Nothing Special   »   [go: up one dir, main page]

JP4832328B2 - Wave-dissipating caisson and parapet used for wave-dissipating caisson - Google Patents

Wave-dissipating caisson and parapet used for wave-dissipating caisson Download PDF

Info

Publication number
JP4832328B2
JP4832328B2 JP2007027296A JP2007027296A JP4832328B2 JP 4832328 B2 JP4832328 B2 JP 4832328B2 JP 2007027296 A JP2007027296 A JP 2007027296A JP 2007027296 A JP2007027296 A JP 2007027296A JP 4832328 B2 JP4832328 B2 JP 4832328B2
Authority
JP
Japan
Prior art keywords
wave
water
sea
caisson
parapet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007027296A
Other languages
Japanese (ja)
Other versions
JP2008190259A (en
Inventor
恭平 山田
泰啓 一瀬
友一 河内
直 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007027296A priority Critical patent/JP4832328B2/en
Publication of JP2008190259A publication Critical patent/JP2008190259A/en
Application granted granted Critical
Publication of JP4832328B2 publication Critical patent/JP4832328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Description

本発明は、消波型ケーソン、消波型ケーソンに用いるパラペットに関する。   The present invention relates to a parapet used for a wave-dissipating caisson and a wave-dissipating caisson.

従来から、防波性能を向上させる技術がいくつか提案されている。例えば、防波堤の防波性能および港内の水質改善機能を向上させうる防波堤ケーソンを提供することを目的とした、外海側のケーソンの前面に海水の流入口が形成され、ケーソンの上面に前記流入口から流入された海水を流出させうる流出口が形成されており、前記流入口と前記流出口とをそれぞれ連結しながら全体的に曲線をなし、かつ前記流出口側の後面の壁と前記ケーソンの上面とのなす角が90°以下である水路を1つ以上具備して、流入された海水を外海側へ逆流させうる防波堤ケーソン(特許文献1参照)などが提案されている。   Conventionally, several techniques for improving the wave preventing performance have been proposed. For example, for the purpose of providing a breakwater caisson that can improve the breakwater performance of the breakwater and the water quality improvement function in the harbor, a seawater inlet is formed in front of the caisson on the open sea side, and the inlet is formed on the upper surface of the caisson. An outflow port through which seawater that has flowed in from the water can flow out is formed. The outflow port and the outflow port are connected to each other to form an overall curve, and the rear wall of the outflow side and the caisson There has been proposed a breakwater caisson (see Patent Document 1) that includes at least one water channel having an angle of 90 ° or less with the upper surface and can flow the inflowing seawater back to the open sea.

また、防波堤において、海水位が変動しても確実に透水機能を作用させて閉鎖的水域における海水の流通性を向上し、内海での海水の汚れを防止することを課題とした、外海と内海を区画するように海底に設置された防波堤本体と、前記外海に対向して該防波堤本体に設けられた高さの異なる複数の逆流防止壁と、該各逆流防止壁の前記内海側に設けられた複数の遊水部と、該各遊水部と前記内海とを連通するように前記防波堤本体の下部に設けられた複数の導水部とを具えたことを特徴とする防波堤(特許文献2参照)なども提案されている。
特開平7−259045号公報 特開2004−19279号公報
In addition, on the breakwaters, the seawater and inland seas were designed to ensure that even if the seawater level fluctuates, the water permeability function is activated to improve the flowability of seawater in closed water areas and prevent contamination of seawater in the inland seas. A breakwater main body installed on the sea floor so as to partition, a plurality of backflow prevention walls having different heights provided on the breakwater main body facing the open sea, and provided on the inland sea side of the respective backflow prevention walls. A breakwater (see Patent Document 2) characterized by comprising a plurality of water reserving sections, and a plurality of water guiding sections provided at the lower part of the breakwater main body so as to communicate each recreational section and the inland sea. Has also been proposed.
Japanese Patent Laid-Open No. 7-259045 JP 2004-19279 A

ところが、従来型のケーソンにおいては越波量低減についての考慮が十分でなかった。そのため、高潮位時における越波量を効率よく抑制する技術が望まれていた。そこで本発明は上記の点に鑑みてなされたものであり、良好な越波量低減効果を奏するケーソンの提供を主たる目的とする。   However, in the conventional caisson, the consideration for reducing the overtopping amount has not been sufficient. Therefore, a technique for efficiently suppressing the overtopping amount at a high tide level has been desired. Then, this invention is made | formed in view of said point, and sets it as the main objective to provide the caisson which show | plays the favorable amount of wave overtopping reduction.

上記目的を達成する本発明の消波型ケーソンは、開口を介し海より海水を流入させて滞留させ、海水の水勢を低減する遊水室と、この遊水室の上部空間と前記海の海面上とを連通する連通路とを備える消波型ケーソンであって、前記消波型ケーソンは上部工であるパラペットを備え、前記連通路は前記パラペットの内部に形成されて、前記パラペットの海面側の表面に開口していることを特徴とする。これによれば、前記遊水室に海水を流入させることで当該海水の水勢を低減する一方で、水勢に伴って遊水室内を上方にせり上がる海水が、遊水室上部空間(未水没)を狭めることで前記連通路から海面方向に向かう排気流を生じさせる。 The wave-dissipating caisson of the present invention that achieves the above-described object includes a drinking water chamber in which seawater flows in from the sea through an opening and stays therein, and the water space of the seawater is reduced, an upper space of the watering room, and the sea surface of the sea. A wave-dissipating caisson having a communication path communicating with the parapet, wherein the wave-dissipating caisson includes a parapet that is a superstructure, and the communication path is formed inside the parapet, and is a surface on the sea surface side of the parapet. It is characterized by having an opening . According to this, while the seawater flows into the recreational water chamber, the water flow of the seawater is reduced, and the seawater that rises up along with the water flow narrows the recreational water chamber upper space (not submerged). Thus, an exhaust flow from the communication path toward the sea surface is generated.

この排気流は、前記海から連通路(の海側開口)に向かって打ち寄せる海水に対向する流れとなり、ケーソンを越波しようとする海水の勢いを低減することができる。また更に、遊水室内に流れ込む海水の水勢がより強ければ、遊水室をせり上がった海水が前記連通路にまで流れ込み、連通路から海面方向に向かう排水流を生じさせる。この排水流は、前記海から連通路(の海側開口)に向かって打ち寄せる海水に対向する流れとなり、ケーソンを越波しようとする海水の勢いを低減することができる。   This exhaust flow becomes a flow that opposes the seawater that rushes toward the communication path (the sea side opening) from the sea, and can reduce the momentum of the seawater trying to overtop the caisson. Furthermore, if the seawater flowing into the water reserving chamber is stronger, the sea water rising up the water reserving chamber flows into the communication passage, and a drainage flow from the communication passage toward the sea surface is generated. This drainage flow is a flow that opposes the seawater that rushes toward the communication path (the sea side opening) from the sea, and can reduce the momentum of the seawater trying to overtop the caisson.

消波型ケーソンに打ち寄せる海水の水勢が大きくなるに従って、前記連通路の海側開口から排出される前記排気流ないし前記排水流の勢いも大きくなり、効率的に越波量の低減が図れることとなる。したがって本発明の消波型ケーソンによれば、良好な越波量低減効果を奏する。   As the water flow of the seawater that strikes the wave-dissipating caisson increases, the momentum of the exhaust flow or the drainage flow discharged from the sea-side opening of the communication path increases, and the amount of overtopping can be reduced efficiently. . Therefore, according to the wave-dissipating caisson of the present invention, there is an excellent effect of reducing the overtopping amount.

