Nothing Special   »   [go: up one dir, main page]

JP4827944B2 - Optical signal transmitter for wavelength division multiplexing transmission - Google Patents

Optical signal transmitter for wavelength division multiplexing transmission Download PDF

Info

Publication number
JP4827944B2
JP4827944B2 JP2009063195A JP2009063195A JP4827944B2 JP 4827944 B2 JP4827944 B2 JP 4827944B2 JP 2009063195 A JP2009063195 A JP 2009063195A JP 2009063195 A JP2009063195 A JP 2009063195A JP 4827944 B2 JP4827944 B2 JP 4827944B2
Authority
JP
Japan
Prior art keywords
optical
modulator
transmission
carrier
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009063195A
Other languages
Japanese (ja)
Other versions
JP2010219779A (en
Inventor
史一 犬塚
悦史 山崎
一茂 米永
篤 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009063195A priority Critical patent/JP4827944B2/en
Publication of JP2010219779A publication Critical patent/JP2010219779A/en
Application granted granted Critical
Publication of JP4827944B2 publication Critical patent/JP4827944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、光通信システムの波長分割多重(WDM)伝送システムに用いられる光信号送信装置に関する。   The present invention relates to an optical signal transmission apparatus used in a wavelength division multiplexing (WDM) transmission system of an optical communication system.

光通信システムの光ファイバ伝送では、時分割多重(TDM)方式や波長分割多重(WDM)方式による大容量化が図られてきた。光通信システムの光変調方式としては、光の強度(光のON、OFF)にデジタルデータを符号化して送信信号光を生成する強度変調がこれまで一般的であったが、光の位相にデジタルデータを符号化する位相変調方式が適用されるようになってきた。また、近年では1信号に2ビットの情報を乗せて送信する差動4相位相変調方式(DQPSK)が光通信システムに適用され、周波数利用効率、受信感度、波長分散耐力、偏波モード分散耐力などの向上が実現し、さらなる伝送距離の延伸、通信容量の大容量化が進んでいる。   In the optical fiber transmission of an optical communication system, the capacity has been increased by the time division multiplexing (TDM) method and the wavelength division multiplexing (WDM) method. As an optical modulation method of an optical communication system, intensity modulation in which digital data is encoded to light intensity (light ON / OFF) to generate transmission signal light has been generally used. Phase modulation schemes for encoding data have been applied. In recent years, differential quadrature phase modulation (DQPSK), which transmits 2 bits of information on one signal, has been applied to optical communication systems, and frequency utilization efficiency, reception sensitivity, chromatic dispersion tolerance, polarization mode dispersion tolerance. As a result, the transmission distance has been further extended and the communication capacity has been increased.

Partha P. Mitra, et. al., “Nonlinear limits to information capacity of optical fibre communication”, Nature, Vol.411, pp.1027, 2001Partha P. Mitra, et. Al., “Nonlinear limits to information capacity of optical fiber communication”, Nature, Vol.411, pp.1027, 2001 Janson B. Stark, et. al., “Information Capacity of Nonlinear Wavelength Division Multiplexing Fiber Optical Transmission Line”, Optical Fiber Technology, 7, pp.275, 2001Janson B. Stark, et. Al., “Information Capacity of Nonlinear Wavelength Division Multiplexing Fiber Optical Transmission Line”, Optical Fiber Technology, 7, pp.275, 2001 Andrew R. Chraplyvy, “Limitations on Lightwave Communications Imposed by Optical-Fiber Nonlinearities”, Journal of Lightwave Technology, Vol.8, No.10, pp.1548, 1990Andrew R. Chraplyvy, “Limitations on Lightwave Communications Imposed by Optical-Fiber Nonlinearities”, Journal of Lightwave Technology, Vol.8, No.10, pp.1548, 1990 Keang-Po Ho, “Phase-Modulated Optical Communication Systems”, Springer, New York, 2005Keang-Po Ho, “Phase-Modulated Optical Communication Systems”, Springer, New York, 2005 Nori Shibata, et. al., “Phase-Mismatch Dependence of Efficiency of Wave Generation Through Four-Wave Mixing in a Single-Mode Optical Fiber”, journal of Quantum Electronics, Vol.QE-23, No.7, pp.1205, 1987Nori Shibata, et. Al., “Phase-Mismatch Dependence of Efficiency of Wave Generation Through Four-Wave Mixing in a Single-Mode Optical Fiber”, journal of Quantum Electronics, Vol.QE-23, No.7, pp.1205 , 1987

光ファイバ伝送路は、入射する光の強度に比例してその屈折率が変化する光カー効果によって四光波混合(FWM)、自己位相変調(SPM)、相互位相変調(XPM)と呼ばれる非線形光学効果を引起す。このうちFWMとXPMによって、各チャネル信号光の振幅と位相が他チャネルの信号光の振幅と位相条件によって変化するチャネル間クロストークという現象が発生する。この非線形現象に伴うチャネル間クロストークによって光ファイバ伝送後の受信波形が劣化する問題が生じる。現在の光通信システムでは、光非線形波形劣化が最小限となるように伝送パワーやチャネル波長間隔などの値を設計している。そのため、このような設計においては伝送パワーとチャネル周波数間隔が制限され、その結果、伝送距離と周波数利用効率が制限されるという課題があった(非特許文献1〜3)。   The optical fiber transmission line is a nonlinear optical effect called four-wave mixing (FWM), self-phase modulation (SPM), or cross-phase modulation (XPM) due to the optical Kerr effect whose refractive index changes in proportion to the intensity of the incident light. Cause. Of these, FWM and XPM cause a phenomenon called inter-channel crosstalk in which the amplitude and phase of each channel signal light change depending on the amplitude and phase conditions of the signal light of other channels. A problem arises in that the reception waveform after optical fiber transmission deteriorates due to crosstalk between channels accompanying this nonlinear phenomenon. In the current optical communication system, values such as transmission power and channel wavelength interval are designed so that optical nonlinear waveform deterioration is minimized. Therefore, in such a design, the transmission power and the channel frequency interval are limited, and as a result, the transmission distance and the frequency utilization efficiency are limited (Non-Patent Documents 1 to 3).

FWMの発生効率は、WDM伝送を構成するチャネルの周波数間隔と光伝送路ファイバの波長分散特性に依存し、波長分散値がゼロとなる零分散波長帯付近においては位相整合条件が満たされるため、FWM光に起因するチャネル間クロストーク量が大きくなり、それに伴う受信波形劣化も大きくなる課題があった。特に分散シフトファイバは、光ファイバの損失が最小となる波長帯域であるC帯(1530〜1565nm)近傍にその零分散波長の分布を有しており、長距離・大容量のWDM伝送システムに分散シフトファイバのC帯が利用しづらいという課題があった。   The generation efficiency of FWM depends on the frequency spacing of the channels constituting the WDM transmission and the chromatic dispersion characteristics of the optical transmission line fiber, and the phase matching condition is satisfied in the vicinity of the zero dispersion wavelength band where the chromatic dispersion value is zero. There was a problem that the amount of crosstalk between channels caused by FWM light was increased, and the received waveform deterioration was also increased. In particular, dispersion-shifted fibers have a zero-dispersion wavelength distribution in the vicinity of the C-band (1530 to 1565 nm), which is the wavelength band that minimizes the loss of optical fibers. There was a problem that the C band of shift fiber was difficult to use.

WDM伝送において一般的には信号光の周波数間隔は等間隔に配置されており、複数チャネル間の相互作用によるFWM光は信号光の周波数帯域内に発生する。そのため、受信端の信号波形は信号光とFWM光間の光位相関係によって大きく変動する。これまでのWDM伝送では各チャネルの光源として単一波長のレーザ光源を用いているため、チャネル波長間の光位相関係はランダムに変化する。この影響によりFWM光の光位相もランダムに変化するため、受信信号波形は非決定論的に変化し、予測不可能であった。   In WDM transmission, frequency intervals of signal light are generally arranged at equal intervals, and FWM light due to interaction between a plurality of channels is generated in the frequency band of signal light. For this reason, the signal waveform at the receiving end varies greatly depending on the optical phase relationship between the signal light and the FWM light. Conventional WDM transmission uses a single-wavelength laser light source as the light source for each channel, so the optical phase relationship between channel wavelengths changes randomly. Due to this influence, the optical phase of the FWM light also changes randomly, so the received signal waveform changes non-deterministically and cannot be predicted.

本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、WDM伝送システムにおける光信号送信装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide an optical signal transmission apparatus in a WDM transmission system.

このような目的を達成するために、請求項1に記載の発明は、光搬送波間の光位相が同期した複数の連続光を発生させる多波長位相同期光源と、前記多波長位相同期光源からの出力を波長ごとの搬送波に分波する光分波器と、送信するデータ系列を用いて光非線形波形劣化を前置補償する変調器駆動信号波形を設定する変調器駆動信号波形設定手段であって、各搬送波の送信パワーから各搬送波の送信光信号振幅を設定する機能と、各搬送波の送信データ系列から各搬送波の送信光信号位相を設定する機能と、各搬送波の送信光信号振幅から伝送路光ファイバ中で発生する四光波混合光の光電界振幅を求める四光波混合光振幅演算機能と、各搬送波の送信光信号位相から前記四光波混合光の光電界位相を求める四光波混合光位相演算機能とを備えた変調器駆動信号波形設定手段と、前記変調器駆動信号波形を光搬送波に印加し、前記光分波器からの連続光を変調し、送信光信号を生成する光ベクトル変調器と、前記送信光信号を合波させる光合波器とを備えることを特徴とする。 In order to achieve such an object, the invention described in claim 1 is directed to a multi-wavelength phase-locked light source that generates a plurality of continuous lights whose optical phases between optical carriers are synchronized, and from the multi-wavelength phase-locked light source. an optical demultiplexer for demultiplexing an output carrier for each wavelength, a modulator driving signal waveform setting means for setting a modulator drive signal waveform to be pre-compensate for optical nonlinear waveform degradation using a data series to be transmitted A function for setting the transmission optical signal amplitude of each carrier from the transmission power of each carrier, a function for setting the transmission optical signal phase of each carrier from the transmission data sequence of each carrier, and the transmission path from the transmission optical signal amplitude of each carrier Four-wave mixing light amplitude calculation function to obtain the optical field amplitude of the four-wave mixing light generated in the optical fiber, and four-wave mixing light phase calculation to obtain the optical field phase of the four-wave mixing light from the transmission optical signal phase of each carrier wave Function and A modulator drive signal waveform setting section was example, the modulator drive signal waveform is applied to the optical carrier, and modulates the continuous light from the optical demultiplexer, the optical vector modulator for generating a transmission optical signal, said transmission And an optical multiplexer that multiplexes optical signals.

また、請求項2に記載の発明は、請求項1記載の光信号送信装置であって、前記変調器駆動信号波形設定手段は、送信するデータ系列から送信光信号の振幅を設定する機能と、送信するデータ系列から送信光信号の位相を設定する機能と、前記四光波混合光の光電界振幅および光電界位相に基づいて、前記四光波混合光を送信端で補償する四光波混合光補償波形を演算する四光波混合光補償波形演算機能と、送信データ系列と前記四光波混合光補償波形から光変調器を駆動する電圧振幅を設定する機能とを備えたことを特徴とする。 The invention according to claim 2 is the optical signal transmission device according to claim 1, wherein the modulator drive signal waveform setting means sets the amplitude of the transmission optical signal from the data series to be transmitted; A function of setting the phase of a transmission optical signal from a data series to be transmitted, and a four-wave mixed light compensation waveform for compensating the four-wave mixed light at a transmission end based on the optical electric field amplitude and optical electric field phase of the four-wave mixed light And a function of setting a voltage amplitude for driving the optical modulator from the transmission data series and the four-wave mixed light compensation waveform.

また、請求項3に記載の発明は、請求項2に記載の光信号送信装置であって、前記四光波混合光補償波形演算機能は、クロストークとなる伝送路光ファイバ中で発生する四光波混合光の受信端における光電界成分を求め、そのクロストーク光と同振幅・逆位相となる光電界成分を生成する変調器駆動信号波形を設定することを特徴とする。   The invention according to claim 3 is the optical signal transmission device according to claim 2, wherein the four-wave mixing light compensation waveform calculation function is a four-wave wave generated in a transmission line optical fiber that causes crosstalk. An optical electric field component at the receiving end of the mixed light is obtained, and a modulator driving signal waveform for generating an optical electric field component having the same amplitude and opposite phase as the crosstalk light is set.

また、請求項4に記載の発明は、請求項3に記載の光信号送信装置であって、前記四光波混合光補償波形演算機能は、前記送信光信号の振幅と前記送信光信号の位相、チャネル数、チャネル番号、チャネル周波数、チャネル周波数間隔と、伝送路光ファイバへの入力パワーと伝送路光ファイバの波長分散、波長分散スロープ、屈折率、非線形屈折率、損失係数、長さ、実行断面積をパラメータとし、各チャネルにおける四光波混合による受信端における光電界成分を計算によって求め、四光波混合クロストークを前置補償する補償波形を求めることを特徴とする。   The invention according to claim 4 is the optical signal transmission device according to claim 3, wherein the four-wave mixing light compensation waveform calculation function includes an amplitude of the transmission optical signal and a phase of the transmission optical signal, Number of channels, channel number, channel frequency, channel frequency interval, input power to transmission line optical fiber and chromatic dispersion of transmission line optical fiber, chromatic dispersion slope, refractive index, nonlinear refractive index, loss factor, length, execution interruption Using the area as a parameter, the optical electric field component at the receiving end by the four-wave mixing in each channel is obtained by calculation, and a compensation waveform for pre-compensating the four-wave mixing crosstalk is obtained.

また、請求項5に記載の発明は、請求項4に記載の光信号送信装置であって、前記変調器駆動信号波形設定手段は、前記光ベクトル変調器を構成する2並列のマッハツェンダ型光変調器の駆動電圧―光出力特性の逆特性に前記補償波形を入力することで、変調器の駆動電圧を設定することを特徴とする。   The invention according to claim 5 is the optical signal transmission device according to claim 4, wherein the modulator drive signal waveform setting means includes two parallel Mach-Zehnder optical modulations constituting the optical vector modulator. The modulator drive voltage is set by inputting the compensation waveform to the inverse characteristic of the drive voltage-light output characteristic of the modulator.

また、請求項6に記載の発明は、光搬送波間の光位相が同期した複数の連続光を発生させる多波長位相同期光源と、前記多波長位相同期光源からの出力を波長ごとの搬送波に分波する光分波器と、前記光分波器からの出力を2分岐する第1の光カプラと、送信するデータ系列を用いて変調器駆動信号波形を設定する変調器駆動信号波形設定手段と、送信するデータ系列を用いて光非線形波形劣化を補償する補償用変調器駆動信号波形を設定する補償用変調器駆動信号波形設定手段であって、各搬送波の送信パワーから各搬送波の送信光信号振幅を設定する機能と、各搬送波の送信データ系列から各搬送波の送信光信号位相を設定する機能と、各搬送波の送信光信号振幅から伝送路光ファイバ中で発生する四光波混合光の光電界振幅を求める四光波混合光振幅演算機能と、各搬送波の送信光信号位相から前記四光波混合光の光電界位相を求める四光波混合光位相演算機能とを備えた補償用変調器駆動信号波形設定手段と、前記第1の光カプラの一方の出力を入力し、前記変調器駆動信号波形を光搬送波に印加して、送信光信号を生成する光ベクトル変調器と、前記第1の光カプラの他方の出力を入力し、前記補償用変調器駆動信号波形を光搬送波に印加し補償送信信号光を生成する補償用光ベクトル変調器と、前記光ベクトル変調器からの出力と前記補償用光ベクトル変調器からの出力を合波する第2の光カプラと前記第2の光カプラからの出力を合波させる光合波器とを備えることを特徴とする。
また、請求項7に記載の発明は、請求項6に記載の光信号送信装置であって、前記補償用変調器駆動信号波形設定手段は、前記補償用光ベクトル変調器を構成する2並列のマッハツェンダ型光変調器の駆動電圧―光出力特性の逆特性に前記補償用変調器駆動信号波形を入力することで、変調器の駆動電圧を設定することを特徴とする。
According to a sixth aspect of the present invention, there is provided a multi-wavelength phase-locked light source that generates a plurality of continuous lights whose optical phases between optical carriers are synchronized, and an output from the multi-wavelength phase-locked light source is divided into carrier waves for each wavelength. An optical demultiplexer that oscillates, a first optical coupler that bifurcates the output from the optical demultiplexer, and a modulator drive signal waveform setting means that sets a modulator drive signal waveform using a data sequence to be transmitted Compensation modulator drive signal waveform setting means for setting a compensation modulator drive signal waveform that compensates for optical nonlinear waveform degradation using a data series to be transmitted , wherein the transmission optical signal of each carrier is determined from the transmission power of each carrier. A function for setting the amplitude, a function for setting the transmission optical signal phase of each carrier from the transmission data sequence of each carrier, and an optical electric field of four-wave mixed light generated in the transmission line optical fiber from the transmission optical signal amplitude of each carrier Finding the amplitude And wave mixed light amplitude calculation function, a compensation modulator drive signal waveform setting means comprising a four-wave mixing light and phase calculating function from the transmission optical signal phase of each carrier seeking optical field phase of the four-wave mixing light, wherein One output of the first optical coupler is input, and the modulator driving signal waveform is applied to an optical carrier to generate a transmission optical signal, and the other output of the first optical coupler is And input a compensation modulator drive signal waveform to an optical carrier to generate a compensated transmission signal light, an output from the optical vector modulator, and an output from the compensation optical vector modulator. A second optical coupler for combining outputs and an optical multiplexer for combining outputs from the second optical coupler are provided.
The invention according to claim 7 is the optical signal transmission device according to claim 6, wherein the compensation modulator drive signal waveform setting means is arranged in two parallels constituting the compensation optical vector modulator. The modulator driving voltage is set by inputting the compensation modulator driving signal waveform to the inverse characteristic of the driving voltage-optical output characteristic of the Mach-Zehnder optical modulator.

また、請求項に記載の発明は、光搬送波間の光位相が同期した複数の連続光を発生させる多波長位相同期光源と、前記多波長位相同期光源からの出力を波長ごとの搬送波に分波する光分波器と、前記光分波器からの出力を2分岐する第3の光カプラと、前記第3の光カプラからの出力の一方を入力し、2分岐する第4の光カプラと、前記第3の光カプラからの出力の他方を入力し、2分岐する第5の光カプラと、送信するデータ系列を用いて変調器駆動信号波形を設定する変調器駆動信号波形設定手段と、送信データ系列を用いて光非線形波形劣化を補償する補償用変調器駆動信号波形を設定する補償用変調器駆動信号波形設定手段であって、各搬送波の送信パワーから各搬送波の送信光信号振幅を設定する機能と、各搬送波の送信データ系列から各搬送波の送信光信号位相を設定する機能と、各搬送波の送信光信号振幅から伝送路光ファイバ中で発生する四光波混合光の光電界振幅を求める四光波混合光振幅演算機能と、各搬送波の送信光信号位相から前記四光波混合光の光電界位相を求める四光波混合光位相演算機能とを備えた補償用変調器駆動信号波形設定手段と、前記第4の光カプラの出力の一方を入力し、前記変調器駆動信号波形のI成分を光搬送波に印加する第1のMZ型変調器と、前記第4の光カプラの出力の他方を入力し、前記補償用変調器駆動信号波形のI成分を光搬送波に印加する第2のMZ型変調器と、前記第5の光カプラの出力の一方を入力し、前記変調器駆動信号波形のQ成分を光搬送波に印加する第3のMZ型変調器と、前記第5の光カプラの出力の他方を入力し、前記補償用変調器駆動信号波形のQ成分を光搬送波に印加する第4のMZ型変調器と、前記第1のMZ型変調器の出力と前記第2のMZ型変調器の出力を合波する第6の光カプラと、前記第3のMZ型変調器の出力と前記第4のMZ型変調器の出力を合波する第7の光カプラと、前記第7の光カプラからの出力を入力し、前記第6の光カプラ出力とπ/2の位相差を与える位相器と、前記第6の光カプラ出力と前記位相器の出力を合波する第8の光カプラと、前記第8の光カプラ出力を合波させる光合波器とを備えることを特徴とする。
また、請求項9に記載の発明は、請求項8に記載の光信号送信装置であって、前記補償用変調器駆動信号波形設定手段は、前記第2のMZ型変調器の駆動電圧―光出力特性の逆特性に前記補償用変調器駆動信号波形のI成分を入力し、前記第4のMZ型変調器の駆動電圧―光出力特性の逆特性に前記補償用変調器駆動信号波形のQ成分を入力することで、変調器の駆動電圧を設定することを特徴とする。
According to an eighth aspect of the present invention, there is provided a multi-wavelength phase-locked light source that generates a plurality of continuous lights in which optical phases between optical carriers are synchronized, and an output from the multi-wavelength phase-locked light source is divided into carrier waves for each wavelength. An optical demultiplexer for wave generation, a third optical coupler for branching the output from the optical demultiplexer, and a fourth optical coupler for branching into two by inputting one of the outputs from the third optical coupler A fifth optical coupler that inputs the other of the outputs from the third optical coupler and branches into two, and a modulator drive signal waveform setting unit that sets a modulator drive signal waveform using a data sequence to be transmitted; Compensation modulator drive signal waveform setting means for setting a compensation modulator drive signal waveform that compensates for optical nonlinear waveform degradation using a transmission data sequence , wherein the transmission optical signal amplitude of each carrier is determined from the transmission power of each carrier. Function and the transmission data of each carrier wave A function to set the transmission optical signal phase of each carrier from the column, a four-wave mixed light amplitude calculation function to obtain the optical electric field amplitude of the four-wave mixed light generated in the transmission line optical fiber from the transmission optical signal amplitude of each carrier; Compensation modulator drive signal waveform setting means having a four-wave mixing optical phase calculation function for obtaining the optical electric field phase of the four-wave mixing light from the transmission optical signal phase of each carrier, and the output of the fourth optical coupler One is input, the other one of the outputs of the first MZ type modulator that applies the I component of the modulator driving signal waveform to the optical carrier and the fourth optical coupler is input, and the compensation modulator driving signal is input. A second MZ-type modulator that applies an I component of the waveform to the optical carrier and one of the outputs of the fifth optical coupler are input, and a third component that applies the Q component of the modulator drive signal waveform to the optical carrier. MZ type modulator and output of the fifth optical coupler A fourth MZ type modulator that inputs the other and applies the Q component of the compensation modulator drive signal waveform to the optical carrier; the output of the first MZ type modulator; and the second MZ type modulator A sixth optical coupler that combines the outputs of the third MZ modulator, a seventh optical coupler that combines the output of the fourth MZ modulator, and the seventh optical coupler. A phase shifter that receives an output from the coupler and gives a phase difference of π / 2 from the sixth optical coupler output; and an eighth optical coupler that multiplexes the sixth optical coupler output and the output of the phase shifter And an optical multiplexer for multiplexing the output of the eighth optical coupler.
The invention according to claim 9 is the optical signal transmission apparatus according to claim 8, wherein the compensation modulator drive signal waveform setting means is a drive voltage-light of the second MZ modulator. The I component of the compensation modulator drive signal waveform is input to the inverse characteristic of the output characteristic, and the Q of the compensation modulator drive signal waveform is assigned to the inverse characteristic of the drive voltage-optical output characteristic of the fourth MZ modulator. The drive voltage of the modulator is set by inputting the component.

また、請求項10に記載の発明は、波長分割多重伝送において光信号を送信する方法であって、光搬送波間の光位相が同期した複数の連続光である多波長位相同期光を発生させることと、前記多波長位相同期光を波長ごとの搬送波に分波することと、送信するデータ系列を用いて光非線形波形劣化を前置補償する変調器駆動信号波形を設定することであって、各搬送波の送信パワーから各搬送波の送信光信号振幅を設定することと、各搬送波の送信データ系列から各搬送波の送信光信号位相を設定することと、各搬送波の送信光信号振幅から伝送路光ファイバ中で発生する四光波混合光の光電界振幅を求めることと、各搬送波の送信光信号位相から前記四光波混合光の光電界位相を求めることとを含むことと、前記変調器駆動信号波形を光搬送波に印加して連続光を変調し、送信光信号を生成することと、前記送信光信号を合波して送信することとを備えることを特徴とする。
また、請求項11に記載の発明は、請求項10に記載の光信号送信装置であって、前記変調器駆動信号波形を設定することは、前記送信光信号を生成する2並列のマッハツェンダ型光変調器の駆動電圧―光出力特性の逆特性に前記光非線形波形劣化を前置補償する補償波形を入力することで、変調器の駆動電圧を設定することを特徴とする。
The invention according to claim 10 is a method of transmitting an optical signal in wavelength division multiplexing transmission, and generates a multi-wavelength phase-locked light which is a plurality of continuous lights in which optical phases between optical carriers are synchronized. Demultiplexing the multi-wavelength phase-locked light into a carrier wave for each wavelength, and setting a modulator drive signal waveform that pre-compensates for optical nonlinear waveform degradation using a data sequence to be transmitted , The transmission optical signal amplitude of each carrier is set from the transmission power of the carrier, the transmission optical signal phase of each carrier is set from the transmission data sequence of each carrier, and the transmission path optical fiber is determined from the transmission optical signal amplitude of each carrier. Determining the optical electric field amplitude of the four-wave mixed light generated therein, determining the optical electric field phase of the four-wave mixed light from the transmission optical signal phase of each carrier wave, and the modulator drive signal waveform Light transport Is applied to a wave modulates the continuous light, and generating an optical transmission signal, characterized in that it comprises a transmitting multiplexes the optical transmission signal.
The invention described in claim 11 is the optical signal transmission device according to claim 10, wherein setting the modulator driving signal waveform includes two parallel Mach-Zehnder type light generating the transmission optical signal. The modulator driving voltage is set by inputting a compensation waveform for pre-compensating the optical nonlinear waveform deterioration to the inverse characteristic of the modulator driving voltage-optical output characteristic.

本発明によれば、FWMクロストークによる受信波形劣化を低減する光信号送信装置を実現することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to implement | achieve the optical signal transmitter which reduces the receiving waveform degradation by FWM crosstalk.

本発明の第一の実施形態に係る光非線形光信号送信装置の構成例を示す図である。It is a figure which shows the structural example of the optical nonlinear optical signal transmitter which concerns on 1st embodiment of this invention. 図1の光ベクトル変調器の構成例を示す図である。It is a figure which shows the structural example of the optical vector modulator of FIG. 図1の変調器駆動信号波形設定手段の構成例を示す図である。It is a figure which shows the structural example of the modulator drive signal waveform setting means of FIG. 図3の四光波混合光補償信号波形演算機能の構成例を示す図である。It is a figure which shows the structural example of the four-wave mixing light compensation signal waveform calculation function of FIG. 図4の四光波混合光補償I-Q成分演算機能の構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of a four-wave mixed light compensation IQ component calculation function of FIG. 4. 図3の変調器駆動振幅設定機能の構成例を示す図である。It is a figure which shows the structural example of the modulator drive amplitude setting function of FIG. 光ベクトル変調器を構成するMZ型光変調器の駆動電圧-光出力特性を示す図である。It is a figure which shows the drive voltage-light output characteristic of the MZ type | mold optical modulator which comprises an optical vector modulator. 本発明の第一の実施形態に係る構成例において、Back-to-Backでの受信アイダイアグラムのシミュレーション結果を示す図であり、(a)はI成分、(b)はQ成分を示す図である。In the configuration example according to the first embodiment of the present invention, it is a diagram showing a simulation result of the reception eye diagram in Back-to-Back, (a) is an I component, (b) is a diagram showing a Q component is there. 本発明の第一の実施形態に係る構成例において、Back-to-Backでの受信信号点分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the received signal point distribution in Back-to-Back in the structural example which concerns on 1st embodiment of this invention. 本発明によるFWMクロストーク補償をせず、送信パワー5.0dBm/chで零分散シフトファイバに伝送させた場合の受信アイダイアグラムのシミュレーション結果を示す図であり、(a)はI成分、(b)はQ成分を示す図である。It is a diagram showing a simulation result of a reception eye diagram when transmitted to a zero dispersion shifted fiber at a transmission power of 5.0 dBm / ch without FWM crosstalk compensation according to the present invention, (a) is an I component, (b) Is a diagram showing a Q component. 本発明によるFWMクロストーク補償をせず、送信パワー5.0dBm/chで零分散シフトファイバに伝送させた場合の受信信号点分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the received signal point distribution at the time of transmitting to a zero dispersion | distribution shift fiber by transmission power 5.0dBm / ch, without performing FWM crosstalk compensation by this invention. 本発明の第一の実施形態に係る構成例において、光変調器駆動信号波形および各チャネルのプリコーディングデータのシミュレーション結果例を示す図であり、(a)はI成分、(b)はQ成分を示す図である。In the configuration example according to the first embodiment of the present invention, it is a diagram showing a simulation result example of the optical modulator drive signal waveform and precoding data of each channel, (a) is an I component, (b) is a Q component FIG. 図12のシミュレーション結果において、光ベクトル変調器を構成するMZ型光変調器の駆動電圧-光出力特性を示す図である。FIG. 13 is a diagram showing drive voltage-light output characteristics of an MZ type optical modulator constituting the optical vector modulator in the simulation result of FIG. 本発明の第一の実施形態に係る構成例において、送信パワー5.0dBm/chで零分散シフトファイバに伝送させた場合の受信アイダイアグラムのシミュレーション結果を示す図であり、(a)はI成分、(b)はQ成分を示す図である。In the configuration example according to the first embodiment of the present invention, it is a diagram showing a simulation result of a reception eye diagram when transmitted to a zero dispersion shifted fiber at a transmission power of 5.0 dBm / ch, (a) is an I component, (b) is a diagram showing a Q component. 本発明の第一の実施形態に係る構成例において、送信パワー5.0dBm/chで零分散シフトファイバに伝送させた場合の受信信号点分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the received signal point distribution at the time of making it transmit to a zero dispersion | distribution shift fiber with the transmission power 5.0dBm / ch in the structural example which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る光非線形光信号送信装置の構成例を示す図である。It is a figure which shows the structural example of the optical nonlinear optical signal transmitter which concerns on 2nd embodiment of this invention. 図16の変調器駆動信号波形設定手段の構成例を示す図である。It is a figure which shows the structural example of the modulator drive signal waveform setting means of FIG. 本発明の第三の実施形態に係る光非線形光信号送信装置の構成例を示す図である。It is a figure which shows the structural example of the optical nonlinear optical signal transmitter which concerns on 3rd embodiment of this invention.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第一の実施形態)
本発明の第一の実施形態は、WDM伝送における光信号送信装置に係る実施形態である。図1に第一の実施形態の構成例を示す。この送信装置100は、複数波長の光位相が同期した多波長光を発生する光位相同期多波長光源102と、発生した多波長光を波長ごとに分離する光分波器104と、各波長の光をそれぞれの変調器駆動信号で変調する光ベクトル変調器106−1〜106−Mと、これらの変調信号光を合波する光合波器108と、各チャネルのデータパターンからFWMクロストークを前置補償する変調器駆動信号波形を生成する変調器駆動信号波形設定手段110とを備えている。シミュレーション結果等においては、DQPSK方式、波長多重数が3波の場合を例に説明するが、本実施形態は任意の変調方式、任意の波長多重数に適用できること留意されたい。
(First embodiment)
The first embodiment of the present invention is an embodiment according to an optical signal transmission apparatus in WDM transmission. FIG. 1 shows a configuration example of the first embodiment. The transmission device 100 includes an optical phase-locked multi-wavelength light source 102 that generates multi-wavelength light in which optical phases of a plurality of wavelengths are synchronized, an optical demultiplexer 104 that separates the generated multi-wavelength light for each wavelength, Optical vector modulators 106-1 to 106-M that modulate light with respective modulator drive signals, an optical multiplexer 108 that multiplexes these modulated signal lights, and FWM crosstalk from the data pattern of each channel. Modulator driving signal waveform setting means 110 for generating a modulator driving signal waveform to be compensated. In the simulation results and the like, a case where the DQPSK method and the number of wavelength multiplexing is three will be described as an example, but it should be noted that the present embodiment can be applied to an arbitrary modulation method and an arbitrary number of wavelength multiplexing.

光信号送信装置100は、WDM信号光の搬送波として、光位相同期多波長光を用いる。一般的には光位相同期多波長光の各光周波数はWDM信号光周波数に一致しており、周波数配置は等間隔である。光位相同期多波長光とは、隣接する各光周波数モードの光周波数差と光位相差が高確度に制御された光、すなわち各光周波数モード間のビート信号を検出するとその周波数と位相が時間的に非常に安定なものを想定する。光位相同期多波長光源102の実現方法としては、レーザ光源からの単一周波数モードまたは複数周波数モードの光の強度または位相を変調して、変調前より多くの複数周波数モードに変換する方法や、モード同期レーザの複数周波数モードを用いる方法、または、前述のように発生させた複数周波数モードを非線形光学媒質中の光カー効果のひとつである自己位相変調効果によるスペクトル拡大を利用する方法がある。光ベクトル変調器には、例えば電気光学効果を利用したマッハツェンダ(MZ)型光変調器を2台平行に並べて配列した構成が既に存在している。その構成例を図2に示す。この変調器200では、各MZ型光変調器202、204の両光路間の光位相差を光位相調整器206でπ/2に設定し、任意の振幅と位相を変調できる。   The optical signal transmitter 100 uses optical phase-locked multi-wavelength light as a carrier wave of WDM signal light. In general, each optical frequency of optical phase-locked multi-wavelength light matches the WDM signal light frequency, and the frequency arrangement is equally spaced. Optical phase-locked multi-wavelength light is light whose optical frequency difference and optical phase difference between adjacent optical frequency modes are controlled with high accuracy, that is, when a beat signal between optical frequency modes is detected, the frequency and phase are time Is assumed to be very stable. As a method for realizing the optical phase-locked multi-wavelength light source 102, a method of modulating the intensity or phase of light in a single frequency mode or a plurality of frequency modes from a laser light source and converting it to a plurality of multiple frequency modes before modulation, There are a method using a plurality of frequency modes of a mode-locked laser, and a method using a spectrum expansion due to a self-phase modulation effect which is one of the optical Kerr effects in a nonlinear optical medium. The optical vector modulator already has a configuration in which, for example, two Mach-Zehnder (MZ) type optical modulators using the electro-optic effect are arranged in parallel. An example of the configuration is shown in FIG. In this modulator 200, the optical phase difference between the optical paths of the MZ type optical modulators 202 and 204 is set to π / 2 by the optical phase adjuster 206, and arbitrary amplitude and phase can be modulated.

光位相同期多波長光源102の出力光は、光分波器104で各チャネルの搬送波として分波され、各チャネルの光ベクトル変調器106−1〜106−Mに入射する。光ベクトル変調器106で各チャネルの送信データをそれぞれ個別に変調し、光合波器108にて合波することで、WDM信号を送信する。また、本発明の装置では光分波器104から光合波器108までの各チャネルの光路において、各光路の光位相関係を保持する必要がある。そのため、例えば、光分波器104から光合波器108までの光回路を集積化しても良い。この光分波器や光合波器、光変調器を集積化する光集積化回路の実現例としては、ガラスを主成分とする光平面回路やインジウムリンを主成分とする光回路にMZ型光変調器を集積化する技術などが既に存在している。   The output light of the optical phase-locked multi-wavelength light source 102 is demultiplexed as a carrier wave of each channel by the optical demultiplexer 104 and enters the optical vector modulators 106-1 to 106-M of each channel. The optical vector modulator 106 individually modulates the transmission data of each channel, and the optical multiplexer 108 transmits the WDM signal by multiplexing. In the apparatus of the present invention, it is necessary to maintain the optical phase relationship of each optical path in the optical path of each channel from the optical demultiplexer 104 to the optical multiplexer 108. Therefore, for example, optical circuits from the optical demultiplexer 104 to the optical multiplexer 108 may be integrated. Examples of realization of an optical integrated circuit that integrates this optical demultiplexer, optical multiplexer, and optical modulator include optical planar circuits mainly composed of glass and optical circuits mainly composed of indium phosphide. A technology for integrating a modulator already exists.

光ベクトル変調器106を駆動する電気信号波形は、変調器駆動信号波形設定手段110にて、伝送路ファイバ内で発生するFWMクロストークを補償するよう予め演算された波形である。光角周波数ωnのチャネルn(n = 1,...,M)の主信号光の光電界包絡線をEsign(t)、光位相をφn(t)とすると、送信光電界Etxn(t)は、次式のように表せる。 The electric signal waveform for driving the optical vector modulator 106 is a waveform calculated in advance by the modulator driving signal waveform setting means 110 so as to compensate for the FWM crosstalk generated in the transmission line fiber. If the optical field envelope of the main signal light of the channel n (n = 1, ..., M) at the optical angular frequency ωn is Esig n (t) and the optical phase is φ n (t), the transmitted optical field Etx n (t) can be expressed as:

Figure 0004827944
Figure 0004827944

また、そのチャネルの同一周波数に混入するFWMクロストーク光の光電界包絡線をΔExtn(t)、光位相をΔφxtn(t)とする。ここで、ΔExtn(t)とΔφxtn(t)は、WDM信号光の光ファイバ伝送において、チャネルnに混入する様々なWDM信号光の組合せで発生するFWMクロストーク光を合成したものとする。受信端では、主信号光とFWMクロストーク光の両方が入力され、その受信光電界Erxn(t)は、次式のように表せる。 Further, the optical electric field envelope of the FWM crosstalk light mixed in the same frequency of the channel is ΔExt n (t) and the optical phase is Δφxt n (t). Here, ΔExt n (t) and Δφxt n (t) are obtained by combining FWM crosstalk light generated by a combination of various WDM signal lights mixed in channel n in optical fiber transmission of WDM signal light. . At the receiving end, both the main signal light and the FWM crosstalk light are input, and the received light electric field Erx n (t) can be expressed by the following equation.

Figure 0004827944
Figure 0004827944

ここで、Erxn(t)の実部のみをとると受信端での信号光は次式で表せる。 Here, if only the real part of Erx n (t) is taken, the signal light at the receiving end can be expressed by the following equation.

Figure 0004827944
Figure 0004827944

本発明では、WDM信号光間の光位相関係が同期しているので、上式で表されているFWMクロストーク光による波形劣化は決定論的になる。そのため、そのFWMクロストーク光を予め送信端で予等化することで、受信端での波形劣化を低減できる。数式(3)のクロストーク光成分を受信端で打消すような予等化を行うと、送信端補償信号光電界Etxcn(t)は次式で表せる。 In the present invention, since the optical phase relationship between the WDM signal lights is synchronized, the waveform deterioration due to the FWM crosstalk light expressed by the above equation becomes deterministic. Therefore, waveform degradation at the receiving end can be reduced by pre-equalizing the FWM crosstalk light at the transmitting end. Doing pre-equalization to cancel at the receiving end crosstalk light component of formula (3), the transmitting end compensation signal light field Etxc n (t) is expressed by the following equation.

Figure 0004827944
Figure 0004827944

この式の第一項は光ベクトル変調器106の同相成分(I成分)として、第二項は直交成分(Q成分)として作り出すことができる。 The first term of this equation can be created as an in-phase component (I component) of the optical vector modulator 106, and the second term can be created as a quadrature component (Q component).

図3に変調器駆動信号波形設定手段の構成例を示す。ここでは、DQPSK方式の場合を例に説明するが、本発明は任意の変調方式に適用できることに留意されたい。変調器駆動信号波形設定手段300は、チャネル1〜Mに割り当てられたデータ1〜Mを受信側で遅延検波できるように各データをプリコードするDQPSKプリコーダ302−1〜302−Mと、プリコーディングされたデータdI,1、dQ,1〜dI,M、dQ,Mから各送信チャネルの送信光位相φ1〜φMを割り当てる送信光位相設定機能304−1〜304−Mと、各送信チャネルの送信振幅Esig1〜EsigMを割り当てる送信光振幅設定機能306と、送信光位相φ1〜φMと送信振幅Esig1〜EsigMから受信端でFWMクロストーク光による波形劣化を補償する補償信号のI成分およびQ成分を算出するFWM光補償信号波形演算機能308−1〜308−Mと、プリコーディングされたデータdI,1、dQ,1〜dI,M、dQ,MとFWM光補償信号のI成分およびQ成分から光変調器を駆動する信号波形を設定する変調器駆動振幅設定機能310−1〜310−Mとを備えている。 FIG. 3 shows a configuration example of the modulator drive signal waveform setting means. Here, the case of the DQPSK system will be described as an example, but it should be noted that the present invention can be applied to an arbitrary modulation system. Modulator drive signal waveform setting means 300 includes DQPSK precoders 302-1 to 302-M that precode each data so that data 1 to M assigned to channels 1 to M can be delayed detected on the receiving side, and precoding data d I, 1, d Q, 1 ~d I, M, d Q, a transmission optical phase setting function 304-1 to 304-M for assigning a transmission optical phase phi 1 to [phi] M of each transmission channel from M A transmission optical amplitude setting function 306 for assigning transmission amplitudes Esig 1 to Esig M of each transmission channel, and waveform degradation due to FWM crosstalk light at the reception end from the transmission optical phases φ 1 to φ M and transmission amplitudes Esig 1 to Esig M FWM optical compensation signal waveform calculation functions 308-1 to 308-M for calculating the I component and Q component of the compensation signal to be compensated, and the precoded data d I, 1 , d Q, 1 to d I, M , d Q, to drive the light modulator from the I and Q components of M and FWM light compensation signal And a modulator drive amplitude setting function 310-1 to 310-M to set the issue waveform.

変調器駆動信号波形設定手段300では、DQPSKプリコーダ302により、各チャネルの送信信号データ1〜Mをシリアル−パラレル変換してI成分およびQ成分のデータを作り、それらをそれぞれ受信側で遅延検波できるようにプリコーディングする(非特許文献4)。プリコーディングデータdI,1、dQ,1〜dI,M、dQ,Mは、送信光位相設定機能304と変調器駆動振幅設定機能310に入力される。送信光位相設定機能304では、表1に従い、プリコーディングデータdI,1、dQ,1〜dI,M、dQ,Mから送信光位相φ1〜φMを設定する。 In the modulator drive signal waveform setting means 300, the DQPSK precoder 302 can serial-parallel convert the transmission signal data 1 to M of each channel to generate I component and Q component data, and delay detection can be performed on each of them on the receiving side. (Non-patent Document 4). The precoding data d I, 1 , d Q, 1 to d I, M , d Q, M are input to the transmission optical phase setting function 304 and the modulator drive amplitude setting function 310. In transmitting optical phase setting function 304, in accordance with Table 1, it sets a precoding data d I, 1, d Q, 1 ~d I, M, d Q, transmitted light phase phi 1 to [phi] M from M.

Figure 0004827944
Figure 0004827944

送信光振幅設定機能306では、送信信号の送信パワーP0から送信振幅E0を演算し、E0を送信振幅Esig1〜EsigMに設定する(本構成例ではDQPSK方式を想定しているのでEsig1〜EsigM = E0と設定する。)。P0とE0の関係は次式で与えられる。 In the transmission light amplitude setting function 306, transmission signal transmission power calculates the transmission amplitude E 0 from P 0 of, since the (present configuration example of setting the transmission amplitude Esig 1 ~Esig M a E 0 assumes the DQPSK scheme (Set Esig 1 to Esig M = E 0. ) The relationship between P 0 and E 0 is given by

Figure 0004827944
Figure 0004827944

送信光位相φ1〜φMと送信振幅Esig1〜EsigMはFWM光補償信号波形演算機能308に入力する。FWM光補償信号波形演算機能308では、送信光位相φ1〜φM、送信振幅Esig1〜EsigM、チャネル波長、チャネル番号、チャネル数、チャネル周波数間隔、伝送路ファイバの波長分散、波長分散スロープ、非線形屈折率、損失係数、およびファイバ長を用いて各チャネルにおける受信端でのFWMクロストーク光電界成分を演算し、この演算結果から受信端でFWMクロストークによる波形劣化を予等化する補償信号のI成分およびQ成分を算出する。FWM光補償信号波形演算機能の構成例は、図4に示し、後ほど説明する。プリコーディングデータdI,1、dQ,1〜dI,M、dQ,M(0≦dI,n≦1、0≦dQ,n≦1)とFWM光補償信号のI成分およびQ成分は変調器駆動振幅設定機能310に入力する。変調器駆動振幅設定機能310では、プリコーディングデータdI,1、dQ,1〜dI,M、dQ,MにFWM光補償信号のI成分およびQ成分を重畳することで、FWM光補償を予等化可能な変調器駆動信号波形V´I,1、V´Q,1〜V´I,M、V´Q,Mを設定する。変調器駆動振幅設定機能の構成例は図6に示し、後ほど説明する。 The transmission light phases φ 1 to φM and the transmission amplitudes Esig 1 to Esig M are input to the FWM optical compensation signal waveform calculation function 308. In FWM light compensation signal waveform calculation function 308, transmits optical phase Fai1~faiM, transmission amplitude Esig 1 ~Esig M, channel wavelength, channel number, channel number, channel frequency spacing, the wavelength dispersion of the transmission line fiber, the chromatic dispersion slope, non-linear The FWM crosstalk optical field component at the receiving end in each channel is calculated using the refractive index, loss factor, and fiber length, and the compensation signal that pre-equalizes waveform degradation due to FWM crosstalk at the receiving end is calculated from the calculation result. Calculate I component and Q component. A configuration example of the FWM optical compensation signal waveform calculation function is shown in FIG. 4 and will be described later. Precoding data d I, 1, d Q, 1 ~d I, M, d Q, M (0 ≦ d I, n ≦ 1,0 ≦ d Q, n ≦ 1) and the I component of the FWM light compensation signal and The Q component is input to the modulator drive amplitude setting function 310. The modulator drive amplitude setting function 310 superimposes the I component and the Q component of the FWM optical compensation signal on the precoding data d I, 1 , d Q, 1 to d I, M , d Q, M to thereby generate FWM light. Modulator drive signal waveforms V ′ I, 1 , V ′ Q, 1 to V ′ I, M , V ′ Q, M which can pre-equalize compensation are set. A configuration example of the modulator drive amplitude setting function is shown in FIG. 6 and will be described later.

図4に四光波混合光補償信号波形演算機能の構成例を示す。この波形演算機能400は、位相不整合量演算機能402と、縮退係数選択機能404と、FWM発生組合せ選択機能406と、振幅選択機能408と、位相選択機能410と、四光波混合光振幅演算機能412と、四光波混合光位相演算機能414と、四光波混合光補償I-Q成分演算機能416とを備える。波形演算機能400には、次の定数が入力される。すなわち、チャネル波長λn、チャネル周波数間隔Δf、波長分散Dn、波長分散スロープDs、非線形屈折率n2、ファイバ損失係数α、ファイバ長L、ファイバ屈折率n0、ファイバ実効断面積Aeff、ファイバ入力パワーP、チャネル番号n、チャネル数Mである。   FIG. 4 shows a configuration example of the four-wave mixed light compensation signal waveform calculation function. The waveform calculation function 400 includes a phase mismatch amount calculation function 402, a degeneration coefficient selection function 404, an FWM generation combination selection function 406, an amplitude selection function 408, a phase selection function 410, and a four-wave mixed light amplitude calculation function. 412, a four-wave mixing light phase calculation function 414, and a four-wave mixing light compensation IQ component calculation function 416. The following constants are input to the waveform calculation function 400. That is, channel wavelength λn, channel frequency interval Δf, chromatic dispersion Dn, chromatic dispersion slope Ds, nonlinear refractive index n2, fiber loss coefficient α, fiber length L, fiber refractive index n0, fiber effective area Aeff, fiber input power P, The channel number is n and the number of channels is M.

FWM光補償信号波形演算機能400は、送信光位相φ1〜φM、送信振幅Esig1〜EsigM、チャネル波長λn、チャネル番号n、チャネル周波数間隔Δf、伝送路ファイバの波長分散Dn、波長分散スロープDs、非線形屈折率n2、損失係数α、屈折率n0、実効断面積Aeff、および伝送路ファイバ長Lから、FWM補償信号のI成分およびQ成分を算出する。ここでは、チャネルnを例にFWM光補償信号波形演算機能の構成例を説明する。 FWM light compensation signal waveform calculation function 400, transmits optical phase Fai1~faiM, transmission amplitude Esig 1 ~Esig M, channel wavelength lambda] n, the channel number n, the channel frequency interval Delta] f, the wavelength dispersion Dn of transmission fiber, chromatic dispersion slope Ds Then, the I component and the Q component of the FWM compensation signal are calculated from the nonlinear refractive index n2, the loss coefficient α, the refractive index n0, the effective area Aeff, and the transmission line fiber length L. Here, a configuration example of the FWM optical compensation signal waveform calculation function will be described taking channel n as an example.

チャネルnでは、チャネル番号としてnが設定される。チャネルnの波長におけるFWM発生の組合せは、FWM発生組合せ選択機能406で設定される。FWM組合せ選択機能では、FWM光を構成する3つの電界のチャネル番号i, j, kを用いて、次式を満たす組合せ(i, j, k)を求める。
n = i+j-k(ただし、j ≠ k)
(1 ≦ i+j-k ≦ M) ・・・(6)
ここで、チャネルnにおいて、全チャネル番号より求めた数式(6)の関係を満足するi, j, kの組合せをSn,1〜Sn,sとする。sは、チャネルnにおいて発生するFWM光の全組合せの総数を表す。例えば、M=4、n=2のとき、s=2であり、S2,1=(1,3,2)、S2,2=(1,4,3)である。
For channel n, n is set as the channel number. The combination of FWM generation at the wavelength of channel n is set by the FWM generation combination selection function 406. In the FWM combination selection function, a combination (i, j, k) satisfying the following expression is obtained using channel numbers i, j, k of three electric fields constituting the FWM light.
n = i + jk (where j ≠ k)
(1 ≤ i + jk ≤ M) (6)
Here, in channel n, a combination of i, j, and k that satisfies the relationship of Equation (6) obtained from all channel numbers is represented by Sn , 1 to Sn , s . s represents the total number of all combinations of FWM light generated in channel n. For example, when M = 4 and n = 2, s = 2, S 2,1 = ( 1 , 3, 2 ), and S 2,2 = (1, 4, 3).

振幅選択機能408では、チャネルnにおいて、FWM光発生組合せSn,1〜Sn,sと電界振幅Esig1〜EsigMから、電界振幅成分(Ei,n,1 , Ej,n,1 , Ek,n,1 , En,n,1)〜(Ei,n,s , Ej,n,s , Ek,n,s , En,n,s)を出力する。 The amplitude selection function 408, the channel n, the FWM light generating combinations S n, 1 to S n, s and the electric field amplitude Esig 1 ~Esig M, the electric field amplitude component (E i, n, 1, E j, n, 1 , E k, n, 1 , E n, n, 1 ) to (E i, n, s , E j, n, s , E k, n, s , E n, n, s ) are output.

同様に位相選択機能410では、チャネルnにおいて、FWM光発生組合せSn,1〜Sn,sと電界位相φ1〜φMから、電界位相成分(φi,n,1 , φj,n,1 , φk,n,1 , φn,n,1)〜(φi,n,s , φj,n,s , φk,n,s , φn,n,s)を出力する。 Similarly, in the phase selection function 410, in the channel n, the electric field phase components (φ i, n, 1 , φ j, n, 1 , φ) are obtained from the FWM light generation combinations Sn, 1 to Sn, s and the electric field phases φ1 to φM. k, n, 1 , φ n, n, 1 ) to (φ i, n, s , φ j, n, s , φ k, n, s , φ n, n, s ) are output.

位相不整合量演算機能402では、チャネルnにおけるFWM発生組合せSn,s、チャネル波長λn、チャネル周波数間隔Δf、伝送路ファイバの波長分散Dn、および波長分散スロープDsを用いて位相不整合量Δkn,sを求める。このΔkn,sは次式で与えられる。 The phase mismatching amount calculation function 402, FWM occurs combinations Sn in the channel n, s, the channel wavelength lambda] n, the channel frequency interval Delta] f, the wavelength dispersion Dn of transmission fiber, and using the wavelength dispersion slope Ds phase mismatch amount .DELTA.k n , s . This Δk n, s is given by the following equation.

Figure 0004827944
Figure 0004827944

ただし、c0は光速である。 However, c 0 is the speed of light.

縮退係数選択機能404では、チャネルnにおける位相不整合量Δkn,sと、FWM発生組合せSn,sを用いてFWM光の縮退係数Di,jを求める。Di,jは、Sn,sのiとjが等しいときDi,j=3となり、iとjが等しくないときDi,j=6となる。 In the degeneration coefficient selection function 404, the degeneration coefficient D i, j of the FWM light is obtained using the phase mismatch amount Δkn , s in the channel n and the FWM generation combination S n, s . D i, j is D i, j = 3 when i and j of Sn , s are equal, and D i, j = 6 when i and j are not equal.

四光波混合光振幅演算機能412では、振幅選択機能408からの電界振幅成分(Ei,n,1 , Ej,n,1 , Ek,n,1 , En,n,1)〜(Ei,n,s , Ej,n,s , Ek,n,s , En,n,s)と、縮退係数Di,j、位相不整合量Δkn,s、非線形屈折率n2、ファイバ損失係数α、ファイバ長L、ファイバ屈折率n0、およびファイバ実効断面積Aeffを用いて、FWMクロストークの光電界振幅ΔEn,sを求める。その演算式は次式で与えられる。 In the four-wave mixed light amplitude calculation function 412, the electric field amplitude components (E i, n, 1 , E j, n, 1 , E k, n, 1 , E n, n, 1 ) to ( E i, n, s , E j, n, s , E k, n, s , E n, n, s ), degeneration coefficient D i, j , phase mismatch amount Δk n, s , nonlinear refractive index n2 Then, the optical field amplitude ΔE n, s of the FWM crosstalk is obtained by using the fiber loss coefficient α, the fiber length L, the fiber refractive index n0, and the fiber effective area Aeff. The arithmetic expression is given by the following expression.

Figure 0004827944
Figure 0004827944

ここでPxtn,sは次式で表せる(非特許文献5)。 Here, Pxt n, s can be expressed by the following equation (Non-Patent Document 5).

Figure 0004827944
Figure 0004827944

ここで、Pi、Pj、Pkはチャネルi, j, kの送信パワーを表す。また、χxxxx (3)は3次の非線形感受率を表し、次式で与えられる。 Here, P i , P j , and P k represent the transmission power of channels i, j, and k. Χ xxxx (3) represents a third-order nonlinear susceptibility and is given by the following equation.

Figure 0004827944
Figure 0004827944

一方、四光波混合光位相演算機能414では、位相選択機能410からの電界位相成分(φi,n,1 , φj,n,1 , φk,n,1 , φn,n,1)〜(φi,n,s , φj,n,s , φk,n,s , φn,n,s)と、位相不整合量Δkn,sおよびファイバ損失係数αを用いて、FWMクロストークの光電界位相差Δφn,sを求める。Δφn,sはチャネルnの主信号光に対する位相差である。この演算式は次式で与えられる。 On the other hand, in the four-wave mixing optical phase calculation function 414, the electric field phase component (φ i, n, 1 , φ j, n, 1 , φ k, n, 1 , φ n, n, 1 ) from the phase selection function 410 is obtained. ~ (Φ i, n, s , φ j, n, s , φ k, n, s , φ n, n, s ), phase mismatch amount Δkn , s and fiber loss factor α, The optical field phase difference Δφ n, s of the crosstalk is obtained. Δφ n, s is a phase difference with respect to the main signal light of channel n. This arithmetic expression is given by the following expression.

Figure 0004827944
Figure 0004827944

ここでδθn,sは位相不整合量Δkn,sによって伝送光ファイバ出力のFWM光が位相回転する位相シフト量を表す。 Here, Δθ n, s represents a phase shift amount by which the FWM light output from the transmission optical fiber is rotated in phase by the phase mismatch amount Δkn , s .

四光波混合光補償I-Q成分演算機能416では、FWMクロストークの光電界振幅ΔEn,s、光電界位相差Δφn,s、およびチャネルnの光電界振幅En,n,sから四光波混合光補償波形のI成分およびQ成分を求める。図5に四光波混合光補償I-Q成分演算機能の構成例を示す。この演算機能500では、チャネルnにおけるs個のFWM光電界の合成成分のI成分を求めるFWM光電界合成I成分演算機能502と、そのもう一方のQ成分を求めるFWM光電界合成Q成分演算機能504と、FWM光電界合成振幅演算機能506と、FWM光電界合成位相演算機能508と、補償光電界振幅比設定機能510とを備える。 In the four-wave mixing light compensation IQ component calculation function 416, four-wave mixing is performed from the optical field amplitude ΔE n, s of the FWM crosstalk, the optical field phase difference Δφ n, s , and the optical field amplitude E n, n, s of the channel n. Find the I and Q components of the optical compensation waveform. FIG. 5 shows a configuration example of the four-wave mixing light compensation IQ component calculation function. In this calculation function 500, an FWM optical electric field synthesis I component calculation function 502 for obtaining an I component of a composite component of s FWM optical electric fields in channel n, and an FWM optical electric field synthesis Q component calculation function for obtaining the other Q component. 504, an FWM optical electric field synthesis amplitude calculation function 506, an FWM optical electric field synthesis phase calculation function 508, and a compensation optical electric field amplitude ratio setting function 510.

FWM光電界合成I成分演算機能502では、ΔEn,sとΔφn,sからFWM光電界の合成のI成分ΔEI,nを求める。ΔEI,nは次式で与えられる。 The FWM optical electric field synthesis I component calculation function 502 obtains the I component ΔE I, n for the synthesis of the FWM optical electric field from ΔE n, s and Δφ n, s . ΔE I, n is given by the following equation.

Figure 0004827944
Figure 0004827944

同様に、FWM光電界合成Q成分演算機能504では、ΔEn,sとΔφn,sからFWM光電界の合成のQ成分ΔEQ,nを求める。ΔEQ,nは次式で与えられる。 Similarly, the FWM optical field synthesis Q component calculation function 504 obtains the Q component ΔE Q, n for the synthesis of the FWM optical field from ΔE n, s and Δφ n, s . ΔE Q, n is given by the following equation.

Figure 0004827944
Figure 0004827944

FWM光電界合成振幅演算機能506では、ΔEI,nとΔEQ,nから受信端におけるFWM光電界の合成振幅ΔEfwmnを求める。ΔEfwmnは次式で与えられる。 In FWM light field combined amplitude calculation function 506, ΔE I, obtaining the composite amplitude DerutaEfwm n of the FWM light field n and Delta] E Q, from n at the receiving end. ΔEfwm n is given by the following equation.

Figure 0004827944
Figure 0004827944

FWM光電界合成位相演算機能508では、ΔEI,nとΔEQ,nから受信端におけるFWM光電界の合成位相Δφfwmnを求める。Δφfwmnは次式で与えられる。 In FWM light field synthesis phase calculation function 508, ΔE I, obtaining the combined phase Derutafaifwm n of the FWM light field n and Delta] E Q, from n at the receiving end. Δφfwm n is given by the following equation.

Figure 0004827944
Figure 0004827944

補償光電界振幅比設定機能510では、チャネルnの主信号の光電界振幅En,n,sとFWM光電界の合成振幅ΔEfwmnの振幅比および補償信号の振幅成分を求めるため、ΔEfwmnと -1/En,n,sを積算器で積算し、その結果を出力する。 In compensating optical field amplitude ratio setting function 510, for determining the amplitude component of the amplitude ratio and compensation signal combined amplitude DerutaEfwm n of optical field amplitude E n, n, s and FWM light field of the main signal channel n, and DerutaEfwm n -1 / E n, n, s is integrated by the integrator and the result is output.

四光波混合光補償信号波形演算機能500のチャネルnにおける出力であるCI,nとCQ,nは、補償光電界振幅比設定機能510の出力-ΔEfwmn/En,n,sとFWM光電界合成位相演算機能508の出力Δφfwmnからそれぞれ、次式で与えられる。 C I, n and C Q, n which are outputs in the channel n of the four-wave mixing light compensation signal waveform calculation function 500 are output from the compensation light electric field amplitude ratio setting function 510 -ΔEfwm n / En, n, s and FWM photoelectric respectively, from the output Derutafaifwm n of the field combined phase calculation function 508 is given by the following equation.

Figure 0004827944
Figure 0004827944

ここで、図3に示す変調器駆動振幅設定機能の構成例を図6に示す。この変調器駆動振幅設定機能600は、MZ型光変調器駆動電圧比調整演算機能602と、MZ型光変調器出力線形化振幅設定機能604とを備える。MZ型光変調器駆動電圧比調整演算機能602では、光ベクトル変調器(図1の106)のI成分用MZ型光変調器(図2の202)およびQ成分用MZ型光変調器(図2の204)を駆動する電圧のピーク間(Peak-to-Peak)電圧をそれぞれ2Vπ(ただし、VπはMZ型光強度変調器の半波長電圧)に調整するため、変調器駆動電圧dI,n、dQ,nと補償光電界振幅比CI,n、CQ,n (0≦CI,n≦1、0≦CQ,n≦1)から変調器駆動電圧VI,n、VQ,nを求める。VI,n、VQ,nはそれぞれ次式で与えられる。 Here, FIG. 6 shows a configuration example of the modulator drive amplitude setting function shown in FIG. The modulator driving amplitude setting function 600 includes an MZ type optical modulator driving voltage ratio adjustment calculation function 602 and an MZ type optical modulator output linearization amplitude setting function 604. In the MZ type optical modulator drive voltage ratio adjustment calculation function 602, the I component MZ type optical modulator (202 in FIG. 2) and the Q component MZ type optical modulator (FIG. 2) of the optical vector modulator (106 in FIG. 1). To adjust the peak-to-peak (Peak-to-Peak) voltage to 2V π (where V π is the half-wave voltage of the MZ type optical intensity modulator). I, n , d Q, n and compensation optical electric field amplitude ratio C I, n , C Q, n (0 ≦ C I, n ≦ 1, 0 ≦ C Q, n ≦ 1) to modulator drive voltage V I, Find n and V Q, n . V I, n and V Q, n are respectively given by the following equations.

Figure 0004827944
Figure 0004827944

ここで、光ベクトル変調器を構成するMZ型光変調器の駆動電圧-光出力特性を図7に示す。MZ型光変調器の消光点(消光電圧)をV0とすると、駆動電圧-光出力特性は次式で表せる。 Here, FIG. 7 shows the drive voltage-optical output characteristics of the MZ type optical modulator constituting the optical vector modulator. If the extinction point (extinction voltage) of the MZ type optical modulator is V 0 , the drive voltage-light output characteristic can be expressed by the following equation.

Figure 0004827944
Figure 0004827944

ただし、IoutはMZ型光変調器の光出力を、Vは駆動電圧を表している。 Here, I out represents the optical output of the MZ type optical modulator, and V represents the drive voltage.

上式のとおり、光出力Ioutは、駆動電圧Vに対して線形の応答を示さない。すなわち、変調器駆動電圧VI,n、VQ,nを駆動電圧とした場合、その光出力は線形の応答を示さない。そこで、駆動電圧に対して線形の光出力となるように、図6中のMZ型光変調器出力線形化振幅設定手段604で光変調器駆動電圧の振幅を調整する。MZ型光変調器の光出力を線形化するには、VI,n(VQ,n)の線形出力YI,n(YQ,n)をMZ型光変調器の駆動電圧-光出力特性の逆特性に入力すればよい。この関係は次式で与えられる。 As described above, the light output I out does not show a linear response to the drive voltage V. That is, when the modulator drive voltages V I, n and V Q, n are used as drive voltages, the optical output does not show a linear response. Therefore, the amplitude of the optical modulator driving voltage is adjusted by the MZ type optical modulator output linearization amplitude setting means 604 in FIG. 6 so that the optical output is linear with respect to the driving voltage. To linearize the optical output of the MZ type optical modulator, the linear output Y I, n (Y Q, n ) of V I, n (V Q, n ) is used as the drive voltage-optical output of the MZ type optical modulator. What is necessary is just to input into the reverse characteristic of a characteristic. This relationship is given by

Figure 0004827944
Figure 0004827944

上式のV´I,nおよびV´Q,nをそれぞれI成分およびQ成分の補償用変調器駆動電圧と呼ぶ。 VI, n and VQ, n in the above equation are called I component and Q component compensation modulator driving voltages, respectively.

図1の光ベクトル変調器106でI成分用MZ型光変調器(図2の202)はV0のバイアス電圧を与えてV´I,nで駆動し、Q成分用MZ型光変調器(図2の204)はV0のバイアス電圧を与えてV´Q,nで駆動することで送信信号光を生成すると、信号光の受信端でのFWMクロストークによる受信波形劣化を低減できる。 In the optical vector modulator 106 in FIG. 1, an I component MZ optical modulator (202 in FIG. 2) is driven by V ′ I, n by applying a bias voltage of V 0 , and a Q component MZ optical modulator ( 204) in FIG. 2 can reduce reception waveform deterioration due to FWM crosstalk at the signal light receiving end when a transmission signal light is generated by applying a bias voltage of V 0 and driving with V′Q , n .

図1から図7に示した本発明の光非線形光信号送信装置の第一の実施形態に係る構成例におけるFWMクロストーク補償動作を図8から図14に示すシミュレーション結果を使って説明する。なおここでは、DQPSK方式における波長多重数が3波の場合を例に説明するが、本実施形態は任意の変調方式、任意の波長多重数に適用できること留意されたい。たとえば、IM-DD方式の場合には、表1のマッピングがφに関するものではなくて、Esig(0 or 1)に関するものとなる。   The FWM crosstalk compensation operation in the configuration example according to the first embodiment of the optical nonlinear optical signal transmission device of the present invention shown in FIGS. 1 to 7 will be described using the simulation results shown in FIGS. Here, a case where the number of wavelength multiplexing in the DQPSK system is three will be described as an example, but it should be noted that this embodiment can be applied to any modulation system and any number of wavelength multiplexing. For example, in the case of the IM-DD system, the mapping in Table 1 is not related to φ but related to Esig (0 or 1).

シミュレーションでは、ビットレート50Gbit/sのNon Return to Zero(NRZ)-DQPSK信号、多波長位相同期光源の中心波長を1551.52nm、周波数間隔50GHz、受信端の光バンドパスフィルタの3dB帯域幅を50GHzとした。また、伝送路光ファイバは分散シフトファイバとし、各伝送路パラメータは、零分散波長1550.95nm、分散スロープ0.066ps/(nm2 km)、非線形屈折率2.6*10-20m2/W、ファイバ損失係数0.215dB/km、ファイバ長20km、ファイバ屈折率1.45、ファイバ実効断面積50μm2とした。 In the simulation, the non-return to zero (NRZ) -DQPSK signal with a bit rate of 50 Gbit / s, the center wavelength of the multi-wavelength phase-locked light source is 1551.52 nm, the frequency interval is 50 GHz, and the 3 dB bandwidth of the optical bandpass filter at the receiving end is 50 GHz. did. The transmission line optical fiber is a dispersion-shifted fiber, and the transmission line parameters are zero dispersion wavelength 1550.95 nm, dispersion slope 0.066 ps / (nm 2 km), nonlinear refractive index 2.6 * 10 -20 m 2 / W, fiber loss The coefficient was 0.215 dB / km, the fiber length was 20 km, the fiber refractive index was 1.45, and the effective fiber area was 50 μm 2 .

図8は前記シミュレーション条件におけるBack-to-BackのI成分およびQ成分の受信アイダイアグラム、図9はI成分およびQ成分の受信信号点をマッピングしたグラフである。なお、ここでの結果は伝送途中の光アンプでの光雑音(自然放出光)を付加していない結果である。また、光アンプでの光雑音を付加した場合、ビットエラーレート(BER)10-9を満たす光対雑音比(OSNR)値は約19.4dBであった。 FIG. 8 is a reception eye diagram of Back-to-Back I component and Q component under the simulation conditions, and FIG. 9 is a graph mapping reception signal points of I component and Q component. The result here is a result of not adding optical noise (spontaneously emitted light) in the optical amplifier during transmission. When optical noise in the optical amplifier was added, the optical to noise ratio (OSNR) value satisfying the bit error rate (BER) 10 -9 was about 19.4 dB.

図10は本発明によるFWMクロストーク補償をしなかった場合の、送信パワー5.0dBm/chでのI成分およびQ成分の受信アイダイアグラムである。図8のアイダイアグラムに比べ、図10のアイダイアグラムはチャネル2と3によって発生するFWM光がチャネル1へのコヒーレントクロストークとなり、その影響により受信波形が劣化している。図11は、このときのI成分およびQ成分の受信信号点をマッピングしたグラフである。波形劣化の影響で各信号点の分布は図9に比べ拡がっている。また、FWMクロストークを補償せず光アンプでの光雑音を付加した場合、ビットエラーレート(BER)10-9を満たすOSNR値は約23.3dBであった。 FIG. 10 is a reception eye diagram of the I component and the Q component at a transmission power of 5.0 dBm / ch when the FWM crosstalk compensation according to the present invention is not performed. Compared to the eye diagram of FIG. 8, in the eye diagram of FIG. 10, the FWM light generated by the channels 2 and 3 becomes coherent crosstalk to the channel 1, and the reception waveform is deteriorated due to the influence. FIG. 11 is a graph in which the received signal points of the I component and Q component at this time are mapped. The distribution of each signal point is wider than that in FIG. 9 due to the influence of waveform deterioration. In addition, when optical noise in an optical amplifier was added without compensating for FWM crosstalk, the OSNR value satisfying the bit error rate (BER) 10 -9 was about 23.3 dB.

図12から図15に前記シミュレーション条件における本発明を用いたFWMクロストーク補償の動作を示す。図12は送信パワー5.0dBm/chの場合の補償用変調器駆動電圧波形であり、(a)はI成分、(b)はQ成分である。図12は3波のうち最短波のチャネル1を補償し、その他の2チャネルは同一のデータパターンとした場合の動作条件である。光ベクトル変調器を構成する2並列のMZ型光変調器のVπはともに1.5V、バイアス電圧V0はともに1.5Vに設定する。補償用変調器駆動電圧のピーク電圧をV+1,ULとし、電圧値を図12(a)、(b)のように順次V+1,LL、V-1,LL、V-1,ULとする。図13は、このときのMZ型光変調器の駆動電圧-光出力特性である。光出力I1,ULとI1,LLの比率I1,UL/I1,LLは約0.7である。 FIGS. 12 to 15 show the operation of FWM crosstalk compensation using the present invention under the simulation conditions. FIG. 12 shows a compensation modulator driving voltage waveform when the transmission power is 5.0 dBm / ch, where (a) shows the I component and (b) shows the Q component. FIG. 12 shows the operating conditions when the channel 1 of the shortest wave among the three waves is compensated and the other two channels have the same data pattern. Both Vπ of the two parallel MZ type optical modulators constituting the optical vector modulator are set to 1.5V, and the bias voltage V0 is set to 1.5V. The peak voltage of the compensation modulator drive voltage is V + 1, UL , and the voltage values are sequentially V + 1, LL , V- 1, LL , V- 1, UL as shown in FIGS. 12 (a) and 12 (b). And FIG. 13 shows the drive voltage-light output characteristics of the MZ type optical modulator at this time. Light output I 1, UL and I 1, LL ratio I 1, UL / I 1, LL of about 0.7.

図14は本発明によるFWMクロストークを補償した場合の、送信パワー5dBm/chでのI成分およびQ成分の受信アイダイアグラムである。図14では、図10のアイダイアグラムでみられた受信波形劣化が抑えられ、FWMクロストークによる波形劣化が低減されている。図15はこのときのI成分およびQ成分の受信信号点をマッピングしたグラフである。ここでも波形劣化の影響が低減され各信号点の分布が図11に比べ収束しているのがわかる。また、FWMクロストーク補償し光アンプでの光雑音を付加した場合、ビットエラーレート(BER)10-9を満たすOSNR値は約20.0dBであった。 FIG. 14 is a reception eye diagram of I component and Q component at a transmission power of 5 dBm / ch when FWM crosstalk according to the present invention is compensated. In FIG. 14, the reception waveform deterioration seen in the eye diagram of FIG. 10 is suppressed, and the waveform deterioration due to FWM crosstalk is reduced. FIG. 15 is a graph in which the received signal points of the I component and Q component at this time are mapped. Again, it can be seen that the influence of waveform deterioration is reduced and the distribution of each signal point is converged compared to FIG. In addition, when FWM crosstalk compensation was performed and optical noise was added at the optical amplifier, the OSNR value satisfying the bit error rate (BER) 10 -9 was about 20.0 dB.

(第二の実施形態)
図16に本発明の光非線形光信号送信装置の第二の実施形態に係る構成例を示す。この送信装置1600は、複数波長の光位相が同期した多波長光を発生する光位相同期多波長光源1602と、発生した多波長光を波長ごとに分離する光分波器1604と、光分波器からの出力を分岐する光カプラと、各チャネルのデータパターンから変調器を駆動する信号波形を生成する変調器駆動信号波形設定手段1606と、各チャネルのデータパターンからFWMクロストークを補償する補償信号波形を生成する補償用変調器駆動信号波形設定手段1608と、各波長の光をそれぞれの変調器駆動信号で変調する光ベクトル変調器1610−1〜1610−Mと、各波長の光をそれぞれの補償用変調器駆動信号で変調する補償用光ベクトル変調器1612−1〜1612−Mと、光ベクトル変調器と補償用光ベクトル変調器の出力を合波する光カプラと、各チャネルの変調光を合波する光合波器1614とを備えている。
(Second embodiment)
FIG. 16 shows a configuration example according to the second embodiment of the optical nonlinear optical signal transmitter of the present invention. The transmitter 1600 includes an optical phase-locked multi-wavelength light source 1602 that generates multi-wavelength light in which optical phases of a plurality of wavelengths are synchronized, an optical demultiplexer 1604 that separates the generated multi-wavelength light for each wavelength, and optical demultiplexing. An optical coupler for branching the output from the modulator, modulator drive signal waveform setting means 1606 for generating a signal waveform for driving the modulator from the data pattern of each channel, and compensation for compensating for FWM crosstalk from the data pattern of each channel Compensation modulator drive signal waveform setting means 1608 for generating a signal waveform, optical vector modulators 1610-1 to 1610-M for modulating light of each wavelength with the respective modulator drive signals, and light of each wavelength, respectively The compensation optical vector modulators 1612-1 to 1612 -M for modulating with the compensation modulator driving signal, and the outputs of the optical vector modulator and the compensation optical vector modulator. An optical coupler that, and an optical multiplexer 1614 for multiplexing the modulated light of each channel.

ここでは、DQPSK方式を用いて本実施例の構成例を説明するが、本実施形態は任意の変調方式に適用できること留意されたい。変調器駆動信号波形設定手段1606は、DQPSKプリコーダの出力dI,n、dQ,nを光ベクトル変調器1610のVπの2倍の電圧(2Vπ)となるように設定する。このとき2Vπの電圧を得るために変調器ドライバを用いても良い。   Here, a configuration example of the present embodiment will be described using the DQPSK scheme, but it should be noted that the present embodiment can be applied to an arbitrary modulation scheme. Modulator drive signal waveform setting means 1606 sets the output dI, n, dQ, n of the DQPSK precoder so as to be a voltage (2Vπ) twice the Vπ of the optical vector modulator 1610. At this time, a modulator driver may be used to obtain a voltage of 2Vπ.

補償用変調器駆動信号波形設定手段の構成例を図17に示す。補償用変調器駆動信号波形設定手段1700は、変調器駆動信号波形設定手段(図16の1606)でプリコーディングされたデータdI,1、dQ,1〜dI,M、dQ,M(図16の※)から各送信チャネルの送信光位相φ1〜φMを割り当てる送信光位相設定機能1702−1〜1702−Mと、各送信チャネルの送信振幅Esig1〜EsigMを割り当てる送信振幅設定機能1704と、送信光位相φ1〜φMと送信振幅Esig1〜EsigMから受信端でFWMクロストーク光による波形劣化を補償する補償信号のI成分およびQ成分を算出するFWM光補償信号波形演算機能1706−1〜1706−Mと、補償信号のI成分およびQ成分から光変調器を駆動する信号波形を設定する変調器駆動振幅設定機能1708−1〜1708−Mとを備えている。送信光位相設定機能1702、送信振幅設定機能1704、およびFWM光補償信号波形演算機能1706は第一の実施例の図3から図5で説明したものと同様の構成とすることができる。変調器駆動振幅設定機能は、第一の実施例の図6中のMZM出力線形化振幅設定機能のVI,n(VQ,n)をCI,n(CQ,n)と置き換えることで同様の構成とすることができる。 A configuration example of the compensation modulator driving signal waveform setting means is shown in FIG. The compensating modulator drive signal waveform setting means 1700 is data d I, 1 , d Q, 1 to d I, M , d Q, M precoded by the modulator drive signal waveform setting means (1606 in FIG. 16). (* In FIG. 16), transmission optical phase setting functions 1702-1 to 1702-M for assigning transmission optical phases φ1 to φM of each transmission channel, and transmission amplitude setting functions for assigning transmission amplitudes Esig 1 to Esig M of each transmission channel 1704 and, FWM light compensation signal waveform calculation function for calculating the I and Q components of the compensation signal to compensate for waveform degradation due to FWM crosstalk light at the receiving end and the transmitting optical phase φ1~φM from transmission amplitude Esig 1 ~Esig M 1706 -1 to 1706-M, and modulator drive amplitude setting functions 1708-1 to 1708-M for setting a signal waveform for driving the optical modulator from the I component and Q component of the compensation signal. The transmission light phase setting function 1702, the transmission amplitude setting function 1704, and the FWM optical compensation signal waveform calculation function 1706 can have the same configuration as that described in FIGS. 3 to 5 of the first embodiment. The modulator drive amplitude setting function replaces V I, n (V Q, n ) of the MZM output linearization amplitude setting function in FIG. 6 of the first embodiment with C I, n (C Q, n ). It can be set as the same structure.

ここで、光ベクトル変調器(図16の1610)で生成された主信号光と補償用光ベクトル変調器(図16の1612)で生成された補償光の振幅比を調整する方法は、各チャネルの光ベクトル変調器と補償用光ベクトル変調器に入力する光の分岐比を変えても良いし、補償用光ベクトル変調器の光路へ可変減衰器を挿入しても良いし、補償用光ベクトル変調器の駆動電圧を調整してその光出力を調整しても良い。   Here, the method of adjusting the amplitude ratio between the main signal light generated by the optical vector modulator (1610 in FIG. 16) and the compensation light generated by the compensating optical vector modulator (1612 in FIG. 16) The split ratio of the light input to the optical vector modulator and the compensating optical vector modulator may be changed, a variable attenuator may be inserted in the optical path of the compensating optical vector modulator, or the compensating optical vector The light output may be adjusted by adjusting the driving voltage of the modulator.

(第三の実施形態)
図18に本発明の光非線形光信号送信装置の第三の実施形態に係る構成例を示す。この送信装置1800は、複数波長の光位相が同期した多波長光を発生する光位相同期多波長光源1802と、発生した多波長光を波長ごとに分離する光分波器1804と、各チャネルのデータパターンから変調器を駆動する信号波形を生成する変調器駆動信号波形設定手段1806と、各チャネルのデータパターンからFWMクロストークを補償する補償信号波形を生成する補償用変調器駆動信号波形設定手段1808と、光分波器からの出力を分岐する光カプラ1810−1〜1810−Mと、各波長の光をそれぞれの変調器駆動信号と補償用変調器駆動信号で変調するMZ型光変調器1812a−1〜1812a−M、1812b−1〜1812b−Mと、π/2の光位相差をつける光位相調整器1814−1〜1814−Mと、I成分およびQ成分の変調光を合波する光カプラ1816−1〜1816−Mと、光カプラからの出力を合波する光合波器1818とを備えている。
(Third embodiment)
FIG. 18 shows a configuration example according to the third embodiment of the optical nonlinear optical signal transmitter of the present invention. The transmitter 1800 includes an optical phase-locked multi-wavelength light source 1802 that generates multi-wavelength light in which optical phases of a plurality of wavelengths are synchronized, an optical demultiplexer 1804 that separates the generated multi-wavelength light for each wavelength, Modulator drive signal waveform setting means 1806 for generating a signal waveform for driving the modulator from the data pattern, and compensation modulator drive signal waveform setting means for generating a compensation signal waveform for compensating for FWM crosstalk from the data pattern of each channel 1808, optical couplers 1810-1 to 1810-M for branching the output from the optical demultiplexer, and an MZ type optical modulator for modulating the light of each wavelength with the respective modulator drive signal and compensation modulator drive signal 1812a-1 to 1812a-M, 1812b-1 to 1812b-M, optical phase adjusters 1814-1 to 1814-M for providing an optical phase difference of π / 2, I component and Q component It includes an optical coupler 1816-1~1816-M for multiplexing the modulated light, and an optical multiplexer 1818 for multiplexing the output from the optical coupler.

ここでは、DQPSK方式を用いて本実施例の構成例を説明するが、本実施形態は任意の変調方式に適用できること留意されたい。変調器駆動信号波形設定手段1806と、補償用変調器駆動信号波形設定手段1808の構成例は、第二の実施形態の図16と図17で説明したものと同様の構成とすることができる。   Here, a configuration example of the present embodiment will be described using the DQPSK scheme, but it should be noted that the present embodiment can be applied to an arbitrary modulation scheme. Configuration examples of the modulator drive signal waveform setting unit 1806 and the compensating modulator drive signal waveform setting unit 1808 can be the same as those described in FIGS. 16 and 17 of the second embodiment.

各チャネルにおいては、I成分変調用およびQ成分変調用の並列MZ型光変調器1812aおよび1812bが並列に配列し、片方の光路に光位相調整器1814が配置してある。光位相調整器は、両光路の位相差がπ/2となるように調整される。I成分変調用の並列MZ型光変調器1812aの片方のMZ型光変調器には変調器駆動信号波形設定手段1806からのDQPSKプリコーダの出力dI,n、dQ,nがMZ型光変調器のVπの2倍の電圧(2Vπ)となるように入力され、もう一方のMZ型光変調器には補償用変調器駆動信号波形設定手段1808からの補償用信号波形V´I,n、V´Q,nが入力される。このとき、各々のMZ型光変調器で生成された主信号光と補償光の振幅比を調整する方法は、並列MZ型光変調器の光分岐比を変えても良いし、V´I,nとV7Q,nが入力するMZ型光変調器の光路へ可変減衰器を挿入しても良いし、V´I,nとV´Q,nが入力するMZ型光変調器の駆動電圧を調整してその光出力を調整しても良い。Q成分変調用の並列MZ型光変調器もI成分変調用と同様の動作とする。 In each channel, parallel MZ type optical modulators 1812a and 1812b for I component modulation and Q component modulation are arranged in parallel, and an optical phase adjuster 1814 is arranged on one optical path. The optical phase adjuster is adjusted so that the phase difference between both optical paths is π / 2. In one of the MZ type optical modulators of the parallel MZ type optical modulator 1812a for I component modulation, the outputs d I, n and d Q, n of the DQPSK precoder from the modulator drive signal waveform setting means 1806 are MZ type optical modulations. Is input so as to have a voltage (2V π ) twice as high as V π of the detector, and the other MZ type optical modulator has a compensation signal waveform V ′ I from the compensation modulator drive signal waveform setting means 1808 , n and V´Q , n are input. At this time, the method of adjusting the amplitude ratio of the main signal light and the compensation light generated by each MZ type optical modulator may change the optical branching ratio of the parallel MZ type optical modulator, or V ′ I, A variable attenuator may be inserted in the optical path of the MZ type optical modulator to which n and V7 Q, n are input , and the drive voltage of the MZ type optical modulator to which V ′ I, n and V ′ Q, n are input May be adjusted to adjust the light output. The parallel MZ type optical modulator for Q component modulation also operates in the same manner as for I component modulation.

100 光信号送信装置
200 光ベクトル変調器
202 マッハツェンダ型光変調器
204 マッハツェンダ型光変調器
206 光位相調整器
300 変調器駆動信号波形設定手段
400 四光波混合光補償信号波形演算機能
500 四光波混合光補償I-Q成分演算機能
600 変調器駆動振幅設定機能
1600 光信号送信装置
1700 補償用変調器駆動信号波形設定手段
1800 光信号送信装置
1810 光カプラ
1812 マッハツェンダ型光変調器
1814 光位相調整器
1816 光カプラ
DESCRIPTION OF SYMBOLS 100 Optical signal transmitter 200 Optical vector modulator 202 Mach-Zehnder type optical modulator 204 Mach-Zehnder type optical modulator 206 Optical phase adjuster 300 Modulator drive signal waveform setting means 400 Four-wave mixing light compensation signal waveform calculation function 500 Four-wave mixing light Compensation IQ component calculation function 600 Modulator drive amplitude setting function 1600 Optical signal transmission device 1700 Compensation modulator drive signal waveform setting means 1800 Optical signal transmission device 1810 Optical coupler 1812 Mach-Zehnder type optical modulator 1814 Optical phase adjuster 1816 Optical coupler

Claims (11)

光搬送波間の光位相が同期した複数の連続光を発生させる多波長位相同期光源と、
前記多波長位相同期光源からの出力を波長ごとの搬送波に分波する光分波器と、
送信するデータ系列を用いて光非線形波形劣化を前置補償する変調器駆動信号波形を設定する変調器駆動信号波形設定手段であって、
各搬送波の送信パワーから各搬送波の送信光信号振幅を設定する機能と、
各搬送波の送信データ系列から各搬送波の送信光信号位相を設定する機能と、
各搬送波の送信光信号振幅から伝送路光ファイバ中で発生する四光波混合光の光電界振幅を求める四光波混合光振幅演算機能と、
各搬送波の送信光信号位相から前記四光波混合光の光電界位相を求める四光波混合光位相演算機能と
を備えた変調器駆動信号波形設定手段と、
前記変調器駆動信号波形を光搬送波に印加し、前記光分波器からの連続光を変調し、送信光信号を生成する光ベクトル変調器と、
前記送信光信号を合波させる光合波器と
を備えることを特徴とする光信号送信装置。
A multi-wavelength phase-locked light source that generates a plurality of continuous lights whose optical phases between optical carriers are synchronized;
An optical demultiplexer for demultiplexing the output from the multi-wavelength phase-locked light source into a carrier wave for each wavelength;
Modulator drive signal waveform setting means for setting a modulator drive signal waveform for pre-compensating optical nonlinear waveform degradation using a data series to be transmitted ,
A function of setting the transmission optical signal amplitude of each carrier from the transmission power of each carrier;
A function of setting the transmission optical signal phase of each carrier from the transmission data series of each carrier;
Four-wave mixing light amplitude calculation function for obtaining the optical electric field amplitude of the four-wave mixing light generated in the transmission line optical fiber from the transmission optical signal amplitude of each carrier;
A four-wave mixing optical phase calculation function for obtaining an optical electric field phase of the four-wave mixing light from a transmission optical signal phase of each carrier;
A modulator drive signal waveform setting means comprising:
An optical vector modulator that applies the modulator drive signal waveform to an optical carrier, modulates continuous light from the optical demultiplexer, and generates a transmission optical signal;
An optical signal transmission device comprising: an optical multiplexer for multiplexing the transmission optical signals.
前記変調器駆動信号波形設定手段は、
送信するデータ系列から送信光信号の振幅を設定する機能と、
送信するデータ系列から送信光信号の位相を設定する機能と、
前記四光波混合光の光電界振幅および光電界位相に基づいて、前記四光波混合光を送信端で補償する四光波混合光補償波形を演算する四光波混合光補償波形演算機能と、
送信データ系列と前記四光波混合光補償波形から光変調器を駆動する電圧振幅を設定する機能と
を備えた請求項1記載の光信号送信装置。
The modulator drive signal waveform setting means includes:
A function for setting the amplitude of the transmission optical signal from the data series to be transmitted;
The function of setting the phase of the transmitted optical signal from the data sequence to be transmitted;
Based on the optical electric field amplitude and optical electric field phase of the four-wave mixed light, a four-wave mixed light compensation waveform calculation function for calculating a four-wave mixed light compensation waveform for compensating the four-wave mixed light at a transmission end;
The optical signal transmission apparatus according to claim 1, further comprising: a function of setting a voltage amplitude for driving an optical modulator from a transmission data series and the four-wave mixed light compensation waveform.
請求項2に記載の光信号送信装置であって、
前記四光波混合光補償波形演算機能は、クロストークとなる伝送路光ファイバ中で発生する四光波混合光の受信端における光電界成分を求め、そのクロストーク光と同振幅・逆位相となる光電界成分を生成する変調器駆動信号波形を設定することを特徴とする光信号送信装置。
The optical signal transmission device according to claim 2,
The four-wave mixing light compensation waveform calculation function obtains an optical electric field component at the receiving end of the four-wave mixing light generated in the transmission line optical fiber that causes crosstalk, and the photoelectric wave having the same amplitude and opposite phase as the crosstalk light. An optical signal transmission device that sets a modulator drive signal waveform for generating a field component.
請求項3に記載の光信号送信装置であって、
前記四光波混合光補償波形演算機能は、前記送信光信号の振幅と前記送信光信号の位相、チャネル数、チャネル番号、チャネル周波数、チャネル周波数間隔と、伝送路光ファイバへの入力パワーと伝送路光ファイバの波長分散、波長分散スロープ、屈折率、非線形屈折率、損失係数、長さ、実行断面積をパラメータとし、各チャネルにおける四光波混合による受信端における光電界成分を計算によって求め、四光波混合クロストークを前置補償する補償波形を求めることを特徴とする光信号送信装置。
The optical signal transmission device according to claim 3,
The four-wave mixing optical compensation waveform calculation function includes the amplitude of the transmission optical signal, the phase of the transmission optical signal, the number of channels, the channel number, the channel frequency, the channel frequency interval, the input power to the transmission path optical fiber, and the transmission path. Using the chromatic dispersion, chromatic dispersion slope, refractive index, nonlinear refractive index, loss factor, length, and effective cross-sectional area of the optical fiber as parameters, the optical electric field component at the receiving end by four-wave mixing in each channel is obtained by calculation. An optical signal transmitting apparatus for obtaining a compensation waveform for pre-compensating mixed crosstalk.
前記変調器駆動信号波形設定手段は、
前記光ベクトル変調器を構成する2並列のマッハツェンダ型光変調器の駆動電圧―光出力特性の逆特性に前記補償波形を入力することで、変調器の駆動電圧を設定することを特徴とする請求項4に記載の光信号送信装置。
The modulator drive signal waveform setting means includes:
The modulator driving voltage is set by inputting the compensation waveform to the inverse characteristic of the driving voltage-optical output characteristic of the two parallel Mach-Zehnder optical modulators constituting the optical vector modulator. Item 5. The optical signal transmission device according to Item 4.
光搬送波間の光位相が同期した複数の連続光を発生させる多波長位相同期光源と、
前記多波長位相同期光源からの出力を波長ごとの搬送波に分波する光分波器と、
前記光分波器からの出力を2分岐する第1の光カプラと、
送信するデータ系列を用いて変調器駆動信号波形を設定する変調器駆動信号波形設定手段と、
送信するデータ系列を用いて光非線形波形劣化を補償する補償用変調器駆動信号波形を設定する補償用変調器駆動信号波形設定手段であって、
各搬送波の送信パワーから各搬送波の送信光信号振幅を設定する機能と、
各搬送波の送信データ系列から各搬送波の送信光信号位相を設定する機能と、
各搬送波の送信光信号振幅から伝送路光ファイバ中で発生する四光波混合光の光電界振幅を求める四光波混合光振幅演算機能と、
各搬送波の送信光信号位相から前記四光波混合光の光電界位相を求める四光波混合光位相演算機能と
を備えた補償用変調器駆動信号波形設定手段と、
前記第1の光カプラの一方の出力を入力し、前記変調器駆動信号波形を光搬送波に印加して、送信光信号を生成する光ベクトル変調器と、
前記第1の光カプラの他方の出力を入力し、前記補償用変調器駆動信号波形を光搬送波に印加し補償送信信号光を生成する補償用光ベクトル変調器と、
前記光ベクトル変調器からの出力と前記補償用光ベクトル変調器からの出力を合波する第2の光カプラと
前記第2の光カプラからの出力を合波させる光合波器と
を備えることを特徴とする光信号送信装置。
A multi-wavelength phase-locked light source that generates a plurality of continuous lights whose optical phases between optical carriers are synchronized;
An optical demultiplexer for demultiplexing the output from the multi-wavelength phase-locked light source into a carrier wave for each wavelength;
A first optical coupler for branching the output from the optical demultiplexer;
Modulator driving signal waveform setting means for setting a modulator driving signal waveform using a data series to be transmitted;
Compensation modulator drive signal waveform setting means for setting a compensation modulator drive signal waveform that compensates for optical nonlinear waveform degradation using a data series to be transmitted ,
A function of setting the transmission optical signal amplitude of each carrier from the transmission power of each carrier;
A function of setting the transmission optical signal phase of each carrier from the transmission data series of each carrier;
Four-wave mixing light amplitude calculation function for obtaining the optical electric field amplitude of the four-wave mixing light generated in the transmission line optical fiber from the transmission optical signal amplitude of each carrier;
A four-wave mixing optical phase calculation function for obtaining an optical electric field phase of the four-wave mixing light from a transmission optical signal phase of each carrier;
Compensation modulator drive signal waveform setting means comprising:
An optical vector modulator that inputs one output of the first optical coupler, applies the modulator drive signal waveform to an optical carrier, and generates a transmission optical signal;
A compensation optical vector modulator for inputting the other output of the first optical coupler and applying the compensation modulator drive signal waveform to an optical carrier to generate compensation transmission signal light;
A second optical coupler that combines the output from the optical vector modulator and the output from the compensation optical vector modulator, and an optical multiplexer that combines the output from the second optical coupler. An optical signal transmitter characterized by the above.
前記補償用変調器駆動信号波形設定手段は、The compensation modulator drive signal waveform setting means includes:
前記補償用光ベクトル変調器を構成する2並列のマッハツェンダ型光変調器の駆動電圧―光出力特性の逆特性に前記補償用変調器駆動信号波形を入力することで、変調器の駆動電圧を設定することを特徴とする請求項6に記載の光信号送信装置。The modulator driving voltage is set by inputting the compensation modulator driving signal waveform to the inverse characteristic of the driving voltage-optical output characteristics of the two parallel Mach-Zehnder optical modulators constituting the compensating optical vector modulator. The optical signal transmitter according to claim 6.
光搬送波間の光位相が同期した複数の連続光を発生させる多波長位相同期光源と、
前記多波長位相同期光源からの出力を波長ごとの搬送波に分波する光分波器と、
前記光分波器からの出力を2分岐する第3の光カプラと、
前記第3の光カプラからの出力の一方を入力し、2分岐する第4の光カプラと、
前記第3の光カプラからの出力の他方を入力し、2分岐する第5の光カプラと、
送信するデータ系列を用いて変調器駆動信号波形を設定する変調器駆動信号波形設定手段と、
送信データ系列を用いて光非線形波形劣化を補償する補償用変調器駆動信号波形を設定する補償用変調器駆動信号波形設定手段であって、
各搬送波の送信パワーから各搬送波の送信光信号振幅を設定する機能と、
各搬送波の送信データ系列から各搬送波の送信光信号位相を設定する機能と、
各搬送波の送信光信号振幅から伝送路光ファイバ中で発生する四光波混合光の光電界振幅を求める四光波混合光振幅演算機能と、
各搬送波の送信光信号位相から前記四光波混合光の光電界位相を求める四光波混合光位相演算機能と
を備えた補償用変調器駆動信号波形設定手段と、
前記第4の光カプラの出力の一方を入力し、前記変調器駆動信号波形のI成分を光搬送波に印加する第1のMZ型変調器と、
前記第4の光カプラの出力の他方を入力し、前記補償用変調器駆動信号波形のI成分を光搬送波に印加する第2のMZ型変調器と、
前記第5の光カプラの出力の一方を入力し、前記変調器駆動信号波形のQ成分を光搬送波に印加する第3のMZ型変調器と、
前記第5の光カプラの出力の他方を入力し、前記補償用変調器駆動信号波形のQ成分を光搬送波に印加する第4のMZ型変調器と、
前記第1のMZ型変調器の出力と前記第2のMZ型変調器の出力を合波する第6の光カプラと、
前記第3のMZ型変調器の出力と前記第4のMZ型変調器の出力を合波する第7の光カプラと、
前記第7の光カプラからの出力を入力し、前記第6の光カプラ出力とπ/2の位相差を与える位相器と、
前記第6の光カプラ出力と前記位相器の出力を合波する第8の光カプラと、
前記第8の光カプラ出力を合波させる光合波器と
を備えることを特徴とする光信号送信装置。
A multi-wavelength phase-locked light source that generates a plurality of continuous lights whose optical phases between optical carriers are synchronized;
An optical demultiplexer for demultiplexing the output from the multi-wavelength phase-locked light source into a carrier wave for each wavelength;
A third optical coupler for bifurcating the output from the optical demultiplexer;
A fourth optical coupler that receives one of the outputs from the third optical coupler and splits into two;
A fifth optical coupler which inputs the other of the outputs from the third optical coupler and branches into two;
Modulator driving signal waveform setting means for setting a modulator driving signal waveform using a data series to be transmitted;
Compensation modulator drive signal waveform setting means for setting a compensation modulator drive signal waveform that compensates for optical nonlinear waveform degradation using a transmission data sequence ,
A function of setting the transmission optical signal amplitude of each carrier from the transmission power of each carrier;
A function of setting the transmission optical signal phase of each carrier from the transmission data series of each carrier;
Four-wave mixing light amplitude calculation function for obtaining the optical electric field amplitude of the four-wave mixing light generated in the transmission line optical fiber from the transmission optical signal amplitude of each carrier;
A four-wave mixing optical phase calculation function for obtaining an optical electric field phase of the four-wave mixing light from a transmission optical signal phase of each carrier;
Compensation modulator drive signal waveform setting means comprising:
A first MZ type modulator that inputs one of the outputs of the fourth optical coupler and applies an I component of the modulator drive signal waveform to an optical carrier;
A second MZ type modulator that inputs the other of the outputs of the fourth optical coupler and applies the I component of the compensation modulator drive signal waveform to an optical carrier;
A third MZ modulator that inputs one of the outputs of the fifth optical coupler and applies a Q component of the modulator drive signal waveform to an optical carrier;
A fourth MZ modulator that inputs the other of the outputs of the fifth optical coupler and applies a Q component of the compensation modulator drive signal waveform to an optical carrier;
A sixth optical coupler for combining the output of the first MZ modulator and the output of the second MZ modulator;
A seventh optical coupler for combining the output of the third MZ modulator and the output of the fourth MZ modulator;
A phase shifter that inputs an output from the seventh optical coupler and gives a phase difference of π / 2 from the output of the sixth optical coupler;
An eighth optical coupler for combining the output of the sixth optical coupler and the output of the phase shifter;
An optical signal transmitter comprising: an optical multiplexer for multiplexing the output of the eighth optical coupler.
前記補償用変調器駆動信号波形設定手段は、The compensation modulator drive signal waveform setting means includes:
前記第2のMZ型変調器の駆動電圧―光出力特性の逆特性に前記補償用変調器駆動信号波形のI成分を入力し、前記第4のMZ型変調器の駆動電圧―光出力特性の逆特性に前記補償用変調器駆動信号波形のQ成分を入力することで、変調器の駆動電圧を設定することを特徴とする請求項8に記載の光信号送信装置。The I component of the compensation modulator driving signal waveform is input to the inverse characteristic of the driving voltage-optical output characteristic of the second MZ modulator, and the driving voltage-optical output characteristic of the fourth MZ modulator is 9. The optical signal transmission apparatus according to claim 8, wherein a driving voltage of the modulator is set by inputting a Q component of the compensation modulator driving signal waveform to the inverse characteristic.
波長分割多重伝送において光信号を送信する方法であって、
光搬送波間の光位相が同期した複数の連続光である多波長位相同期光を発生させることと、
前記多波長位相同期光を波長ごとの搬送波に分波することと、
送信するデータ系列を用いて光非線形波形劣化を前置補償する変調器駆動信号波形を設定することであって、
各搬送波の送信パワーから各搬送波の送信光信号振幅を設定することと、
各搬送波の送信データ系列から各搬送波の送信光信号位相を設定することと、
各搬送波の送信光信号振幅から伝送路光ファイバ中で発生する四光波混合光の光電界振幅を求めることと、
各搬送波の送信光信号位相から前記四光波混合光の光電界位相を求めることと
を含むことと、
前記変調器駆動信号波形を光搬送波に印加して連続光を変調し、送信光信号を生成することと、
前記送信光信号を合波して送信することと
を備えることを特徴とする方法。
A method for transmitting an optical signal in wavelength division multiplexing transmission,
Generating multi-wavelength phase-locked light that is a plurality of continuous lights in which optical phases between optical carriers are synchronized;
Demultiplexing the multi-wavelength phase-locked light into a carrier wave for each wavelength;
Setting a modulator drive signal waveform to precompensate for optical nonlinear waveform degradation using the data sequence to be transmitted ,
Setting the transmission optical signal amplitude of each carrier from the transmission power of each carrier;
Setting the transmission optical signal phase of each carrier from the transmission data sequence of each carrier;
Obtaining the optical electric field amplitude of the four-wave mixed light generated in the transmission line optical fiber from the transmission optical signal amplitude of each carrier;
Obtaining an optical electric field phase of the four-wave mixed light from a transmission optical signal phase of each carrier;
Including
Applying the modulator drive signal waveform to an optical carrier to modulate continuous light to generate a transmitted optical signal;
Combining and transmitting the transmitted optical signal.
前記変調器駆動信号波形を設定することは、Setting the modulator drive signal waveform
前記送信光信号を生成する2並列のマッハツェンダ型光変調器の駆動電圧―光出力特性の逆特性に前記光非線形波形劣化を前置補償する補償波形を入力することで、変調器の駆動電圧を設定することを特徴とする請求項10に記載の方法。By inputting a compensation waveform for pre-compensating the optical nonlinear waveform deterioration to the inverse characteristic of the drive voltage-optical output characteristic of the two parallel Mach-Zehnder optical modulators that generate the transmission optical signal, the drive voltage of the modulator is reduced. The method according to claim 10, wherein setting is performed.
JP2009063195A 2009-03-16 2009-03-16 Optical signal transmitter for wavelength division multiplexing transmission Active JP4827944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063195A JP4827944B2 (en) 2009-03-16 2009-03-16 Optical signal transmitter for wavelength division multiplexing transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063195A JP4827944B2 (en) 2009-03-16 2009-03-16 Optical signal transmitter for wavelength division multiplexing transmission

Publications (2)

Publication Number Publication Date
JP2010219779A JP2010219779A (en) 2010-09-30
JP4827944B2 true JP4827944B2 (en) 2011-11-30

Family

ID=42978153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063195A Active JP4827944B2 (en) 2009-03-16 2009-03-16 Optical signal transmitter for wavelength division multiplexing transmission

Country Status (1)

Country Link
JP (1) JP4827944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170019178A1 (en) * 2014-02-24 2017-01-19 The Regents Of The University Of California Nonlinearity cancellation in fiber optic transmission based on frequency-mutually-referenced carriers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426677B2 (en) * 2016-10-11 2018-11-21 日本電信電話株式会社 Optical transmission system and optical transmission method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813963B2 (en) * 2006-05-01 2011-11-09 日本電信電話株式会社 Optical transmitter, optical repeater, optical transmission system, and optical transmission method in wavelength division multiplexing transmission
JP4891016B2 (en) * 2006-09-22 2012-03-07 日本電信電話株式会社 Compensation of crosstalk in WDM transmission
JP4842100B2 (en) * 2006-11-14 2011-12-21 三菱電機株式会社 Distributed pre-equalized optical transmitter and optical communication system
JP4521884B2 (en) * 2007-03-23 2010-08-11 日本電信電話株式会社 Optical transmitter and relay node for reducing in-phase crosstalk between WDM channels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170019178A1 (en) * 2014-02-24 2017-01-19 The Regents Of The University Of California Nonlinearity cancellation in fiber optic transmission based on frequency-mutually-referenced carriers
US11418260B2 (en) 2014-02-24 2022-08-16 The Regents Of The University Of California Nonlinearity cancellation in fiber optic transmission based on frequency-mutually-referenced carriers

Also Published As

Publication number Publication date
JP2010219779A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP4278332B2 (en) Optical transmitter and optical transmission system
US9419720B2 (en) Optical signal transmitter
JP4813963B2 (en) Optical transmitter, optical repeater, optical transmission system, and optical transmission method in wavelength division multiplexing transmission
Chen et al. Multichannel single-sideband SCM/DWDM transmission systems
EP1271814B1 (en) High precision chromatic dispersion measuring method and automatic dispersion compensating optical link system that uses this method
US7660537B2 (en) Simultaneous electrical pre-compensation of self-phase modulation and chromatic dispersion
US9544060B2 (en) Optical transmitter and method for controlling the same
US7155071B2 (en) Device for Mach-Zehnder modulator bias control for duobinary optical transmission and associated system and method
US20060072924A1 (en) Duo-binary optical transmitter tolerant to chromatic dispersion
US6763197B1 (en) Optical transmitter and optical transmitter control method using variable duty ratio setting and alternate phase inversion for optical clock pulses
JP2000081597A (en) Optical data transmission device
JP4701192B2 (en) Transmission system and transmission method
JP4521884B2 (en) Optical transmitter and relay node for reducing in-phase crosstalk between WDM channels
Patnaik et al. Ultra high capacity 1.28 Tbps DWDM system design and simulation using optimized modulation format
JP5061854B2 (en) Optical transmitter and optical transmission system
Paloi et al. Analysis of the carrier suppressed single sideband modulation for long distance optical communication systems
US7349636B2 (en) Optical phase and intensity modulation with improved transmitters
US8213798B2 (en) Optical transmission apparatus, wavelength division multiplexing optical communication system and optical transmission method
JP4889661B2 (en) Optical multicarrier generator and optical multicarrier transmitter using the same
Huszaník et al. Comparative analysis of optical IQ modulation in four-channel DWDM system in the presence of fiber nonlinearities
Sharan et al. Link optimization and performance analysis of a 40 Gbps DQPSK modulated ultra DWDM system with 32 orthogonally polarized channels
JP4827944B2 (en) Optical signal transmitter for wavelength division multiplexing transmission
JP2014146915A (en) Digital optical transmitter, optical communication system, and digital optical transmission method
Paloi et al. Comparative analysis of long-haul system based on SSB modulation utilising dual parallel Mach–Zehnder modulators
US20020057478A1 (en) System and transmitter for transmitting optical data

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350