Nothing Special   »   [go: up one dir, main page]

JP4830318B2 - Method for producing non-tempered high-tensile steel with excellent surface properties - Google Patents

Method for producing non-tempered high-tensile steel with excellent surface properties Download PDF

Info

Publication number
JP4830318B2
JP4830318B2 JP2005064925A JP2005064925A JP4830318B2 JP 4830318 B2 JP4830318 B2 JP 4830318B2 JP 2005064925 A JP2005064925 A JP 2005064925A JP 2005064925 A JP2005064925 A JP 2005064925A JP 4830318 B2 JP4830318 B2 JP 4830318B2
Authority
JP
Japan
Prior art keywords
less
ceq
steel
cooling rate
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005064925A
Other languages
Japanese (ja)
Other versions
JP2006249469A (en
Inventor
康宏 室田
公宏 西村
和秀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005064925A priority Critical patent/JP4830318B2/en
Publication of JP2006249469A publication Critical patent/JP2006249469A/en
Application granted granted Critical
Publication of JP4830318B2 publication Critical patent/JP4830318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、海洋構造物、橋梁、造船、ラインパイプ、建産機械、主に耐震性を必要とする建築用鋼材として使用される非調質高張力鋼の製造方法に関し、特に引張強さ550MPa以上、かつ、降伏比80%以下で、表面性状に優れるものの製造方法として好適なものに関する。   The present invention relates to a method for producing off-heat treated high-strength steel used as offshore structures, bridges, shipbuilding, line pipes, construction machinery, and construction steel materials mainly requiring earthquake resistance, and in particular, tensile strength of 550 MPa. As described above, the present invention relates to a method suitable for manufacturing a material having a yield ratio of 80% or less and excellent surface properties.

近年、建築構造物などでは地震時の安全性確保の観点から優れた耐震性を有する鋼板が要求されている。また、降伏比の低い鋼板ほど耐震性に優れることが明らかとされており、建築用鋼材などでは、降伏比が80%以下の鋼材を使用することが義務付けられている。   In recent years, steel sheets having excellent earthquake resistance are required for building structures and the like from the viewpoint of ensuring safety during an earthquake. In addition, it is clear that steel plates with lower yield ratios are more excellent in earthquake resistance, and steel materials for construction and the like are obliged to use steel materials with a yield ratio of 80% or less.

耐震性を確保するための低降伏比鋼材に関しては、特許文献1〜7などが提案されている。特許文献1では、スラブ加熱温度を低温化し、さらに未再結晶温度域での圧下率を30%以上と規定することにより靭性を改善し、冷却速度、冷却停止温度を制御することにより、高強度、低降伏比、高靭性を両立させている。   Patent documents 1-7 etc. are proposed about the low yield ratio steel material for ensuring earthquake resistance. In Patent Document 1, the slab heating temperature is lowered and the toughness is improved by defining the reduction ratio in the non-recrystallization temperature range to be 30% or more, and the high strength is achieved by controlling the cooling rate and the cooling stop temperature. It has both low yield ratio and high toughness.

しかし、この手法では、スラブの低温加熱により、変形抵抗が高く圧延装置に負荷をかけることや仕上温度が低いため、厳密な温度管理が必要となり、安定製造が困難である。   However, in this method, since the deformation resistance is high due to low temperature heating of the slab and a load is applied to the rolling mill and the finishing temperature is low, strict temperature control is required, and stable production is difficult.

特許文献2では、加速冷却時の冷却速度を水量密度を変化させることにより制御し、これにより異なる板厚においてもほぼ同一の冷却速度で冷却することができ、板厚によらず同一の強度、降伏比を得ることが可能となる技術が提案されている。   In Patent Document 2, the cooling rate at the time of accelerated cooling is controlled by changing the water density, which enables cooling at almost the same cooling rate even at different plate thicknesses, the same strength regardless of the plate thickness, Techniques have been proposed that make it possible to obtain a yield ratio.

しかし、加速冷却の停止温度が400〜550℃の範囲であり、この場合、冷却による残留応力発生が発生し、加工工程のガス切断などでの歪発生が問題となる。   However, the stop temperature of accelerated cooling is in the range of 400 to 550 ° C. In this case, residual stress is generated due to cooling, and the generation of distortion due to gas cutting or the like in the processing process becomes a problem.

特許文献3では、熱間圧延終了後の加速冷却速度を1℃/s以上に制御し、750〜600℃まで冷却することにより低降伏比高強度鋼を製造している。しかし、熱間圧延終了温度を950℃以上としており、この場合、スケール疵などが多発する問題がある。   In Patent Document 3, a high yield strength high strength steel is manufactured by controlling the accelerated cooling rate after hot rolling to 1 ° C./s or more and cooling to 750 to 600 ° C. However, the hot rolling end temperature is set to 950 ° C. or more, and in this case, there is a problem that scale flaws occur frequently.

特許文献4では、熱間圧延終了後の加速冷却時の冷却速度を1〜5℃/sに制御することにより、高強度と低YRを両立している。しかし、このような1〜5℃/sという遅い冷却速度では、高強度確保のためにCu、Ni、Moなどの高価な元素を多量に添加する必要があり、その結果、大幅に製造コストが増加する。   In Patent Document 4, both high strength and low YR are achieved by controlling the cooling rate during accelerated cooling after the end of hot rolling to 1 to 5 ° C./s. However, at such a slow cooling rate of 1 to 5 ° C / s, it is necessary to add a large amount of expensive elements such as Cu, Ni and Mo in order to ensure high strength. To increase.

特許文献5では、熱間圧延終了後の加速冷却速度または、再加熱焼入れ時の冷却速度を5℃/s以上に制御し、さらに焼戻し時の昇温速度を制御することにより、低降伏比を達成している。しかし、焼戻し時の昇温速度制御は、実製造上厳密な温度管理、時間管理が必要であり、安定製造が困難である。   In Patent Document 5, the low yield ratio is reduced by controlling the accelerated cooling rate after the hot rolling or the cooling rate at the time of reheating and quenching to 5 ° C / s or more, and further controlling the heating rate at the time of tempering. Have achieved. However, temperature rise rate control during tempering requires strict temperature management and time management in actual production, and stable production is difficult.

特許文献6では、低降伏比を確保するために、二相域熱処理を実施している。しかし、二相域熱処理は、低降伏比を安定に確保できる手法であるものの、オフラインでの熱処理回数の増加による製造コストの上昇や製造工期の長期化などが問題である。   In Patent Document 6, two-phase region heat treatment is performed in order to ensure a low yield ratio. However, although the two-phase region heat treatment is a technique that can stably secure a low yield ratio, there are problems such as an increase in manufacturing cost due to an increase in the number of heat treatments performed offline and an increase in the manufacturing period.

特許文献7では、熱間圧延終了後の加速冷却速時の冷却速度を0.3〜3℃/sに制御することにより高強度、低降伏比を確保しようとするものであるが、このような遅い冷却速度では、高強度確保のために多量の合金元素添加が必須となり、その結果、大幅に製造コストが増加する。
特開平5-320752号公報 特開平5-339631号公報 特開平6-340924号公報 特開平9-3596号公報 特開平9-3595号公報 特開平10-306316号公報 特開2001-226737号公報
In Patent Document 7, an attempt is made to ensure a high strength and a low yield ratio by controlling the cooling rate at the accelerated cooling rate after completion of hot rolling to 0.3 to 3 ° C./s. At the cooling rate, it is essential to add a large amount of alloying elements in order to ensure high strength, and as a result, the manufacturing cost increases significantly.
JP-A-5-320752 JP-A-5-339631 JP-A-6-340924 Japanese Unexamined Patent Publication No. 9-3596 Japanese Patent Laid-Open No. 9-3595 Japanese Patent Laid-Open No. 10-306316 JP 2001-226737 A

しかしながら、特許文献1から7に記載された技術は高価な合金元素添加や厳密な製造条件管理、さらには、オフライン二相域熱処理や焼戻し熱処理を必要とし、大量に使用される厚鋼板の製造方法としては必ずしも妥当な方法ではなかった。   However, the techniques described in Patent Documents 1 to 7 require expensive alloying element addition and strict production condition management, and further, offline two-phase region heat treatment and tempering heat treatment, and a method for producing thick steel plates used in large quantities. It was not always a reasonable method.

そこで、本発明は、安価かつ簡便に低降伏比高張力鋼を製造する方法を提供することを目的とする。   Then, this invention aims at providing the method of manufacturing a low yield ratio high tensile steel cheaply and simply.

本発明の課題は以下の手段により達成される。
1.質量%で、
C:0.05〜0.18%
Si:0.05〜0.5%,
Mn:0.6〜2.0%,
P:0.02%以下
S:0.005%以下
Al:0.1%以下
Nb:0.005〜0.03%
更に、質量%で
Cu:0.1〜1.0%
Ni:0.1〜2.0%
Cr:0.05〜1.0%
Mo:0.05〜1.0%
B:0.0005〜0.002%
Ti:0.005〜0.05%
V:0.005〜0.1%
の1種または2種以上を含有し、残部がFeおよび不可避的不純物からなり、式(1)で示される炭素当量Ceqが0.38〜0.42%である鋼を1000〜1250℃の範囲に加熱後、圧延終了温度が表面で800〜950℃となるように熱間圧延した後に、式(2)で示す冷却速度範囲で板厚中心部において式(3)で示す冷却停止温度まで冷却をすることを特徴とする表面性状に優れた引張強度が550MPa以上、かつ、降伏比80%以下の非調質高張力鋼の製造方法。
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 (1)
ここで,C,Si,Mn,Ni,Cr,Mo,V:各元素の含有量(質量%)
−50×Ceq+25≦Vc≦−50×Ceq+39 (2)
ここで、Vcは冷却速度(℃/s)
T≦2000×Nb+580(0.005≦Nb≦0.02の場合)
T≦620 (0.020<Nb≦0.03の場合) (3)
ここで、Nb:Nbの添加量(質量 %),T:冷却停止温度(℃)
The object of the present invention is achieved by the following means.
1. % By mass
C: 0.05 to 0.18%
Si: 0.05 to 0.5%,
Mn: 0.6 to 2.0%,
P: 0.02% or less S: 0.005% or less Al: 0.1% or less Nb: 0.005 to 0.03%
Furthermore, in mass%
Cu: 0.1 to 1.0%
Ni: 0.1 to 2.0%
Cr: 0.05-1.0%
Mo: 0.05-1.0%
B: 0.0005 to 0.002%
Ti: 0.005 to 0.05%
V: 0.005 to 0.1%
The steel containing one or more of the following, the balance being Fe and inevitable impurities, and the carbon equivalent Ceq represented by the formula (1) being 0.38 to 0.42 % is in the range of 1000 to 1250 ° C. , And then hot-rolled so that the rolling end temperature is 800 to 950 ° C. on the surface, and then cooled to the cooling stop temperature indicated by equation (3) at the center of the plate thickness within the cooling rate range indicated by equation (2). A method for producing non-tempered high-tensile steel having a tensile strength excellent in surface properties of 550 MPa or more and a yield ratio of 80% or less.
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
Here, C, Si, Mn, Ni, Cr, Mo, V: Content of each element (mass%)
−50 × Ceq + 25 ≦ Vc ≦ −50 × Ceq + 39 (2)
Where Vc is the cooling rate (° C./s)
T ≦ 2000 × Nb + 580 (when 0.005 ≦ Nb ≦ 0.02)
T ≦ 620 (when 0.020 <Nb ≦ 0.03) (3)
Here, Nb: Amount of Nb added (mass%), T: Cooling stop temperature (° C)

本発明によれば、安価かつ簡便に低降伏比高張力鋼板を製造することが可能となり、産業上極めて有用である。   According to the present invention, it is possible to produce a low-yield ratio high-tensile steel sheet inexpensively and easily, which is extremely useful industrially.

本発明は成分組成と製造条件を規定する。   The present invention defines the component composition and manufacturing conditions.

[成分組成]%は質量%とする。   [Component composition]% is mass%.

C:0.05〜0.18%
Cは、鋼の強度を確保するのに有効であり、その効果を発揮するために0.05%以上が必要である.しかし,過剰に添加すると低温溶接割れ感受性を増大させる.そのため,本発明では0.05〜0.18%の範囲に限定する。
C: 0.05-0.18%
C is effective in securing the strength of the steel, and 0.05% or more is necessary to exert its effect. However, excessive addition increases the sensitivity to low-temperature weld cracking. Therefore, in this invention, it limits to 0.05 to 0.18% of range.

Si:0.05〜0.5%,
Siは、脱酸元素として作用し、製鋼上0.05%以上の含有が必要であるが、0.5%を超えて含有すると母材靭性が低下する。このため,Siは0.05〜0.5%の範囲に限定する。
Si: 0.05-0.5%
Si acts as a deoxidizing element and needs to be contained in an amount of 0.05% or more in terms of steelmaking, but if it exceeds 0.5%, the base material toughness decreases. For this reason, Si is limited to the range of 0.05 to 0.5%.

Mn:0.6〜2%,
Mnは鋼の焼入れ性を増加し強度を向上させる元素であり、この効果を確保するために0.6%以上の含有を必要とする.一方,2%を超えての含有は、溶接性を著しく劣化させる.このため,本発明では,Mnは0.6〜2%の範囲に限定する。
Mn: 0.6-2%,
Mn is an element that increases the hardenability of steel and improves its strength. To ensure this effect, it must contain 0.6% or more. On the other hand, if the content exceeds 2%, the weldability deteriorates remarkably. For this reason, in the present invention, Mn is limited to a range of 0.6 to 2%.

P:0.02%以下
Pは、不純物として鋼中に不可避的に含有される元素であり,鋼の靭性を劣化させるためにできるだけ低減することが望ましい.特に、0.02%を越えての含有は、著しく靭性を劣化する。そのため、Pは0.02%以下に限定する。
P: 0.02% or less P is an element inevitably contained in steel as an impurity, and it is desirable to reduce it as much as possible in order to deteriorate the toughness of steel. In particular, the content exceeding 0.02% significantly deteriorates toughness. Therefore, P is limited to 0.02% or less.

S:0.005%以下
Sは、不純物として鋼中に不可避的に含有される元素であり、鋼の靭性や板厚方向引張試験における絞りを劣化させるためできるだけ低減することが望ましい。特に、0.005%を越えての含有は、上記特性を著しく劣化する。そのため、Sは0.005%以下に限定する。
S: 0.005% or less
S is an element inevitably contained in steel as an impurity, and is desirably reduced as much as possible in order to deteriorate the toughness of steel and the drawing in the thickness direction tensile test. In particular, the content exceeding 0.005% significantly deteriorates the above characteristics. Therefore, S is limited to 0.005% or less.

Al:0.1%以下
Alは,脱酸材として作用し,溶鋼の脱酸プロセス上もっとも汎用的に使われる。0.1%を越えての含有は、粗大な酸化物を形成して、母材の延性を著しく劣化させる。そのため、Alは0.1%以下に限定する。
Al: 0.1% or less
Al acts as a deoxidizer and is most commonly used in the deoxidation process of molten steel. If the content exceeds 0.1%, a coarse oxide is formed, and the ductility of the base material is remarkably deteriorated. Therefore, Al is limited to 0.1% or less.

Nb:0.005〜0.03%
Nbは、析出強化によって強度を上昇させるのに有効な元素であり、その効果を発揮するためには、0.005%以上必要である。一方、0.03%以上添加すると、溶接部の靭性が劣化する。したがって、Nb添加量の範囲は0.005〜0.03%とする。
Nb: 0.005-0.03%
Nb is an element effective for increasing the strength by precipitation strengthening, and 0.005% or more is necessary to exert the effect. On the other hand, when 0.03% or more is added, the toughness of the welded portion deteriorates. Therefore, the range of Nb addition amount is set to 0.005 to 0.03%.

なお、本発明では、Nbを必須添加とすることにより、高強度化を図り、加速冷却停止温度を高温にしている。加速冷却停止温度の高温化は、冷却による鋼板内での残留応力を低減する効果を有し、加速冷却停止温度が高いほど、鋼板内での残留応力が小さく、鋼板加工時のガス切断などによる歪の軽減が可能となる。   In the present invention, Nb is added as an essential additive to increase the strength and to increase the accelerated cooling stop temperature. Increasing the accelerated cooling stop temperature has the effect of reducing the residual stress in the steel sheet due to cooling. The higher the accelerated cooling stop temperature, the smaller the residual stress in the steel sheet. Distortion can be reduced.

このようなNb添加による冷却停止温度高温化効果は、0.02%以上添加しても、更なる向上効果は得られない。したがって、好ましくはNb添加の範囲は0.005〜0.02%とする。   Such an effect of increasing the cooling stop temperature due to the addition of Nb cannot be further improved even if 0.02% or more is added. Therefore, the range of Nb addition is preferably 0.005 to 0.02%.

Ceq:0.3〜0.42%
Ceqは、溶接構造物として必要不可欠である溶接継手の強度を確保するために0.3%以上必要である。しかし、0.42%以上とすると、溶接性を劣化させる。そのため、Ceqは0.3〜0.42%とする。
但し、Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 ここで,C,Si, Mn,Ni,Cr,Mo,V:各元素の含有量(質量%)とする。
Ceq: 0.3-0.42%
Ceq is required to be 0.3% or more to ensure the strength of the welded joint, which is indispensable as a welded structure. However, if it is 0.42% or more, the weldability deteriorates. Therefore, Ceq is set to 0.3 to 0.42%.
However, Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 where C, Si, Mn, Ni, Cr, Mo, V: Content of each element Amount (mass%).

以上が本発明の基本成分組成であるが、更に特性を向上させる場合、Cu,Ni,Cr,Mo,B,Ti,V,の一種または二種以上を添加することができる。
Cu:0.1〜1.0%
Cuは、靭性を劣化させずに強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.1%以上の添加が必要である。しかし、1.0%以上の添加により、熱間圧延時に表面疵が多発する。そのため、添加する場合は、Cuは0.1〜1.0%とする。
The above is the basic component composition of the present invention, but when further improving the characteristics, one or more of Cu, Ni, Cr, Mo, B, Ti, V can be added.
Cu: 0.1 to 1.0%
Cu is an element effective for increasing the strength without deteriorating the toughness, and in order to exert its effect, addition of 0.1% or more is necessary. However, the addition of 1.0% or more frequently causes surface defects during hot rolling. Therefore, when added, Cu is made 0.1 to 1.0%.

Ni:0.1〜2.0%
Niは、靭性を劣化させずに強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.1%以上の添加が必要である。しかし、2.0%以上の添加により、合金コストが上昇する。そのため、添加する場合は、Niは、0.1〜2.0%とする。
Ni: 0.1-2.0%
Ni is an element effective for increasing the strength without deteriorating the toughness, and 0.1% or more of addition is necessary to exert the effect. However, the addition of 2.0% or more increases the alloy cost. Therefore, when Ni is added, the content of Ni is set to 0.1 to 2.0%.

Cr:0.05〜1.0%
Crは、合金コストを著しく上昇させることなく強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.05%以上の添加が必要である。しかし、1.0%以上の添加により、溶接性が劣化する。そのため、添加する場合は、Crは、0.05〜1.0%とする。
Cr: 0.05-1.0%
Cr is an element effective for increasing the strength without significantly increasing the alloy cost, and 0.05% or more of addition is necessary to exert the effect. However, weldability deteriorates when 1.0% or more is added. Therefore, when added, Cr is made 0.05 to 1.0%.

Mo:0.05〜1.0%
Moは、焼入れ性を増加させ、強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.05%以上の添加が必要である。しかし、1.0%以上の添加により、溶接性が劣化する。そのため、添加する場合は、Moは、0.05〜1.0%とする。
Mo: 0.05-1.0%
Mo is an element effective for increasing the hardenability and increasing the strength, and 0.05% or more of addition is necessary to exert the effect. However, weldability deteriorates when 1.0% or more is added. Therefore, when added, Mo is made 0.05 to 1.0%.

B:0.0005〜0.002%
Bは、極微量の添加で焼入れ性を増加させ、強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.005%以上必要である。しかし、0.002%以上の添加は溶接性を劣化させる。そのため、添加する場合は、Bは0.0005〜0.002%とする。
B: 0.0005-0.002%
B is an element effective for increasing the hardenability and increasing the strength by adding a very small amount, and 0.005% or more is necessary to exert the effect. However, addition of 0.002% or more deteriorates weldability. Therefore, when adding, B is 0.0005 to 0.002%.

Ti:0.005〜0.05%
Tiは、母材およ溶接継手部の靭性向上に有効な元素であり、その効果を発揮するためには0.005%以上必要である。しかし、0.05%以上の添加により、溶接性が劣化する。そのため、添加する場合は、Tiは0.005〜0.05%とする。
Ti: 0.005-0.05%
Ti is an element effective for improving the toughness of the base metal and the welded joint, and 0.005% or more is necessary to exert its effect. However, when 0.05% or more is added, the weldability deteriorates. Therefore, when Ti is added, Ti is made 0.005 to 0.05%.

V:0.005〜0.1%
Vは、析出強化により強度を上昇させるのに有効な元素であり、その効果を発揮するためには、0.005%以上必要である。しかし、0.1%以上の添加により、溶接性が劣化する。そのため、添加する場合は、Vは0.005〜0.1%とする。
[製造条件]
加熱温度:1000〜1250℃
加熱温度は、1000℃以下では変形抵抗が大きくなり、圧延装置に負荷をかける。また、1250℃以上では、熱間加工時に表面疵が多発する。そのため、加熱温度は1000〜1250℃とする。
V: 0.005-0.1%
V is an element effective for increasing the strength by precipitation strengthening, and 0.005% or more is necessary to exert the effect. However, the weldability is deteriorated by addition of 0.1% or more. Therefore, when added, V is 0.005 to 0.1%.
[Production conditions]
Heating temperature: 1000-1250 ° C
When the heating temperature is 1000 ° C. or less, the deformation resistance increases, and a load is applied to the rolling apparatus. Also, at 1250 ° C or higher, surface flaws occur frequently during hot working. Therefore, heating temperature shall be 1000-1250 degreeC.

熱間圧延終了温度:800〜950℃
熱間圧延終了温度は、800℃以下では強度が確保できず、950℃以上では靭性が劣化するとともに、スケール疵によって鋼板の表面性状が悪化する。したがって熱間圧延終了温度は800〜950℃とする。
Hot rolling finish temperature: 800 ~ 950 ℃
When the hot rolling finish temperature is 800 ° C. or lower, the strength cannot be ensured, and when it is 950 ° C. or higher, the toughness deteriorates and the surface properties of the steel sheet deteriorate due to the scale wrinkles. Therefore, the hot rolling end temperature is set to 800 to 950 ° C.

冷却速度
550MPa以上の引張強度と80%以下の降伏比を両立するためには、それぞれの成分において、最適な冷却速度で冷却する必要がある。
Cooling rate
In order to achieve both a tensile strength of 550 MPa and a yield ratio of 80% or less, it is necessary to cool each component at an optimal cooling rate.

Ceq量が0.30〜0.42%の鋼を1150℃に加熱後、鋼板表面で880℃で熱間圧延を終了し、板厚20mmに圧延した後に、冷却速度を3〜45℃/sの範囲で580℃まで冷却した。得られた鋼板よりJIS Z2201 5号試験片を採取し、引張試験を実施し、強度と降伏比を両立する冷却速度範囲を調査した。   After heating steel with a Ceq amount of 0.30 to 0.42% to 1150 ° C, hot rolling was finished at 880 ° C on the surface of the steel sheet, and after rolling to a plate thickness of 20 mm, the cooling rate was 580 in the range of 3 to 45 ° C / s. Cooled to ° C. A JIS Z2201 No. 5 test piece was collected from the obtained steel plate, a tensile test was performed, and a cooling rate range in which both strength and yield ratio were compatible was investigated.

図1にCeq量と冷却速度の関係を示す。冷却速度が(-50×Ceq+25)℃/sより遅い場合には引張強度が550MPaを下回り、また、冷却速度が(-50×Ceq+39)℃/sより速い場合には、降伏比が80%以上となる。したがって、冷却速度範囲を-50×Ceq+25≦Vc≦-50×Ceq+39とした。   Figure 1 shows the relationship between the amount of Ceq and the cooling rate. When the cooling rate is slower than (-50 × Ceq + 25) ° C / s, the tensile strength is less than 550 MPa, and when the cooling rate is higher than (-50 × Ceq + 39) ° C / s, the yield ratio Becomes 80% or more. Therefore, the cooling rate range was set to −50 × Ceq + 25 ≦ Vc ≦ −50 × Ceq + 39.

冷却停止温度
本開発鋼である550MPa以上の引張強度を確保するためには、それぞれのNb添加量において、最適な冷却停止温度まで冷却する必要がある。Ceq量を0.40%含み、Nb添加量が0.005〜0.03%含む鋼を1150℃に加熱後、鋼板表面で880℃で熱間圧延を終了し、板厚20mmに圧延した後に、冷却速度を10℃/sで450〜700℃まで冷却した。得られた鋼板よりJIS Z2201 5号試験片を採取し、引張試験を実施し、それぞれのNb添加量における強度確保可能な冷却停止温度範囲を調査した。
Cooling stop temperature In order to secure the tensile strength of 550 MPa or more, which is the newly developed steel, it is necessary to cool to the optimal cooling stop temperature for each Nb addition amount. After heating steel containing Ceq amount of 0.40% and Nb addition amount of 0.005-0.03% to 1150 ° C, hot rolling was finished at 880 ° C on the steel sheet surface, and after rolling to a plate thickness of 20mm, the cooling rate was 10 ° C Cooled to 450-700 ° C at / s. JIS Z2201 No. 5 test piece was collected from the obtained steel sheet, and a tensile test was performed to investigate the cooling stop temperature range in which the strength can be secured at each Nb addition amount.

図2にNb添加量と冷却停止温度の関係を示す。Nb添加量が0.02%以下の範囲では、冷却停止温度が(2000×Nb-580)℃以下の場合に引張強さ550MPa以上となる。0.02%を超える添加の場合には、更なる冷却停止温度の高温化の効果は得られない。したがって、Nb添加量が0.005〜0.02%の場合には、冷却停止温度範囲をT≦2000×Nb-580(℃)、Nb添加量が0.02%超えの場合にはT≦620(℃)とする。   Fig. 2 shows the relationship between the Nb addition amount and the cooling stop temperature. When the amount of Nb added is 0.02% or less, the tensile strength is 550 MPa or more when the cooling stop temperature is (2000 × Nb-580) ° C. or less. In the case of addition exceeding 0.02%, the effect of further increasing the cooling stop temperature cannot be obtained. Therefore, when the Nb addition amount is 0.005 to 0.02%, the cooling stop temperature range is T ≦ 2000 × Nb-580 (° C.), and when the Nb addition amount exceeds 0.02%, T ≦ 620 (° C.). .

表1に示した化学成分を有する鋼を、表2に示した条件を用いて鋼板に製造した。表2に引張特性と表面性状を合わせて示す。引張試験は、板厚40mm以下については、JIS Z2201 5号試験片で実施し、板厚40mm越えについては、1/4板厚位置から採取したJIS Z 2201 4号試験片で評価を実施した。   Steels having the chemical components shown in Table 1 were produced into steel plates using the conditions shown in Table 2. Table 2 shows the tensile properties and surface properties. Tensile tests were carried out with JIS Z2201 No. 5 test pieces for plate thicknesses of 40 mm or less, and evaluations were carried out with JIS Z 2201 No. 4 test pieces taken from 1/4 plate thickness positions for plate thicknesses exceeding 40 mm.

開発鋼は、引張強度550MPa以上、降伏比80%以下を確保しつつ、また、表面性状にも優れていることが確認できた。これに対し、比較鋼は、冷却速度、または冷却停止温度が本発明範囲外であるため、強度が550MPa以下であるか、降伏比が80%以上となっている。また、熱間圧延終了温度が950℃以上の場合には、スケール疵が発生していることが観察された。   The developed steel was confirmed to have excellent tensile properties of 550 MPa and a yield ratio of 80% or less, and excellent surface properties. On the other hand, the comparative steel has a cooling rate or cooling stop temperature outside the range of the present invention, so that the strength is 550 MPa or less or the yield ratio is 80% or more. Moreover, when the hot rolling finish temperature was 950 ° C. or higher, it was observed that scale wrinkles were generated.

Figure 0004830318
Figure 0004830318

Figure 0004830318
Figure 0004830318

Ceq量と冷却速度が引張特性に及ぼす影響を示す図。The figure which shows the influence which the amount of Ceq and a cooling rate have on tensile properties. Nb添加量と冷却停止温度が引張特性に及ぼす影響を示す図。The figure which shows the influence which Nb addition amount and cooling stop temperature have on tensile characteristics.

Claims (1)

質量%で、
C:0.05〜0.18%
Si:0.05〜0.5%,
Mn:0.6〜2.0%,
P:0.02%以下
S:0.005%以下
Al:0.1%以下
Nb:0.005〜0.03%
更に、質量%で
Cu:0.1〜1.0%
Ni:0.1〜2.0%
Cr:0.05〜1.0%
Mo:0.05〜1.0%
B:0.0005〜0.002%
Ti:0.005〜0.05%
V:0.005〜0.1%
の1種または2種以上を含有し、残部がFeおよび不可避的不純物からなり、式(1)で示される炭素当量Ceqが0.38〜0.42%である鋼を1000〜1250℃の範囲に加熱後、圧延終了温度が表面で800〜950℃となるように熱間圧延した後に、式(2)で示す冷却速度範囲で板厚中心部において式(3)で示す冷却停止温度まで冷却をすることを特徴とする表面性状に優れた引張強度が550MPa以上、かつ、降伏比80%以下の非調質高張力鋼の製造方法。
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 (1)
ここで,C,Si,Mn,Ni,Cr,Mo,V:各元素の含有量(質量%)
−50×Ceq+25≦Vc≦−50×Ceq+39 (2)
ここで、Vcは冷却速度(℃/s)
T≦2000×Nb+580(0.005≦Nb≦0.02の場合)
T≦620 (0.020<Nb≦0.03の場合) (3)
ここで、Nb:Nbの添加量(質量 %),T:冷却停止温度(℃)
% By mass
C: 0.05 to 0.18%
Si: 0.05 to 0.5%,
Mn: 0.6 to 2.0%,
P: 0.02% or less S: 0.005% or less Al: 0.1% or less Nb: 0.005 to 0.03%
Furthermore, in mass%
Cu: 0.1 to 1.0%
Ni: 0.1 to 2.0%
Cr: 0.05-1.0%
Mo: 0.05-1.0%
B: 0.0005 to 0.002%
Ti: 0.005 to 0.05%
V: 0.005 to 0.1%
The steel containing one or more of the following, the balance being Fe and inevitable impurities, and the carbon equivalent Ceq represented by the formula (1) being 0.38 to 0.42 % is in the range of 1000 to 1250 ° C. , And then hot-rolled so that the rolling end temperature is 800 to 950 ° C. on the surface, and then cooled to the cooling stop temperature indicated by equation (3) at the center of the plate thickness within the cooling rate range indicated by equation (2). A method for producing non-tempered high-tensile steel having a tensile strength excellent in surface properties of 550 MPa or more and a yield ratio of 80% or less.
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
Here, C, Si, Mn, Ni, Cr, Mo, V: Content of each element (mass%)
−50 × Ceq + 25 ≦ Vc ≦ −50 × Ceq + 39 (2)
Where Vc is the cooling rate (° C./s)
T ≦ 2000 × Nb + 580 (when 0.005 ≦ Nb ≦ 0.02)
T ≦ 620 (when 0.020 <Nb ≦ 0.03) (3)
Here, Nb: Amount of Nb added (mass%), T: Cooling stop temperature (° C)
JP2005064925A 2005-03-09 2005-03-09 Method for producing non-tempered high-tensile steel with excellent surface properties Active JP4830318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064925A JP4830318B2 (en) 2005-03-09 2005-03-09 Method for producing non-tempered high-tensile steel with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064925A JP4830318B2 (en) 2005-03-09 2005-03-09 Method for producing non-tempered high-tensile steel with excellent surface properties

Publications (2)

Publication Number Publication Date
JP2006249469A JP2006249469A (en) 2006-09-21
JP4830318B2 true JP4830318B2 (en) 2011-12-07

Family

ID=37090265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064925A Active JP4830318B2 (en) 2005-03-09 2005-03-09 Method for producing non-tempered high-tensile steel with excellent surface properties

Country Status (1)

Country Link
JP (1) JP4830318B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125438A (en) * 1991-11-06 1993-05-21 Nippon Steel Corp Manufacture of low yield ratio high tensile strength steel

Also Published As

Publication number Publication date
JP2006249469A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP4897125B2 (en) High-strength steel sheet and its manufacturing method
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP4730088B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
WO2012060405A1 (en) High-strength steel sheet and method for producing same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP5157257B2 (en) Low yield ratio steel sheet
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4427521B2 (en) Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability
JP5170212B2 (en) Method for producing high-tensile steel with high yield point
JP5935678B2 (en) High toughness high strength steel and method for producing the same
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP2020204091A (en) High strength steel sheet for high heat input welding
JP4830318B2 (en) Method for producing non-tempered high-tensile steel with excellent surface properties
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JP4687153B2 (en) Production method of low yield ratio high strength steel
JP5903907B2 (en) High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof
KR20040004137A (en) STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL
JP4474967B2 (en) Manufacturing method of low yield ratio high strength steel sheet with low toughness degradation due to cold working

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4830318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250