また、本発明のパラペットは、開口を介し海より海水を流入させて滞留させ、海水の水勢を低減する遊水室を備える消波型ケーソンを構成するパラペットであって、前記遊水室頂版の開口と前記海の海面上に対向する開口とを連通する連通路が内部に形成されていることを特徴とする。これによれば、前記排気流や排水流による効果的な越波量低減が実現されるため、従来よりも堤体高さを低減した消波型ケーソンやパラペットを採用することができ、消波型ケーソンの設計・設置コストや環境負荷の低減を図れる。したがって、良好な越波量低減効果を奏する消波型ケーソンを構成することが可能となる。 Further, the parapet according to the present invention is a parapet that constitutes a wave-dissipating caisson provided with a water-reserving chamber that allows seawater to flow in from the sea through the opening and retains the water, and the opening of the water-reserving chamber top plate And a communication passage that communicates with the opening facing the sea surface. According to this, since the effective overtopping amount reduction by the exhaust flow and the drainage flow is realized, it is possible to adopt a wave-dissipating caisson and a parapet that have a lower levee height than before, and a wave-dissipating caisson. Design / installation cost and environmental load can be reduced. Therefore, it is possible to configure a wave-dissipating caisson that exhibits a good effect of reducing the overtopping amount.

その他、本願が開示する課題、及びその解決方法は、発明の実施の形態の欄、及び図面により明らかにされる。   In addition, the problems disclosed by the present application and the solutions thereof will be clarified by the embodiments of the present invention and the drawings.

本発明によれば、良好な越波量低減効果を奏する。   According to the present invention, there is an excellent effect of reducing the amount of overtopping.

−−−消波型ケーソンの構造−−−
以下に本発明の実施形態について図面を用いて詳細に説明する。図1は本実施形態における消波型ケーソンの、(a)斜視図、(b)側断面図である。本実施形態では一例として、外海10に対向し、その外海10から打ち寄せる波浪11を適宜受け止めて後背地12への越波を抑制する消波型ケーソン100を想定する。この消波型ケーソン100は、コンクリート躯体で形成された構造物であり、適宜間隔をもって配置した柱状の反射体101と、この反射体101の間のスリット状の空間であり、前記外海10より波浪11に伴う海水を流入させる開口102と、この開口102から流入してきた海水20を滞留させ、当該海水20の水勢を低減する遊水室103とを備える。
--- Structure of wave-dissipating caisson ---
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1A is a perspective view and FIG. 1B is a side sectional view of a wave-dissipating caisson according to this embodiment. In this embodiment, as an example, a wave-dissipating caisson 100 that faces the open sea 10 and appropriately receives the waves 11 rushing from the open sea 10 to suppress overtopping to the backland 12 is assumed. The wave-dissipating caisson 100 is a structure formed of a concrete frame, and is a columnar reflector 101 arranged at an appropriate interval and a slit-like space between the reflectors 101. 11 is provided with an opening 102 for allowing seawater to flow in, and a water reserving chamber 103 for retaining the seawater 20 flowing from the opening 102 and reducing the water flow of the seawater 20.

また前記消波型ケーソン100は、前記遊水室103の上部空間104と前記外海10の海面上13とを連通する連通路105を備える。この連通路105は、消波型ケーソン100の上部工であるパラペット106の内部に備わるものとすれば好適である。こうした形態のパラペット106における前記連通路105は、前記遊水室103の頂版107の開口108と前記外海10の海面上13に対向する開口109とを連通する経路となる。   Further, the wave-dissipating caisson 100 includes a communication path 105 that communicates the upper space 104 of the water reserving chamber 103 and the sea surface 13 of the open sea 10. It is preferable that the communication path 105 is provided inside a parapet 106 that is an upper work of the wave-dissipating caisson 100. The communication path 105 in the parapet 106 of such a form serves as a path that communicates the opening 108 of the top plate 107 of the water reserving chamber 103 and the opening 109 facing the sea surface 13 of the open sea 10.

前記遊水室103に海水20が流入すると、海水20の各波が遊水室内でぶつかり合ったり、遊水室内壁にぶつかることで当該海水20の水勢を低減することができる。また、水勢に伴って遊水室内を上方にせり上がり、遊水室内での水位上昇をみた海水20が、未水没の遊水室上部空間110を狭める働きをし、前記連通路105から前記海面上13の方向に向かう排気流111を生じさせることとなる。   When the seawater 20 flows into the recreational water chamber 103, the waves of the seawater 20 collide with each other in the recreational water chamber or collide with the reclaimed water indoor wall, thereby reducing the water force of the seawater 20. In addition, the seawater 20 that rises upward in the reclaimed water chamber along with the water force and that has seen a rise in the water level in the reclaimed water chamber serves to narrow the unsubmerged reclaimed water chamber upper space 110, and from the communication path 105 to the sea surface 13. An exhaust flow 111 directed in the direction is generated.

この排気流111は、前記外海10から連通路105の開口109に向かって打ち寄せる海水21に対向する流れとなり、当該消波型ケーソン100を越波しようとする海水21の勢いを低減することができるのである。   This exhaust flow 111 becomes a flow that opposes the seawater 21 that rushes from the open sea 10 toward the opening 109 of the communication path 105, and can reduce the momentum of the seawater 21 that is going to wave over the wave-dissipating caisson 100. is there.

また更に、遊水室内に流れ込む海水20の水勢がより強ければ、遊水室103をせり上がった海水20が前記連通路105にまで流れ込み、連通路105から海面上13の方向に向かう排水流112を生じさせることとなる。この排水流112は、前記外海10から連通路105の開口109に向かって打ち寄せる海水21に対向する流れとなり、消波型ケーソン100を越波しようとする海水21の勢いを低減することができるのである。   Furthermore, if the seawater 20 flowing into the recreational water chamber is stronger, the seawater 20 that has risen up the recreational water chamber 103 flows into the communication path 105, and a drainage flow 112 is generated from the communication path 105 toward the sea surface 13. Will be allowed to. This drainage flow 112 becomes a flow that faces the seawater 21 that rushes from the open sea 10 toward the opening 109 of the communication path 105, and can reduce the momentum of the seawater 21 that is going to wave over the wave-dissipating caisson 100. .

消波型ケーソン100に打ち寄せる海水20の水勢が大きくなるに従って、前記連通路105の開口109から排出される前記排気流111ないし前記排水流112の勢いも大きくなり、効率的に前記海水21の水勢を抑えて越波量の低減が図れることとなる。   As the water force of the seawater 20 that strikes the wave-dissipating caisson 100 increases, the force of the exhaust flow 111 or the drainage flow 112 discharged from the opening 109 of the communication path 105 also increases, and the water force of the seawater 21 efficiently. Therefore, the amount of overtopping can be reduced.

−−−消波型ケーソンの設計−−−
次に、消波型ケーソンの一般的な設計手順について説明を行う。図2は、ケーソン設計手順の例を示す図である。ここで示す設計手順は従来型の消波型ケーソンの設計にも適用されている一般的な設計手法を示している。消波型ケーソンの設計にあたっては、まず、消波型ケーソンの設置地点(設計対象の地点)の設計波浪について、その波高H’(m)と周期T1/3(s)を決定する(s100)。
--- Design of wave-dissipating caisson ---
Next, a general design procedure of the wave-dissipating caisson will be described. FIG. 2 is a diagram illustrating an example of a caisson design procedure. The design procedure shown here shows a general design method applied to the design of a conventional wave-dissipating caisson. In designing the wave-dissipating caisson, first, the wave height H 0 ′ (m) and the period T 1/3 (s) are determined for the design wave at the installation point (design target point) of the wave-dissipating caisson ( s100).

次に、前記設置地点の許容越波量qを決定する(s101)。許容越波量とは、護岸幅1mあたり1秒間に越波してくる水の許容量(m)である。つまり、前記消波型ケーソン100を越えて後背地12に到達する海水の許容量を考慮する。また、パラペットの天端高さhを仮定する(s102)。更に、諸元から沖波波長L、波形勾配(h/H’)を計算する(s103)。 Subsequently, to determine the allowable overtopping quantity q a of the installation point (s101). The allowable overtopping amount is an allowable amount (m 3 ) of water overtopping for 1 second per 1 m of revetment width. That is, the allowable amount of seawater that reaches the hinterland 12 beyond the wave-dissipating caisson 100 is considered. Further, the top height h c of the parapet is assumed (s102). Further, the offshore wave wavelength L 0 and the waveform gradient (h / H 0 ′) are calculated from the specifications (s103).

次に、港湾技術基準の図表(直立護岸の越波流量推定図:「港湾の施設の技術上の基準・同解説」p119、社団法人日本港湾協会発行)を用いて、越波量qを算定する(s104)。ここで算出した越波量qが、許容越波量q以下であれば(s105:Yes)、これまでに定めたパラペットの天端高さhが設計値と決定され、設計作業は終了する。 Next, the amount of wave overtopping q is calculated using the chart of port technical standards (estimated overtopping flow rate of upright revetment: “Technical Standards for Port Facilities / Description” p119, published by Japan Port Association) s104). Here, if the calculated overtopping quantity q is less than the allowable overtopping quantity q a (s105: Yes), this crest height h c of the parapet as defined in until is determined to design values, design work is completed.

本願発明者らは、本実施形態の消波型ケーソン100の模型を作成した上で、水理実験を実施している。この水理実験によれば、前記遊水室103や連通路105などを備える本実施形態の消波型ケーソン100は、ある波浪条件において、従来型の消波型ケーソンと比較して、同じ天端高さのパラペットであっても約4割の越波量低減効果が認められた。図3のグラフ300は、前記水理実験における、連通路等の有無による越波量差異を示している。このグラフ300によれば、本実施形態の消波型ケーソン100での越波量qは、「0.029(m/m/s)」である一方、従来型の消波型ケーソン(遊水室103や連通路105が無し)では越波量qが「0.049(m/m/s)」であり、確かに4割ほど越波量の低減が図れることがわかる。 The inventors of the present application conducted a hydraulic experiment after creating a model of the wave-dissipating caisson 100 of the present embodiment. According to this hydraulic experiment, the wave-dissipating caisson 100 according to the present embodiment including the water reserving chamber 103 and the communication path 105 has the same top end as compared with the conventional wave-dissipating caisson under certain wave conditions. About 40% of the wave overtopping reduction effect was recognized even with the height parapet. A graph 300 in FIG. 3 shows the overtopping amount difference depending on the presence or absence of a communication path or the like in the hydraulic experiment. According to this graph 300, the overtopping amount q in the wave-dissipating caisson 100 of the present embodiment is “0.029 (m 3 / m / s)”, while the conventional wave-dissipating caisson (reservoir chamber) 103 and no communication path 105), the overtopping amount q is “0.049 (m 3 / m / s)”, and it can be seen that the overtopping amount can be reduced by about 40%.

このように、上述の消波型ケーソン100の設計手順の前記ステップs104において越波量qを従来型のものより予め4割減として、ステップs105の判定を行うことができる。   As described above, in step s104 of the design procedure of the above-described wave-dissipating caisson 100, the overtopping amount q can be reduced by 40% in advance from the conventional type, and the determination in step s105 can be performed.

また、設計波高H’:3.97m、周期T1/3:8.6秒、水深8.52m、海底勾配1/10、の条件で、本実施形態の消波型ケーソン100(遊水室103や連通路105を備える)の場合と、前記遊水室103や連通路105を備えない従来型の消波型ケーソンの場合とで、パラペット天端高さの比較算定を行った。ただし、本実施形態の消波型ケーソン100の越波量は、前記港湾技術基準の図表(直立護岸の越波流量推定図)において従来型より4割低減させたものを考慮している(直立護岸の越波流量推定図適用については従来手法と同様である)。 In addition, the wave-dissipating caisson 100 (reservoir chamber) of the present embodiment under the conditions of design wave height H 0 ′: 3.97 m, period T 1/3 : 8.6 seconds, water depth 8.52 m, and seabed slope 1/10 103 and the communication path 105) and a conventional wave-dissipating caisson without the water reserving chamber 103 and the communication path 105 were compared and calculated. However, the wave overtopping amount of the wave-dissipating caisson 100 of the present embodiment takes into account the 40% reduction from the conventional type in the chart of the port technical standards (estimated overtopping flow rate of the upright revetment) Application of the overtopping flow estimation diagram is the same as the conventional method).

図4にその結果を示す。これによれば、本実施形態の消波型ケーソン100においては、パラペット106の天端高さを従来型のものより1.5m下げることができる(従来型:10.5m、本実施形態の消波型ケーソン:9.0m)。本実施形態の消波型ケーソン100によれば、前記排気流111や排水流112による効果的な越波量低減が実現されるため、こうした従来型より天端高さを抑制したパラペット106を採用することができ、消波型ケーソンの設計・設置コストや環境負荷の低減を図れるのである。   FIG. 4 shows the result. According to this, in the wave-dissipating caisson 100 of the present embodiment, the height of the top end of the parapet 106 can be lowered by 1.5 m from that of the conventional type (conventional type: 10.5 m, the extinction of the present embodiment). Wave type caisson: 9.0 m). According to the wave-dissipating caisson 100 of the present embodiment, the effective overtopping amount reduction by the exhaust flow 111 and the drainage flow 112 is realized, and therefore, the parapet 106 that suppresses the height of the top of the conventional type is adopted. It is possible to reduce the design / installation cost and environmental load of the wave-dissipating caisson.

したがって、本実施形態によれば、良好な越波量低減効果を奏する。   Therefore, according to this embodiment, there is a good effect of reducing the overtopping amount.

以上、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely based on the embodiment, it is not limited to this and can be variously changed in the range which does not deviate from the summary.

本実施形態における消波型ケーソンの、(a)斜視図、(b)側断面図である。It is (a) perspective view and (b) sectional side view of the wave-dissipating caisson in this embodiment. ケーソン設計手順の例を示す図である。It is a figure which shows the example of a caisson design procedure. 連通路等の有無による越波量差異を示すグラフである。It is a graph which shows the overtopping amount difference by the presence or absence of a communicating path. 連通路等の有無による天端高さ差異を示す図である。It is a figure which shows the top end height difference by the presence or absence of a communicating path.

符号の説明Explanation of symbols

10 外海
11 波浪
12 後背地
13 海面上
20、21 海水
100 消波型ケーソン
101 反射体
102 開口
103 遊水室
104 遊水室の上部空間
105 連通路
106 パラペット
107 遊水室の頂版
108、109 開口
110 未水没の遊水室上部空間
111 排気流
112 排水流
DESCRIPTION OF SYMBOLS 10 Outer sea 11 Wave 12 Back ground 13 Sea surface 20, 21 Sea water 100 Wave-dissipating caisson 101 Reflector 102 Opening 103 Reservoir chamber 104 Reservoir upper space 105 Communication path 106 Parapet 107 Top plate 108, 109 Opening 110 Not yet Submerged water chamber upper space 111 Exhaust flow 112 Drain flow

Claims (2)

開口を介し海より海水を流入させて滞留させ、海水の水勢を低減する遊水室と、この遊水室の上部空間と前記海の海面上とを連通する連通路とを備える消波型ケーソンであって、
前記消波型ケーソンは上部工であるパラペットを備え、前記連通路は前記パラペットの内部に形成されて、前記パラペットの海面側の表面に開口していることを特徴とする消波型ケーソン。
It is a wave-dissipating caisson comprising a water reserving chamber that allows seawater to flow from the sea through the opening and retains it, and that reduces the water pressure of the sea water, and a communication path that connects the upper space of the water reserving chamber and the sea surface of the sea. And
The wave-dissipating caisson includes a parapet that is a superstructure, and the communication path is formed inside the parapet and opens to a surface on the sea surface side of the parapet .
開口を介し海より海水を流入させて滞留させ、海水の水勢を低減する遊水室を備える消波型ケーソンを構成するパラペットであって、前記遊水室頂版の開口と前記海の海面上に対向する開口とを連通する連通路が内部に形成されていることを特徴とするパラペット。 A parapet constituting a wave-dissipating caisson equipped with a water-reserving chamber that allows seawater to flow from the sea through the opening and retains it, and opposes the opening of the water-reservoir top plate and the sea surface of the sea A parapet characterized in that a communication passage communicating with an opening is formed inside .
JP2007027296A 2007-02-06 2007-02-06 Wave-dissipating caisson and parapet used for wave-dissipating caisson Expired - Fee Related JP4832328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027296A JP4832328B2 (en) 2007-02-06 2007-02-06 Wave-dissipating caisson and parapet used for wave-dissipating caisson

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027296A JP4832328B2 (en) 2007-02-06 2007-02-06 Wave-dissipating caisson and parapet used for wave-dissipating caisson

Publications (2)

Publication Number Publication Date
JP2008190259A JP2008190259A (en) 2008-08-21
JP4832328B2 true JP4832328B2 (en) 2011-12-07

Family

ID=39750599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027296A Expired - Fee Related JP4832328B2 (en) 2007-02-06 2007-02-06 Wave-dissipating caisson and parapet used for wave-dissipating caisson

Country Status (1)

Country Link
JP (1) JP4832328B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2360771B1 (en) * 2009-04-01 2011-11-24 Fcc Construccion S.A. PERFECTION IN THE OBJECT OF THE PATENT N. P200402227 "STRUCTURE OF LOW REFLECTION".
JP5644386B2 (en) * 2010-11-05 2014-12-24 東洋建設株式会社 Tsunami storm surge mitigation structure
CN104196174B (en) * 2014-09-15 2016-09-14 吴在祥 A kind of roofing tile
CN106592516B (en) * 2017-01-03 2019-10-11 广东省航运规划设计院有限公司 A kind of Acting on Perforated Caisson vertical breakwater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63514A (en) * 1986-06-18 1988-01-05 Yasuaki Matsumoto Breakwater reducing pressure of high tidal waves by introduction hole
JP2535705B2 (en) * 1992-03-31 1996-09-18 戸田建設株式会社 Squirting breakwater structure and breakwater structure using the same
JP2585921B2 (en) * 1992-03-31 1997-02-26 戸田建設株式会社 Waveguide-type squirting wavebreak structure and wavebreak structure using the same
KR970009830B1 (en) * 1993-10-29 1997-06-18 한국해양연구소 Breakwaters cassion
JPH11222829A (en) * 1998-02-09 1999-08-17 Kiyoteru Matsuda Tunami-reversal type tide barrier
JP2004169493A (en) * 2002-11-22 2004-06-17 Daiho Constr Co Ltd Revetment structure and breakwater using wave absorbing body

Also Published As

Publication number Publication date
JP2008190259A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
CN101952516B (en) Secured gate
JP4832328B2 (en) Wave-dissipating caisson and parapet used for wave-dissipating caisson
KR100962373B1 (en) Shore Protection Revetments of Hydrophilic with Capacity of Wave Dissipating
KR20110021231A (en) Superstructure having many reflection block and breakwater, seawall using the same
JP5267440B2 (en) Legged transmission type wave-absorbing structure
CN212956360U (en) Submerged floating type wave wall
US7585129B2 (en) Refinement of the device for attenuating sea swell in the form of a so-called “camel's back”
CN113204819B (en) Arrangement method of olive type regulation and storage lake in front of tidal sluice gate
JP6659489B2 (en) Breakwater structure
CN211690240U (en) Bottom flow energy dissipation structure for small-opening discharge of gate dam
JP4989189B2 (en) Tsunami disaster prevention structure
JP4719310B1 (en) Revetment structure
JP3836816B2 (en) Water-circulating wave-dissipating caisson
JP4687901B2 (en) Vertical seawater exchange device
JP2024132712A (en) Double parapet revetment
JP4519585B2 (en) Double leaf type dike using wave-dissipating block with inclined plate
KR100431572B1 (en) Rubble mound Water-inflowing Breakwater
CN205576834U (en) Scour protection water conservancy dykes and dams
KR101831214B1 (en) Underwater breakwater capable of controlling flows
CN217870264U (en) Seepage-proofing structure for reservoir dam
CN109113033A (en) Prevent silt from entering the built-in draining pump submerged floating sediment trapping bank of intake
JPH11350449A (en) Sea water exchange type breakwater
CN211395563U (en) Floating foldable system
JP2006193981A (en) Littoral transport control structure
KR20230127645A (en) underwater installation type sand collection device to reduce beach erosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4832328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees