Nothing Special   »   [go: up one dir, main page]

JP4824871B2 - Method for producing acrolein and acrylic acid - Google Patents

Method for producing acrolein and acrylic acid Download PDF

Info

Publication number
JP4824871B2
JP4824871B2 JP2001194903A JP2001194903A JP4824871B2 JP 4824871 B2 JP4824871 B2 JP 4824871B2 JP 2001194903 A JP2001194903 A JP 2001194903A JP 2001194903 A JP2001194903 A JP 2001194903A JP 4824871 B2 JP4824871 B2 JP 4824871B2
Authority
JP
Japan
Prior art keywords
volume
propylene
acrylic acid
oxygen
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001194903A
Other languages
Japanese (ja)
Other versions
JP2003012589A (en
Inventor
聖午 渡辺
求 大北
俊裕 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001194903A priority Critical patent/JP4824871B2/en
Priority to TW091110485A priority patent/TW572885B/en
Priority to PCT/JP2002/004914 priority patent/WO2002098827A1/en
Priority to KR1020037015698A priority patent/KR100890675B1/en
Priority to US10/479,228 priority patent/US7217836B2/en
Publication of JP2003012589A publication Critical patent/JP2003012589A/en
Application granted granted Critical
Publication of JP4824871B2 publication Critical patent/JP4824871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固定床管型反応器を用いてプロピレンを固体酸化触媒の存在下に分子状酸素で気相接触酸化してアクロレインおよびアクリル酸を製造する方法に関するものである。
【0002】
【従来の技術】
プロピレンを気相接触酸化してアクロレインおよびアクリル酸を製造する際に使用する触媒に関しては数多くの提案がなされている。これら提案は主として触媒を構成する元素およびその比率に関するものである。
【0003】
該気相接触酸化は発熱反応であるため、触媒層で蓄熱が起こる。蓄熱の結果生じる局所的高温帯域はホットスポットと呼ばれ、この部分の温度が高すぎると過度の酸化反応を生じるので目的生成物の収率は低下する。このため、該酸化反応の工業的実施において、ホットスポットの温度抑制は重大な問題であり、特に生産性を上げるために原料ガス中におけるプロピレン濃度を高めた場合、ホットスポットの温度が高くなる傾向があることから反応条件に関して大きな制約を強いられているのが現状である。
【0004】
したがって、ホットスポット部の温度を抑えることは工業的に高収率でアクロレインおよびアクリル酸を生産する上で非常に重要である。また、特にモリブデン含有固体酸化触媒を用いる場合、モリブデン成分が昇華しやすいことから、ホットスポットの発生を防止することは重要である。
【0005】
ホットスポット部の温度を抑える方法として、これまでにいくつかの提案がなされている。例えば、特開昭55−113730号公報には、触媒組成を変動させて調製した活性の異なる複数個の触媒を原料ガス入口側から出口側に向かって活性がより高くなるように充填し、この触媒層にプロピレンおよび酸素を含む原料ガスを流通させる方法が開示されている。また、特開平8−92147号公報には、熱媒浴を備えた多管式固定床反応器を用いてプロピレンをアクロレインに気相酸化する際に、熱媒浴の温度が反応器の入口部と出口部の間で2〜10℃上がるように熱媒の流れを制御する方法が開示されている。
【0006】
これらの方法は反応器内の触媒層における原料ガス入口側での単位容積当たりの反応率を低くすることで、単位容積当たりの反応発熱量を抑え、結果としてホットスポット部の温度を低くしようとする方法である。
【0007】
【発明が解決しようとする課題】
しかし、これらの方法だけではホットスポット部の温度抑制が十分でなく、アクロレインおよびアクリル酸の収率が低いという問題があった。
【0008】
本発明は、固定床管型反応器にてプロピレンを固体酸化触媒の存在下に分子状酸素で気相接触酸化してアクロレインおよびアクリル酸を製造する方法において、ホットスポット部の温度を十分抑制し、アクロレインおよびアクリル酸を高収率で製造する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、固体酸化触媒が充填されている固定床管型反応器の触媒層に、プロピレンを4〜9容量%、酸素を7〜16容量%および水蒸気を5〜50容量%含む原料ガスを流通させるアクロレインおよびアクリル酸の製造方法において、前記原料ガスを流通させる前に、前記触媒層に、酸素、窒素および水蒸気を含み、かつプロピレンが0〜0.5容量%のガスを流通させながら250〜400℃の範囲まで昇温し、次いでプロピレンを1〜3.8容量%、酸素を7〜16容量%および水蒸気を5〜50容量%含むガスを250〜400℃で1時間以上流通させることを特徴とするアクロレインおよびアクリル酸の製造方法である。
【0010】
【発明の実施の形態】
本発明において、アクロレインおよびアクリル酸を合成する反応は固定床管型反応器を用いて実施される。管型反応器は特に限定されないが、工業的には内径10〜40mmの反応管を数千〜数万本備えた多管式反応器が好ましい。また、固定床管型反応器は熱媒浴を備えたものが好ましい。熱媒は特に限定されないが、例えば、硝酸カリウムおよび亜硝酸ナトリウムを含む塩溶融物が挙げられる。
【0011】
本発明において、用いる固体酸化触媒はこの酸化反応用の固体触媒であれば特に限定されず、従来から知られているモリブデンを含む複合酸化物等を用いることができるが、次の式(1)で表される複合酸化物が好ましい。
MoBiFeSi (1)
式(1)において、Mo、Bi、Fe、SiおよびOはそれぞれモリブデン、ビスマス、鉄、ケイ素および酸素を表し、Aはニッケルおよび/またはコバルト、Xはマグネシウム、亜鉛、クロム、マンガン、スズ、ストロンチウム、バリウム、銅、銀および鉛からなる群より選ばれた少なくとも1種の元素、Yはリン、ホウ素、イオウ、テルル、アルミニウム、ガリウム、ゲルマニウム、インジウム、ランタン、セリウム、ニオブ、タンタル、チタン、ジルコニウム、タングステンおよびアンチモンからなる群より選ばれた少なくとも1種の元素、Zはカリウム、ナトリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、f、g、hおよびiは各元素の原子比を表し、a=12のとき、0.01≦b≦5、0.01≦c≦5、1≦d≦12、0≦e≦10、0≦f≦10、0.001≦g≦3、0≦h≦20であり、iは前記各元素の原子価を満足するのに必要な酸素の原子比である。特に好ましい各元素の原子比は、a=12のとき、0.1≦b≦3、0.1≦c≦4、2≦d≦10、0.005≦g≦2である。
【0012】
本発明で用いる触媒を調製する方法は特に限定されず、成分の著しい偏在を伴わない限り、従来からよく知られている種々の方法を用いることができる。
【0013】
触媒の調製に用いる原料は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を組み合わせて使用することができる。例えばモリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が使用できる。
【0014】
本発明に用いられる触媒は無担体でもよいが、シリカ、アルミナ、シリカ・アルミナ、シリコンカーバイト等の不活性担体に担持させた担持触媒や、あるいはこれらで希釈した触媒を用いることもできる。
【0015】
本発明において、触媒層とは、固定床管型反応器の反応管内において少なくとも触媒が含まれている空間部分を指す。すなわち、触媒だけが充填されている空間だけでなく、触媒が不活性担体等で希釈されている空間部分も触媒層とする。ただし、反応管両端部の何も充填されていない空間部分や不活性担体等だけが充填されている空間部分は、触媒が実質的に含まれないので触媒層には含まない。
【0016】
固定床管型反応器を用いてプロピレンを固体酸化触媒の存在下に分子状酸素で気相接触酸化してアクロレインおよびアクリル酸を合成する反応(以下、単に酸化反応という。)は、通常250〜400℃の範囲の反応温度で実施される。ところが、250〜400℃程度の反応温度に保たれた触媒層に反応開始当初からプロピレンを4〜9容量%、酸素を7〜16容量%および水蒸気を5〜50容量%含む原料ガス(以下、単に原料ガスという。)を流通させると、触媒層の原料ガス入口部付近に最大温度の高いホットスポットが生じる。
【0017】
本願発明者はこの問題を解決すべく鋭意検討を行った結果、前記原料ガスを流通する前に、酸素、窒素および水蒸気を含み、かつプロピレンが0〜0.5容量%のガスを流通させながら250〜400℃の範囲まで昇温し、次いでプロピレンを1〜3.8容量%、酸素を7〜16容量%および水蒸気を5〜50容量%含むガスを250〜400℃で1時間以上流通させることにより、通常の反応条件、すなわち前記原料ガスを用いて250〜400℃の反応温度で酸化反応を行ったときに、ホットスポット部の温度を十分抑制でき、結果としてアクロレインおよびアクリル酸を高い収率で製造できることを見出した。
【0018】
250〜400℃の範囲まで昇温させる前の温度、すなわち昇温の開始温度は特に限定されないが、10〜240℃の範囲が好ましい。また、昇温速度も特に限定されないが、10〜500℃/時間が好ましく、特に20〜400℃/時間が好ましい。
【0019】
250〜400℃の範囲まで昇温させる際に流通させるガスは、酸素、窒素および水蒸気を含み、かつプロピレンが0〜0.5容量%のガスである。このガスの酸素、窒素および水蒸気の濃度は特に限定されないが、酸素1〜21容量%、窒素29〜98.5容量%、水蒸気は0.5〜50容量%が好ましい。また、プロピレンは0〜0.5容量%であり、0〜0.3容量%がより好ましく、0〜0.1容量%が特に好ましい。触媒層温度が250℃未満の状態でプロピレンの濃度が0.5容量%を超えるガスを流通させると、触媒上で生成した比較的高沸点を有する化合物が触媒の活性点を被毒する場合がある。このガスには、酸素、窒素、水蒸気、プロピレン以外の気体を含んでいてもよく、このような気体としては、例えば、二酸化炭素等の不活性ガス、低級飽和アルデヒド、ケトン等が挙げられる。ただし、低級飽和アルデヒド等の有機化合物を含む場合には、プロピレンおよびその他の有機化合物の濃度の和が0.5容量%以下であることが好ましい。昇温時のガスの流量は特に限定されないが、空間速度が100〜2000hr−1となるような流量が好ましい。この際の反応器内の圧力は、通常、常圧から数気圧である。
【0020】
昇温後に流通させるガスは、プロピレンを1〜3.8容量%、酸素を7〜16容量%および水蒸気を5〜50容量%含むガスである。プロピレンの濃度は、1〜3容量%が好ましく、特に1〜2.5容量%が好ましい。酸素濃度は、7.5〜14容量%が好ましく、特に8〜12容量%が好ましい。水蒸気濃度は、2〜40容量%が好ましく、特に4〜30容量%が好ましい。このガスを流通させる際の温度は、250〜400℃である。また、このガスを流通させる時間は1時間以上であり、1.5〜100時間が好ましく、特に2〜50時間が好ましい。このガスには、酸素、水蒸気、プロピレン以外の気体を含んでいてもよく、このような気体としては、例えば、窒素、二酸化炭素、低級飽和アルデヒド、ケトン等が挙げられる。昇温後に流通させるガスの流量は特に限定されないが、空間速度が100〜3000hr−1となるような流量が好ましい。この際の反応器内の圧力は、通常、常圧から数気圧である。このガスの流通時には最大温度の低いホットスポットが触媒層の広い部分に生じる。
【0021】
その後、通常の反応条件、すなわちプロピレンを4〜9容量%含む原料ガスを用いて250〜400℃の反応温度で酸化反応を行うと、ホットスポットの最大温度が抑制される。その結果、ホットスポット部での逐次酸化が抑制され、アクロレインおよびアクリル酸を高い収率で製造することができる。原料ガスの流量は特に限定されないが、空間速度が300〜3000hr−1となるような流量が好ましく、特に500〜2000hr−1となるような流量が好ましい。酸化反応の反応温度は250〜400℃が好ましく、特に270〜360℃が好ましい。また、反応圧力は常圧から数気圧まで実施できる。
【0022】
本発明の実施に際し、原料ガス、昇温時に流通させるガス、昇温後に流通させるガスの酸素源には、空気を用いるのが経済的に有利である。
【0023】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。なお、実施例および比較例中の「部」は質量部を意味する。触媒組成は触媒成分の原料仕込み量から求めた。反応器の熱媒としては硝酸カリウム50質量%および亜硝酸ナトリウム50質量%からなる塩溶融物を用いた。ホットスポットは触媒層のΔT(触媒層の温度−熱媒浴の温度)により検出した。
【0024】
触媒層内の温度は、反応管の管軸方向に対して垂直な断面の中心に設置した保護管に挿入した熱電対により測定した。なお、保護管内は反応系と隔絶されており、測温する位置は挿入する熱電対の長さを調節して変えることができる。
【0025】
原料ガスおよび反応生成ガスの分析はガスクロマトグラフィーにより行った。また、プロピレンの反応率、生成したアクロレインおよびアクリル酸の選択率、アクロレインおよびアクリル酸の収率はそれぞれ以下のように定義される。
プロピレンの反応率(%)=(B/A)×100
アクロレインの選択率(%)=(C/B)×100
アクリル酸の選択率(%)=(D/B)×100
アクロレインおよびアクリル酸の収率(%)={(C+D)/A}×100
ここで、Aは供給したプロピレンのモル数、Bは反応したプロピレンのモル数、Cは生成したアクロレインのモル数、Dは生成したアクリル酸のモル数である。
【0026】
[実施例1]
水1000部にパラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム6.2部、硝酸カリウム1.4部および20質量%シリカゾル212.7部を加え加熱攪拌した(A液)。別に水850部に60質量%硝酸50部を加え、均一にした後、硝酸ビスマス103.0部を加え溶解した。これに硝酸第二鉄114.4部、硝酸コバルト274.7部、硝酸ニッケル34.3部、硝酸亜鉛7.0部および硝酸マグネシウム30.3部を順次加え溶解した(B液)。A液にB液を加えスラリー状とした後、三酸化アンチモン10.3部を加え加熱攪拌し、水の大部分を蒸発させた。得られたケーキ状物を120℃で乾燥させた後、500℃で4時間焼成した。得られた焼成物100部に対してグラファイト2部を添加した後、打錠成形機により、外径4mm、内径2mm、長さ4mmのリング状に成形し、触媒1を得た。触媒1の酸素以外の元素の組成は、Mo120.1Bi0.9Fe1.2CoNi0.5Zn0.1Mg0.5Sb0.30.06Siであった。
【0027】
熱媒浴を備えた内径25.4mmの鋼鉄製固定床管型反応器の熱媒浴温度を180℃に設定し、原料ガス入口側に触媒1を620mLと外径5mmのアルミナ球130mLを混合したものを充填し、出口側に触媒1を750mLを充填した。このときの触媒層の長さは3005mmであった。
【0028】
この触媒層に酸素9容量%、水蒸気10容量%および窒素81容量%からなるガスを空間速度240hr−1で流通させながら熱媒浴温度を310℃まで50℃/時間で昇温した。
【0029】
次いで、熱媒浴温度310℃のまま、プロピレン2容量%、酸素8容量%、水蒸気15容量%および窒素75容量%からなるガス(昇温後流通ガス)を空間速度1000hr−1で3時間流通させた。
【0030】
続いて、熱媒浴温度310℃のまま、プロピレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%からなる原料ガスを反応温度(熱媒浴温度)340℃、空間速度1000hr−1で通じた。このときの触媒層温度を測定したところ、原料ガス入口側の端から500mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは29℃であった。また、プロピレン反応率は98.5%、アクロレイン選択率は88.3%、アクリル酸選択率は5.8%、アクロレインおよびアクリル酸の収率は92.7%であった。
【0031】
[実施例2]
昇温後流通ガスの組成をプロピレン2.6容量%、酸素8容量%、水蒸気15容量%および窒素74.4容量%に変更した以外は実施例1と同様にして酸化反応を行った。その結果、触媒層の原料ガス入口側の端から470mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは31℃であった。また、プロピレン反応率は98.6%、アクロレイン選択率は88.1%、アクリル酸選択率は5.8%、アクロレインおよびアクリル酸の収率は92.6%であった。
【0032】
[実施例3]
昇温後流通ガスの流通時間を1.5時間に変更した以外は実施例1と同様に酸化反応を行った。その結果、触媒層の原料ガス入口側の端から470mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは31℃であった。また、プロピレン反応率は98.6%、アクロレイン選択率は88.1%、アクリル酸選択率は5.8%、アクロレインおよびアクリル酸の収率は92.6%であった。
【0033】
[比較例1]
昇温後流通ガスを流通することなく、熱媒浴温度310℃まで昇温した後、即座に原料ガスを通じたこと以外は実施例1と同様にして酸化反応を行った。その結果、触媒層の原料ガス入口側の端から400mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは41℃であった。また、プロピレン反応率98.9%、アクロレイン選択率86.5%、アクリル酸選択率5.0%、アクロレインおよびアクリル酸の収率は90.5%であった。
【0034】
[比較例2]
昇温後流通ガスの流通時間を10分間に変更したこと以外は実施例1と同様にして酸化反応を行った。その結果、触媒層の原料ガス入口側の端から400mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは40℃であった。また、プロピレン反応率98.7%、アクロレイン選択率86.7%、アクリル酸選択率5.1%、アクロレインおよびアクリル酸の収率は90.6%であった。
【0035】
[比較例3]
昇温後流通ガスの組成をプロピレン4.5容量%、酸素12容量%、水蒸気10容量%および窒素73.5容量%に変更したこと以外は実施例1と同様にして酸化反応を行った。その結果、触媒層の原料ガス入口側の端から400mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは41℃であった。また、プロピレン反応率98.9%、アクロレイン選択率86.5%、アクリル酸選択率5.0%、アクロレインおよびアクリル酸の収率は90.5%であった。
【0036】
[比較例4]
昇温後流通ガスの組成をプロピレン0.6容量%、酸素8容量%、水蒸気15容量%および窒素76.4容量%に変更したこと以外は実施例1と同様にして酸化反応を行った。その結果、触媒層の原料ガス入口側の端から400mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは40℃であった。また、プロピレン反応率98.7%、アクロレイン選択率86.7%、アクリル酸選択率5.1%、アクロレインおよびアクリル酸の収率は90.6%であった。
【0037】
[比較例5]
熱媒浴温度310℃まで昇温する際に流通させるガスの組成をプロピレン2容量%、酸素8容量%、水蒸気15容量%および窒素75容量%に変更したこと以外は実施例1と同様にして酸化反応を行った。その結果、触媒層の原料ガス入口側の端から550mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは20℃であった。また、プロピレン反応率94.7%、アクロレイン選択率88.0%、アクリル酸選択率5.6%、アクロレインおよびアクリル酸の収率は88.6%であった。この結果によれば、実施例1に比べてホットスポットのΔTが低下したが、プロピレンの反応率も低下していることから、触媒が昇温時に被毒されたものと考えられる。
【0038】
[実施例4]
水1000部にパラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム12.3部および硝酸カリウム1.4部を加え、加熱撹拌した後、85質量%リン酸4.1部を水100部に溶解させたものを加え、更に加熱撹拌した(C液)。別に水850部に60質量%硝酸50部を加え、均一にした後、硝酸ビスマス114.5部を加え溶解した。これに硝酸第二鉄143.0部、硝酸コバルト309.0部、硝酸亜鉛7.0部、硝酸銀3.2部および硝酸マグネシウム6.1部を順次加え溶解した(D液)。C液にD液を加えスラリー状とした後、加熱撹拌し、水の大部分を蒸発させた。得られたケーキ状物質を130℃で乾燥させた後、空気雰囲気下300℃で1時間焼成し、粉砕した。得られた粉砕物100部に対してグラファイト2部を添加混合し、打錠成形機により外径4mm、内径2mm、長さ4mmのリング状に成形した。この打錠成形物を空気雰囲気下に500℃で6時間焼成し、触媒2を得た。触媒2の組成は、酸素を除いた原子比で、Mo120.2BiFe1.50.15Ag0.08Co4.5Zn0.1Mg0.10.06であった。
【0039】
熱媒浴を備えた内径25.4mmの鋼鉄製固定床管型反応器の熱媒浴温度を180℃に設定し、原料ガス入口側に触媒2を620mLと外径5mmのアルミナ球130mLを混合したものを充填し、出口側に触媒2を750mLを充填した。このときの触媒層の長さは3005mmであった。
【0040】
この触媒層に酸素9容量%、水蒸気10容量%および窒素81容量%からなるガスを空間速度240hr−1で流通させながら熱媒浴温度を310℃まで50℃/時間で昇温した。
【0041】
次いで、熱媒浴温度310℃のまま、プロピレン2容量%、酸素8容量%、水蒸気15容量%および窒素75容量%からなるガスを空間速度1000hr−1で3時間流通させた。
【0042】
続いて、熱媒浴温度310℃のまま、プロピレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%からなる原料ガスを反応温度(熱媒浴温度)310℃、空間速度1000hr−1で通じた。このときの触媒層温度を測定したところ、原料ガス入口側の端から550mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは32℃であった。また、プロピレン反応率99.0%、アクロレイン選択率89.0%、アクリル酸選択率6.2%、アクロレインおよびアクリル酸の収率は94.2%であった。
【0043】
[比較例6]
昇温後流通ガスを流通することなく、熱媒浴温度310℃まで昇温した後、即座に原料ガスを通じたこと以外は実施例4と同様にして酸化反応を行った。その結果、触媒層の原料ガス入口側の端から450mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは44℃であった。また、プロピレン反応率99.4%、アクロレイン選択率86.5%、アクリル酸選択率5.9%、アクロレインおよびアクリル酸の収率は91.8%であった。
【0044】
【発明の効果】
本発明によれば、固定床管型反応器にてプロピレンを固体酸化触媒の存在下に分子状酸素で気相接触酸化してアクロレインおよびアクリル酸を製造する方法において、ホットスポット部の温度を十分抑制し、アクロレインおよびアクリル酸を高収率で製造することができる。
【0045】
また、固体酸化触媒として前記式(1)で表される複合酸化物を用いることでさらに収率が向上する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing acrolein and acrylic acid by gas phase catalytic oxidation of propylene with molecular oxygen in the presence of a solid oxidation catalyst using a fixed bed tubular reactor.
[0002]
[Prior art]
Numerous proposals have been made regarding catalysts used in the production of acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene. These proposals mainly relate to the elements constituting the catalyst and their proportions.
[0003]
Since the gas phase catalytic oxidation is an exothermic reaction, heat storage occurs in the catalyst layer. The local high temperature zone resulting from the heat storage is called a hot spot, and if the temperature of this part is too high, an excessive oxidation reaction occurs and the yield of the target product is lowered. For this reason, in the industrial implementation of the oxidation reaction, temperature control of the hot spot is a serious problem, and particularly when the propylene concentration in the raw material gas is increased in order to increase productivity, the temperature of the hot spot tends to increase. Therefore, the current situation is that the reaction conditions are largely restricted.
[0004]
Therefore, it is very important to suppress the temperature of the hot spot part in industrially producing acrolein and acrylic acid at a high yield. In particular, when a molybdenum-containing solid oxidation catalyst is used, it is important to prevent the occurrence of hot spots because the molybdenum component tends to sublime.
[0005]
As a method for suppressing the temperature of the hot spot part, several proposals have been made so far. For example, in Japanese Patent Application Laid-Open No. Sho 55-113730, a plurality of catalysts having different activities prepared by varying the catalyst composition are packed so that the activity becomes higher from the raw material gas inlet side toward the outlet side. A method of circulating a source gas containing propylene and oxygen in a catalyst layer is disclosed. Japanese Patent Laid-Open No. 8-92147 discloses that when a propylene is vapor-phase oxidized to acrolein using a multi-tube fixed bed reactor equipped with a heat medium bath, the temperature of the heat medium bath is changed to the inlet portion of the reactor. And a method of controlling the flow of the heating medium so as to increase by 2 to 10 ° C. between the outlet portion and the outlet portion.
[0006]
In these methods, the reaction rate per unit volume on the raw material gas inlet side in the catalyst layer in the reactor is lowered, thereby suppressing the reaction heat generation amount per unit volume, and as a result, trying to lower the temperature of the hot spot part. It is a method to do.
[0007]
[Problems to be solved by the invention]
However, these methods alone have a problem that the temperature of the hot spot is not sufficiently suppressed, and the yields of acrolein and acrylic acid are low.
[0008]
The present invention provides a method for producing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen in the presence of a solid oxidation catalyst in a fixed bed tubular reactor to sufficiently suppress the temperature of the hot spot part. An object of the present invention is to provide a method for producing acrolein and acrylic acid in high yield.
[0009]
[Means for Solving the Problems]
The present invention provides a raw material gas containing 4 to 9% by volume of propylene, 7 to 16% by volume of oxygen and 5 to 50% by volume of water vapor in the catalyst layer of a fixed bed tubular reactor packed with a solid oxidation catalyst. In the method for producing acrolein and acrylic acid to be circulated, before the raw material gas is circulated, 250% of the catalyst layer containing oxygen, nitrogen and water vapor and propylene is circulated in a flow of 250% by volume. The temperature is raised to a range of ˜400 ° C., and then a gas containing 1 to 3.8% by volume of propylene, 7 to 16% by volume of oxygen, and 5 to 50% by volume of water vapor is circulated at 250 to 400 ° C. for 1 hour or more. A process for producing acrolein and acrylic acid.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the reaction for synthesizing acrolein and acrylic acid is carried out using a fixed bed tubular reactor. The tubular reactor is not particularly limited, but industrially, a multitubular reactor provided with several thousand to several tens of thousands of reaction tubes having an inner diameter of 10 to 40 mm is preferable. The fixed bed tubular reactor is preferably equipped with a heat medium bath. The heat medium is not particularly limited, and examples thereof include a salt melt containing potassium nitrate and sodium nitrite.
[0011]
In the present invention, the solid oxidation catalyst to be used is not particularly limited as long as it is a solid catalyst for this oxidation reaction, and conventionally known composite oxides containing molybdenum and the like can be used. A composite oxide represented by
Mo a Bi b Fe c A d X e Y f Z g Si h O i (1)
In the formula (1), Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, A is nickel and / or cobalt, X is magnesium, zinc, chromium, manganese, tin, strontium , Barium, copper, silver and lead, at least one element selected from the group consisting of Y, phosphorus, boron, sulfur, tellurium, aluminum, gallium, germanium, indium, lanthanum, cerium, niobium, tantalum, titanium, zirconium , At least one element selected from the group consisting of tungsten and antimony, Z represents at least one element selected from the group consisting of potassium, sodium, rubidium, cesium and thallium. However, a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element, and when a = 12, 0.01 ≦ b ≦ 5, 0.01 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0.001 ≦ g ≦ 3, 0 ≦ h ≦ 20, and i is oxygen necessary to satisfy the valence of each element Is the atomic ratio. Particularly preferable atomic ratios of the respective elements are 0.1 ≦ b ≦ 3, 0.1 ≦ c ≦ 4, 2 ≦ d ≦ 10, and 0.005 ≦ g ≦ 2 when a = 12.
[0012]
The method for preparing the catalyst used in the present invention is not particularly limited, and various well-known methods can be used as long as there is no significant uneven distribution of components.
[0013]
The raw materials used for the preparation of the catalyst are not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides and the like of each element can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, etc. can be used as the molybdenum raw material.
[0014]
The catalyst used in the present invention may be carrier-free, but a supported catalyst supported on an inert carrier such as silica, alumina, silica-alumina, silicon carbide, or a catalyst diluted with these can also be used.
[0015]
In the present invention, the catalyst layer refers to a space portion containing at least the catalyst in the reaction tube of the fixed bed tubular reactor. That is, not only the space filled with only the catalyst but also the space where the catalyst is diluted with an inert carrier or the like is used as the catalyst layer. However, the space portion where nothing is filled at both ends of the reaction tube or the space portion where only the inert carrier is filled is not included in the catalyst layer because the catalyst is substantially not included.
[0016]
A reaction (hereinafter simply referred to as an oxidation reaction) for synthesizing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen in the presence of a solid oxidation catalyst using a fixed bed tubular reactor is usually 250-. It is carried out at a reaction temperature in the range of 400 ° C. However, a raw material gas containing 4 to 9% by volume of propylene, 7 to 16% by volume of oxygen and 5 to 50% by volume of water vapor from the beginning of the reaction in the catalyst layer maintained at a reaction temperature of about 250 to 400 ° C. When the raw material gas is simply circulated, a hot spot having a maximum temperature is generated near the raw material gas inlet of the catalyst layer.
[0017]
As a result of intensive studies to solve this problem, the inventor of the present application has circulated a gas containing oxygen, nitrogen and water vapor and propylene in an amount of 0 to 0.5% by volume before circulating the raw material gas. The temperature is raised to a range of 250 to 400 ° C., and then a gas containing 1 to 3.8% by volume of propylene, 7 to 16% by volume of oxygen, and 5 to 50% by volume of water vapor is circulated at 250 to 400 ° C. for 1 hour or more. As a result, when the oxidation reaction is carried out at a reaction temperature of 250 to 400 ° C. using normal reaction conditions, that is, the raw material gas, the temperature of the hot spot part can be sufficiently suppressed, resulting in high yield of acrolein and acrylic acid. It was found that it can be manufactured at a rate.
[0018]
The temperature before the temperature is raised to the range of 250 to 400 ° C, that is, the temperature at which the temperature rises is not particularly limited, but is preferably in the range of 10 to 240 ° C. Further, the rate of temperature rise is not particularly limited, but is preferably 10 to 500 ° C./hour, particularly preferably 20 to 400 ° C./hour.
[0019]
A gas to be circulated when the temperature is raised to a range of 250 to 400 ° C. is a gas containing oxygen, nitrogen and water vapor and propylene in an amount of 0 to 0.5% by volume. The concentrations of oxygen, nitrogen and water vapor in this gas are not particularly limited, but oxygen is preferably 1 to 21% by volume, nitrogen is 29 to 98.5% by volume, and water vapor is preferably 0.5 to 50% by volume. Propylene is 0 to 0.5% by volume, more preferably 0 to 0.3% by volume, and particularly preferably 0 to 0.1% by volume. When a gas with a propylene concentration exceeding 0.5% by volume is passed in a state where the catalyst layer temperature is less than 250 ° C., a compound having a relatively high boiling point produced on the catalyst may poison the active site of the catalyst. is there. This gas may contain a gas other than oxygen, nitrogen, water vapor, and propylene. Examples of such a gas include inert gases such as carbon dioxide, lower saturated aldehydes, and ketones. However, when an organic compound such as a lower saturated aldehyde is included, the sum of the concentrations of propylene and other organic compounds is preferably 0.5% by volume or less. The gas flow rate at the time of temperature rise is not particularly limited, but a flow rate such that the space velocity is 100 to 2000 hr −1 is preferable. The pressure in the reactor at this time is usually from atmospheric pressure to several atmospheres.
[0020]
The gas to be circulated after the temperature rise is a gas containing 1 to 3.8% by volume of propylene, 7 to 16% by volume of oxygen, and 5 to 50% by volume of water vapor. The concentration of propylene is preferably 1 to 3% by volume, and particularly preferably 1 to 2.5% by volume. The oxygen concentration is preferably 7.5 to 14% by volume, particularly preferably 8 to 12% by volume. The water vapor concentration is preferably 2 to 40% by volume, particularly preferably 4 to 30% by volume. The temperature at which this gas is circulated is 250 to 400 ° C. Moreover, the time which distribute | circulates this gas is 1 hour or more, 1.5 to 100 hours are preferable, and 2 to 50 hours are especially preferable. This gas may contain a gas other than oxygen, water vapor, and propylene. Examples of such a gas include nitrogen, carbon dioxide, lower saturated aldehyde, and ketone. The flow rate of the gas to be circulated after the temperature rise is not particularly limited, but a flow rate at which the space velocity is 100 to 3000 hr −1 is preferable. The pressure in the reactor at this time is usually from atmospheric pressure to several atmospheres. When this gas flows, hot spots having a low maximum temperature are generated in a wide portion of the catalyst layer.
[0021]
Thereafter, when an oxidation reaction is performed at a reaction temperature of 250 to 400 ° C. using normal reaction conditions, that is, a raw material gas containing 4 to 9% by volume of propylene, the maximum temperature of the hot spot is suppressed. As a result, sequential oxidation in the hot spot portion is suppressed, and acrolein and acrylic acid can be produced with high yield. The flow rate of the source gas is not particularly limited, but a flow rate such that the space velocity is 300 to 3000 hr −1 is preferable, and a flow rate such that 500 to 2000 hr −1 is particularly preferable. The reaction temperature of the oxidation reaction is preferably 250 to 400 ° C, particularly preferably 270 to 360 ° C. The reaction pressure can be from normal pressure to several atmospheres.
[0022]
In the practice of the present invention, it is economically advantageous to use air as the source gas, the gas to be circulated at the time of temperature rise, and the oxygen source of the gas to be circulated after the temperature rise.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, "part" in an Example and a comparative example means a mass part. The catalyst composition was determined from the raw material charge of the catalyst component. As a heat medium for the reactor, a salt melt composed of 50% by mass of potassium nitrate and 50% by mass of sodium nitrite was used. A hot spot was detected by ΔT of the catalyst layer (temperature of the catalyst layer−temperature of the heat medium bath).
[0024]
The temperature in the catalyst layer was measured by a thermocouple inserted in a protective tube installed at the center of the cross section perpendicular to the tube axis direction of the reaction tube. The inside of the protective tube is isolated from the reaction system, and the temperature measuring position can be changed by adjusting the length of the thermocouple to be inserted.
[0025]
The analysis of the raw material gas and the reaction product gas was performed by gas chromatography. The reaction rate of propylene, the selectivity of the generated acrolein and acrylic acid, and the yield of acrolein and acrylic acid are respectively defined as follows.
Propylene reaction rate (%) = (B / A) × 100
Acrolein selectivity (%) = (C / B) × 100
Acrylic acid selectivity (%) = (D / B) × 100
Yield (%) of acrolein and acrylic acid = {(C + D) / A} × 100
Here, A is the number of moles of propylene supplied, B is the number of moles of propylene reacted, C is the number of moles of acrolein produced, and D is the number of moles of acrylic acid produced.
[0026]
[Example 1]
To 1000 parts of water, 500 parts of ammonium paramolybdate, 6.2 parts of ammonium paratungstate, 1.4 parts of potassium nitrate and 212.7 parts of 20% by mass silica sol were added and stirred with heating (liquid A). Separately, 50 parts of 60% by mass nitric acid was added to 850 parts of water to make it uniform, and then 103.0 parts of bismuth nitrate were added and dissolved. To this, 114.4 parts of ferric nitrate, 274.7 parts of cobalt nitrate, 34.3 parts of nickel nitrate, 7.0 parts of zinc nitrate and 30.3 parts of magnesium nitrate were sequentially added and dissolved (Liquid B). After liquid B was added to liquid A to form a slurry, 10.3 parts of antimony trioxide was added and stirred with heating to evaporate most of the water. The obtained cake-like product was dried at 120 ° C. and then baked at 500 ° C. for 4 hours. After adding 2 parts of graphite to 100 parts of the fired product obtained, a catalyst 1 was obtained by molding into a ring shape having an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 4 mm by a tableting machine. The composition of elements other than oxygen in the catalyst 1 is Mo 12 W 0.1 Bi 0.9 Fe 1.2 Co 4 Ni 0.5 Zn 0.1 Mg 0.5 Sb 0.3 K 0.06 Si 3 there were.
[0027]
The heat medium bath temperature of a steel fixed-bed tube reactor with an inner diameter of 25.4 mm equipped with a heat medium bath is set to 180 ° C., and 620 mL of catalyst 1 and 130 mL of alumina spheres with an outer diameter of 5 mm are mixed on the raw material gas inlet side. Then, 750 mL of catalyst 1 was charged on the outlet side. At this time, the length of the catalyst layer was 3005 mm.
[0028]
The heat medium bath temperature was raised to 310 ° C. at 50 ° C./hour while a gas consisting of 9 vol% oxygen, 10 vol% water vapor and 81 vol% nitrogen was passed through the catalyst layer at a space velocity of 240 hr −1 .
[0029]
Next, a gas consisting of 2% by volume of propylene, 8% by volume of oxygen, 15% by volume of water vapor and 75% by volume of nitrogen (circulation gas after heating) was passed for 3 hours at a space velocity of 1000 hr −1 with the heat medium bath temperature of 310 ° C. I let you.
[0030]
Subsequently, a raw material gas composed of 5% by volume of propylene, 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen was maintained at a heat medium bath temperature of 310 ° C., a reaction temperature (heat medium bath temperature) of 340 ° C., and a space velocity of 1000 hr. -1 . When the temperature of the catalyst layer at this time was measured, a hot spot having the maximum temperature was observed at a position 500 mm from the end on the raw material gas inlet side, and ΔT at this maximum temperature was 29 ° C. The propylene reaction rate was 98.5%, the acrolein selectivity was 88.3%, the acrylic acid selectivity was 5.8%, and the yield of acrolein and acrylic acid was 92.7%.
[0031]
[Example 2]
The oxidation reaction was carried out in the same manner as in Example 1 except that the composition of the flow gas after the temperature increase was changed to 2.6% by volume of propylene, 8% by volume of oxygen, 15% by volume of water vapor and 74.4% by volume of nitrogen. As a result, a hot spot having a maximum temperature was observed at a position of 470 mm from the end of the catalyst layer on the raw material gas inlet side, and ΔT at this maximum temperature was 31 ° C. The propylene reaction rate was 98.6%, the acrolein selectivity was 88.1%, the acrylic acid selectivity was 5.8%, and the yield of acrolein and acrylic acid was 92.6%.
[0032]
[Example 3]
The oxidation reaction was performed in the same manner as in Example 1 except that the flow time of the flow gas after temperature increase was changed to 1.5 hours. As a result, a hot spot having a maximum temperature was observed at a position of 470 mm from the end of the catalyst layer on the raw material gas inlet side, and ΔT at this maximum temperature was 31 ° C. The propylene reaction rate was 98.6%, the acrolein selectivity was 88.1%, the acrylic acid selectivity was 5.8%, and the yield of acrolein and acrylic acid was 92.6%.
[0033]
[Comparative Example 1]
After raising the temperature, the temperature was raised to the heat medium bath temperature of 310 ° C. without circulating the flow gas, and then the oxidation reaction was performed in the same manner as in Example 1 except that the raw material gas was immediately passed. As a result, a hot spot having the maximum temperature was observed at a position 400 mm from the end of the catalyst layer on the raw material gas inlet side, and ΔT at this maximum temperature was 41 ° C. The propylene reaction rate was 98.9%, the acrolein selectivity was 86.5%, the acrylic acid selectivity was 5.0%, and the yield of acrolein and acrylic acid was 90.5%.
[0034]
[Comparative Example 2]
The oxidation reaction was carried out in the same manner as in Example 1 except that the flow time of the flow gas after temperature increase was changed to 10 minutes. As a result, a hot spot having the maximum temperature was observed at a position 400 mm from the end of the catalyst layer on the raw material gas inlet side, and ΔT at this maximum temperature was 40 ° C. The propylene reaction rate was 98.7%, the acrolein selectivity was 86.7%, the acrylic acid selectivity was 5.1%, and the yield of acrolein and acrylic acid was 90.6%.
[0035]
[Comparative Example 3]
The oxidation reaction was carried out in the same manner as in Example 1 except that the composition of the flowing gas after the temperature increase was changed to 4.5% by volume of propylene, 12% by volume of oxygen, 10% by volume of water vapor, and 73.5% by volume of nitrogen. As a result, a hot spot having a maximum temperature was observed at a position 400 mm from the end of the catalyst layer on the raw material gas inlet side, and ΔT at this maximum temperature was 41 ° C. The propylene reaction rate was 98.9%, the acrolein selectivity was 86.5%, the acrylic acid selectivity was 5.0%, and the yield of acrolein and acrylic acid was 90.5%.
[0036]
[Comparative Example 4]
The oxidation reaction was performed in the same manner as in Example 1 except that the composition of the flow gas after the temperature increase was changed to 0.6 volume% propylene, 8 volume% oxygen, 15 volume% water vapor, and 76.4 volume% nitrogen. As a result, a hot spot having the maximum temperature was observed at a position 400 mm from the end of the catalyst layer on the raw material gas inlet side, and ΔT at this maximum temperature was 40 ° C. The propylene reaction rate was 98.7%, the acrolein selectivity was 86.7%, the acrylic acid selectivity was 5.1%, and the yield of acrolein and acrylic acid was 90.6%.
[0037]
[Comparative Example 5]
Except that the composition of the gas to be circulated when the temperature of the heating medium bath was raised to 310 ° C. was changed to 2% by volume of propylene, 8% by volume of oxygen, 15% by volume of water vapor and 75% by volume of nitrogen, the same as in Example 1. An oxidation reaction was performed. As a result, a hot spot having a maximum temperature was observed at a position 550 mm from the end of the catalyst layer on the raw material gas inlet side, and ΔT at the maximum temperature was 20 ° C. The propylene reaction rate was 94.7%, the acrolein selectivity was 88.0%, the acrylic acid selectivity was 5.6%, and the yields of acrolein and acrylic acid were 88.6%. According to this result, the ΔT of the hot spot was reduced as compared with Example 1, but the reaction rate of propylene was also reduced, so it is considered that the catalyst was poisoned during the temperature increase.
[0038]
[Example 4]
After adding 500 parts of ammonium paramolybdate, 12.3 parts of ammonium paratungstate, and 1.4 parts of potassium nitrate to 1000 parts of water and heating and stirring, 4.1 parts of 85 mass% phosphoric acid was dissolved in 100 parts of water. The mixture was added and further heated and stirred (C solution). Separately, 50 parts of 60% by mass nitric acid was added to 850 parts of water to make it uniform, and then 114.5 parts of bismuth nitrate were added and dissolved. To this, 143.0 parts of ferric nitrate, 309.0 parts of cobalt nitrate, 7.0 parts of zinc nitrate, 3.2 parts of silver nitrate and 6.1 parts of magnesium nitrate were sequentially added and dissolved (solution D). After liquid D was added to liquid C to form a slurry, the mixture was heated and stirred to evaporate most of the water. The obtained cake-like substance was dried at 130 ° C., then fired at 300 ° C. for 1 hour in an air atmosphere and pulverized. 2 parts of graphite was added to and mixed with 100 parts of the obtained pulverized product, and formed into a ring shape having an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 4 mm by a tableting machine. The tableting product was calcined at 500 ° C. for 6 hours in an air atmosphere to obtain Catalyst 2. The composition of the catalyst 2 is Mo 12 W 0.2 Bi 1 Fe 1.5 P 0.15 Ag 0.08 Co 4.5 Zn 0.1 Mg 0.1 K 0.06 in an atomic ratio excluding oxygen. Met.
[0039]
The heat medium bath temperature of a steel fixed-bed tube reactor with an inner diameter of 25.4 mm equipped with a heat medium bath is set to 180 ° C., and 620 mL of catalyst 2 and 130 mL of alumina spheres with an outer diameter of 5 mm are mixed on the raw material gas inlet side. Then, 750 mL of catalyst 2 was charged on the outlet side. At this time, the length of the catalyst layer was 3005 mm.
[0040]
The heat medium bath temperature was raised to 310 ° C. at 50 ° C./hour while a gas consisting of 9 vol% oxygen, 10 vol% water vapor and 81 vol% nitrogen was passed through the catalyst layer at a space velocity of 240 hr −1 .
[0041]
Subsequently, a gas composed of 2% by volume of propylene, 8% by volume of oxygen, 15% by volume of water vapor and 75% by volume of nitrogen was passed for 3 hours at a space velocity of 1000 hr −1 with the heat medium bath temperature of 310 ° C.
[0042]
Subsequently, the raw material gas composed of 5% by volume of propylene, 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen was maintained at a reaction temperature (heat medium bath temperature) of 310 ° C., and a space velocity of 1000 hr. -1 . When the temperature of the catalyst layer at this time was measured, a hot spot having a maximum temperature was observed at a position 550 mm from the end on the raw material gas inlet side, and ΔT at this maximum temperature was 32 ° C. The propylene reaction rate was 99.0%, the acrolein selectivity was 89.0%, the acrylic acid selectivity was 6.2%, and the yields of acrolein and acrylic acid were 94.2%.
[0043]
[Comparative Example 6]
After raising the temperature, the temperature was raised to the heat medium bath temperature of 310 ° C. without circulating the circulating gas, and then the oxidation reaction was performed in the same manner as in Example 4 except that the raw material gas was immediately passed. As a result, a hot spot having a maximum temperature was observed at a position 450 mm from the end on the raw material gas inlet side of the catalyst layer, and ΔT at this maximum temperature was 44 ° C. The propylene reaction rate was 99.4%, the acrolein selectivity was 86.5%, the acrylic acid selectivity was 5.9%, and the yield of acrolein and acrylic acid was 91.8%.
[0044]
【The invention's effect】
According to the present invention, in a method for producing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen in the presence of a solid oxidation catalyst in a fixed bed tubular reactor, the temperature of the hot spot is sufficiently increased. And acrolein and acrylic acid can be produced in high yield.
[0045]
Moreover, a yield improves further by using the complex oxide represented by the said Formula (1) as a solid oxidation catalyst.

Claims (2)

固体酸化触媒が充填されている固定床管型反応器の触媒層に、プロピレンを4〜9容量%、酸素を7〜16容量%および水蒸気を5〜50容量%含む原料ガスを流通させるアクロレインおよびアクリル酸の製造方法において、前記原料ガスを流通させる前に、前記触媒層に、酸素、窒素および水蒸気を含み、かつプロピレンが0〜0.5容量%のガスを流通させながら250〜400℃の範囲まで昇温し、次いでプロピレンを1〜3.8容量%、酸素を7〜16容量%および水蒸気を5〜50容量%含むガスを250〜400℃で1時間以上流通させることを特徴とするアクロレインおよびアクリル酸の製造方法。Acrolein in which a raw material gas containing 4 to 9% by volume of propylene, 7 to 16% by volume of oxygen and 5 to 50% by volume of water vapor is circulated in the catalyst layer of the fixed bed tubular reactor filled with the solid oxidation catalyst; In the method for producing acrylic acid, before circulating the raw material gas, the catalyst layer contains oxygen, nitrogen, and water vapor, and propylene is 0 to 0.5% by volume while circulating a gas of 250 to 400 ° C. The temperature is raised to a range, and then a gas containing 1 to 3.8% by volume of propylene, 7 to 16% by volume of oxygen, and 5 to 50% by volume of water vapor is circulated at 250 to 400 ° C. for 1 hour or longer. A process for producing acrolein and acrylic acid. 前記固体酸化触媒が下記の式(1)で表される複合酸化物であることを特徴とする請求項1記載のアクロレインおよびアクリル酸の製造方法。
MoBiFeSi (1)
(式中、Mo、Bi、Fe、SiおよびOはそれぞれモリブデン、ビスマス、鉄、ケイ素および酸素を表し、Aはニッケルおよび/またはコバルト、Xはマグネシウム、亜鉛、クロム、マンガン、スズ、ストロンチウム、バリウム、銅、銀および鉛からなる群より選ばれた少なくとも1種の元素、Yはリン、ホウ素、イオウ、テルル、アルミニウム、ガリウム、ゲルマニウム、インジウム、ランタン、セリウム、ニオブ、タンタル、チタン、ジルコニウム、タングステンおよびアンチモンからなる群より選ばれた少なくとも1種の元素、Zはカリウム、ナトリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、f、g、hおよびiは各元素の原子比を表し、a=12のとき、0.01≦b≦5、0.01≦c≦5、1≦d≦12、0≦e≦10、0≦f≦10、0.001≦g≦3、0≦h≦20であり、iは前記各元素の原子価を満足するのに必要な酸素の原子比である。)
The method for producing acrolein and acrylic acid according to claim 1, wherein the solid oxidation catalyst is a composite oxide represented by the following formula (1).
Mo a Bi b Fe c A d X e Y f Z g Si h O i (1)
(Wherein Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, A is nickel and / or cobalt, X is magnesium, zinc, chromium, manganese, tin, strontium, barium, respectively) At least one element selected from the group consisting of copper, silver and lead, Y is phosphorus, boron, sulfur, tellurium, aluminum, gallium, germanium, indium, lanthanum, cerium, niobium, tantalum, titanium, zirconium, tungsten And at least one element selected from the group consisting of antimony, Z represents at least one element selected from the group consisting of potassium, sodium, rubidium, cesium and thallium, provided that a, b, c, d , E, f, g, h and i represent the atomic ratio of each element, and a = 2, 0.01 ≦ b ≦ 5, 0.01 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0.001 ≦ g ≦ 3, 0 ≦ h ≦ And i is the atomic ratio of oxygen necessary to satisfy the valence of each element.)
JP2001194903A 2001-05-30 2001-06-27 Method for producing acrolein and acrylic acid Expired - Lifetime JP4824871B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001194903A JP4824871B2 (en) 2001-06-27 2001-06-27 Method for producing acrolein and acrylic acid
TW091110485A TW572885B (en) 2001-05-30 2002-05-20 Method for producing (meth)acrolein and/or (meth)acrylic acid
PCT/JP2002/004914 WO2002098827A1 (en) 2001-05-30 2002-05-21 Process for producing (meth)acrolein and/or (meth)acrylic acid
KR1020037015698A KR100890675B1 (en) 2001-05-30 2002-05-21 Process for producing methacrolein and/or methacrylic acid
US10/479,228 US7217836B2 (en) 2001-05-30 2002-05-21 Process for producing (meth)acrolein and/or (meth)acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194903A JP4824871B2 (en) 2001-06-27 2001-06-27 Method for producing acrolein and acrylic acid

Publications (2)

Publication Number Publication Date
JP2003012589A JP2003012589A (en) 2003-01-15
JP4824871B2 true JP4824871B2 (en) 2011-11-30

Family

ID=19032958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194903A Expired - Lifetime JP4824871B2 (en) 2001-05-30 2001-06-27 Method for producing acrolein and acrylic acid

Country Status (1)

Country Link
JP (1) JP4824871B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137422A1 (en) * 2003-12-19 2005-06-23 Saudi Basic Industries Corporation Process for producing an unsaturated carboxylic acid from an alkane
JP2005298376A (en) * 2004-04-08 2005-10-27 Mitsubishi Chemicals Corp Method for producing acrolein and acrylic acid
JP2005336085A (en) * 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid or (meth)acrolein
JP4960146B2 (en) * 2007-05-16 2012-06-27 三菱レイヨン株式会社 Method for compressing gas, method for producing (meth) acrolein and / or (meth) acrylic acid using the same, and method for producing methyl methacrylate
JP2009263352A (en) * 2008-03-31 2009-11-12 Mitsubishi Chemicals Corp Method for producing at least one of reaction product selected from group consisting of unsaturated aliphatic aldehyde, unsaturated hydrocarbon, and unsaturated fatty acid using fixed bed type reactor having catalyst comprising molybdenum
JP2010235504A (en) 2009-03-31 2010-10-21 Nippon Shokubai Co Ltd Method for producing acrolein and acrylic acid
EP3068753A1 (en) * 2013-11-11 2016-09-21 Basf Se Mechanically stable hollow-cylindrical moulded catalyst body for the gas phase oxidation of an alkene in order to obtain an unsaturated aldehyde and/or an unsaturated carboxylic acid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775872B2 (en) * 1996-12-03 2006-05-17 日本化薬株式会社 Method for producing acrolein and acrylic acid
JP3559456B2 (en) * 1998-09-18 2004-09-02 株式会社日本触媒 Catalytic gas phase oxidation method and multitubular reactor
JP3943284B2 (en) * 1999-05-27 2007-07-11 株式会社日本触媒 Acrylic acid production method
JP2001055355A (en) * 1999-08-18 2001-02-27 Mitsubishi Chemicals Corp Vapor phase catalytic oxidation reaction of hydrocarbon

Also Published As

Publication number Publication date
JP2003012589A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
US5276178A (en) Process for producing methacrolein and methacrylic acid
EP1055662B1 (en) A process for producing acrylic acid
JP4318367B2 (en) Method for producing acrolein and acrylic acid
JPH0784400B2 (en) Process for producing unsaturated aldehyde and unsaturated acid
JP2008535784A (en) Process for producing unsaturated aldehyde and / or unsaturated acid
JP2809476B2 (en) Method for producing acrolein and acrylic acid
JP4824867B2 (en) Method for producing methacrolein and methacrylic acid
JP4058270B2 (en) Method for producing methacrylic acid
JP5130562B2 (en) Method for producing methacrolein and / or methacrylic acid
JP4497442B2 (en) Method for producing methacrolein and methacrylic acid
JP4222721B2 (en) Method for producing methacrylic acid
JP4824871B2 (en) Method for producing acrolein and acrylic acid
KR100890675B1 (en) Process for producing methacrolein and/or methacrylic acid
JP3939187B2 (en) Process for producing unsaturated aldehyde
JP4248163B2 (en) Method for producing methacrylic acid
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JP2638241B2 (en) Method for producing methacrolein and methacrylic acid
JP2659839B2 (en) Method for producing methacrolein and methacrylic acid
JP3581038B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst
JP5607865B2 (en) Method for producing methacrylic acid
JPH05253480A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP3540623B2 (en) Method for producing methacrylic acid
JP4812034B2 (en) Method for producing methacrylic acid production catalyst, methacrylic acid production catalyst, and methacrylic acid production method
JP3314457B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2934267B2 (en) Method for producing methacrolein and methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

R151 Written notification of patent or utility model registration

Ref document number: 4824871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term