JP4834848B2 - Copper powder for low-temperature firing or copper powder for conductive paste - Google Patents
Copper powder for low-temperature firing or copper powder for conductive paste Download PDFInfo
- Publication number
- JP4834848B2 JP4834848B2 JP2001162117A JP2001162117A JP4834848B2 JP 4834848 B2 JP4834848 B2 JP 4834848B2 JP 2001162117 A JP2001162117 A JP 2001162117A JP 2001162117 A JP2001162117 A JP 2001162117A JP 4834848 B2 JP4834848 B2 JP 4834848B2
- Authority
- JP
- Japan
- Prior art keywords
- copper powder
- rosin
- conductive paste
- copper
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacturing Of Printed Wiring (AREA)
- Conductive Materials (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は,焼成温度の低い銅粉,特に導電ペーストの導電フイラーに用いるのに適した銅粉に関する。
【0002】
【従来の技術】
各種基板の表面や内部或いは外部に導電回路や電極を形成する手段として導電ペーストが多く使用されている。そのさい,基板表面や内部等に導電ペーストを塗布または充填した状態で基板と共に適切な加熱処理が行なわれ,この加熱処理によって導電ペーストの揮発性媒体を気化させると共に導電フイラーとしての金属粉が互いに焼結して通電可能な回路が形成される。
【0003】
このような導電ペーストの導電フイラー(金属粉)として,銀粉と銅粉の使用が一般化しているが,銅粉を導電フイラーとした導電ペースト(銅系ペースト)は,銀系ペーストに比べて,マイグレーションが起き難い,回路を微細化しやすい,耐半田性に優る,低コスト化が可能である,等の理由により,一層汎用化されつつある。このような利点をもつ銅系の導電ペーストは,粒径が0.1〜10μm程度の銅粉を適切な樹脂バインダーに分散させることによって得られる。
【0004】
基板に形成する回路の形態,回路の形成方法,基板の材料等の要因によって,導電ペーストに要求される物理的および化学的性質も異なる。このため,各種の性能をもつ銅系ペーストを用途別に作製することが一般的に行われており,フイラーとしての銅粉についてもその粒子形状,粒度分布,粒子表面性状,粒子の成分組成等を適切に調整し,用途別に諸要求を満たすようにすると共に,導電ペーストの塗布条件や焼結条件も各ペースト毎に最適範囲の条件化を行っている。
【0005】
このうち,銅系ペーストの焼結性については,特別の事例を除いては低温で良好に焼結できるもの好ましい。基板の表面や内部において,低温の加熱で導電回路が焼成できれば,導電ペーストと共に加熱される基板の加熱温度も低くでき,基板に対する熱的影響が軽減されると共に,熱エネルギー的,設備的にも有利となり,さらにはセラミツク製基板と銅回路との間の熱膨張差に基づく歪み発生も低減できるからである。
【0006】
焼結性が良好であるとは,一般に低温で緻密な焼結体が実現できることを意味するが,そのためには,導電ペーストではバインダー樹脂への銅粉の分散性が優れていることが先ず重要となる。凝集が起きると,その凝集体が原料粉末粒径になり,大きな粒径の凝集体が混ざっていると焼結性が劣化するからである。さらに,バイダー樹脂への充填性が良好であることも必要である。充填性は焼結体の緻密さや収縮の大きさに関係する。粉体の充填性は粒子の形状,粒度分布,比表面積,粒子の表面性状など,各種の要因に影響される。また,導電ペーストの場合には銅粉の表面が酸化していると,酸化膜が熱伝導を阻害したり,酸化物が導電性を劣化させたりするとされている。銅粉の表面酸化を防止するために,例えば特開昭57−155386号公報では銅粉末をシランカップリング剤を含む溶液と接触させたあと熱処理して耐酸化性皮膜を生成することを提案している。
【0007】
【発明が解決しようとする課題】
本発明の課題は,焼結性の良好な銅粉を得ることにあり,低温で緻密な焼結体に形成できる導電ペーストを得ることにある。前記公報のようにシランカップリング剤で銅粒子表面を被覆することによって銅粉の酸化を防止できるが,焼結温度を低下できるか否かは不明なところがある。
【0008】
【課題を解決するための手段】
前記の課題を解決する銅粉として,本発明によれば,アミン塩酸塩とロジンの混合物の薄膜を粒子表面に被着してなる低温焼成用銅粉または導電ペースト用銅粉を提供する。この銅粉は,有機溶媒中にアミン塩酸塩とロジンを含有した混合液に銅粉を接触させたあと,銅粉表面に存在する前記の有機溶媒を気化させることによって製造できる。
【0009】
【発明の実施の形態】
本発明者らは,焼結性の良好な銅粉を得るべく種々の試験研究を行ってきたが,有機溶媒に適量のアミン塩酸塩とロジンを添加し,この混合液で銅粉を表面処理すると,銅粉の焼結性が向上することを見い出した。
【0010】
アミン塩酸塩は,一般式,RNH2・HCl(第一アミン塩酸塩)やR・R'NH・HCl(第二アミン塩酸塩),R・R'・R"N・HCl(第三アミン塩酸塩)・・ただし,式中のR,R’またはR" はアルキル基またはフェニル基或いはそれらの置換体を表す・・で示される化合物であり,このような一般式で表されるアミン塩酸塩であれば本発明で使用可能であるが,モノメチルアミン塩酸塩,ジメチルアミン塩酸塩またはトリメチルアミン塩酸塩などの塩酸メチルアミン類:モノエチルアミン塩酸塩,ジエチルアミン塩酸塩またはトリエチルアミン塩酸塩などの塩酸エチルアミン類:塩酸プロピルアミン類(モノ−,ジ−またはトリ−の3種):塩酸ブチルアミン類(モノ−,ジ−またはトリ−の3種)などが本発明では使用に便である。
【0011】
ロジンは,樹脂酸成分が80%程度以上の粉末であるが,エタノール,メタノール,エーテル類,ベンゼン,アセトン等に可溶である。本発明においては,このような有機溶媒にロジンを溶かした状態で使用する。ロジンに代えて,或いはロジンと共に,ロジンエステル例えばロジンの主要成分であるアジエチン酸(ネオ−,ジヒドロ−,テトラヒドロ−アジエチン酸)をエステル化したもの,例えばアジピエンチン酸メチルや,エステルガムなども本発明において使用可能である。
【0012】
揮発性の有機溶媒例えばメチルアルコール,エチルアルコール,イソプロピルアルコール,アセトン,メチルエチルケトン,エーテル類,ベンゼン等にアミン塩酸塩とロジンを適量溶かし,この混合液に銅粉を接触させることによって,実際には,該混合液と銅粉を混合機(ミキサーやサンプルミルなど)に装填して掻き混ぜることによって,各粒子表面に該混合液の付着した銅粉とし,これを自然乾燥するかミキサーやミル内で掻き混ぜつつ該有機溶媒を気化させることにより,粒子表面にアミン塩酸塩とロジンの塗膜が形成された銅粉が得られる。そのさい,使用した有機溶媒の全てが気化する必要はなく,その一部は塗膜中に残存していてもよい。
【0013】
この塗膜が形成された銅粉は,これを導電ペースト用のフイラーとして使用する場合にバインダー樹脂への分散が良好となって,個々の単粒子が良好に分散したペーストとなり,しかも,その焼成時には収縮の程度が小さくなって緻密な焼結体になる。その理由は必ずしも明らかではないが,粒子表面の塗膜中のアミン塩酸塩が樹脂バインダーへの分散性を高め,他方,塗膜中のロジンが焼結時の昇温過程で分解するときに還元剤として作用し,銅表面に不可避に存在した銅酸化物が還元される結果,表面が活性な銅粉となって焼結を促進するのではないかと考えられる。
【0014】
銅粉に被着させるアミン塩酸塩とロジンまたはロジンエステルの量については,前述のような分散性と焼結性を高めることができる量であればよく,過剰の被着は焼結時の昇温過程での分解量が多くなって不都合を生ずる場合があるので,アミン塩酸塩についてはCu1モルに対してアミン塩酸塩0.1モル以下(通常は銅粉に対して10重量%以下),ロジンまたはロジンエステルについてはCu1モルに対して0.02モル以下(通常は銅粉に対して10重量%以下)となるように銅粉表面に被着させるのがよい。その被着量を求めるには,先ず銅粉の比表面積を測定し,その比表面積から所要の塗膜厚みが得られるように被着量を調節するのが便利である。
【0015】
この塗膜を施す銅粉そのものは湿式還元法,アトマイズ法,機械粉砕法等によって製造された各種のものが使用でき,導電ペーストのフイラーとして適するものであれば平均粒径0.1〜10μmのものがよい。いずれにしても銅粉の各粒子全体に該塗膜が形成されているのが好ましい。
【0016】
【実施例】
〔実施例1〕
粒度分布測定装置による銅粉の粒度分布測定において,D10=1.00μm,D50=1.43μm, D90=1.87μmの粒度分布をもち,SEM像観察による平均粒径が 1.46 μmの銅粉を供試材とした。ここで,D10,D50およびD90は,横軸に粒径D(μm)をとり,縦軸に粒径Dμm以下の粒子が存在する容積(Q%)をとった累積粒度曲線において,Q%が10%,50%および90%に対応するそれぞれの粒径Dの値を言う。供試材の銅粉は湿式還元法に製造されたものであり,粒子形状はほぼ球形である。
【0017】
前記の供試材銅粉と,この銅粉に対し0.5重量%の塗膜用混合液を容量が1リットルのサンプルミルに装填した。使用した塗膜用混合液は,エチルアルコール:70重量%,ジメチルアミン塩酸塩:1重量%,およびロジン:29重量%からなるものである。このミルによる銅粉と該液による混合処理を3分間行ったあと,120℃の窒素ガスを通気して溶媒を気化させた。その結果,D10=1.09μm,D50=1.49μm, D90=1.91μmの粒度分布をもち,平均粒径が 1.53 μmの塗膜付き銅粉を得た。供試材銅粉(対照例)と, 得られた塗膜付き銅粉の比表面積 (BET法), タップ密度, 酸素含有量 (対照例のみ), 炭素含有量を表1に示した。
【0018】
【表1】
【0019】
これらの供試材銅粉,塗膜付き銅粉をいずれも30g採取し,エチルセルロース95%+ターピネオール5%からなるバインダー樹脂6gと混練した。混練は脱泡混練機を使用し,3分間混練した。この混練物をアルミナ基板に30μmの厚みに塗布し,窒素雰囲気中で100℃で3時間乾燥処理した。
【0020】
得られたアルミナ基板の銅粉塗膜の焼結性を調べるために,該アルミナ基板全体を炉内に装填し,焼成温度を700,750℃,800℃と変えて,いずれも30分間の焼結処理を行い,得られた焼結品の焼結の程度を電子顕微鏡(SEM)で調べた。その結果,塗膜付き銅粉では700℃×30分の焼結処理によって緻密な焼結体が得られた。これに対し,供試材銅粉の場合には,750℃×30分の焼結処理では粒子の形状のそのまま保持されて焼結されず,800℃×30分の焼結処理では一部の粒子同士が接合した不完全な焼結体となった。
【0021】
【発明の効果】
以上説明したように,本発明によると,低温で緻密な焼結体を得られる銅粉が提供され,これを導電フイラーとして用いると焼結性のよい導電ペーストが得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper powder having a low firing temperature, particularly a copper powder suitable for use in a conductive filler of a conductive paste.
[0002]
[Prior art]
A conductive paste is often used as a means for forming conductive circuits and electrodes on the surface, inside or outside of various substrates. At that time, an appropriate heat treatment is performed together with the substrate in a state where the conductive paste is applied or filled on the surface or inside of the substrate, the volatile medium of the conductive paste is vaporized by this heat treatment, and the metal powder as the conductive filler is mutually bonded. A circuit that can be energized by sintering is formed.
[0003]
As the conductive filler (metal powder) of such conductive paste, the use of silver powder and copper powder is common, but conductive paste (copper paste) with copper powder as the conductive filler is compared to silver paste, It is becoming more and more versatile because it is difficult to migrate, it is easy to miniaturize circuits, it has excellent solder resistance, and it can be reduced in cost. A copper-based conductive paste having such advantages can be obtained by dispersing copper powder having a particle size of about 0.1 to 10 μm in an appropriate resin binder.
[0004]
The physical and chemical properties required for the conductive paste differ depending on factors such as the form of the circuit formed on the substrate, the method of forming the circuit, and the material of the substrate. For this reason, it is a common practice to prepare copper-based pastes with various performances for different applications. The copper powder as a filler also has its particle shape, particle size distribution, particle surface properties, particle composition, etc. In addition to making appropriate adjustments to meet various requirements for each application, the application conditions and sintering conditions of the conductive paste are conditioned in the optimum range for each paste.
[0005]
Among these, the sinterability of the copper-based paste is preferable because it can be satisfactorily sintered at low temperatures except in special cases. If the conductive circuit can be baked on the surface and inside of the substrate by low temperature heating, the heating temperature of the substrate heated with the conductive paste can be lowered, the thermal influence on the substrate can be reduced, and the thermal energy and equipment can be reduced. This is because it is advantageous, and furthermore, the generation of strain due to the difference in thermal expansion between the ceramic substrate and the copper circuit can be reduced.
[0006]
Good sinterability generally means that a dense sintered body can be realized at a low temperature. To that end, it is first important that the conductive paste has excellent dispersibility of the copper powder in the binder resin. It becomes. This is because when agglomeration occurs, the agglomerate becomes the raw material powder particle size, and if agglomerates with a large particle size are mixed, the sinterability deteriorates. Furthermore, it is necessary that the filler resin has good filling properties. Fillability is related to the density and shrinkage of the sintered body. The powder filling properties are affected by various factors such as particle shape, particle size distribution, specific surface area, and particle surface properties. In the case of the conductive paste, if the surface of the copper powder is oxidized, the oxide film inhibits heat conduction or the oxide deteriorates the conductivity. In order to prevent the surface oxidation of the copper powder, for example, Japanese Patent Application Laid-Open No. 57-155386 proposes that the copper powder is brought into contact with a solution containing a silane coupling agent and then heat-treated to form an oxidation resistant film. ing.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to obtain copper powder having good sinterability, and to obtain a conductive paste that can be formed into a dense sintered body at a low temperature. Although the oxidation of copper powder can be prevented by coating the surface of copper particles with a silane coupling agent as in the above publication, it is unclear whether the sintering temperature can be lowered.
[0008]
[Means for Solving the Problems]
As a copper powder for solving the above-mentioned problems, according to the present invention, there is provided a low-temperature firing copper powder or a conductive paste copper powder obtained by depositing a thin film of a mixture of amine hydrochloride and rosin on the particle surface. The copper powder can be produced by bringing the copper powder into contact with a mixed solution containing amine hydrochloride and rosin in an organic solvent, and then vaporizing the organic solvent present on the surface of the copper powder.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have conducted various test studies to obtain a copper powder having good sinterability, but an appropriate amount of amine hydrochloride and rosin are added to an organic solvent, and the copper powder is surface-treated with this mixed solution. As a result, it was found that the sinterability of copper powder was improved.
[0010]
Amine hydrochlorides are represented by the general formulas, RNH 2 · HCl (primary amine hydrochloride), R · R'NH · HCl (secondary amine hydrochloride), R · R '· R "N · HCl (tertiary amine hydrochloride). Salt), where R, R ′ or R ″ represents an alkyl group, a phenyl group or a substituted product thereof, and is a compound represented by the general formula: Can be used in the present invention, but methylamine hydrochlorides such as monomethylamine hydrochloride, dimethylamine hydrochloride or trimethylamine hydrochloride: ethylamine hydrochlorides such as monoethylamine hydrochloride, diethylamine hydrochloride or triethylamine hydrochloride: Propylamine hydrochlorides (mono-, di- or tri-): butylamine hydrochlorides (mono-, di- or tri-) are convenient for use in the present invention.
[0011]
Rosin is a powder having a resin acid component of about 80% or more, but is soluble in ethanol, methanol, ethers, benzene, acetone and the like. In the present invention, rosin is dissolved in such an organic solvent. Instead of rosin or together with rosin, rosin esters such as those obtained by esterification of rosin ester (neo-, dihydro-, tetrahydro-adietic acid) such as methyl adipentinate and ester gum are also included in the present invention. Can be used.
[0012]
In practice, by dissolving an appropriate amount of amine hydrochloride and rosin in a volatile organic solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, methyl ethyl ketone, ethers, benzene, etc., and bringing the mixture into contact with copper powder, The mixed solution and copper powder are loaded into a mixer (mixer, sample mill, etc.) and mixed to form a copper powder with the mixed solution attached to the surface of each particle. By evaporating the organic solvent while stirring, a copper powder having a coating film of amine hydrochloride and rosin formed on the particle surface is obtained. At that time, it is not necessary to vaporize all of the used organic solvent, and a part of it may remain in the coating film.
[0013]
The copper powder on which this coating film is formed, when used as a filler for conductive paste, has a good dispersion in the binder resin and becomes a paste in which individual single particles are well dispersed. Sometimes the degree of shrinkage is reduced, resulting in a dense sintered body. The reason is not necessarily clear, but the amine hydrochloride in the coating film on the particle surface increases the dispersibility in the resin binder, while the rosin in the coating film is reduced when it decomposes during the heating process during sintering. As a result of acting as an agent and reducing the copper oxide unavoidably present on the copper surface, it is thought that the surface becomes active copper powder and promotes sintering.
[0014]
The amount of amine hydrochloride and rosin or rosin ester deposited on the copper powder may be any amount that can improve the dispersibility and sinterability as described above. Since the amount of decomposition in the temperature process may increase and cause inconveniences, amine hydrochloride is 0.1 mol or less (usually 10 wt% or less based on copper powder) with respect to 1 mol of Cu, The rosin or rosin ester is preferably deposited on the surface of the copper powder so as to be 0.02 mol or less (usually 10 wt% or less based on the copper powder) with respect to 1 mol of Cu. In order to obtain the deposition amount, it is convenient to first measure the specific surface area of the copper powder and adjust the deposition amount so that the required coating thickness can be obtained from the specific surface area.
[0015]
As the copper powder itself to be coated, various kinds of powders manufactured by a wet reduction method, an atomizing method, a mechanical pulverization method, etc. can be used. If the powder is suitable as a conductive paste filler, the average particle size is 0.1 to 10 μm. Things are good. In any case, it is preferable that the coating film is formed on the entire particle of the copper powder.
[0016]
【Example】
[Example 1]
In copper particle size distribution measurement using a particle size distribution analyzer, copper powder with a particle size distribution of D10 = 1.00μm, D50 = 1.43μm, D90 = 1.87μm and an average particle size by SEM image observation of 1.46μm It was. Here, D10, D50, and D90 are the cumulative particle size curve in which the horizontal axis represents the particle size D (μm) and the vertical axis represents the volume (Q%) in which particles having a particle size of D μm or less are present. The respective particle size D values corresponding to 10%, 50% and 90% are said. The copper powder of the test material was manufactured by the wet reduction method, and the particle shape is almost spherical.
[0017]
The sample material copper powder and 0.5% by weight of the coating liquid mixture for the copper powder were loaded into a 1 liter sample mill. The coating liquid mixture used was composed of 70% by weight of ethyl alcohol, 1% by weight of dimethylamine hydrochloride, and 29% by weight of rosin. After mixing with the copper powder and the liquid by this mill for 3 minutes, nitrogen gas at 120 ° C. was passed to vaporize the solvent. As a result, a coated copper powder having a particle size distribution of D10 = 1.09 μm, D50 = 1.49 μm, D90 = 1.91 μm and an average particle size of 1.53 μm was obtained. Table 1 shows the specific surface area (BET method), tap density, oxygen content (control example only), and carbon content of the sample copper powder (control example) and the obtained coated copper powder.
[0018]
[Table 1]
[0019]
30 g of each of these test material copper powder and copper powder with coating film was collected and kneaded with 6 g of binder resin composed of 95% ethyl cellulose + 5% terpineol. Kneading was carried out using a defoaming kneader for 3 minutes. This kneaded material was applied to an alumina substrate to a thickness of 30 μm and dried at 100 ° C. for 3 hours in a nitrogen atmosphere.
[0020]
In order to examine the sinterability of the obtained copper powder coating on the alumina substrate, the entire alumina substrate was loaded into a furnace, and the firing temperature was changed to 700, 750 ° C., 800 ° C. The sintering process was performed, and the degree of sintering of the obtained sintered product was examined with an electron microscope (SEM). As a result, a dense sintered body was obtained from the copper powder with a coating film by sintering at 700 ° C. for 30 minutes. On the other hand, in the case of the test material copper powder, the shape of the particles is maintained as it is in the sintering process at 750 ° C. × 30 minutes, and a part of the sintering process is performed at 800 ° C. × 30 minutes. An incomplete sintered body in which the particles were joined together was obtained.
[0021]
【The invention's effect】
As described above, according to the present invention, a copper powder capable of obtaining a dense sintered body at a low temperature is provided, and when this is used as a conductive filler, a conductive paste with good sinterability can be obtained.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001162117A JP4834848B2 (en) | 2001-05-30 | 2001-05-30 | Copper powder for low-temperature firing or copper powder for conductive paste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001162117A JP4834848B2 (en) | 2001-05-30 | 2001-05-30 | Copper powder for low-temperature firing or copper powder for conductive paste |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002356630A JP2002356630A (en) | 2002-12-13 |
JP4834848B2 true JP4834848B2 (en) | 2011-12-14 |
Family
ID=19005292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001162117A Expired - Lifetime JP4834848B2 (en) | 2001-05-30 | 2001-05-30 | Copper powder for low-temperature firing or copper powder for conductive paste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4834848B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101166001B1 (en) | 2004-03-10 | 2012-07-18 | 아사히 가라스 가부시키가이샤 | Metal-containing fine particle, liquid dispersion of metal-containing fine particle, and conductive metal-containing material |
DE602005025454D1 (en) * | 2004-03-10 | 2011-02-03 | Asahi Glass Co Ltd | METAL-CONTAINING FINE PARTICLES, LIQUID DISPERSION OF A METAL-CONTAINING FINE PARTICLE AND CONDUCTIVE METAL-CONTAINING MATERIAL |
JP5260923B2 (en) * | 2007-09-14 | 2013-08-14 | ハリマ化成株式会社 | Method for forming metal nanoparticle sintered body layer having fine pattern shape |
FI20085229L (en) * | 2008-03-18 | 2009-09-19 | Keskuslaboratorio | New materials and procedures |
JP5320843B2 (en) * | 2008-06-18 | 2013-10-23 | セイコーエプソン株式会社 | Compound for metal powder injection molding and method for producing sintered body |
JP5301385B2 (en) * | 2008-10-29 | 2013-09-25 | ニホンハンダ株式会社 | Metal member bonding agent, metal member assembly manufacturing method, metal member assembly, and electric circuit connecting bump manufacturing method |
JP5859075B1 (en) * | 2014-08-07 | 2016-02-10 | 株式会社 M&M研究所 | Wiring board manufacturing method, wiring board, and dispersion for manufacturing wiring board |
JP6290131B2 (en) * | 2015-04-06 | 2018-03-07 | 株式会社ノリタケカンパニーリミテド | Conductive paste for glass substrate, method for forming conductive film, and silver conductive film |
WO2020017049A1 (en) * | 2018-07-20 | 2020-01-23 | 日立化成株式会社 | Composition, bonding material, sintered compact, assembly, and method for producing assembly |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62225573A (en) * | 1986-03-28 | 1987-10-03 | Fukuda Metal Foil & Powder Co Ltd | Copper powder for electrically conductive paste |
JPH05212584A (en) * | 1992-01-31 | 1993-08-24 | Senju Metal Ind Co Ltd | Solder paste |
JPH07226110A (en) * | 1994-02-08 | 1995-08-22 | Hitachi Chem Co Ltd | Copper powder for conductive paste and conductive copper paste using it |
-
2001
- 2001-05-30 JP JP2001162117A patent/JP4834848B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002356630A (en) | 2002-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5826435B1 (en) | Copper powder | |
KR101186946B1 (en) | Flaky copper powder, process for producing the same, and conductive paste | |
US7393586B2 (en) | Highly oxidation-resistant copper powder for conductive paste and process for producing the powder | |
TW200536636A (en) | Highly crystalline silver powder and method for production thereof | |
EP1450376A1 (en) | Ag COMPOUND PASTE | |
JP4854705B2 (en) | Silver powder for conductive paste and conductive paste using the silver powder | |
JP4834848B2 (en) | Copper powder for low-temperature firing or copper powder for conductive paste | |
JP2021105214A (en) | Nickel powder and method for producing the same, and nickel paste | |
JP4296347B2 (en) | Flaked copper powder and method for producing the same | |
JP4213921B2 (en) | Method for producing silver powder for conductive paste | |
JP2006118032A (en) | Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer | |
WO2018163823A1 (en) | Nickel powder and nickel paste | |
Zhang et al. | Preparation and properties of antioxidative BaO–B 2 O 3–SiO 2 glass-coated Cu powder for copper conductive film on LTCC substrate | |
JP5785433B2 (en) | Low carbon copper particles | |
JP7136970B2 (en) | Silver powder containing phosphorus and conductive paste containing the silver powder | |
JP3656558B2 (en) | Conductive paste and electronic component using the same | |
JP2009024204A (en) | Carbide-coated nickel powder and method for producing the same | |
US11801556B2 (en) | Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing bonded body using said paste-like metal particle aggregate composition | |
JP6998713B2 (en) | Metal fine particle-containing composition | |
JP2008101276A (en) | Copper powder for electrically conductive paste for external electrode having excellent oxidation resistance and sinterability | |
JP2006147457A (en) | Silver oxide powder, its manufacturing method, and conductive paste | |
JP2004250751A (en) | Silver powder for ceramic multi-layered substrate conductive material, and method for manufacturing the same | |
JP3727904B2 (en) | Metal powder and method for producing the same | |
JP2004176120A (en) | Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same | |
WO2024185600A1 (en) | Gallium-containing silver powder, method for producing gallium-containing silver powder, and electroconductive paste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080404 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110905 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110905 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110906 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4834848 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |