から配線することができる。
According to the surface acoustic wave element shown in the third embodiment, the peripheral portion of the filter 24 is bonded to the joint end surface 13b of the filter support member 13, and the central portion of the filter 24 is used as the flat portion 11a of the substrate 11. In the same manner as in the first embodiment, the inside of the filter is placed in an environment where liquid or gas is sprayed from the outside at a high speed to the filter 24 or against the fixing portion of the filter 24 or the filter 24. Even if a large stress is applied due to a pressure difference between the external surface and the outside, the filter 24 can be stably maintained without being damaged, and only the gas to be measured is introduced through the filter 24 to improve the contact between the substrate 11 and the external atmosphere. And the responsiveness of the surface acoustic wave device can be improved.
Further, according to the third embodiment, wiring can be performed from the substrate 14 side to the comb-shaped electrodes 12a and 12b.

(実施の形態4)
次に、図7により本発明にかかる実施の形態4について説明する。
図7は本実施の形態4における弾性表面波素子の側面図である。
この図7において、上記実施の形態1と同様な構成要素には同一符号を付してその説明を省略し、実施の形態1と異なる部分を重点に述べると、図6から明らかなように、この実施の形態3に示す弾性表面波素子10は、上記実施の形態1と同様な構成の基材11、弾性表面波励起手段12、フィルター支持部材13及び基板14を備え、さらに、上記実施の形態1と異なる構成のフィルター25及び温度検出素子26を備えるほか、この実施の形態4の基材11に形成された櫛型電極12a及び12bの給電端子12a1,12b1が基板14に対向する基材11の第2平面部11b側に設けられている点が上記実施の形態1と異なる。
(Embodiment 4)
Next, a fourth embodiment according to the present invention will be described with reference to FIG.
FIG. 7 is a side view of the surface acoustic wave device according to the fourth embodiment.
In FIG. 7, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. When the parts different from those in the first embodiment are described with emphasis, as is apparent from FIG. 6, The surface acoustic wave element 10 shown in the third embodiment includes a base material 11, a surface acoustic wave excitation unit 12, a filter support member 13 and a substrate 14 having the same configuration as that of the first embodiment. In addition to the filter 25 and the temperature detection element 26 having configurations different from those of the first embodiment, the power supply terminals 12a1 and 12b1 of the comb-shaped electrodes 12a and 12b formed on the base material 11 of the fourth embodiment are opposed to the substrate 14. 11 is different from the first embodiment in that it is provided on the second flat surface portion 11b side.

温度検出素子26は抵抗または熱電対からなるもので、基材11の伝搬路11cの領域に形成されている。
フィルター25は、収容室13aへの塵埃の侵入を阻止し、かつ被測定気体である特定のガスのみを通過させ、もしくは被測定気体以外の特定のガスがフィルター支持部材13の収容室13aへ侵入するのを防止する樹脂製の薄膜材から構成されている。そして、図7に示すように、フィルター支持部材13を平面視した際の表面積(輪郭)と同一もしくはそれより僅かに小さい表面積(輪郭)を有している。また、フィルター25の内側表面には、温度検出素子26への給電のための一対のリード線27がフィルター25の中央部分から周縁方向に延在して形成されている。
The temperature detection element 26 is composed of a resistor or a thermocouple, and is formed in the region of the propagation path 11 c of the base material 11.
The filter 25 prevents dust from entering the storage chamber 13a and allows only a specific gas, which is a gas to be measured, to pass through or allows a specific gas other than the gas to be measured to enter the storage chamber 13a of the filter support member 13. It is comprised from the resin-made thin film material which prevents doing. As shown in FIG. 7, the filter support member 13 has a surface area (contour) that is the same as or slightly smaller than the surface area (contour) when the filter support member 13 is viewed in plan. In addition, a pair of lead wires 27 for supplying power to the temperature detection element 26 are formed on the inner surface of the filter 25 so as to extend from the central portion of the filter 25 in the peripheral direction.

このようなフィルター25の周縁部分はフィルター支持部材13の接合端面13bに接着剤により接着され、さらに、フィルター25の中央部分は基材11の第1平面部11aに接着剤により接着されている。
また、基板14の実装表面に形成した信号線16には櫛型電極12bの給電端子12b1が接続されている。また、基板14の実装表面に形成したアース線17は櫛型電極12aの給電端子12a1に接続されている。これにより、櫛型電極12a,12bに図示省略の高周波信号源から信号線16及びアース線17を介して高周波信号が供給できるようになっている。
また、温度検出素子26の両端は一対のリード線27にそれぞれ接続され、さらに、フィルター25の周縁寄りに位置する一対のリード線27の端部には端子28がそれぞれ設けられ、この端子28には、基板14に実装される図示省略の温度検出用処理回路へ接続するためのリード線29が接続されている。
The peripheral portion of the filter 25 is bonded to the joining end surface 13b of the filter support member 13 with an adhesive, and the central portion of the filter 25 is bonded to the first flat portion 11a of the substrate 11 with an adhesive.
The power supply terminal 12b1 of the comb-shaped electrode 12b is connected to the signal line 16 formed on the mounting surface of the substrate 14. The ground wire 17 formed on the mounting surface of the substrate 14 is connected to the power supply terminal 12a1 of the comb-shaped electrode 12a. Thus, a high frequency signal can be supplied to the comb electrodes 12a and 12b from a high frequency signal source (not shown) via the signal line 16 and the ground line 17.
Further, both ends of the temperature detection element 26 are connected to a pair of lead wires 27, respectively, and terminals 28 are provided at the ends of the pair of lead wires 27 located near the periphery of the filter 25. Are connected to a lead wire 29 for connection to a temperature detection processing circuit (not shown) mounted on the substrate 14.

このような本実施の形態4に示す弾性表面波素子によれば、フィルター支持部材13の接合端面13bにフィルター25の周縁部分を接着するとともに、フィルター25の中央部分を基材11の第1平面部11aに更に接着するようにしたので、上記実施の形態1と同様に、外部から高速で液体や気体がフィルター25に吹き付けられる環境下、またはフィルター25やフィルター25の固定部位に対して、フィルターの内部と外部の圧力差により大きな応力が作用しても、フィルター25を破損することなく安定に維持できるとともに、フィルター25を通して被測定気体のみを導入して基材11と外部雰囲気との接触を良好にでき、弾性表面波素子の応答性を向上できでる。
また、本実施の形態4によれば、フィルター25の内側表面にリード線27を設けることにより、基材11の外周面に設けた温度検出素子26への配線及び給電を容易に行うことができる。
According to the surface acoustic wave element shown in the fourth embodiment, the peripheral portion of the filter 25 is bonded to the joint end surface 13b of the filter support member 13, and the central portion of the filter 25 is used as the first flat surface of the substrate 11. Since it is further bonded to the portion 11a, as in the first embodiment, the filter is used in an environment where liquid or gas is sprayed on the filter 25 from the outside at a high speed, or against the fixing portion of the filter 25 or the filter 25. Even if a large stress is applied due to the pressure difference between the inside and outside of the tube, the filter 25 can be maintained stably without being damaged, and only the gas to be measured is introduced through the filter 25 to contact the substrate 11 with the external atmosphere. It is possible to improve the response of the surface acoustic wave device.
Further, according to the fourth embodiment, by providing the lead wire 27 on the inner surface of the filter 25, wiring to the temperature detection element 26 provided on the outer peripheral surface of the substrate 11 and power feeding can be easily performed. .

(実施形態5)
次に、図8により本発明にかかる実施の形態5について説明する。
図8は本実施の形態5における弾性表面波素子の側面図である。
この図8において、上記実施の形態1と同様な構成要素には同一符号を付してその説明を省略し、実施の形態1と異なる部分を重点に述べると、図8から明らかなように、この実施の形態5に示す弾性表面波素子10は、上記実施の形態1と同様な構成の基材11、弾性表面波励起手段12、フィルター支持部材13及び基板14を備え、さらに、上記実施の形態1と異なる構成の一対の第1及び第2フィルター41,42を備えている。
(Embodiment 5)
Next, a fifth embodiment according to the present invention will be described with reference to FIG.
FIG. 8 is a side view of the surface acoustic wave element according to the fifth embodiment.
In FIG. 8, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. When the parts different from those in the first embodiment are described with emphasis, as is apparent from FIG. The surface acoustic wave element 10 shown in the fifth embodiment includes a base material 11, a surface acoustic wave excitation unit 12, a filter support member 13 and a substrate 14 having the same configuration as that of the first embodiment. A pair of first and second filters 41 and 42 having a configuration different from that of the first embodiment is provided.

