JP4947362B2 - Fuel cell system - Google Patents
Fuel cell system Download PDFInfo
- Publication number
- JP4947362B2 JP4947362B2 JP2007125901A JP2007125901A JP4947362B2 JP 4947362 B2 JP4947362 B2 JP 4947362B2 JP 2007125901 A JP2007125901 A JP 2007125901A JP 2007125901 A JP2007125901 A JP 2007125901A JP 4947362 B2 JP4947362 B2 JP 4947362B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- impedance
- scavenging
- time
- cell stack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
本発明は運転停止時に燃料電池内部を掃気する燃料電池システムに関する。 The present invention relates to a fuel cell system for scavenging the inside of a fuel cell when operation is stopped.
燃料電池スタックは、燃料ガス及び酸化ガスを膜−電極接合体に供給することにより電気化学反応を起こし、化学エネルギーを電気エネルギーに変換するためのエネルギー変換システムである。なかでも、固体高分子膜を電解質として用いる固体高分子電解質型燃料電池スタックは、低コストでコンパクト化が容易であり、しかも高い出力密度を有することから、車載電源としての用途が期待されている。 A fuel cell stack is an energy conversion system for causing an electrochemical reaction by supplying a fuel gas and an oxidizing gas to a membrane-electrode assembly and converting chemical energy into electric energy. Among them, a solid polymer electrolyte fuel cell stack using a solid polymer membrane as an electrolyte is easy to downsize at a low cost and has a high output density, so that it is expected to be used as an in-vehicle power source. .
燃料電池スタックのガス流路内部には、反応ガスの電気化学反応で生じた生成水や反応ガスを加湿するための加湿水などが残留しており、この残留水を放置したまま発電を停止すると、低温環境下では、残留水が凍結してしまい、膜−電極接合体への反応ガスの拡散が妨げられ、低温始動性が低下する。このような問題点に鑑み、特開2002−246053号公報には、運転停止時に燃料電池スタック内部に掃気ガスを供給することにより、水分を除去し、燃料電池スタックの交流インピーダンスを計測することにより、電解質膜の乾燥度合いを判断する手法が提案されている。
しかし、燃料電池スタックの温度変化速度に基づいて燃料電池スタック内部の乾燥状態を監視し、掃気を開始する時点で測定した燃料電池スタックの交流インピーダンスと、掃気を開始してからある程度の乾燥が見込まれる時点で測定した燃料電池スタックの交流インピーダンスとに基づいて掃気実施時間を推定する機能を有する燃料電池システムにおいては、掃気開始時点で既に燃料電池スタック内部がある程度乾燥していると、掃気開始当初から温度変化速度が鈍いため、掃気実施時間を誤推定してしまい、燃料電池スタックを過度に乾燥させてしまう虞がある。 However, the dry state inside the fuel cell stack is monitored based on the temperature change rate of the fuel cell stack, and the AC impedance of the fuel cell stack measured at the start of scavenging and a certain amount of drying is expected after the scavenging is started. In the fuel cell system having a function of estimating the scavenging time based on the AC impedance of the fuel cell stack measured at the time when the scavenging is started, if the inside of the fuel cell stack has already dried to some extent at the start of scavenging, Therefore, the scavenging time is erroneously estimated and the fuel cell stack may be excessively dried.
そこで、本発明は、上記の問題点を解決し、掃気処理による過乾燥を抑止できる燃料電池システムを提案することを課題とする。 Accordingly, an object of the present invention is to solve the above-described problems and propose a fuel cell system capable of suppressing overdrying by scavenging treatment.
上記の課題を解決するため、本発明に係わる燃料電池システムは、燃料電池と、燃料電池に掃気ガスを供給する掃気手段と、燃料電池の温度変化速度を検出する検出手段と、掃気開始時点における燃料電池の第一の交流インピーダンスを測定し、第一の交流インピーダンスが所定値未満であれば、温度変化速度の絶対値が所定の閾値未満に低下する時点における燃料電池の第二の交流インピーダンスを測定する一方、第一の交流インピーダンスが所定値以上であれば、掃気開始時点から予め定められた一定時間経過する時点における燃料電池の第二の交流インピーダンスを測定する交流インピーダンス測定部と、第一の交流インピーダンス、第二の交流インピーダンス、及び第一の交流インピーダンスを測定する時点から第二の交流インピーダンスを測定する時点までの経過時間に基づいて掃気実施時間を推定する掃気実施時間推定部を備える。 In order to solve the above problems, a fuel cell system according to the present invention includes a fuel cell, a scavenging means for supplying a scavenging gas to the fuel cell, a detecting means for detecting a temperature change rate of the fuel cell, and a scavenging start time. If the first AC impedance of the fuel cell is measured and the first AC impedance is less than a predetermined value, the second AC impedance of the fuel cell at the time when the absolute value of the temperature change rate falls below a predetermined threshold is calculated. On the other hand, if the first AC impedance is greater than or equal to a predetermined value, an AC impedance measurement unit that measures the second AC impedance of the fuel cell at a time point that has passed a predetermined time from the start of scavenging, The second AC impedance from the time when the AC impedance, the second AC impedance, and the first AC impedance are measured. Comprising a scavenging execution time estimation unit which estimates a scavenging execution time based on the elapsed time to the point of measuring Nsu.
第一の交流インピーダンスが所定の閾値未満であるということは、適度な湿潤状態であることを意味しているので、燃料電池の温度変化速度に基づいて乾燥状態を監視し、温度変化速度の絶対値が所定の閾値未満に低下する時点を以って適度な乾燥状態と判定し、その時点における第二の交流インピーダンスを測定するのが好ましい。一方、第一の交流インピーダンスが所定の閾値以上であるということは、ある程度の乾燥状態が進行している状態を意味するので、このような場合には、過乾燥を抑止するため、予め定められた一定時間経過後に第二の交流インピーダンスを測定するのが好ましい。 If the first AC impedance is less than the predetermined threshold value, it means that it is in a moderately wet state. Therefore, the dry state is monitored based on the temperature change rate of the fuel cell, and the absolute temperature change rate is determined. It is preferable to determine that the dry state is appropriate when the value drops below a predetermined threshold, and measure the second AC impedance at that point. On the other hand, the fact that the first AC impedance is equal to or higher than the predetermined threshold means a state where a certain degree of dryness is progressing. In such a case, it is determined in advance to prevent overdrying. It is preferable to measure the second AC impedance after a certain period of time.
ここで、掃気実施時間推定部は、補完関数を用いて掃気実施時間を推定するのが好ましい。掃気処理中の時間経過に伴う交流インピーダンスの変化は、ある特定の関数曲線に近似することができるため、補完関数を用いることにより推定精度を高めることができる。 Here, the scavenging execution time estimation unit preferably estimates the scavenging execution time using a complementary function. Since the change in AC impedance with time during the scavenging process can be approximated to a specific function curve, the estimation accuracy can be increased by using a complementary function.
本発明によれば、掃気処理による過乾燥を抑止できる燃料電池システムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the fuel cell system which can suppress the overdrying by a scavenging process can be provided.
以下、各図を参照しながら本発明に係わる実施形態について説明する。
図1は本実施形態に係わる燃料電池システム10のシステム構成を示す。
燃料電池システム10は、燃料電池車両に搭載される車載電源システムとして機能するものであり、反応ガス(燃料ガス、酸化ガス)の供給を受けて発電する燃料電池スタック20と、酸化ガスとしての空気を燃料電池スタック20に供給するための酸化ガス供給系30と、燃料ガスとしての水素ガスを燃料電池スタック20に供給するための燃料ガス供給系40と、電力の充放電を制御するための電力系50と、燃料電池スタック20を冷却するための冷却系60と、システム全体を制御する制御ユニット(ECU)90とを備えている。
Embodiments according to the present invention will be described below with reference to the drawings.
FIG. 1 shows a system configuration of a
The
燃料電池スタック20は、複数のセルを直列に積層してなる固体高分子電解質型セルスタックである。燃料電池スタック20では、アノード極において(1)式の酸化反応が生じ、カソード極において(2)式の還元反応が生じる。燃料電池スタック20全体としては(3)式の起電反応が生じる。
The
H2 → 2H++2e- …(1)
(1/2)O2+2H++2e- → H2O …(2)
H2+(1/2)O2 → H2O …(3)
H 2 → 2H + + 2e − (1)
(1/2) O 2 + 2H + + 2e − → H 2 O (2)
H 2 + (1/2) O 2 → H 2 O (3)
燃料電池スタック20には、燃料電池スタック20の出力電圧を検出するための電圧センサ71、及び発電電流を検出するための電流センサ72が取り付けられている。
A
酸化ガス供給系30は、燃料電池スタック20のカソード極に供給される酸化ガスが流れる酸化ガス通路34と、燃料電池スタック20から排出される酸化オフガスが流れる酸化オフガス通路36とを有している。酸化ガス通路34には、フィルタ31を介して大気中から酸化ガスを取り込むエアコンプレッサ32と、燃料電池スタック20のカソード極へ供給される酸化ガスを加湿するための加湿器33と、酸化ガス供給量を調整するための絞り弁35が設けられている。酸化オフガス通路36には、酸化ガス供給圧を調整するための背圧調整弁37と、酸化ガス(ドライガス)と酸化オフガス(ウェットガス)との間で水分交換するための加湿器33とが設けられている。
The oxidizing
燃料ガス供給系40は、燃料ガス供給源41と、燃料ガス供給源41から燃料電池スタック20のアノード極に供給される燃料ガスが流れる燃料ガス通路45と、燃料電池スタック20から排出される燃料オフガスを燃料ガス通路45に帰還させるための循環通路46と、循環通路46内の燃料オフガスを燃料ガス通路43に圧送する循環ポンプ47と、循環通路47に分岐接続される排気排水通路48とを有している。
The fuel
燃料ガス供給源41は、例えば、高圧水素タンクや水素吸蔵合金などで構成され、高圧(例えば、35MPa乃至70MPa)の水素ガスを貯留する。遮断弁42を開くと、燃料ガス供給源41から燃料ガス通路45に燃料ガスが流出する。燃料ガスは、レギュレータ43やインジェクタ44により、例えば、200kPa程度まで減圧されて、燃料電池スタック20に供給される。
The fuel
尚、燃料ガス供給源41は、炭化水素系の燃料から水素リッチな改質ガスを生成する改質器と、この改質器で生成した改質ガスを高圧状態にして蓄圧する高圧ガスタンクとから構成してもよい。
The fuel
レギュレータ43は、その上流側圧力(一次圧)を、予め設定した二次圧に調圧する装置であり、例えば、一次圧を減圧する機械式の減圧弁などで構成される。機械式の減圧弁は、背圧室と調圧室とがダイアフラムを隔てて形成された筺体を有し、背圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする構成を有する。
The
インジェクタ44は、弁体を電磁駆動力で直接的に所定の駆動周期で駆動して弁座から離隔させることによりガス流量やガス圧を調整することが可能な電磁駆動式の開閉弁である。インジェクタ44は、燃料ガス等の気体燃料を噴射する噴射孔を有する弁座を備えるとともに、その気体燃料を噴射孔まで供給案内するノズルボディと、このノズルボディに対して軸線方向(気体流れ方向)に移動可能に収容保持され噴射孔を開閉する弁体とを備えている。
The
排気排水通路48には、排気排水弁49が配設されている。排気排水弁49は、制御ユニット90からの指令によって作動することにより、循環通路46内の不純物を含む燃料オフガスと水分とを外部に排出する。排気排水弁49の開弁により、循環通路46内の燃料オフガス中の不純物の濃度が下がり、循環系内を循環する燃料オフガス中の水素濃度を上げることができる。
An exhaust /
排気排水弁49を介して排出される燃料オフガスは、酸化オフガス通路34を流れる酸化オフガスと混合され、希釈器(図示せず)によって希釈される。循環ポンプ47は、循環系内の燃料オフガスをモータ駆動により燃料電池スタック20に循環供給する。
The fuel off gas discharged through the
電力系50は、DC/DCコンバータ51、バッテリ52、トラクションインバータ53、トラクションモータ54、及び補機類55を備えている。DC/DCコンバータ51は、バッテリ52から供給される直流電圧を昇圧してトラクションインバータ53に出力する機能と、燃料電池スタック20が発電した直流電力、又は回生制動によりトラクションモータ54が回収した回生電力を降圧してバッテリ52に充電する機能とを有する電力変換手段である。DC/DCコンバータ51のこれらの機能により、バッテリ52の充放電が制御される。また、DC/DCコンバータ51による電圧変換制御により、燃料電池スタック20の運転ポイント(出力電圧、出力電流)が制御される。
The
バッテリ52は、余剰電力の貯蔵源、回生制動時の回生エネルギー貯蔵源、燃料電池車両の加速又は減速に伴う負荷変動時のエネルギーバッファとして機能する。バッテリ52としては、例えば、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池、リチウム二次電池等の二次電池が好適である。バッテリ52には、
The
トラクションインバータ53は、例えば、パルス幅変調方式で駆動されるPWMインバータであり、制御ユニット90からの制御指令に従って、燃料電池スタック20又はバッテリ52から出力される直流電圧を三相交流電圧に変換して、トラクションモータ54の回転トルクを制御する。トラクションモータ54は、例えば、三相交流モータであり、燃料電池車両の動力源を構成する。
The
補機類55は、燃料電池システム10内の各部に配置されている各モータ(例えば、ポンプ類などの動力源)や、これらのモータを駆動するためのインバータ類、更には各種の車載補機類(例えば、エアコンプレッサ、インジェクタ、冷却水循環ポンプ、ラジエータなど)を総称するものである。
Auxiliary machines 55 are motors (for example, power sources such as pumps) arranged in each part in the
冷却系60は、燃料電池スタック20内部を循環する冷媒を流すための冷媒通路61、62,63,64、冷媒を圧送するための循環ポンプ65、冷媒と外気との間で熱交換するためのラジエータ66、冷媒の循環経路を切り替えるための三方弁67、及び冷媒温度を検出するための温度センサ74を備えている。暖機運転が完了した後の通常運転時には燃料電池スタック20から流出する冷媒が冷媒通路61,64を流れてラジエータ66にて冷却された後、冷媒通路63を流れて再び燃料電池スタック20に流れ込むように三方弁67が開閉制御される。一方、システム起動直後における暖機運転時には、燃料電池スタック20から流出する冷媒が冷媒通路61,62,63を流れて再び燃料電池スタック20に流れ込むように三方弁67が開閉制御される。
The
制御ユニット90は、CPU、ROM、RAM、及び入出力インタフェース等を備えるコンピュータシステムであり、燃料電池システム10の各部(酸化ガス供給系30、燃料ガス供給系40、電力系50、及び冷却系60)を制御するための制御手段として機能する。例えば、制御ユニット90は、イグニッションスイッチから出力される起動信号IGを受信すると、燃料電池システム10の運転を開始し、アクセルセンサから出力されるアクセル開度信号ACCや、車速センサから出力される車速信号VCなどを基にシステム全体の要求電力を求める。
The
システム全体の要求電力は、車両走行電力と補機電力との合計値である。補機電力には車載補機類(加湿器、エアコンプレッサ、水素ポンプ、及び冷却水循環ポンプ等)で消費される電力、車両走行に必要な装置(変速機、車輪制御装置、操舵装置、及び懸架装置等)で消費される電力、乗員空間内に配設される装置(空調装置、照明器具、及びオーディオ等)で消費される電力などが含まれる。 The required power of the entire system is the total value of the vehicle running power and the auxiliary machine power. Auxiliary power is the power consumed by in-vehicle accessories (humidifiers, air compressors, hydrogen pumps, cooling water circulation pumps, etc.), and equipment required for vehicle travel (transmissions, wheel control devices, steering devices, and suspensions) Power consumed by devices, etc., and power consumed by devices (air conditioners, lighting fixtures, audio, etc.) disposed in the passenger space.
そして、制御ユニット90は、燃料電池スタック20とバッテリ52とのそれぞれの出力電力の配分を決定し、発電指令値を演算するとともに、燃料電池スタック20の発電量が目標電力に一致するように、酸化ガス供給系30及び燃料ガス供給系40を制御する。更に制御ユニット90は、DC/DCコンバータ51を制御して、燃料電池スタック20の出力電圧を調整することにより、燃料電池スタック20の運転ポイント(出力電圧、出力電流)を制御する。制御ユニット90は、アクセル開度に応じた目標車速が得られるように、例えば、スイッチング指令として、U相、V相、及びW相の各交流電圧指令値をトラクションインバータ53に出力し、トラクションモータ54の出力トルク、及び回転数を制御する。
Then, the
図2は燃料電池スタック20を構成するセル21の分解斜視図である。
セル21は、電解質膜22と、アノード極23と、カソード極24と、セパレータ26,27とから構成されている。アノード極23及びカソード極24は、電解質膜22を両側から挟んでサンドイッチ構造を成す拡散電極である。ガス不透過の導電性部材から構成されるセパレータ26,27は、このサンドイッチ構造をさらに両側から挟みつつ、アノード極23及びカソード極24との間にそれぞれ燃料ガス及び酸化ガスの流路を形成する。セパレータ26には、断面凹状のリブ26aが形成されている。リブ26aにアノード極23が当接することで、リブ26aの開口部は閉塞され、燃料ガス流路が形成される。セパレータ27には、断面凹状のリブ27aが形成されている。リブ27aにカソード極24が当接することで、リブ27aの開口部は閉塞され、酸化ガス流路が形成される。
FIG. 2 is an exploded perspective view of the
The
アノード極23は、白金系の金属触媒(Pt,Pt−Fe,Pt−Cr,Pt−Ni,Pt−Ruなど)を担持するカーボン粉末を主成分とし、電解質膜22に接する触媒層23aと、触媒層23aの表面に形成され、通気性と電子導電性とを併せ持つガス拡散層23bとを有する。同様に、カソード極24は、触媒層24aとガス拡散層24bとを有する。より詳細には、触媒層23a,24aは、白金、又は白金と他の金属からなる合金を担持したカーボン粉を適当な有機溶媒に分散させ、電解質溶液を適量添加してペースト化し、電解質膜22上にスクリーン印刷したものである。ガス拡散層23b、24bは、炭素繊維から成る糸で織成したカーボンクロス、カーボンペーパー、又はカーボンフェルトにより形成されている。電解質膜22は、固体高分子材料、例えば、フッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を発揮する。電解質膜22、アノード極23、及びカソード極24によって膜−電極アッセンブリ25が形成される。
The
図3はセル21の電気的な特性を示す等価回路図である。
セル21の等価回路は、R2とCとの並列接続回路にR1が直列接続する回路構成を有している。ここで、R1は電解質膜22の電気抵抗に相当し、R2は活性化過電圧と拡散過電圧とを抵抗換算したものに相当している。Cはアノード電極23と電解質膜22との界面、及びカソード電極24と電解質膜22との界面に形成される電気二重層容量を示している。この等価回路に所定の周波数を有する正弦波電流を印加した場合、電流の変化に対して電圧の応答が遅れる。
FIG. 3 is an equivalent circuit diagram showing the electrical characteristics of the
The equivalent circuit of the
図4は燃料電池スタック20の交流インピーダンスを複素平面上に表示したグラフである。横軸は交流インピーダンスの実数部を示し、縦軸は交流インピーダンスの虚数部を示している。ωは正弦波電流の角周波数である。
FIG. 4 is a graph showing the AC impedance of the
図3に示す等価回路に高周波から低周波までの正弦波信号を印加すると、図4に示すようなグラフが得られる。正弦波信号の周波数が無限に大きい場合(ω=∞)の交流インピーダンスは、R1となる。正弦波信号の周波数が非常に小さい場合(ω=0)の交流インピーダンスは、R1+R2となる。高周波から低周波の間で正弦波信号の周波数を変化させたときに得られる交流インピーダンスは、図4に示すような半円を描く。 When a sine wave signal from high frequency to low frequency is applied to the equivalent circuit shown in FIG. 3, a graph as shown in FIG. 4 is obtained. When the frequency of the sine wave signal is infinitely large (ω = ∞), the AC impedance is R1. The AC impedance when the frequency of the sine wave signal is very small (ω = 0) is R1 + R2. The AC impedance obtained when the frequency of the sine wave signal is changed between a high frequency and a low frequency draws a semicircle as shown in FIG.
このように、交流インピーダンス法を用いることで、燃料電池スタック20の等価回路におけるR1とR2を分離して計測することが可能となる。R1が予め定められた所定値より大きくなり、燃料電池スタック20の出力が低下している場合には、電解質膜22が乾燥して抵抗過電圧が大きくなり、導電率が低下していることが出力低下の原因と判断できる。R2が予め定められた所定値より大きくなり、燃料電池スタック20の出力が低下している場合には、電極表面に水が過剰に存在し、拡散過電圧が大きくなっていることが原因であると判断できる。
As described above, by using the AC impedance method, it is possible to separately measure R1 and R2 in the equivalent circuit of the
図5は掃気処理に係わる制御ユニット90の機能ブロックを示す。
制御ユニット90は、電圧指令部91、交流インピーダンス測定部92、測定メモリ93、及び掃気実施時間推定部94を備えており、これら各部の協働により掃気制御手段として機能する。
制御ユニット90による燃料電池スタック20の交流インピーダンス計測は、以下の手順により実施される。
(1)電圧指令部91は、所定の直流電圧に正弦波信号を重畳した電圧指令値を生成し、かかる電圧指令値をDC/DCコンバータ51に出力する。
(2)DC/DCコンバータ51は、電圧指令値に基づいて動作し、バッテリ52に蓄電されている直流電力を交流電力に変換して、燃料電池スタック20に正弦波信号を印加する。
(3)交流インピーダンス測定部92は、電圧センサ71によって検出される応答電圧と、電流センサ72によって検出される応答電流とを所定のサンプリングレートでサンプリングし、高速フーリエ変換処理(FFT処理)を行い、応答電圧と応答電流とをそれぞれ実成分と虚成分とに分割し、FFT処理した応答電圧をFFT処理した応答電流で除して交流インピーダンスの実成分と虚成分とを算出し、複素平面上での原点からの距離rと位相角θとを算出する。燃料電池スタック20に印加される正弦波信号の周波数を連続的に変化させながら応答電圧と応答電流を計測することで、燃料電池スタック20の交流インピーダンスを算出することができる。
FIG. 5 shows functional blocks of the
The
The AC impedance measurement of the
(1) The
(2) The DC /
(3) The AC
尚、燃料電池スタック20を流れる電流は化学反応による電荷の移動を伴うため、交流信号の振幅を増大させると、供給ガス量に対する反応量(ガス利用率)が変動することになる。ガス利用率の変動があると、交流インピーダンスの測定に誤差が生じる虞があるので、交流インピーダンス測定の際に燃料電池スタック20に印加する信号の交流成分は、直流成分の数%程度が好ましい。
In addition, since the electric current which flows through the
交流インピーダンス測定部92は、上記のようにして測定した交流インピーダンスの値を測定メモリ93に格納する。掃気実施時間推定部94は、測定メモリ93に格納されている交流インピーダンスの値に基づいて掃気実施時間を推定する。具体的には、掃気実施時間推定部94は、掃気開始時点で測定される第一の交流インピーダンスと、掃気開始時点からある程度の乾燥が見込まれる時点で測定される第二の交流インピーダンスと、第一の交流インピーダンスの測定時点から第二の交流インピーダンスの測定時点までの経過時間(以下、交流インピーダンス計測間隔と称する。)とに基づいて、掃気実施時間を推定する。掃気実施時間の推定手法の詳細については、後述する。
The AC
図6は交流インピーダンス計測間隔を判定するための処理ルーチンを示す。
交流インピーダンス測定部92は、掃気開始時点における燃料電池スタック20の第一の交流インピーダンスZ1を測定すると(ステップ601)、第一の交流インピーダンスZ1が閾値Zt未満であるか否かを判定する(ステップ602)。閾値Ztは、燃料電池スタック20の温度変化速度に基づく乾燥判定に適した水分量に対応する交流インピーダンス(例えば、300mΩ)に設定するのが好ましい。第一の交流インピーダンスZ1が閾値Zt未満であるときは(ステップ602;YES)、温度変化速度に基づく乾燥判定に適した水分量が掃気開始時点における燃料電池スタック内部に残留していることを意味しているので、交流インピーダンス測定部92は、第一の交流インピーダンスを測定する時点から燃料電池スタック20の温度変化速度の絶対値が所定の閾値未満に低下する時点までの経過時間を交流インピーダンス計測間隔T1として設定する(ステップ603)。このように設定する理由は、燃料電池スタック内部が適度な湿潤状態から乾燥状態に遷移すると、燃料電池スタック内部の気化水量が飽和し、温度変化速度が鈍化する現象が生じるので、温度変化速度に基づいて乾燥状態を判定することができるためである。
FIG. 6 shows a processing routine for determining the AC impedance measurement interval.
When the AC
一方、第一の交流インピーダンスZ1が閾値Zt以上であるときは(ステップ602;NO)、交流インピーダンス測定部92は、予め定められた一定時間(例えば、10秒)を交流インピーダンス計測間隔T1として設定する(ステップ604)。このように設定する理由は、掃気開始時点における燃料電池スタック内部が既に乾燥気味であるような場合には、掃気開始当初から温度変化速度は鈍いので、温度変化速度の検出による乾燥判定は不向きであり、しかも短時間で乾燥することが見込まれるので、過乾燥を抑止する観点から交流インピーダンス計測間隔を一定の短時間に制限したものである。
On the other hand, when the first AC impedance Z1 is equal to or greater than the threshold value Zt (
尚、制御ユニット90は、燃料電池スタック20の温度を温度センサ74から一定周期間隔で取得しており、単位時間あたりの温度変化量を検出する温度変化速度検出手段として機能する。
Note that the
次に、図7乃至図8を参照しながら掃気実施時間を推定する方法について説明する。
図7は交流インピーダンスの時間変化を示すグラフである。横軸は時間を示し、縦軸は燃料電池スタック20の交流インピーダンスの値を示している。時刻t1は、イグニッションスイッチがオフになるタイミングを示している。時刻t0〜時刻t1では、燃料電池システム10は、発電状態にあり、交流インピーダンス測定部92は、燃料電池スタック20の交流インピーダンスを一定周期間隔で演算し、交流インピーダンスの値を測定メモリ93に格納する。このとき、測定メモリ93に格納される交流インピーダンスの値は、最新の値に逐次更新される。
Next, a method for estimating the scavenging time will be described with reference to FIGS.
FIG. 7 is a graph showing the time change of the AC impedance. The horizontal axis indicates time, and the vertical axis indicates the value of AC impedance of the
時刻t1でイグニッションスイッチがオフになり、制御ユニット90に運転停止が指令されると、制御ユニット90は、時刻t1の時点で測定する第一の交流インピーダンスZ1を測定メモリ93に格納し、掃気処理を開始する。掃気処理は、掃気手段としてのエアコンプレッサ32を駆動し、燃料電池スタック20内部のガスチャンネルに掃気ガスとしての加圧エアを流すことにより、ガスチャンネル内部の湿潤状態を適度に調整するための処理である。ガスチャンネルに水分が多量に残存すると、次回の起動時の始動性が低下するだけでなく、低温環境下では水分凍結により配管や弁などが破損する虞がある。一方、燃料電池スタック20内部の水分が不足気味であると、電解質膜22の伝導性が低下するので、発電効率の低下を引き起こす。このため掃気処理では、燃料電池スタック20内部が最適な湿潤状態となるときの交流インピーダンスを目標交流インピーダンスZ3として予め設定しておき、燃料電池スタック20の交流インピーダンスが目標交流インピーダンスZ3に一致するための掃気実施時間を推定している。
When the ignition switch is turned off at time t1 and the operation stop is instructed to the
時刻t1から交流インピーダンス計測間隔T1が経過する時刻t2において、交流インピーダンス測定部92は、燃料電池スタック20の第二の交流インピーダンスZ2を測定し、測定メモリ93に格納されている最新の交流インピーダンスの値をZ1からZ2に更新する。掃気実施時間推定部94は、図8に示すように補完関数200を用いて、時刻t1の時点で測定した第一の交流インピーダンスZ1、時刻t2の時点で測定した第二の交流インピーダンスZ2、及び交流インピーダンス計測間隔T1に基づいて、交流インピーダンスが目標交流インピーダンスZ3に一致するために必要な掃気実施時間T2を推定する。
At time t <b> 2 when the AC impedance measurement interval T <b> 1 elapses from time t <b> 1, the AC
補完関数200は、図8に示すグラフにおいて、少なくとも二つの測定座標、例えば、(t1,Z1)及び(t2,Z2)に基づいて目標座標(t3,Z3)を推定するための関数であり、予め実験等によって求められている。補完関数200として、例えば、二次関数が好適である。二次関数の例として、例えば、tを時間、Zを交流インピーダンス、a及びZ0を正の定数として、Z=at2+Z0を挙げることができる。この二次関数に二つの測定座標を代入すると、定数a及びZ0の値が定まる。Z=Z3となるときのtの解が掃気完了時刻t3である。掃気実施時間T2=掃気完了時刻t3−掃気開始時刻t1より掃気実施時間T2を算出できる。
The
本実施形態によれば、掃気開始時点における燃料電池スタック20内部の湿潤状態を第一の交流インピーダンスZ1に基づいて判定し、掃気開始時点での湿潤状態が良好であれば、温度変化速度に基づいて交流インピーダンス計測間隔T1を決定する一方、掃気開始時点で既に乾燥気味であるならば、交流インピーダンス計測間隔T1を一定の短時間に制限することで、掃気処理による過乾燥を抑止することができる。
According to the present embodiment, the wet state inside the
上述の実施形態では、燃料電池システム10を車載電源システムとして用いる利用形態を例示したが、燃料電池システム10の利用形態は、この例に限られるものではない。例えば、燃料電池システム10を燃料電池車両以外の移動体(ロボット、船舶、航空機等)の電力源として搭載してもよい。また、本実施形態に係わる燃料電池システム10を住宅やビル等の発電設備(定置用発電システム)として用いてもよい。
In the above-described embodiment, the usage form in which the
10…燃料電池システム 20…燃料電池スタック 90…制御ユニット 91…電圧指令部 92…交流インピーダンス測定部 93…測定メモリ 94…掃気時間推定部
DESCRIPTION OF
Claims (2)
前記燃料電池に掃気ガスを供給する掃気手段と、
前記燃料電池の温度変化速度を検出する検出手段と、
掃気開始時点における前記燃料電池の第一の交流インピーダンスを測定し、前記第一の交流インピーダンスが所定値未満であれば、前記温度変化速度の絶対値が所定の閾値未満に低下する時点における前記燃料電池の第二の交流インピーダンスを測定する一方、前記第一の交流インピーダンスが所定値以上であれば、前記掃気開始時点から予め定められた一定時間経過する時点における前記燃料電池の第二の交流インピーダンスを測定する交流インピーダンス測定部と、
前記第一の交流インピーダンス、前記第二の交流インピーダンス、及び前記第一の交流インピーダンスを測定する時点から前記第二の交流インピーダンスを測定する時点までの経過時間に基づいて掃気実施時間を推定する掃気実施時間推定部と、
を備える燃料電池システム。 A fuel cell;
Scavenging means for supplying a scavenging gas to the fuel cell;
Detecting means for detecting a temperature change rate of the fuel cell;
The first AC impedance of the fuel cell at the start of scavenging is measured, and if the first AC impedance is less than a predetermined value, the fuel at the time when the absolute value of the temperature change rate falls below a predetermined threshold While measuring the second AC impedance of the battery, if the first AC impedance is greater than or equal to a predetermined value, the second AC impedance of the fuel cell at the time when a predetermined time has elapsed from the scavenging start time AC impedance measurement unit for measuring
Scavenging for estimating the scavenging time based on the elapsed time from the time when the first AC impedance, the second AC impedance, and the first AC impedance are measured to the time when the second AC impedance is measured An execution time estimation unit;
A fuel cell system comprising:
前記掃気実施時間推定部は、補完関数を用いて前記掃気実施時間を推定する、燃料電池システム。 The fuel cell system according to claim 1,
The scavenging execution time estimation unit estimates the scavenging execution time using a complementary function.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007125901A JP4947362B2 (en) | 2007-05-10 | 2007-05-10 | Fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007125901A JP4947362B2 (en) | 2007-05-10 | 2007-05-10 | Fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008282674A JP2008282674A (en) | 2008-11-20 |
JP4947362B2 true JP4947362B2 (en) | 2012-06-06 |
Family
ID=40143316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007125901A Expired - Fee Related JP4947362B2 (en) | 2007-05-10 | 2007-05-10 | Fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4947362B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6206377B2 (en) | 2014-11-15 | 2017-10-04 | トヨタ自動車株式会社 | Fuel cell system |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3509168B2 (en) * | 1994-02-23 | 2004-03-22 | トヨタ自動車株式会社 | Fuel cell system |
JP4759815B2 (en) * | 2001-02-13 | 2011-08-31 | 株式会社デンソー | Fuel cell system |
JP5119565B2 (en) * | 2001-09-12 | 2013-01-16 | 株式会社デンソー | Fuel cell system |
JP2004179086A (en) * | 2002-11-28 | 2004-06-24 | Nissan Motor Co Ltd | Solid polymer fuel cell system and its operation method |
JP4513308B2 (en) * | 2003-11-04 | 2010-07-28 | 株式会社デンソー | Fuel cell system |
JP2005209634A (en) * | 2003-12-26 | 2005-08-04 | Honda Motor Co Ltd | Control method in operation stop of fuel cell and its device |
JP2006019184A (en) * | 2004-07-02 | 2006-01-19 | Honda Motor Co Ltd | Fuel cell system |
JP4765290B2 (en) * | 2004-10-05 | 2011-09-07 | トヨタ自動車株式会社 | Fuel cell system |
JP4860930B2 (en) * | 2005-01-18 | 2012-01-25 | 本田技研工業株式会社 | Method for stopping fuel cell system and fuel cell system |
JP2006324066A (en) * | 2005-05-17 | 2006-11-30 | Toyota Motor Corp | Fuel cell system |
JP4788322B2 (en) * | 2005-12-08 | 2011-10-05 | 株式会社デンソー | Fuel cell system |
JP2007305346A (en) * | 2006-05-09 | 2007-11-22 | Toyota Motor Corp | Fuel cell system |
JP4737005B2 (en) * | 2006-08-21 | 2011-07-27 | マツダ株式会社 | Engine control device |
JP2008103257A (en) * | 2006-10-20 | 2008-05-01 | Toyota Motor Corp | Fuel cell system |
JP4753164B2 (en) * | 2006-10-23 | 2011-08-24 | トヨタ自動車株式会社 | Fuel cell system |
JP5024725B2 (en) * | 2006-12-27 | 2012-09-12 | トヨタ自動車株式会社 | Fuel cell system |
JP4868240B2 (en) * | 2007-05-10 | 2012-02-01 | トヨタ自動車株式会社 | Fuel cell system |
JP4868239B2 (en) * | 2007-05-10 | 2012-02-01 | トヨタ自動車株式会社 | Fuel cell system |
JP4894608B2 (en) * | 2007-05-10 | 2012-03-14 | トヨタ自動車株式会社 | Fuel cell system |
-
2007
- 2007-05-10 JP JP2007125901A patent/JP4947362B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008282674A (en) | 2008-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4894608B2 (en) | Fuel cell system | |
JP4868239B2 (en) | Fuel cell system | |
JP4868240B2 (en) | Fuel cell system | |
JP4329043B2 (en) | Fuel cell system | |
JP4821662B2 (en) | Fuel cell system | |
JP4591721B2 (en) | Fuel cell system | |
JP5892241B2 (en) | Fuel cell system | |
JP4492824B2 (en) | Fuel cell system | |
WO2008096801A1 (en) | Fuel cell system | |
JP5146639B2 (en) | Fuel cell system | |
JP5850136B2 (en) | Fuel cell system | |
JP2013258038A (en) | Fuel cell system and control method thereof | |
JP5030013B2 (en) | Fuel cell system | |
JP5083600B2 (en) | Fuel cell system | |
JP4947362B2 (en) | Fuel cell system | |
JP5229523B2 (en) | Fuel cell system | |
JP5773278B2 (en) | Fuel cell system and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |