図1は、本発明が適用された車両用駆動装置10の構成を説明する骨子図である。この車両用駆動装置10は横置き型自動変速機であって、FF(フロントエンジン・フロントドライブ)型車両に好適に採用されるものであり、走行用の動力源としてエンジン12を備えている。内燃機関にて構成されているエンジン12の出力は、エンジン12のクランク軸、流体式伝動装置としてのトルクコンバータ14から前後進切換装置16、ベルト式の無段変速機(CVT)18、減速歯車装置20を介して差動歯車装置22に伝達され、左右の駆動輪24L、24Rへ分配される。
トルクコンバータ14は、エンジン12のクランク軸に連結されたポンプ翼車14p、およびトルクコンバータ14の出力側部材に相当するタービン軸34を介して前後進切換装置16に連結されたタービン翼車14tを備えており、流体を介して動力伝達を行うようになっている。また、それ等のポンプ翼車14pおよびタービン翼車14tの間にはロックアップクラッチ26が設けられており、油圧制御回路100(図2、図3参照)内の図示しないロックアップコントロールバルブ(L/C制御弁)などによって係合側油室および解放側油室に対する油圧供給が切り換えられることにより、係合または解放されるようになっており、完全係合させられることによってポンプ翼車14pおよびタービン翼車14tは一体回転させられる。ポンプ翼車14pには、無段変速機18を変速制御したりベルト挟圧力を発生させたり、ロックアップクラッチ26を係合解放制御したり、或いは各部に潤滑油を供給したりするための油圧をエンジン12により回転駆動されることにより発生する機械式のオイルポンプ28が連結されている。
前後進切換装置16は、前進用クラッチC1および後進用ブレーキB1とダブルピニオン型の遊星歯車装置16pとを主体として構成されており、トルクコンバータ14のタービン軸34はサンギヤ16sに一体的に連結され、無段変速機18の入力軸36はキャリア16cに一体的に連結されている一方、キャリア16cとサンギヤ16sは前進用クラッチC1を介して選択的に連結され、リングギヤ16rは後進用ブレーキB1を介してハウジングに選択的に固定されるようになっている。前進用クラッチC1および後進用ブレーキB1は断続装置に相当するもので、何れも油圧シリンダによって摩擦係合させられる油圧式摩擦係合装置である。
そして、前進用クラッチC1が係合させられるとともに後進用ブレーキB1が解放されると、前後進切換装置16は一体回転状態とされることによりタービン軸34が入力軸36に直結され、前進用動力伝達経路が成立(達成)させられて、前進方向の駆動力が無段変速機18側へ伝達される。また、後進用ブレーキB1が係合させられるとともに前進用クラッチC1が解放されると、前後進切換装置16は後進用動力伝達経路が成立(達成)させられて、入力軸36はタービン軸34に対して逆方向へ回転させられるようになり、後進方向の駆動力が無段変速機18側へ伝達される。また、前進用クラッチC1および後進用ブレーキB1が共に解放されると、前後進切換装置16は動力伝達を遮断するニュートラル状態(動力伝達遮断状態)になる。
無段変速機18は、入力軸36に設けられた入力側部材である有効径が可変の駆動側プーリ(プライマリプーリ、プライマリシーブ)42と、出力軸44に設けられた出力側部材である有効径が可変の従動側プーリ(セカンダリプーリ、セカンダリシーブ)46と、それ等の可変プーリ42、46に巻き掛けられた伝動ベルト48とを備えており、可変プーリ42、46と伝動ベルト48との間の摩擦力を介して動力伝達が行われる。
可変プーリ42および46は、入力軸36および出力軸44にそれぞれ固定された固定回転体42aおよび46aと、入力軸36および出力軸44に対して軸まわりの相対回転不能かつ軸方向の移動可能に設けられた可動回転体42bおよび46bと、それらの間のV溝幅を変更する推力を付与する油圧アクチュエータとしての駆動側油圧シリンダ(プライマリプーリ側油圧シリンダ)42cおよび従動側油圧シリンダ(セカンダリプーリ側油圧シリンダ)46cとを備えて構成されており、駆動側油圧シリンダ42cへの作動油の供給排出流量が油圧制御回路100によって制御されることにより、両可変プーリ42、46のV溝幅が変化して伝動ベルト48の掛かり径(有効径)が変更され、変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が連続的に変化させられる。また、従動側油圧シリンダ46cの油圧であるセカンダリ圧(以下、ベルト挟圧という)Pdが油圧制御回路100によって調圧制御されることにより、伝動ベルト48が滑りを生じないようにベルト挟圧力が制御される。このような制御の結果として、駆動側油圧シリンダ42cの油圧であるプライマリ圧(以下、変速圧という)Pinが生じるのである。
図2は、図1の車両用駆動装置10などを制御するために車両に設けられた制御系統の要部を説明するブロック線図である。電子制御装置50は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、エンジン12の出力制御や無段変速機18の変速制御およびベルト挟圧力制御やロックアップクラッチ26のトルク容量制御等を実行するようになっており、必要に応じてエンジン制御用や無段変速機18およびロックアップクラッチ26の油圧制御用等に分けて構成される。
電子制御装置50には、エンジン回転速度センサ52により検出されたクランク軸回転角度(位置)ACR(°)およびエンジン12の回転速度(エンジン回転速度)NEに対応するクランク軸回転速度を表す信号、タービン回転速度センサ54により検出されたタービン軸34の回転速度(タービン回転速度)NTを表す信号、入力軸回転速度センサ56により検出された無段変速機18の入力回転速度である入力軸36の回転速度(入力軸回転速度)NINを表す信号、車速センサ(出力軸回転速度センサ)58により検出された無段変速機18の出力回転速度である出力軸44の回転速度(出力軸回転速度)NOUTすなわち出力軸回転速度NOUTに対応する車速Vを表す車速信号、スロットルセンサ60により検出されたエンジン12の吸気配管32(図1参照)に備えられた電子スロットル弁30のスロットル弁開度θTHを表すスロットル弁開度信号、冷却水温センサ62により検出されたエンジン12の冷却水温TWを表す信号、CVT油温センサ64により検出された無段変速機18等の油圧回路の油温TCVTを表す信号、アクセル開度センサ66により検出されたアクセルペダル68の操作量であるアクセル開度Accを表すアクセル開度信号、フットブレーキスイッチ70により検出された常用ブレーキであるフットブレーキの操作の有無BONを表すブレーキ操作信号、レバーポジションセンサ72により検出されたシフトレバー74のレバーポジション(操作位置)PSHを表す操作位置信号、加速度センサ76により検出された車両の前後方向の加速度Gを表す信号などが供給されている。
また、電子制御装置50からは、エンジン12の出力制御の為のエンジン出力制御指令信号SE、例えば電子スロットル弁30の開閉を制御するためのスロットルアクチュエータ78を駆動するスロットル信号や燃料噴射装置80から噴射される燃料の量を制御するための噴射信号や点火装置82によるエンジン12の点火時期を制御するための点火時期信号などが出力される。また、無段変速機18の変速比γを変化させる為の変速制御指令信号ST例えば駆動側油圧シリンダ42cへの作動油の流量を制御するソレノイド弁DS1およびソレノイド弁DS2を駆動するための指令信号、伝動ベルト48の挟圧力を調整させる為の挟圧力制御指令信号SB例えばベルト挟圧Pdを調圧するリニアソレノイド弁SLSを駆動するための指令信号、ライン油圧PLを制御するリニアソレノイド弁SLTを駆動するための指令信号などが油圧制御回路100へ出力される。
シフトレバー74は、例えば運転席の近傍に配設され、順次位置させられている5つのレバーポジション「P」、「R」、「N」、「D」、および「L」(図3参照)のうちの何れかへ手動操作されるようになっている。
「P」ポジション(レンジ)は車両用駆動装置10の動力伝達経路を解放しすなわち車両用駆動装置10の動力伝達が遮断されるニュートラル状態(中立状態)とし且つメカニカルパーキング機構によって機械的に出力軸44の回転を阻止(ロック)するための駐車ポジション(位置)であり、「R」ポジションは出力軸44の回転方向を逆回転とするための後進走行ポジション(位置)であり、「N」ポジションは車両用駆動装置10の動力伝達が遮断されるニュートラル状態とするための中立ポジション(位置)であり、「D」ポジションは無段変速機18の変速を許容する変速範囲で自動変速モードを成立させて自動変速制御を実行させる前進走行ポジション(位置)であり、「L」ポジションは強いエンジンブレーキが作用させられるエンジンブレーキポジション(位置)である。このように、「P」ポジションおよび「N」ポジションは車両を走行させないときに選択される非走行ポジションであり、「R」ポジション、「D」ポジションおよび「L」ポジションは車両を走行させるときに選択される走行ポジションである。
図3は、油圧制御回路100のうち無段変速機18のベルト挟圧力制御、変速比制御、およびシフトレバー74の操作に伴う前進用クラッチC1或いは後進用ブレーキB1の係合油圧制御に関する要部を示す油圧回路図である。図3において、油圧制御回路100は、伝動ベルト48が滑りを生じないように従動側油圧シリンダ46cの油圧であるベルト挟圧Pdを調圧する挟圧力コントロールバルブ110、変速比γが連続的に変化させられるように駆動側油圧シリンダ42cへの作動油の流量を制御する変速比コントロールバルブUP114および変速比コントロールバルブDN116、変速圧Pinとベルト挟圧Pdとの比率を予め定められた関係とする推力比コントロールバルブ118、前進用クラッチC1および後進用ブレーキB1が係合或いは解放されるようにシフトレバー74の操作に従って油路が機械的に切り換えられるマニュアルバルブ120等を備えている。
また、ライン油圧PLは、エンジン12により回転駆動される機械式のオイルポンプ28から出力(発生)される作動油圧を元圧として、例えばリリーフ型のプライマリレギュレータバルブ(ライン油圧調圧弁)122によりリニアソレノイド弁SLTの出力油圧である制御油圧PSLTに基づいてエンジン負荷等に応じた値に調圧されるようになっている。モジュレータ油圧PMは、制御油圧PSLTおよびリニアソレノイド弁SLSの出力油圧である制御油圧PSLSの元圧となるものであると共に、電子制御装置50によってデューティ制御されるソレノイド弁DS1の出力油圧である制御油圧PDS1およびソレノイド弁DS2の出力油圧である制御油圧PDS2の元圧となるものであって、ライン油圧PLを元圧としてモジュレータバルブ124により一定圧に調圧されるようになっている。出力油圧PLM2は、ライン油圧PLを元圧としてライン圧モジュレータNO.2バルブ126により制御油圧PSLTに基づいて調圧されるようになっている。
前記マニュアルバルブ120において、入力ポート120aには出力油圧PLM2が供給される。そして、シフトレバー74が「D」ポジション或いは「L」ポジションに操作されると、出力油圧PLM2が前進走行用出力圧として前進用出力ポート120fを経て前進用クラッチC1に供給され且つ後進用ブレーキB1内の作動油が後進用出力ポート120rから排出ポートEXを経て例えば大気圧にドレーン(排出)されるようにマニュアルバルブ120の油路が切り換えられ、前進用クラッチC1が係合させられると共に後進用ブレーキB1が解放させられる。
また、シフトレバー74が「R」ポジションに操作されると、出力油圧PLM2が後進走行用出力圧として後進用出力ポート120rを経て後進用ブレーキB1に供給され且つ前進用クラッチC1内の作動油が前進用出力ポート120fから排出ポートEXを経て例えば大気圧にドレーン(排出)されるようにマニュアルバルブ120の油路が切り換えられ、後進用ブレーキB1が係合させられると共に前進用クラッチC1が解放させられる。
また、シフトレバー74が「P」ポジションおよび「N」ポジションに操作されると、入力ポート120aから前進用出力ポート120fへの油路および入力ポート120aから後進用出力ポート120rへの油路がいずれも遮断され且つ前進用クラッチC1および後進用ブレーキB1内の作動油が何れもマニュアルバルブ120からドレーンされるようにマニュアルバルブ120の油路が切り換えられ、前進用クラッチC1および後進用ブレーキB1が共に解放させられる。
前記変速比コントロールバルブUP114は、軸方向へ移動可能に設けられることによりライン油圧PLを入力ポート114iから入出力ポート114jを経て駆動側プーリ42へ供給可能且つ入出力ポート114kを閉弁するアップシフト位置と駆動側プーリ42が入出力ポート114jを介して入出力ポート114kと連通させられる原位置とに位置させられるスプール弁子114aと、そのスプール弁子114aを原位置側に向かって付勢する付勢手段としてのスプリング114bと、そのスプリング114bを収容し且つスプール弁子114aに原位置側に向かう推力を付与するために制御油圧PDS2を受け入れる油室114cと、スプール弁子114aにアップシフト位置側に向かう推力を付与するために制御油圧PDS1を受け入れる油室114dとを備えている。
また、変速比コントロールバルブDN116は、軸方向へ移動可能に設けられることにより入出力ポート116jが排出ポートEXと連通させられるダウンシフト位置と入出力ポート116jが入出力ポート116kと連通させられる原位置とに位置させられるスプール弁子116aと、そのスプール弁子116aを原位置側に向かって付勢する付勢手段としてのスプリング116bと、そのスプリング116bを収容し且つスプール弁子116aに原位置側に向かう推力を付与するために制御油圧PDS1を受け入れる油室116cと、スプール弁子116aにダウンシフト位置側に向かう推力を付与するために制御油圧PDS2を受け入れる油室116dとを備えている。
このように構成された変速比コントロールバルブUP114および変速比コントロールバルブDN116において、中心線より左側半分に示すようにスプール弁子114aがスプリング114bの付勢力に従って原位置に保持されている閉じ状態では、入出力ポート114jと入出力ポート114kとが連通させられ、駆動側プーリ42(駆動側油圧シリンダ42c)の作動油が入出力ポート116jへ流通することが許容される。また、中心線より右側半分に示すようにスプール弁子116aがスプリング116bの付勢力に従って原位置に保持されている閉じ状態では、入出力ポート116jと入出力ポート116kとが連通させられ、推力比コントロールバルブ118からの推力比制御油圧Pτが入出力ポート114kへ流通することが許容される。
また、制御油圧PDS1が油室114dへ供給されると、中心線より右側半分に示すようにスプール弁子114aがその制御油圧PDS1に応じた推力によりスプリング114bの付勢力に抗してアップシフト位置側へ移動させられ、ライン油圧PLが制御油圧PDS1に対応する流量で入力ポート114iから入出力ポート114jを経て駆動側油圧シリンダ42cへ供給されると共に、入出力ポート114kが遮断されて変速比コントロールバルブDN116側への作動油の流通が阻止される。これにより、変速圧Pinが高められ、駆動側プーリ42のV溝幅が狭くされて変速比γが小さくされるすなわち無段変速機18がアップシフトされる。
また、制御油圧PDS2が油室116dへ供給されると、中心線より左側半分に示すようにスプール弁子116aがその制御油圧PDS2に応じた推力によりスプリング116bの付勢力に抗してダウンシフト位置側へ移動させられ、駆動側油圧シリンダ42cの作動油が制御油圧PDS2に対応する流量で入出力ポート114jから入出力ポート114kさらに入出力ポート116jを経て排出ポートEXから排出される。これにより、変速圧Pinが低められ、駆動側プーリ42のV溝幅が広くされて変速比γが大きくされるすなわち無段変速機18がダウンシフトされる。
このように、ライン油圧PLは変速圧Pinの元圧となるものであって、制御油圧PDS1が出力されると変速比コントロールバルブUP114に入力されたライン油圧PLが駆動側油圧シリンダ42cへ供給されて変速圧Pinが高められて連続的にアップシフトされ、制御油圧PS2が出力されると駆動側油圧シリンダ42cの作動油が排出ポートEXから排出されて変速圧Pinが低められて連続的にダウンシフトされる。
例えば図4に示すようにアクセル開度Accをパラメータとして車速Vと無段変速機18の目標入力回転速度である目標入力軸回転速度NIN *との予め記憶された関係(変速マップ)から実際の車速Vおよびアクセル開度Accで示される車両状態に基づいて設定される目標入力軸回転速度NIN *と実際の入力軸回転速度(以下、実入力軸回転速度という)NINとが一致するように、それ等の回転速度差(偏差)ΔNIN(=NIN *−NIN)に応じて無段変速機18の変速がフィードバック制御により実行される、すなわち駆動側油圧シリンダ42cに対する作動油の供給および排出により両可変プーリ42、46のV溝幅が変化させられて変速比γがフィードバック制御により連続的に変化させられる。
図4の変速マップは変速条件に相当するもので、車速Vが小さくアクセル開度Accが大きい程大きな変速比γになる目標入力軸回転速度NIN *が設定されるようになっている。また、車速Vは出力軸回転速度NOUTに対応するため、入力軸回転速度NINの目標値である目標入力軸回転速度NIN *は目標変速比γ*(=NIN */NOUT)に対応し、無段変速機18の最小変速比γminと最大変速比γmaxの範囲内で定められる。
また、制御油圧PDS1は変速比コントロールバルブDN116の油室116cに供給され、制御油圧PDS2に拘らずその変速比コントロールバルブDN116を閉じ状態としてダウンシフトを制限する一方、制御油圧PDS2は変速比コントロールバルブUP114の油室114cに供給され、制御油圧PDS1に拘らずその変速比コントロールバルブUP114を閉じ状態としてアップシフトを禁止するようになっている。つまり、制御油圧PDS1および制御油圧PDS2が共に供給されないときはもちろんであるが、制御油圧PDS1および制御油圧PDS2が共に供給されるときにも、変速比コントロールバルブUP114および変速比コントロールバルブDN116は何れも原位置に保持されている閉じ状態とされる。これにより、電気系統の故障などでソレノイド弁DS1、DS2の一方が機能しなくなり、制御油圧PDS1または制御油圧PDS2が最大圧で出力され続けるオンフェール時となった場合でも、急なアップシフトやダウンシフトが生じたり、その急変速に起因してベルト滑りが発生したりすることが防止される。
前記挟圧力コントロールバルブ110は、軸方向へ移動可能に設けられることにより入力ポート110iを開閉してライン油圧PLを入力ポート110iから出力ポート110tを経て従動側プーリ46および推力比コントロールバルブ118へベルト挟圧Pdを供給可能にするスプール弁子110aと、そのスプール弁子110aを開弁方向へ付勢する付勢手段としてのスプリング110bと、そのスプリング110bを収容し且つスプール弁子110aに開弁方向の推力を付与するために制御油圧PSLSを受け入れる油室110cと、スプール弁子110aに閉弁方向の推力を付与するために出力ポート110tから出力されたベルト挟圧Pdを受け入れるフィードバック油室110dと、スプール弁子110aに閉弁方向の推力を付与するためにモジュレータ油圧PMを受け入れる油室110eとを備えている。
このように構成された挟圧力コントロールバルブ110において、伝動ベルト48が滑りを生じないように制御油圧PSLSをパイロット圧としてライン油圧PLが連続的に調圧制御されることにより、出力ポート110tからベルト挟圧Pdが出力される。このように、ライン油圧PLはベルト挟圧Pdの元圧となるものである。
例えば図5に示すように伝達トルクに対応するアクセル開度Accをパラメータとして変速比γと必要油圧(ベルト挟圧力)Pd*とのベルト滑りが生じないように予め実験的に求められて記憶された関係(ベルト挟圧力マップ)から実際の変速比γおよびアクセル開度Accで示される車両状態に基づいて決定(算出)されたベルト挟圧力Pd*が得られるように従動側油圧シリンダ46cのベルト挟圧Pdが制御され、このベルト挟圧Pdに応じてベルト挟圧力Pd*すなわち可変プーリ42、46と伝動ベルト48との間の摩擦力が増減させられる。
前記推力比コントロールバルブ118は、軸方向へ移動可能に設けられることにより入力ポート118iを開閉してライン油圧PLを入力ポート118iから出力ポート118tを経て変速比コントロールバルブDN116へ推力比制御油圧Pτを供給可能にするスプール弁子118aと、そのスプール弁子118aを開弁方向へ付勢する付勢手段としてのスプリング118bと、そのスプリング118bを収容し且つスプール弁子118aに開弁方向の推力を付与するためにベルト挟圧Pdを受け入れる油室118cと、スプール弁子118aに閉弁方向の推力を付与するために出力ポート118tから出力された推力比制御油圧Pτを受け入れるフィードバック油室118dとを備えている。
このように構成された推力比コントロールバルブ118において、油室118cにおけるベルト挟圧Pdの受圧面積をa、フィードバック油室118dにおける推力比制御油圧Pτの受圧面積をb、スプリング118bの付勢力をFSとすると、次式(1)で平衡状態となる。
Pτ×b=Pd×a+FS ・・・(1)
従って、推力比制御油圧Pτは、次式(2)で表され、ベルト挟圧Pdに比例する。
Pτ=Pd×(a/b)+FS/b ・・・(2)
そして、制御油圧PDS1および制御油圧PDS2が共に供給されないか、或いは所定圧以上の制御油圧PDS1および所定圧以上の制御油圧PDS2がともに供給されて、変速比コントロールバルブUP114および変速比コントロールバルブDN116が何れも原位置に保持されている閉じ状態とされたときには、推力比制御油圧Pτが駆動側油圧シリンダ42cに供給されることから、変速圧Pinが推力比制御油圧Pτと一致させられる。つまり、推力比コントロールバルブ118により変速圧Pinとベルト挟圧Pdとの比率を予め定められた関係に保つ推力比制御油圧Pτすなわち変速圧Pinが出力される。
例えば、入力軸回転速度センサ56や車速センサ58の精度上所定車速V’以下の低車速状態では入力軸回転速度NINや車速Vの検出精度が劣ることから、このような低車速走行時や発進時には回転速度差(偏差)ΔNINを解消するための変速比γのフィードバック制御に替えて、例えば制御油圧PDS1および制御油圧PDS2を共に供給せず変速比コントロールバルブUP114および変速比コントロールバルブDN116を何れも閉じ状態とする所謂閉じ込み制御を実行する。これにより、低車速走行時や発進時には変速圧Pinとベルト挟圧Pdとの比率を予め定められた関係とするようにベルト挟圧Pdに比例する変速圧Pinが駆動側油圧シリンダ42cへ供給されて、車両停車時から極低車速時における伝動ベルト48のベルト滑りが防止されると共に、このとき例えば最大変速比γmaxに対応する推力比τ(=従動側油圧シリンダ推力WOUT/駆動側油圧シリンダ推力WIN;WOUTはベルト挟圧Pd×従動側油圧シリンダ46cの受圧面積、WINは変速圧Pin×駆動側油圧シリンダ42cの受圧面積)より大きな推力比τが可能なように上記式(2)の右辺第1項の(a/b)やFS/bが設定されていると、最大変速比γmax又はその近傍の変速比γmax’にて良好な発進が行われる。また、上記所定車速V’は、所定回転部材の回転速度例えば入力軸回転速度NINが検出不可能な回転速度となる車速Vとして予め定められたフィードバック制御を実行可能な下限の車速であって、例えば2km/h程度に設定されている。
図6は、車速Vをパラメータとして変速比γと推力比τとの予め求められて記憶された関係であって、図示の関係になるように上記式(2)の右辺第1項の(a/b)が設定された場合の一例を示す図である。図6の一点鎖線で示した車速Vのパラメータは駆動側油圧シリンダ42cおよび従動側油圧シリンダ46cにおける遠心油圧を考慮して算出した推力比τであり、実線との交点(V0、V20、V50)にて閉じ込み制御時に保持可能な所定の変速比としての変速比γが求められる。例えば、この図6に示すように本実施例の無段変速機18においては、車速Vが0km/hすなわち車両停止中の閉じ込み制御時に所定の変速比として最大変速比γmaxが保持可能である。
図7は、電子制御装置50による制御機能の要部を説明する機能ブロック線図である。図7において、目標入力回転設定手段150は、例えば図4に示すような予め記憶された変速マップから実際の車速Vおよびアクセル開度Accで示される車両状態に基づいて入力軸回転速度NINの目標入力軸回転速度NIN *を逐次設定する。
変速制御手段152は、実入力軸回転速度NINが前記目標入力回転設定手段150によって設定された目標入力軸回転速度NIN *と一致するように、すなわち回転速度差(偏差)ΔNIN(=NIN *−NIN)を解消するように、その回転速度差ΔNINに応じて無段変速機18の変速をフィードバック制御により実行する。すなわち、駆動側油圧シリンダ42cに対する作動油の流量を制御することにより両可変プーリ42、46のV溝幅を変化させる変速制御指令信号(油圧指令)STを油圧制御回路100へ出力して変速比γを連続的に変化させる。
ベルト挟圧力設定手段154は、例えば図5に示すような予め実験的に求められて記憶されたベルト挟圧力マップから、実際のアクセル開度Accおよび電子制御装置50により実際の入力軸回転速度NINおよび出力軸回転速度NOUTに基づいて算出される実変速比γ(=NIN/NOUT)で示される車両状態に基づいてベルト挟圧力Pd*を設定する。つまり、ベルト挟圧力設定手段154は、ベルト挟圧力Pd*が得られる為の出力側油圧シリンダ46cのベルト挟圧Pdを設定する。
ベルト挟圧力制御手段156は、前記ベルト挟圧力設定手段154により設定されたベルト挟圧力Pd*が得られるように従動側油圧シリンダ46cのベルト挟圧Pdを調圧する挟圧力制御指令信号SBを油圧制御回路100へ出力してベルト挟圧力Pd*を増減させる。
油圧制御回路100は、上記変速制御指令信号STに従って無段変速機18の変速が実行されるようにソレノイド弁DS1およびソレノイド弁DS2を作動させて駆動側油圧シリンダ42cへの作動油の供給・排出量を制御すると共に、上記挟圧力制御指令信号SBに従ってベルト挟圧力Pd*が増減されるようにリニアソレノイド弁SLSを作動させてベルト挟圧Pdを調圧する。
また、前記変速制御手段152は、前述の機能に加え、車速Vが前記所定車速V’以下であることを条件として、通常の変速制御としての回転速度差ΔNINを解消するための変速比γのフィードバック制御を行わず、推力比コントロールバルブ118により変速圧Pinとベルト挟圧Pdとの比率を予め定められた関係に保つ閉じ込み制御を実行する。すなわち、変速比コントロールバルブUP114および変速比コントロールバルブDN116を閉じ状態とすることによって、駆動側油圧シリンダ42c内に作動油を閉じ込めた状態として無段変速機18の変速比γを所定の変速比とする低車速用の変速制御のための変速指令(閉じ込み制御指令)信号ST’を油圧制御回路100へ出力して所定の変速比を成立させる。
油圧制御回路100は、上記閉じ込み制御指令信号ST’に従って変速比コントロールバルブUP114および変速比コントロールバルブDN116が閉じ状態とされるようにソレノイド弁DS1およびソレノイド弁DS2を作動させず、推力比コントロールバルブ118から変速圧Pinとベルト挟圧Pdとの比率を予め定められた関係に保つ推力比制御油圧Pτを出力する。
本実施例の無段変速機18においては、前述したように車両停止中の閉じ込み制御時には変速比γが最大変速比γmaxとされる、すなわち伝動ベルト48が最減速位置に戻された状態(以下、最減速状態という)とされる。この閉じ込み制御においては推力比制御油圧Pτが駆動側油圧シリンダ42cに供給されていることから、閉じ込み制御後の車両発進の際に駆動側プーリ42の回転に伴い駆動側油圧シリンダ42c内に残っている可能性がある作動油によってアップシフトが生じるおそれがある。
そこで、前記変速制御手段152は、最減速判断手段158により伝動ベルト48が最減速状態にあると判断(推定)されて車両停止した後の車両発進の際には、通常の変速制御が実行可能となる車速Vが所定車速V’を超えるまで通常の変速制御に先だって、前記閉じ込み制御に替えて、駆動側プーリ42のV溝幅を最大幅として伝動ベルト48が最減速状態となるように駆動側油圧シリンダ42c内から作動油を排出するダウンシフトを一時的に実行するデューティダウン制御の為のデューティダウン制御指令信号ST”を油圧制御回路100へ出力する発進時変速制御手段としての機能を備える。このデューティダウン制御が実行されて駆動側油圧シリンダ42c内の作動油が排出されたとしても、車両停止の際に伝動ベルト48が最減速状態に戻されているときには駆動側プーリ42のV溝幅が増大されることはない。
油圧制御回路100は、上記デューティダウン制御指令信号ST”に従ってソレノイド弁DS1およびソレノイド弁DS2を作動させて駆動側油圧シリンダ42cから作動油を排出する。これによって、無段変速機18のアップシフトが防止されて変速比γが最大変速比γmaxに維持される。
前記最減速判断手段158は、閉じ込み制御が行われている車両停止時に、無段変速機18の変速比γが最大変速比(最低速側変速比)γmaxにあるか否か、すなわち伝動ベルト48が最減速状態にあるか否かを、例えば車両減速走行中に所定車速V’を超えている車速Vにおいて既に変速比γが最大変速比γmaxとなっている状態で車両停止したか否か、或いは車両減速走行中に所定車速V’を超えている車速Vにおいて変速比γが最大変速比γmaxとなっていないものの車両停止時には最大変速比γmaxとなっていると推定される最大変速比γmax近傍の所定変速比γmax’になっており且つ所定以上のダウンシフトとなっているか否かに基づいて判断する。
前記最減速判断手段158により伝動ベルト48が最減速状態にあると判断されているときには電子制御装置50によりベルト戻り判定フラグFbeltがONとされる一方、最減速判断手段158により伝動ベルト48が最減速状態にないと判断されているときには電子制御装置50によりベルト戻り判定フラグFbeltがOFFとされる。
エンジン出力制御手段160は、エンジン12の出力制御の為にエンジン出力制御指令信号SE、例えばスロットル信号や噴射信号や点火時期信号などをそれぞれスロットルアクチュエータ78や燃料噴射装置80や点火装置82へ出力する。例えば、エンジン出力制御手段160は、アクセル開度Accに応じたスロットル開度θTHとなるように電子スロットル弁30を開閉するスロットル信号をスロットルアクチュエータ78へ出力してエンジントルクTEを制御する。
ところで、急勾配の登坂路で停止した後の登り方向への再発進時(以下、急勾配発進時という)にブレーキが解除されて車両が発進方向と逆方向へずり下がった場合には、逆回転の正駆動時には正回転の正駆動時よりもベルトの伝達トルク容量が低下することから、平坦路における通常の発進時と同様に、前記ベルト挟圧力設定手段154により設定されたベルト挟圧力Pd*が得られるように前記ベルト挟圧力制御手段156により挟圧力制御指令信号SBが油圧制御回路100へ出力されると、伝達トルク容量が不足してベルト滑りを生じるおそれがある。このような路面勾配が所定勾配を超える急登坂路である再発進時には、このときのベルト挟圧Pdを通常設定されたベルト挟圧力Pd*よりも高くしてベルト滑りの発生を回避することが考えられる。
しかしながら、前述した閉じ込み制御中のときのように駆動側油圧シリンダ42cに油圧が作用させられているときには、急勾配発進時にベルト挟圧Pdを通常設定されたベルト挟圧力Pd*よりも高くしなくとも車両がずり下がらない場合もあり、一律にベルト挟圧Pdを高くすると伝達効率が悪化してエネルギ損失が大きくなり、燃費が悪くなってしまう可能性がある。
つまり、急勾配発進時にベルト滑りの発生を抑制する為にベルト挟圧Pdを高くする必要があるのは、前記変速制御手段152によるデューティダウン制御により駆動側油圧シリンダ42c内の作動油が排出されるときのように、すなわち閉じ込み制御中に駆動側油圧シリンダ42cに作用している所定の油圧としての推力比制御油圧Pτがデューティダウン制御により抜けているときのように、ベルト滑りに対して厳しい車両状態のときのみであり、急勾配発進時に一律にベルト挟圧Pdを高くすることは余分な領域での過剰な油圧アップとなる可能性がある。
そこで、前記ベルト挟圧力制御手段156は、急勾配発進時には、駆動側油圧シリンダ42c内の油圧が抜けていることを条件として、このときのベルト挟圧Pdを通常設定されたベルト挟圧力Pd*よりも高くしてベルト滑りの発生を回避する登坂路発進時ベルト挟圧力制御手段として機能する。
より具体的には、車両停止判定手段162は、車両が停止状態であるか否かを、例えば車速V(出力軸回転速度NOUT)が零と判定されるような所定速度以下となったか否かに基づいて判定する。
急勾配判定手段164は、車両の走行する路面勾配が所定勾配を超える登坂路であるか否かを判定する。例えば、急勾配判定手段164は、前記車両停止判定手段162により車両が停止状態であると判定されているときに、路面勾配情報の1つである加速度センサ76により検出される前後加速度Gの絶対値が所定値G’を超えているか否かに基づいて路面勾配が所定勾配を超える登坂路であるか否かを判定する。上記所定値G’は、登り方向への再発進に際してアクセルペダル68操作のためにフットブレーキやパーキングブレーキ等が解除されると車両が逆行してしまうような急勾配を判定するための予め実験的に求められた判定値である。
発進時駆動側油圧抜け判断手段166は、車両発進に際して、駆動側油圧シリンダ42c内の油圧が抜けているか否かを判断する。例えば、発進時駆動側油圧抜け判断手段166は、車両発進に際して、前記変速制御手段152によりデューティダウン制御が実行されているか否かに基づいて、すなわち変速制御手段152によりデューティダウン制御指令信号ST”が油圧制御回路100へ出力されているか否かに基づいて、閉じ込み制御中に作用していた駆動側油圧シリンダ42c内の推力比制御油圧Pτが抜けているか否かを判断する。
前記ベルト挟圧力制御手段156は、登り方向への車両再発進に際して、前記急勾配判定手段164により路面勾配が所定勾配を超える登坂路であると判定され、且つ前記発進時駆動側油圧抜け判断手段166により駆動側油圧シリンダ42c内の油圧が抜けていると判断されていることを条件として、このときのベルト挟圧Pdを、前記ベルト挟圧力設定手段154により設定された通常のベルト挟圧力Pd*よりも所定値だけ高くする。この所定値は、通常のベルト挟圧力Pd*が得られる為のベルト挟圧Pdに加算する補正油圧値ΔPに対応するものであり、逆回転の正駆動時における伝動ベルト48の一時的すべりを防止するために、予め実験的に求められた一定値であってもよいし、路面勾配が大きくなるほどこの所定値が増加するように予め実験的に求められた関係から実際の路面勾配に基づいて算出される値であってもよい。
図8は、電子制御装置50の制御作動の要部すなわちベルト挟圧Pdの増大を必要最低限として燃費を向上する為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。
先ず、前記車両停止判定手段162に対応するステップ(以下、ステップを省略する)S1において、車両が停止状態であるか否かが、例えば車速V(出力軸回転速度NOUT)が零と判定されるような所定速度以下となったか否かに基づいて判定される。
前記S1の判断が肯定される場合は前記急勾配判定手段164に対応するS2において、車両の走行する路面勾配が所定勾配を超える登坂路であるか否かが、例えば車両の停止状態において加速度センサ76により検出される前後加速度Gの絶対値が所定値G’(正の値)を超えているか否かに基づいて判定される。見方を換えれば、このS2においては、登り方向への再発進に際して車両が停車している路面の勾配を判定するものであることから、レバーポジションPSHが「D」ポジション(レンジ)にあるときには正の値である前後加速度Gが正の値である所定値G’を超えているか否か、或いはレバーポジションPSHが「R」ポジション(レンジ)にあるときには負の値である前後加速度Gが負の値である所定値G’より小さいか否かが判定される。
前記S2の判断が肯定される場合は前記最減速判断手段158に対応するS3において、閉じ込み制御が行われている車両停止時に、無段変速機18の変速比γが最大変速比γmaxにあるか否か、すなわち伝動ベルト48が最減速状態にあるか否かが、例えば車両減速走行中に所定車速V’を超えている車速Vにおいて既に変速比γが最大変速比γmaxとなっている状態で車両停止したか否か、或いは車両減速走行中に所定車速V’を超えている車速Vにおいて変速比γが最大変速比γmaxとなっていないものの車両停止時には最大変速比γmaxとなっていると推定される最大変速比γmax近傍の所定変速比γmax’になっており且つ所定以上のダウンシフトとなっているか否かに基づいて判断される。
前記S3の判断が肯定される場合は、車両停止した後の車両発進の際に伝動ベルト48が最減速状態とされるように一時的に前記デューティダウン制御指令信号ST”が油圧制御回路100へ出力されると共に、前記発進時駆動側油圧抜け判断手段166に対応するS4において、車両発進に際して、閉じ込み制御中に作用していた駆動側油圧シリンダ42c内の推力比制御油圧Pτが抜けているか否かが、前記デューティダウン制御指令信号ST”が油圧制御回路100へ出力されているか否かに基づいて判断される。
前記S4の判断が肯定される場合は前記ベルト挟圧力制御手段156に対応するS5において、登り方向への車両再発進に際して、このときのベルト挟圧Pdが、例えば図5に示すようなベルト挟圧力マップから実際のアクセル開度Accおよび実変速比γに基づいて設定された通常のベルト挟圧力Pd*よりも所定値だけ高くされる。
前記S1、S2、S3、およびS4のうちのいずれかの判断が否定された場合は前記ベルト挟圧力制御手段156に対応するS6において、このときのベルト挟圧Pdが上記通常のベルト挟圧力Pd*より高くされることなく、その通常のベルト挟圧力Pd*が得られるように挟圧力制御指令信号SBが油圧制御回路100へ出力される。
上述のように、本実施例によれば、登り方向への車両再発進に際して、急勾配判定手段164により車両の走行する路面勾配が所定勾配を超える登坂路であると判定され、且つ発進時駆動側油圧抜け判断手段166により駆動側油圧シリンダ42c内の油圧が抜けていると判断されていることを条件として、ベルト挟圧力制御手段156によりこのときのベルト挟圧Pdがベルト挟圧力設定手段154により設定される通常のベルト挟圧力Pd*よりも所定値だけ高くされるので、駆動側油圧シリンダ42c内の油圧が抜けて登り方向への車両発進時にベルト滑りが発生しやすい状態のときに限りベルト挟圧Pdが高くされ、ベルト挟圧Pdの増大が必要最低限とされて燃費を向上することができる。
また、本実施例によれば、車両発進に際して、変速制御手段152によってデューティダウン制御が実行されているか否かに基づいて、閉じ込み制御中に作用していた駆動側油圧シリンダ42c内の推力比制御油圧Pτが抜けているか否かが発進時駆動側油圧抜け判断手段166により判断されるので、所定車速V’以下の車両状態において駆動側油圧シリンダ42c内に作動油が閉じ込められた状態とされたときに、発進時に駆動側油圧シリンダ42cに作用させられている推力比制御油圧Pτによってアップシフトが生じることを防止する為に変速制御手段152により無段変速機18の変速比γが最大変速比γmaxとされるように一時的にダウンシフトが実行されているときに限りベルト挟圧Pdが高くされて、ベルト滑りの発生が回避されると共にベルト挟圧Pdの増大を必要最低限として燃費を向上することができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例では、急勾配判定手段164は、加速度センサ76により検出される前後加速度Gに基づいて路面勾配が所定勾配を超える登坂路であるか否かを判定したが、前後加速度Gに基づかず登坂路を判定しても良い。例えば、基準加速度と実加速度とを比較することにより路面勾配を判定しても良いし、良く知られたナビゲーション装置に記憶された道路情報内に路面勾配が含まれている場合には、その道路情報から走行位置情報に基づいて現在の路面勾配を判定しても良い。
また、前述の実施例では、急勾配発進時において、閉じ込み制御により駆動側油圧シリンダ42c内に残っている作動油によってアップシフトが生じることを回避する為に駆動側油圧シリンダ42c内の油圧を抜く作動が実行されるときにベルト挟圧Pdが高くされたが、閉じ込み制御が実行されない無段変速機の制御装置であっても、変速比γが最大変速比γmaxとなるように駆動側油圧シリンダ42c内の油圧を抜く作動が実行されるような場合には、本発明は適用され得る。
また、前述の実施例において、所定回転部材の回転速度として例示した入力軸回転速度NINやそれに関連する目標入力軸回転速度NIN *などは、それら入力軸回転速度NINなどに替えて、エンジン回転速度NEやそれに関連する目標エンジン回転速度NE *など、或いはタービン回転速度NTやそれに関連する目標タービン回転速度NT *などが用いられても良い。従って、入力軸回転速度センサ56等の回転速度センサは、制御する必要がある回転速度に合わせて適宜備えられれば良い。
また、前述の実施例において、流体伝動装置としてロックアップクラッチ26が備えられているトルクコンバータ14が用いられていたが、ロックアップクラッチ26は必ずしも設けられなくてもよく、またトルクコンバータ14に替えて、トルク増幅作用のない流体継手(フルードカップリング)などの他の流体式動力伝達装置が用いられてもよい。
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。