第1及び第2フィルター41,42は、収容室13aへの塵埃の侵入を阻止し、かつ被測定気体である特定のガスのみを通過させ、もしくは被測定気体以外の特定のガスがフィルター支持部材13の収容室13aへ侵入するのを防止する樹脂製の薄膜材から構成されている。そして、図8に示すように、フィルター支持部材13を平面視した際の表面積(輪郭)と同一もしくはそれより僅かに小さい表面積(輪郭)を有している。また、第1及び第2フィルター41,42の内側表面には、櫛型電極12a,12bに給電するためのリード線43,44がフィルター41,42の中央部分から周縁方向に延在して形成されている。
このような第1フィルター41の周縁部分はフィルター支持部材13の接合端面13bに接着剤により接着され、その中央部分は基材11の第1平面部11aに接着剤により接着されている。また、第2フィルター42の周縁部分はフィルター支持部材13の接合端面13cに接着剤により接着され、その中央部分は基材11の第2平面部11bに接着剤により接着されている。また、リード線43の一端は櫛型電極12aの給電端子12a1に電気的に接続され、リード線44の一端は櫛型電極12bの給電端子12b1に電気的に接続されている。
また、基板14の基材11の第2平面部11bと対向する側は開口され、この開口14a及びフィルター42を通してフィルター支持部材13の収容室13a内に被測定気体が流出入されるようになっている。
The first and second filters 41 and 42 prevent the intrusion of dust into the storage chamber 13a and allow only a specific gas that is a gas to be measured to pass through or a specific gas other than the gas to be measured is a filter support member. It is comprised from the resin-made thin film material which prevents intrusion to 13 accommodation chambers 13a. As shown in FIG. 8, the filter support member 13 has a surface area (contour) that is the same as or slightly smaller than the surface area (contour) when the filter support member 13 is viewed in plan. In addition, lead wires 43 and 44 for supplying power to the comb-shaped electrodes 12a and 12b are formed on the inner surfaces of the first and second filters 41 and 42 so as to extend from the central portions of the filters 41 and 42 in the peripheral direction. Has been.
Such a peripheral portion of the first filter 41 is adhered to the joining end surface 13b of the filter support member 13 by an adhesive, and a central portion thereof is adhered to the first flat portion 11a of the base material 11 by an adhesive. Further, the peripheral portion of the second filter 42 is bonded to the joining end surface 13c of the filter support member 13 with an adhesive, and the central portion thereof is bonded to the second flat surface portion 11b of the substrate 11 with an adhesive. One end of the lead wire 43 is electrically connected to the power supply terminal 12a1 of the comb electrode 12a, and one end of the lead wire 44 is electrically connected to the power supply terminal 12b1 of the comb electrode 12b.
Further, the side of the base material 11 facing the second flat portion 11b of the substrate 14 is opened, and the gas to be measured flows into and out of the storage chamber 13a of the filter support member 13 through the opening 14a and the filter 42. ing.

このような本実施の形態5に示す弾性表面波素子によれば、フィルター支持部材13の接合端面13bに第1フィルター41の周縁部分を接着するとともに、その中央部分を基材11の第1平面部11aに更に接着し、さらに、フィルター支持部材13の接合端面13cに第2フィルター42の周縁部分を接着するとともに、その中央部分を基材11の第2平面部11bに更に接着するようにしたので、上記実施の形態1と同様に、外部から高速で液体や気体がフィルター41,42に吹き付けられる環境下、またはフィルターやフィルターの固定部位に対して、フィルターの内部と外部の圧力差により大きな応力が作用しても、フィルター41,42を破損することなく安定に維持できるとともに、2つのフィルター41,42を通して被測定気体の導入が可能になるので、周囲のガス(被測定気体)がフィルター支持部材内部と平行になるのに要する時間が短時間で済み、弾性表面波素子の応答性をより向上することができる。   According to such a surface acoustic wave element shown in the fifth embodiment, the peripheral portion of the first filter 41 is bonded to the joint end surface 13b of the filter support member 13, and the central portion thereof is used as the first plane of the substrate 11. Further, the peripheral portion of the second filter 42 is bonded to the joint end surface 13c of the filter support member 13, and the central portion thereof is further bonded to the second flat portion 11b of the substrate 11. Therefore, in the same manner as in the first embodiment, the pressure difference between the inside and outside of the filter is large in an environment where liquid or gas is sprayed to the filters 41 and 42 at high speed from the outside, or with respect to the filter or filter fixing portion. Even if stress is applied, the filters 41 and 42 can be stably maintained without being damaged, and the two filters 41 and 42 can be covered. Since constant gas can be introduced, the time required for the surrounding gas (gas to be measured) to be parallel to the inside of the filter support member is short, and the responsiveness of the surface acoustic wave device can be further improved. it can.

なお、本発明における櫛型電極と基板上の配線パターンとの接続は導電性接着剤(導電ペースト)に限らず、例えば、櫛型電極と基板上の配線パターンに金を用いて形成した場合、超音波振動を基材に加えることで溶着する方法でもよく、様々な結線方法を採用することができる。
また、本発明においては、図6に示す場合と逆に櫛型電極12a及び12bの給電端子12a1,12b1を基材11の第1平面部11a側に設け、この給電端子12a1,12b1に対応する配線パターンをフィルター24に形成することも可能である。
また、上記実施の形態では、基材に一対の櫛型電極を設けた場合について説明したが、本発明はこれに限らず、基材の球形表面に複数の伝搬路を有するものや、単一の伝搬路上に弾性表面波を励起するための櫛型電極と、周回する弾性表面波を検出して観測するための出力用の櫛型電極を形成して送受独立型の素子を形成することができる。この場合は、3本あるいは4本などより多数の配線を必要とする。
また、図5〜図8に示す実施の形態では、フィルターを樹脂性の薄膜材で構成した場合について説明したが、本発明はこれに限らず、薄膜材と金属メッシュとをラミネートした積層構造のフィルターを用いることができる。このようにすれば、フィルターの強度を向上できる。
In addition, the connection between the comb-shaped electrode and the wiring pattern on the substrate in the present invention is not limited to the conductive adhesive (conductive paste). For example, when the comb-shaped electrode and the wiring pattern on the substrate are formed using gold, A method of welding by applying ultrasonic vibration to the substrate may be used, and various connection methods can be adopted.
Further, in the present invention, the power supply terminals 12a1 and 12b1 of the comb-shaped electrodes 12a and 12b are provided on the first flat surface portion 11a side of the substrate 11 in the opposite manner to the case shown in FIG. 6, and correspond to the power supply terminals 12a1 and 12b1. It is also possible to form a wiring pattern on the filter 24.
In the above embodiment, the case where a pair of comb-shaped electrodes is provided on the base material has been described. However, the present invention is not limited to this, and the base material has a plurality of propagation paths on the spherical surface, A comb-shaped electrode for exciting a surface acoustic wave and an output comb-shaped electrode for detecting and observing the circulating surface acoustic wave can be formed on the propagation path of the antenna to form a transmission / reception independent element. it can. In this case, a larger number of wirings than three or four are required.
In the embodiment shown in FIG. 5 to FIG. 8, the case where the filter is made of a resinous thin film material has been described. However, the present invention is not limited to this, and a laminated structure in which a thin film material and a metal mesh are laminated. A filter can be used. In this way, the strength of the filter can be improved.

また、上記実施の形態では、櫛形電極が一対の場合の球状弾性表面波素子について説明したが、リチウムナイオベート(LiNbO3)やタンタル酸リチウム(LiTaO3)を結晶球に用いた球状弾性表面波素子では、複数の弾性表面波の周回経路を有しており、この複数の周回経路に対応して、複数の櫛形電極と複数の電極取り出し配線をフィルターが有する場合についても、本発明はそれを除外するものではない。また、本実施の形態では、フィルターに対して弾性表面波の周回経路が平行な場合について説明したが、これに限らず、フィルターに対して弾性表面波の周回経路が傾斜してもよいことはいうまでもない。
また、上記実施の形態では、第1及び第2平面部11a,11bを有する基材11について説明したが、本発明はこれに限定されない。例えば、基材11の北極に相当する部分にのみ平面部を形成し、基板に装着される基材の面を球面のままとし、この球面に合致する凹部を基板に設け、この凹部に前記球面の部分を係合して基材を基板に実装できるように構成することができる。
また、基材に平面部を形成する方法としては、例えば樹脂で基材をモールドした後、研磨切削を行う。この場合、平面部の形成に手間のかかる工程が必要とすることから、球の北極及び南極に相当する一方の部分にのみ平面部を形成した基材であれば、基材の成形工程を軽減できる利点がある。
In the above embodiment, the spherical surface acoustic wave device with a pair of comb-shaped electrodes has been described. However, in the spherical surface acoustic wave device using lithium niobate (LiNbO3) or lithium tantalate (LiTaO3) as a crystal sphere, The present invention excludes the case where the filter has a plurality of surface acoustic wave circulation paths and the filter has a plurality of comb-shaped electrodes and a plurality of electrode lead-out wirings corresponding to the plurality of circulation paths. It is not a thing. In this embodiment, the case where the surface acoustic wave circulation path is parallel to the filter has been described. However, the present invention is not limited thereto, and the surface acoustic wave circulation path may be inclined with respect to the filter. Needless to say.
Moreover, although the said embodiment demonstrated the base material 11 which has the 1st and 2nd plane parts 11a and 11b, this invention is not limited to this. For example, a flat surface portion is formed only in a portion corresponding to the north pole of the base material 11, the surface of the base material mounted on the substrate remains a spherical surface, and a concave portion matching the spherical surface is provided in the substrate, and the spherical surface is formed in the concave portion. It is possible to configure so that the base material can be mounted on the substrate by engaging these parts.
Moreover, as a method of forming the flat portion on the base material, for example, the base material is molded with resin, and then polishing cutting is performed. In this case, since a time-consuming process is required to form the flat surface portion, the base material forming step is reduced if the flat surface portion is formed only on one part corresponding to the north and south poles of the sphere. There are advantages you can do.

本発明の実施の形態1における弾性表面波素子の構成を示す側面図である。1 is a side view illustrating a configuration of a surface acoustic wave element according to a first embodiment of the present invention. 本発明の実施の形態1における弾性表面波素子の分解斜視図である。1 is an exploded perspective view of a surface acoustic wave element according to a first embodiment of the present invention. 本発明の実施の形態における基材の表面に櫛型電極及び給電端子を形成する場合の過程を示す説明図である。It is explanatory drawing which shows the process in the case of forming a comb-shaped electrode and an electric power feeding terminal on the surface of the base material in embodiment of this invention. 櫛型電極及び給電端子を形成した基材の一例を示す斜視図である。It is a perspective view which shows an example of the base material in which the comb-shaped electrode and the electric power feeding terminal were formed. 本発明の実施の形態2における弾性表面波素子の構成を示す側面図である。It is a side view which shows the structure of the surface acoustic wave element in Embodiment 2 of this invention. 本発明の実施の形態3における弾性表面波素子の構成を示す側面図である。It is a side view which shows the structure of the surface acoustic wave element in Embodiment 3 of this invention. 本発明の実施の形態4における弾性表面波素子の構成を示す側面図である。It is a side view which shows the structure of the surface acoustic wave element in Embodiment 4 of this invention. 本発明の実施の形態5における弾性表面波素子の構成を示す側面図である。It is a side view which shows the structure of the surface acoustic wave element in Embodiment 5 of this invention. 従来における弾性表面波素子の構成を示す縦断側面図である。It is a vertical side view which shows the structure of the conventional surface acoustic wave element. 従来における弾性表面波素子の一部の側面図である。It is a side view of a part of a conventional surface acoustic wave element. 従来における基板部分の平面図である。It is a top view of the board | substrate part in the past.

10……弾性表面波素子、11……基材、11a……第1平面部、11b……第2平面部、11c……伝搬路、12……弾性表面波励起手段、12a,12b……櫛型電極、12a1,12b1……給電端子、13……フィルター支持部材、13a……収容室、14……基板、14a……開口、15,21,24,25,41,42……フィルター、16……信号線、17……アース線、26……温度検出素子。   DESCRIPTION OF SYMBOLS 10 ... Surface acoustic wave element, 11 ... Base material, 11a ... 1st plane part, 11b ... 2nd plane part, 11c ... Propagation path, 12 ... Surface acoustic wave excitation means, 12a, 12b ... Comb electrodes, 12a1, 12b1 ... feed terminals, 13 ... filter support members, 13a ... accommodating chambers, 14 ... substrates, 14a ... openings, 15, 21, 24, 25, 41, 42 ... filters, 16... Signal line, 17... Ground line, 26.

Claims (6)

基板と、
前記基板上に実装され弾性表面波が周回伝搬される伝搬路となる球面状の外周面を有する基材と、
前記外周面に設けられ前記伝搬路に沿い前記弾性表面波を励起する弾性表面波励起手段と、
前記基板上に前記基材を囲むように設けられ前記外周面の周囲に該外周面に沿って延在する収容室を形成するフィルター支持部材と、
前記フィルター支持部材に取着され前記収容室内外に被測定気体が通過できるように前記収容室を閉塞する第1フィルターと、
を有する弾性表面波素子において、
前記第1フィルターと対向する前記基材の箇所に第1平面部が形成され、
前記第1平面部と、該第1平面部に対向する前記第1フィルターの箇所とは取着され
前記第1フィルターは金属製メッシュである、
ことを特徴とする弾性表面波素子。
A substrate,
A base material having a spherical outer peripheral surface that is mounted on the substrate and serves as a propagation path through which the surface acoustic wave is circulated, and
A surface acoustic wave excitation means that is provided on the outer peripheral surface and excites the surface acoustic wave along the propagation path;
A filter support member provided on the substrate so as to surround the base material, and forming a storage chamber extending along the outer peripheral surface around the outer peripheral surface;
A first filter that is attached to the filter support member and closes the storage chamber so that the gas to be measured can pass outside and inside the storage chamber;
In a surface acoustic wave device having
A first flat portion is formed at a location of the base material facing the first filter;
The first plane portion and the location of the first filter facing the first plane portion are attached ,
The first filter is a metal mesh;
A surface acoustic wave device.
基板と、
前記基板上に実装され弾性表面波が周回伝搬される伝搬路となる球面状の外周面を有する基材と、
前記外周面に設けられ前記伝搬路に沿い前記弾性表面波を励起する弾性表面波励起手段と、
前記基板上に前記基材を囲むように設けられ前記外周面の周囲に該外周面に沿って延在する収容室を形成するフィルター支持部材と、
前記フィルター支持部材に取着され前記収容室内外に被測定気体が通過できるように前記収容室を閉塞する第1フィルターと、
を有する弾性表面波素子において、
前記第1フィルターと対向する前記基材の箇所に第1平面部が形成され、
前記第1平面部と、該第1平面部に対向する前記第1フィルターの箇所とは取着され、
前記第1フィルターは、特定の気体のみを通過させ、もしくは特定の気体が前記収容室内へ侵入するのを防止する薄膜材であり、
前記薄膜材は、前記櫛型電極を前記基板の配線パターンに電気的に接続するリード線を有する、
ことを特徴とする性表面波素子。
A substrate,
A base material having a spherical outer peripheral surface that is mounted on the substrate and serves as a propagation path through which the surface acoustic wave is circulated, and
A surface acoustic wave excitation means that is provided on the outer peripheral surface and excites the surface acoustic wave along the propagation path;
A filter support member provided on the substrate so as to surround the base material, and forming a storage chamber extending along the outer peripheral surface around the outer peripheral surface;
A first filter that is attached to the filter support member and closes the storage chamber so that the gas to be measured can pass outside and inside the storage chamber;
In a surface acoustic wave device having
A first flat portion is formed at a location of the base material facing the first filter;
The first plane portion and the location of the first filter facing the first plane portion are attached,
The first filter is a thin film material that allows only a specific gas to pass through or prevents a specific gas from entering the storage chamber,
The thin film material has lead wires that electrically connect the comb electrodes to the wiring pattern of the substrate.
Surface acoustic wave device characterized by.
基板と、  A substrate,
前記基板上に実装され弾性表面波が周回伝搬される伝搬路となる球面状の外周面を有する基材と、  A base material having a spherical outer peripheral surface that is mounted on the substrate and serves as a propagation path through which the surface acoustic wave is circulated, and
前記外周面に設けられ前記伝搬路に沿い前記弾性表面波を励起する弾性表面波励起手段と、  A surface acoustic wave excitation means that is provided on the outer peripheral surface and excites the surface acoustic wave along the propagation path;
前記基板上に前記基材を囲むように設けられ前記外周面の周囲に該外周面に沿って延在する収容室を形成するフィルター支持部材と、  A filter support member provided on the substrate so as to surround the base material, and forming a storage chamber extending along the outer peripheral surface around the outer peripheral surface;
前記フィルター支持部材に取着され前記収容室内外に被測定気体が通過できるように前記収容室を閉塞する第1フィルターと、  A first filter that is attached to the filter support member and closes the storage chamber so that the gas to be measured can pass outside and inside the storage chamber;
を有する弾性表面波素子において、  In a surface acoustic wave device having
前記第1フィルターと対向する前記基材の箇所に第1平面部が形成され、  A first flat portion is formed at a location of the base material facing the first filter;
前記第1平面部と、該第1平面部に対向する前記第1フィルターの箇所とは取着され、  The first plane portion and the location of the first filter facing the first plane portion are attached,
前記第1フィルターは、金属製メッシュと、特定の気体のみを通過させもしくは特定の気体が前記収容室へ侵入するのを防止する薄膜材とを積層して構成されている、  The first filter is configured by laminating a metal mesh and a thin film material that allows only a specific gas to pass through or prevents the specific gas from entering the storage chamber.
ことを特徴とする弾性表面波素子。  A surface acoustic wave device.
基板と、
前記基板上に実装され弾性表面波が周回伝搬される伝搬路となる球面状の外周面を有する基材と、
前記外周面に設けられ前記伝搬路に沿い前記弾性表面波を励起する弾性表面波励起手段と、
前記基板上に前記基材を囲むように設けられ前記外周面の周囲に該外周面に沿って延在する収容室を形成するフィルター支持部材と、
前記フィルター支持部材に取着され前記収容室内外に被測定気体が通過できるように前記収容室を閉塞する第1フィルターと、
を有する弾性表面波素子において、
前記第1フィルターと対向する前記基材の箇所に第1平面部が形成され、
前記第1平面部と、該第1平面部に対向する前記第1フィルターの箇所とは取着され、
前記弾性表面波励起手段は少なくとも一対の櫛型電極から構成され、
前記基板に前記櫛型電極へ給電するための配線パターンが設けられ、
前記第1フィルターは金属製メッシュからなり、
前記フィルター支持部材は導電性材料からなり、
前記一対の櫛型電極の一方が前記金属製メッシュ及び前記フィルター支持部材を介して前記基板の配線パターンに電気的に接続され、前記一対の櫛型電極の他方が前記基板の配線パターンに電気的に接続されるように構成した、
ことを特徴とする弾性表面波素子。
A substrate,
A base material having a spherical outer peripheral surface that is mounted on the substrate and serves as a propagation path through which the surface acoustic wave is circulated, and
A surface acoustic wave excitation means that is provided on the outer peripheral surface and excites the surface acoustic wave along the propagation path;
A filter support member provided on the substrate so as to surround the base material, and forming a storage chamber extending along the outer peripheral surface around the outer peripheral surface;
A first filter that is attached to the filter support member and closes the storage chamber so that the gas to be measured can pass outside and inside the storage chamber;
In a surface acoustic wave device having
A first flat portion is formed at a location of the base material facing the first filter;
The first plane portion and the location of the first filter facing the first plane portion are attached,
The surface acoustic wave excitation means is composed of at least a pair of comb electrodes,
A wiring pattern for supplying power to the comb electrode is provided on the substrate,
The first filter is made of a metal mesh,
The filter support member is made of a conductive material,
One of the pair of comb electrodes is electrically connected to the wiring pattern of the substrate via the metal mesh and the filter support member, and the other of the pair of comb electrodes is electrically connected to the wiring pattern of the substrate. Configured to be connected to
A surface acoustic wave device.
前記基材は前記伝搬路の領域に形成された温度検出素子を有し、前記温度検出素子は前記薄膜材に形成した導電性のリード線を介して前記基板の配線パターンに電気的に接続されることを特徴とする請求項記載の弾性表面波素子。 The substrate has a temperature detection element formed in the region of the propagation path, and the temperature detection element is electrically connected to the wiring pattern of the substrate through a conductive lead wire formed on the thin film material. The surface acoustic wave device according to claim 4 . 基板と、
前記基板上に実装され弾性表面波が周回伝搬される伝搬路となる球面状の外周面を有する基材と、
前記外周面に設けられ前記伝搬路に沿い前記弾性表面波を励起する弾性表面波励起手段と、
前記基板上に前記基材を囲むように設けられ前記外周面の周囲に該外周面に沿って延在する収容室を形成するフィルター支持部材と、
前記フィルター支持部材に取着され前記収容室内外に被測定気体が通過できるように前記収容室を閉塞する第1フィルターと、
を有する弾性表面波素子において、
前記第1フィルターと対向する前記基材の箇所に第1平面部が形成され、
前記第1平面部と、該第1平面部に対向する前記第1フィルターの箇所とは取着され、
前記基材が前記基板に実装される箇所に、被測定気体の通過を可能とした第2フィルターが設けられ、
前記基材は前記第2フィルター上に設けられ、
前記基板に、前記第2フィルターを介して前記収容室に連通する開口が設けられている、
ことを特徴とする弾性表面波素子。
A substrate,
A base material having a spherical outer peripheral surface that is mounted on the substrate and serves as a propagation path through which the surface acoustic wave is circulated, and
A surface acoustic wave excitation means that is provided on the outer peripheral surface and excites the surface acoustic wave along the propagation path;
A filter support member provided on the substrate so as to surround the base material, and forming a storage chamber extending along the outer peripheral surface around the outer peripheral surface;
A first filter that is attached to the filter support member and closes the storage chamber so that the gas to be measured can pass outside and inside the storage chamber;
In a surface acoustic wave device having
A first flat portion is formed at a location of the base material facing the first filter;
The first plane portion and the location of the first filter facing the first plane portion are attached,
In the place where the base material is mounted on the substrate, a second filter that allows passage of the gas to be measured is provided,
The substrate is provided on the second filter;
The substrate is provided with an opening communicating with the storage chamber via the second filter.
A surface acoustic wave device.
JP2006213772A 2006-08-04 2006-08-04 Surface acoustic wave device Expired - Fee Related JP4952124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213772A JP4952124B2 (en) 2006-08-04 2006-08-04 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213772A JP4952124B2 (en) 2006-08-04 2006-08-04 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2008042498A JP2008042498A (en) 2008-02-21
JP4952124B2 true JP4952124B2 (en) 2012-06-13

Family

ID=39177038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213772A Expired - Fee Related JP4952124B2 (en) 2006-08-04 2006-08-04 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4952124B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910687B2 (en) * 2006-12-26 2012-04-04 凸版印刷株式会社 Surface acoustic wave device
JP5533509B2 (en) * 2010-09-29 2014-06-25 凸版印刷株式会社 Spherical surface acoustic wave device
JP5533508B2 (en) * 2010-09-29 2014-06-25 凸版印刷株式会社 Spherical surface acoustic wave device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291955A (en) * 2004-03-31 2005-10-20 Toppan Printing Co Ltd Environmental difference detector
JP4789424B2 (en) * 2004-03-31 2011-10-12 凸版印刷株式会社 Gas pressure measuring device and gas pressure measuring method

Also Published As

Publication number Publication date
JP2008042498A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
US9339846B2 (en) Ultrasonic sensor assembly
CN107249763B (en) Acoustic transducer comprising a plurality of single transducers and method for the manufacture thereof
JP2008187355A (en) Ultrasonic sensor and method for manufacturing ultrasonic sensor
US7714482B2 (en) Ultrasonic sensor
KR20110030560A (en) Hydrophone for an underwater antenna
KR20140050749A (en) Ultrasonic sensor
JP4952124B2 (en) Surface acoustic wave device
JP2013078099A (en) Ultrasonic sensor and method for manufacturing the same
US10942191B2 (en) Sensor, detection method, detection system, and detection apparatus
CN104937410A (en) Reconfigurable device for checking composite structure using ultrasound
JP6194123B2 (en) Sensor device
JP2018105885A (en) Sensor device
JP4568377B1 (en) L-mode guided wave sensor and its usage
JP4924109B2 (en) Substance measuring device and substance measuring method
JP4426802B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP5162967B2 (en) Surface acoustic wave device
KR102351065B1 (en) Sensor cell for ultrasonic sensor
WO2010024302A1 (en) Spherical surface acoustic wave device
US7836769B2 (en) Apparatus and method of measuring acoustical energy applied to a substrate
JP2012181093A (en) Surface acoustic wave sensor
JP2018515988A (en) Acoustic sensor for transmitting and receiving acoustic signals
JP5000473B2 (en) Spherical surface acoustic wave device
JP4816915B2 (en) Surface cleaning method for surface acoustic wave device
JP5181929B2 (en) Spherical surface acoustic wave device
JP4700748B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees