JP4951823B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents
Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP4951823B2 JP4951823B2 JP2001216841A JP2001216841A JP4951823B2 JP 4951823 B2 JP4951823 B2 JP 4951823B2 JP 2001216841 A JP2001216841 A JP 2001216841A JP 2001216841 A JP2001216841 A JP 2001216841A JP 4951823 B2 JP4951823 B2 JP 4951823B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- electrode active
- active material
- secondary battery
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池用正極活物質の製造方法に関する。
【0002】
【従来の技術】
近年、民生用電子機器のポータブル化、コードレス化が急速に進み、高いエネルギー密度の電池が注目されている。
【0003】
しかし、正極の作動電圧が低かったり、放電容量が小さければ、高いエネルギー密度の電池が得られにくいことから、例えば特開平05−290845号公報に示されるような層状構造を有するリチウム酸ニッケルや、特開平05−290890号公報や特開平05−283076号公報などに示されるように、ニッケルの一部をCoやMnなどの他の金属元素で置換したリチウム酸ニッケル系正極活物質が提案されている。
【0004】
このような正極活物質を使って、電池を作製するときは、正極活物質の粉体を、バインダーのポリ弗化ビニリデン(PVDF)と、導電助剤のカーボンと一緒に、N−メチル−2−ピロリドン(NMP)などの有機溶媒でスラリ化して、Al箔などの集電体に塗布して、正極を作製するのが一般的である。
【0005】
【発明が解決しようとする課題】
リチウム酸ニッケル系正極活物質材料は、PVDFと、カーボンと一緒に、NMPでスラリ化した場合、粘度が増し、ゲル化を起こし、集電体への安定な塗布が困難になることが多かった。ここで、スラリのゲル化とは、粘度が増加することにより、流動性や均一性が失われた状態を指し、ゲル化が極度に進行した場合は、集電体への塗装が不可能になる。
【0006】
また、軽度のゲル化においては、作製した電極シートの抵抗値等に大きく影響を及ぼし、作製された電極シートを用いて作られた電池の放電容量、レート特性等の電池特性が低下することが課題であった。
【0007】
特開平10−79244号公報では、この課題を解決するために、塩基性の高い電極活物質と、塩基性条件下で容易に変成する結着剤とを組み合わせた場合においても、これらを混合する際に、無機酸や有機酸を添加することによって、ゲル化の問題が解決できるとの提案がなされている。
【0008】
本発明者は、この原因解明のために、スラリのゲル化と、正極材料の比表面積、粒度分布、含水量、Li/M比(ただし、Mは正極活物質中のLi以外の金属元素)、残留リチウム量などとの相関を詳細に検討したが、いずれもはっきりとした関係が認められなかった。
【0009】
このため、正極材料の前述の種々の特性からは、スラリ作製時にゲル化するかどうかを正確に判定することができないし、材料を原料から合成するときに、Li成分と他の金属元素成分の仕込み組成を厳密に制御しても、混合、焼成などの製造工程を経ると、材料によって、スラリ作製時にゲル化するものがあったり、ゲル化しないものがあったりすることも判明した。
【0010】
以上のように、ゲル化しない正極材料を事前に判定することは、非常に困難であった。
【0011】
本発明の目的は、スラリ中で長時間安定なリチウム二次電池用正極活物質を実用的に判定可能とする条件を提供することにある。
【0012】
【課題を解決するための手段】
本発明の非水電解質二次電池用正極活物質の製造方法は、LixNi1-yAyO2(0.98≦x≦1.06、0.05≦y≦0.30、AはCo、Alのうち少なくとも1種)で与えられる層状化合物からなる正極活物質の製造方法に関し、合成後の正極活物質粉末5gを200mlビーカーを用いて純水100g中で120分間撹拌混合した後、30秒間静置して得られる上澄みのpHを測定した場合に、該pHが、25℃において12.0以上、12.7以下、好ましくは、12.15以上、12.7以下となった正極活物質のみを選択して、ポリ弗化ビニリデンと、カーボンと一緒に、N−メチル−2−ピロリドンでスラリ化した場合に、ゲル化することのない正極活物質を得ることを特徴としている。
【0013】
【発明の実施の形態】
本発明者は、上記の課題を解決するために、種々のLixNi1-yAyO2を合成し、正極活物質の比表面積、粒度分布、含水量、Li/M比(ただし、Mは正極活物質中のLi以外の金属元素)、残留リチウム量、および正極活物質を純水中に投入、撹拌した後の上澄みのpHなどと、スラリ作製時のゲル化との関係を詳細に検討した。その結果、正極材料を純水中に投入・撹拌後の上澄みのpHと、スラリ作製時のゲル化との間に、高い相関があることを見出し、本発明をするに至った。
【0014】
本発明の非水電解質二次電池用正極活物質は、LixNi1-yAyO2(0.98≦x≦1.06、0.05≦y≦0.30、AはCo、Alのうち少なくとも1種)の組成であるが、この組成範囲は、電池特性を確保するために必要である。
【0015】
前記LixNi1-yAyO25gを、200mlビーカーを用いて純水100g中に120分間撹拌混合した後、30秒間静置して得られる上澄みのpHが、25℃において12.7を超えると、前述のように原因は不明であるが、スラリ作製時にゲル化することが分かった。従って、pHは12.7以下であることが必要であるが、正極活物質を水洗あるいは酸洗処理して、正極活物質中のLiを抜き出すことでpHを低くすると、正極材料の結晶性などが変化する場合があり、電池特性を低下させるおそれがあり、好ましくは、pHが12.0以上、12.7以下であり、より好ましくは、pHが12.15以上、12.7以下である。
【0016】
本発明におけるpHは、次のように測定する。
【0017】
合成後の正極活物質粉末5gを、純水100gが入っている200mlのビーカ中に投入し、120分間撹拌した後、30秒静置して、得られた上澄みのpHを、複合電極(堀場製作所製、型番6366−10D)を備えたpH測定器(堀場製作所製、型番F−23)を用いて、測定した。
【0018】
pH測定において、正極活物質の質量と、純水の質量を規定したのは、原理的に質量比を同じにすれば、同一正極活物質に対して同一のpHを示すばずであるが、実際には、純水の量が容器の開口部面積に比較して少ないと、空気中の炭酸ガスの影響により、測定中に徐々に酸性側にpHがドリフトしてきて、正確な測定にならないからである。通常、使用される100〜200mlのビーカに対しては、純水100ml程度が適当であり、本発明における純水の量は100gとした。純水の量を50〜150g程度に増減したり、容器に相応しい量とすることは、本発明の範囲にある。
【0019】
また、温度を規定したのは、pHは温度により変化するためである。
【0020】
さらに、正極活物質投入後の撹拌時間を120分間に規定したのは、正極活物質を純水に投入した直後から約60分まではpHが徐々に上昇し、それ以降、安定化するからである。また、あまり長時間撹拌していると、空気中の炭酸ガスの影響を受けてpHが不正確になるので、120分間程度が適当である。
【0021】
また、正極活物質を純水中に投入、撹拌後の上澄みのpHの上限を規定したのは、pHが12.7を超えると、スラリ調整時にゲル化するためである。
【0022】
スラリがゲル化するメカニズムとしては、スラリ中の微量水分とPVDFが反応し、PVDFの脱HF化あるいは架橋反応を起こすという一連の反応が、Liなどのアルカリ成分の存在により促進されてスラリが高粘度化し、ゲル化に至るものと考えられる。
【0023】
ところで、このゲル化が、正極活物質の比表面積、粒度分布、含水量、Li/M比(ただし、Mは正極活物質中のLi以外の金属元素)、残留リチウム量などで判定できない理由は、今のところ明確ではないが、以下のように推測されている。すなわち、ゲル化は、例えば残留リチウムがスラリ中に溶け出すことが原因ではなく、正極活物質である層状化合物中のLi自身が、スラリ中に溶け出ることで、もっぱら引き起こされると考えられる。そして、そのLiの層状結晶中からの抜け易さが、正極活物質の合成時の微妙な条件の相違によるため、pHの測定以外に有効な判定方法がないものと推量される。
【0024】
スラリのゲル化の判定は、以下のような評価方法に従った。
【0025】
正極材料粉末20gに対して、PVDF(呉羽化学工業製、型番KFホリマー#1100)2.2gと、NMP(関東化学製)9.6mlとを秤量して容器に入れ、ニーダー(日本精機製作所製、製品名ノンバブリングニーダ、型番NBK−1)で、2000rpmの回転速度で10分間十分混合した。
【0026】
得られたペースト状のスラリをガラス瓶に移し、密栓した後、温度25℃、露点−40℃のドライボックス中に保管し、一定時間後のスラリの状況を観察した。
【0027】
以下、本発明の実施例を詳細に説明する。
【0028】
(実施例1〜5)
層状化合物である種々の組成のLixNi1-yAyO2(0.98≦x≦1.06、0.05≦y≦0.30、AはCo、Alのうち少なくとも1種)を、出発原料として、LiOH・H2OとNi1-yAy(OH)2(住友金属鉱山製)を用いて、次のように調製した。
【0029】
それぞれの原料を適量秤取り、十分に混合後、酸素中、350℃で3時間熱処理した後、さらに750℃で24時間焼成して、層状化合物であるLixNi1-yAyO2の正極活物質を得た。得られた正極活物質は、化学分析の結果、表1に示すようなLi−Ni−Co−Alの各モル組成となっていた。これらから、x、yが算出される。
【0030】
実施例1〜5で得られた正極活物質に対し、前述のように測定したpHも、表1に示した。
【0031】
実施例1〜5で得られた正極活物質に対し、ゲル化試験を行った。
【0032】
ゲル化試験は、前述のように、スラリ作製後、24時間経過後のスラリの状態を目視および感触で観察した。本発明においては、ゲル化試験での良否判定の基準を、24時間放置してもスラリに流動性のあるものを○とし、ゼリー状になりゲル化したものを×とした。
【0033】
ゲル化試験の良否判定の結果も、表1に示した。
【0034】
【表1】
【0035】
(比較例1〜4)
実施例と同様な方法で、層状化合物である種々の組成のLixNi1-yAyO2を合成し、化学分析した結果を、表2に示した。また、前述のように測定したpHも、表2に示した。
【0036】
比較例1〜4で得られた正極活物質粉末のゲル化試験を、前述と同様に行い、良否判定の結果も、表2に示した。
【0037】
【表2】
【0038】
【発明の効果】
実施例から明らかなように、前述のように測定されたpHが本発明の範囲である正極活物質は、いずれもスラリ作成後、24時間経過しても流動性があり、耐ゲル化性に優れていることが分かる。
【0039】
従って、本発明による非水電解質二次電池用正極活物質は、有機溶媒と、導電助剤と、弗素系結着剤とからなるスラリ中で長時間安定している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, consumer electronic devices have become increasingly portable and cordless, and high energy density batteries have attracted attention.
[0003]
However, if the operating voltage of the positive electrode is low or the discharge capacity is small, it is difficult to obtain a battery with a high energy density.For example, nickel lithium oxide having a layered structure as disclosed in JP-A-05-290845, As disclosed in Japanese Patent Laid-Open Nos. 05-290890 and 05-283076, a nickel lithium-based positive electrode active material in which a part of nickel is replaced with another metal element such as Co or Mn has been proposed. Yes.
[0004]
When a battery is manufactured using such a positive electrode active material, the powder of the positive electrode active material is mixed with N-methyl-2 together with polyvinylidene fluoride (PVDF) as a binder and carbon as a conductive additive. Generally, a positive electrode is produced by slurrying with an organic solvent such as pyrrolidone (NMP) and applying it to a current collector such as an Al foil.
[0005]
[Problems to be solved by the invention]
When a nickel lithium-based positive electrode active material is slurried with NMP together with PVDF and carbon, the viscosity increases, gelation occurs, and stable application to the current collector is often difficult. . Here, the gelation of the slurry refers to a state in which fluidity and uniformity are lost due to an increase in viscosity, and when the gelation is extremely advanced, it is impossible to paint the current collector. Become.
[0006]
In addition, in light gelation, it greatly affects the resistance value and the like of the produced electrode sheet, and the battery characteristics such as the discharge capacity and rate characteristic of the battery produced using the produced electrode sheet may decrease. It was a challenge.
[0007]
In JP-A 10-79244 discloses, in order to solve this problem, a high electrode active material basicity, even when a combination of the binder be easily modified under basic conditions, mixing these At the same time, it has been proposed that the problem of gelation can be solved by adding an inorganic acid or an organic acid.
[0008]
In order to elucidate this cause, the present inventor made gelation of slurry, specific surface area, particle size distribution, water content, Li / M ratio of the positive electrode material (where M is a metal element other than Li in the positive electrode active material). The correlation with the amount of residual lithium was examined in detail, but no clear relationship was found.
[0009]
For this reason, from the above-mentioned various characteristics of the positive electrode material, it is not possible to accurately determine whether or not gelation occurs at the time of slurry preparation, and when the material is synthesized from the raw material, the Li component and other metal element components It has been found that even if the preparation composition is strictly controlled, some materials may be gelled or not gelled at the time of slurry preparation after the production process such as mixing and baking.
[0010]
As described above, it is very difficult to determine in advance which positive electrode material that does not gel.
[0011]
An object of the present invention is to provide conditions that enable practical determination of a positive electrode active material for a lithium secondary battery that is stable for a long time in a slurry.
[0012]
[Means for Solving the Problems]
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention includes Li x Ni 1-y A y O 2 (0.98 ≦ x ≦ 1.06, 0.05 ≦ y ≦ 0.30, A Relates to a method for producing a positive electrode active material comprising a layered compound given by at least one of Co and Al), after stirring and mixing 5 g of the synthesized positive electrode active material powder in 100 g of pure water using a 200 ml beaker for 120 minutes. , when measuring the pH of the supernatant obtained was allowed to stand for 30 seconds, the pH is, at 25 ° C. 12.0 or higher, 12.7 hereinafter, preferably 12.15 or higher, it 12.7 or less A positive electrode active material that does not gel when it is slurried with N-methyl-2-pyrrolidone together with polyvinylidene fluoride and carbon is selected. It is said .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above problems, the present inventor synthesized various Li x Ni 1-y A y O 2, and the specific surface area, particle size distribution, water content, Li / M ratio of the positive electrode active material (however, M is a metal element other than Li in the positive electrode active material), the amount of residual lithium, and the pH of the supernatant after the positive electrode active material is put into pure water and stirred, and the relationship between gelation at the time of slurry preparation It was examined. As a result, the present inventors have found that there is a high correlation between the pH of the supernatant after pouring the positive electrode material into pure water and stirring and the gelation at the time of slurry preparation, leading to the present invention.
[0014]
The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is Li x Ni 1-y A y O 2 (0.98 ≦ x ≦ 1.06, 0.05 ≦ y ≦ 0.30, A is Co, This composition range is necessary for ensuring battery characteristics.
[0015]
The Li x Ni 1-y A y O 2 5 g was stirred and mixed in 100 g of pure water for 120 minutes using a 200 ml beaker, and then left to stand for 30 seconds. The pH of the supernatant obtained at 25 ° C. was 12.7. If it exceeds, the cause is unknown as described above, but it has been found that gelation occurs during slurry preparation. Accordingly, the pH needs to be 12.7 or less. If the pH is lowered by extracting Li in the positive electrode active material by washing or pickling the positive electrode active material, the crystallinity of the positive electrode material, etc. There may vary, there is a risk of lowering the battery characteristics, preferably, pH is 12.0 or more state, and are 12.7 or less, more preferably, pH is 12.15 or more, 12.7 or less Oh Ru.
[0016]
The pH in the present invention is measured as follows.
[0017]
5 g of the synthesized positive electrode active material powder was put into a 200 ml beaker containing 100 g of pure water, stirred for 120 minutes, allowed to stand for 30 seconds, and the pH of the obtained supernatant was adjusted to a composite electrode (Horiba). Measurement was performed using a pH measuring device (manufactured by Horiba, Model No. F-23) equipped with a model No. 6366-10D).
[0018]
In the pH measurement, the mass of the positive electrode active material and the mass of pure water were defined in principle, if the mass ratio was the same, the same positive electrode active material should have the same pH, Actually, if the amount of pure water is small compared to the opening area of the container, the pH will drift gradually to the acidic side during measurement due to the influence of carbon dioxide in the air, and accurate measurement will not be possible. It is. Usually, about 100 ml of pure water is appropriate for a 100 to 200 ml beaker used, and the amount of pure water in the present invention is 100 g. It is within the scope of the present invention to increase or decrease the amount of pure water to about 50 to 150 g, or to make the amount appropriate for the container.
[0019]
The reason why the temperature is specified is that the pH changes depending on the temperature.
[0020]
Furthermore, the reason for setting the stirring time after charging the positive electrode active material to 120 minutes is that the pH gradually increases from immediately after the positive electrode active material is charged into pure water until about 60 minutes, and then stabilizes. is there. In addition, if the stirring is performed for a long time, the pH becomes inaccurate due to the influence of carbon dioxide in the air, so about 120 minutes is appropriate.
[0021]
The reason why the upper limit of the pH of the supernatant after stirring and stirring the positive electrode active material is specified is that when the pH exceeds 12.7, gelation occurs during slurry adjustment.
[0022]
As a mechanism for the gelation of the slurry, a series of reactions in which a small amount of moisture in the slurry reacts with PVDF to cause de-HF conversion or cross-linking reaction of PVDF is promoted by the presence of alkaline components such as Li, and the slurry is Viscosity is considered to lead to gelation.
[0023]
By the way, the reason why this gelation cannot be determined by the specific surface area, particle size distribution, water content, Li / M ratio (where M is a metal element other than Li in the positive electrode active material), residual lithium amount, etc. It is not clear so far, but it is estimated as follows. That is, the gelation is not caused by, for example, residual lithium being dissolved in the slurry, but Li itself in the layered compound that is the positive electrode active material is considered to be caused solely by the dissolution in the slurry. And it is presumed that there is no effective determination method other than measurement of pH because the ease of removal of Li from the layered crystal is due to subtle differences in conditions during the synthesis of the positive electrode active material.
[0024]
The gelation of the slurry was determined according to the following evaluation method.
[0025]
To 20 g of the positive electrode material powder, 2.2 g of PVDF (manufactured by Kureha Chemical Industry, model number KF polymer # 1100) and 9.6 ml of NMP (manufactured by Kanto Chemical) are weighed and put into a container, and a kneader (manufactured by Nippon Seiki Seisakusho). , Product name non-bubbling kneader, model number NBK-1), and sufficiently mixed for 10 minutes at a rotational speed of 2000 rpm.
[0026]
The obtained paste-like slurry was transferred to a glass bottle and sealed, and then stored in a dry box at a temperature of 25 ° C. and a dew point of −40 ° C., and the state of the slurry after a certain time was observed.
[0027]
Hereinafter, embodiments of the present invention will be described in detail.
[0028]
(Examples 1-5)
Li x Ni 1-y A y O 2 having various compositions as layered compounds (0.98 ≦ x ≦ 1.06, 0.05 ≦ y ≦ 0.30, A is at least one of Co and Al) Was prepared as follows using LiOH.H 2 O and Ni 1-y A y (OH) 2 (manufactured by Sumitomo Metal Mining) as starting materials.
[0029]
A suitable amount of each raw material was weighed, mixed thoroughly, heat-treated in oxygen at 350 ° C. for 3 hours, and further calcined at 750 ° C. for 24 hours to obtain a layered compound of Li x Ni 1-y A y O 2 . A positive electrode active material was obtained. As a result of chemical analysis, the obtained positive electrode active material had a molar composition of Li—Ni—Co—Al as shown in Table 1. From these, x and y are calculated.
[0030]
The pH measured as described above for the positive electrode active materials obtained in Examples 1 to 5 is also shown in Table 1.
[0031]
Gelation tests were performed on the positive electrode active materials obtained in Examples 1 to 5.
[0032]
In the gelation test, as described above, the state of the slurry after the lapse of 24 hours was visually and touched after the slurry was produced. In the present invention, the standard for determining the quality in the gelation test was evaluated as “◯” when the slurry was fluid even after being left for 24 hours, and “X” when it became a jelly-like gel.
[0033]
Table 1 also shows the results of the quality determination of the gelation test.
[0034]
[Table 1]
[0035]
(Comparative Examples 1-4)
Table 2 shows the results of synthesis and chemical analysis of Li x Ni 1-y A y O 2 having various compositions as layered compounds by the same method as in the examples. The pH measured as described above is also shown in Table 2.
[0036]
The gelation test of the positive electrode active material powders obtained in Comparative Examples 1 to 4 was performed in the same manner as described above, and the results of quality determination are also shown in Table 2.
[0037]
[Table 2]
[0038]
【Effect of the invention】
As is clear from the examples, all of the positive electrode active materials whose pH measured as described above is within the range of the present invention are fluid even after 24 hours from the creation of the slurry, and are resistant to gelation. It turns out that it is excellent.
[0039]
Therefore, the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is stable for a long time in a slurry composed of an organic solvent, a conductive additive, and a fluorine-based binder.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001216841A JP4951823B2 (en) | 2001-07-17 | 2001-07-17 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001216841A JP4951823B2 (en) | 2001-07-17 | 2001-07-17 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003031222A JP2003031222A (en) | 2003-01-31 |
JP4951823B2 true JP4951823B2 (en) | 2012-06-13 |
Family
ID=19051260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001216841A Expired - Lifetime JP4951823B2 (en) | 2001-07-17 | 2001-07-17 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4951823B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018155714A1 (en) | 2017-02-27 | 2018-08-30 | 日立化成株式会社 | Composite resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device, and energy device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4794619B2 (en) * | 2008-12-26 | 2011-10-19 | Tdk株式会社 | Method for producing positive electrode for lithium ion secondary battery, method for producing lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery |
JP6136765B2 (en) | 2013-08-28 | 2017-05-31 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
CN108352526B (en) | 2015-10-28 | 2022-04-01 | 住友金属矿山株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, positive electrode composite material paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
US11121368B2 (en) | 2015-11-27 | 2021-09-14 | Sumitomo Metal Mining Co., Ltd. | Positive electrode material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode composite material paste, and nonaqueous electrolyte secondary battery |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3811974B2 (en) * | 1994-11-22 | 2006-08-23 | 住友化学株式会社 | Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery |
JP3643522B2 (en) * | 1999-07-29 | 2005-04-27 | 株式会社東芝 | Nonaqueous electrolyte secondary battery |
-
2001
- 2001-07-17 JP JP2001216841A patent/JP4951823B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018155714A1 (en) | 2017-02-27 | 2018-08-30 | 日立化成株式会社 | Composite resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device, and energy device |
Also Published As
Publication number | Publication date |
---|---|
JP2003031222A (en) | 2003-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6380608B2 (en) | Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery | |
JP5007919B2 (en) | Method for producing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and non-aqueous lithium secondary battery using the same | |
KR101345509B1 (en) | Nickel composite hydroxide particles and nonaqueous electrolyte secondary battery | |
JP5645092B2 (en) | Double shell core lithium nickel manganese cobalt oxide | |
JP6716788B2 (en) | High rate lithium cobalt oxide positive electrode material and method for preparing the same | |
EP2581343A1 (en) | Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery | |
WO2017073238A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode mixture paste for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery | |
KR101912546B1 (en) | Precursors for lithium transition metal oxide cathode materials for rechargeable batteries | |
JP7412264B2 (en) | Positive electrode active material for lithium ion secondary battery and method for manufacturing the same | |
WO2017034001A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell | |
JP2017228516A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode mixture paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP2013131437A (en) | Positive electrode composition for nonaqueous electrolyte secondary battery and method for producing positive electrode slurry for nonaqueous electrolyte secondary battery | |
JP2006172753A (en) | Lithium-nickel-manganese-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery | |
JP4400190B2 (en) | Method for producing negative electrode active material | |
JP4951823B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JP6733139B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
US11024850B2 (en) | Li-ion batteries with improved abuse tolerance and performance | |
JP3769344B2 (en) | Positive electrode composition for lithium secondary battery and lithium secondary battery | |
Appetecchi et al. | Novel types of lithium-ion polymer electrolyte batteries | |
JP2020115484A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
WO2006118227A1 (en) | Active material for nonaqueous secondary battery and method for producing same | |
JP2016091850A (en) | Nonaqueous electrolyte secondary battery | |
JP6388026B2 (en) | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles | |
JPH11278848A (en) | Production of spinel type lithium manganese multiple oxide | |
JP6511761B2 (en) | Method of producing coated composite oxide particles for positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using coated composite oxide particles produced by the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120214 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120227 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4951823 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150323 Year of fee payment: 3 |
|
EXPY | Cancellation because of completion of term |