JP4809617B2 - Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents
Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDFInfo
- Publication number
- JP4809617B2 JP4809617B2 JP2005077578A JP2005077578A JP4809617B2 JP 4809617 B2 JP4809617 B2 JP 4809617B2 JP 2005077578 A JP2005077578 A JP 2005077578A JP 2005077578 A JP2005077578 A JP 2005077578A JP 4809617 B2 JP4809617 B2 JP 4809617B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- composite particles
- particles
- ion secondary
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウムイオン二次電池用負極材料およびその製造方法ならびにそれを用いたリチウムイオン二次電池用負極およびそれを用いたリチウムイオン二次電池に関する。 The present invention relates to a negative electrode material for a lithium ion secondary battery, a production method thereof, a negative electrode for a lithium ion secondary battery using the same, and a lithium ion secondary battery using the same.
種々ある二次電池の中で、高電圧、高エネルギー密度という優れた特性を有するリチウムイオン二次電池は、電子機器の電源として広く普及している。近年、電子機器の小型化または高性能化が急速に進み、リチウムイオン二次電池のさらなる高エネルギー密度化に対する要望はますます高まっている。
現在、リチウムイオン二次電池は、正極にLiCoO2、負極に黒鉛を用いたものが一般的である。しかし、黒鉛負極は充放電の可逆性に優れるものの、その放電容量はすでに層間化合物LiC6に相当する理論値372mAh/gに近い値まで到達しており、さらなる高エネルギー密度化を達成するためには、黒鉛より放電容量の大きい負極材料を開発する必要がある。
Among various secondary batteries, lithium ion secondary batteries having excellent characteristics such as high voltage and high energy density are widely used as power sources for electronic devices. In recent years, miniaturization or performance enhancement of electronic devices has rapidly progressed, and there is an increasing demand for further higher energy density of lithium ion secondary batteries.
Currently, lithium ion secondary batteries generally use LiCoO 2 for the positive electrode and graphite for the negative electrode. However, although the graphite negative electrode is excellent in reversibility of charge and discharge, its discharge capacity has already reached a value close to the theoretical value of 372 mAh / g corresponding to the intercalation compound LiC 6 in order to achieve further higher energy density. Needs to develop a negative electrode material having a larger discharge capacity than graphite.
金属リチウムは負極材料として最高の放電容量を有するが、充電時にリチウムがデンドライト状に析出して負極が劣化し、充放電サイクルが短くなるという問題がある。また、デンドライト状に析出したリチウムがセパレータを貫通して正極に達し、短絡する可能性もある。
そのため、金属リチウムに代わる負極材料として、リチウムと合金を形成する金属または金属化合物が検討されてきた。これらの合金負極は、金属リチウムには及ばないものの黒鉛を遥かに凌ぐ放電容量を有する。しかし、合金化に伴う体積膨張により活物質の粉化・剥離が発生し、まだ実用レベルのサイクル特性が得られていない。
Although metallic lithium has the highest discharge capacity as a negative electrode material, there is a problem that lithium is deposited in a dendritic state during charging, the negative electrode is deteriorated, and the charge / discharge cycle is shortened. In addition, lithium deposited in a dendrite shape may penetrate the separator and reach the positive electrode, causing a short circuit.
Therefore, a metal or a metal compound that forms an alloy with lithium has been studied as a negative electrode material that replaces metallic lithium. These alloy negative electrodes have discharge capacities far surpassing that of graphite, although they do not reach metal lithium. However, active materials are pulverized and peeled off due to volume expansion accompanying alloying, and cycle characteristics at a practical level have not yet been obtained.
前記合金負極の欠点を改善するため、金属または金属化合物と黒鉛質材料および/または炭素質材料との複合化が検討されている。
特許文献1には、金属または金属化合物と黒鉛質物を、炭素質物で結合または被覆した複合材料が開示されている。しかし、炭素質物が複合材料の内部に浸透している場合、該金属または金属化合物の周囲に膨張を緩衝する空隙を確保することができず、複合粒子構造の破壊によるサイクル特性の低下を招く虞がある。
In order to improve the defects of the alloy negative electrode, a composite of a metal or a metal compound and a graphite material and / or a carbonaceous material has been studied.
Patent Document 1 discloses a composite material in which a metal or a metal compound and a graphite material are bonded or coated with a carbonaceous material. However, when the carbonaceous material penetrates into the inside of the composite material, it is not possible to secure voids for buffering the expansion around the metal or metal compound, which may lead to deterioration of cycle characteristics due to destruction of the composite particle structure. There is.
特許文献2には、シリコン相粒子を、シリコンを含む固溶体または金属間化合物の相で被覆して得た複合粒子を、さらに繊維状炭素で電気的に接合した負極材料が開示されている。しかし、炭素質物による被覆が施されず、繊維状炭素が表面に多く露出していると、繊維状炭素の大きな比表面積に由来する充放電効率の低下を招く虞がある。さらに、シリコン相を含む粒子が表面に多く露出していると、充放電時に該粒子が剥離し、サイクル特性の低下を招く虞がある。
また、特許文献3には、黒鉛部分、非晶質炭素部分およびシリコンを含有してなる複合炭素粒子が開示されている。しかし、該複合炭素粒子の製造に際して、シリコン源として有機ケイ素化合物を用いている。そのため、シリコンが非晶質炭素質中に内包され、シリコンの周囲に膨張を緩衝する空隙が形成されず、複合炭素粒子構造の破壊によるサイクル特性の低下を招く虞がある。
さらに、特許文献4には、リチウムと合金化可能な元素を含む材料と、電導性材料とを含む複合体粒子からなる電極材料であって、前記リチウムと合金化可能な元素を含む材料の割合が、前記複合粒子の全質量に対して30質量%以上80質量%以下であり、前記複合体粒子が、内部に空隙を有し、前記複合体粒子の嵩密度をD1(g/cm3)、前記複合体粒子の真密度をD2(g/cm3)、前記複合体粒子の空隙体積占有率(%)をVs=(1−1.35×D1/D2)×100とした場合、Vsが35%以上70%以下であることを特徴とする電極材料について記載されている。 Furthermore, Patent Document 4 discloses a ratio of an electrode material composed of composite particles containing an element that can be alloyed with lithium and a conductive material, the material containing an element that can be alloyed with lithium. Is 30% by mass or more and 80% by mass or less with respect to the total mass of the composite particles, the composite particles have voids inside, and the bulk density of the composite particles is D1 (g / cm 3 ). When the true density of the composite particles is D2 (g / cm 3 ) and the void volume occupancy (%) of the composite particles is Vs = (1-1.35 × D1 / D2) × 100, Vs Is described for an electrode material characterized by being 35% or more and 70% or less.
この電極材料は、リチウムと合金化可能な元素を含む材料の充電時の膨張を吸収できるように、複合体粒子の内部に空隙を有しているが、リチウムと合金化可能な元素を含む材料の割合が、複合粒子の全質量に対して30質量%以上80質量%以下と多いため、35%以上70%以下の空隙体積占有率では膨張を吸収しきれず、サイクル特性が低下する場合がある。
本発明者は、上記した従来の黒鉛質複合粒子は、リチウムと合金を形成可能な金属粒子の膨張をうまく吸収できないために、負極材料として用いた場合に、サイクル特性が低下するものと推測し、鋭意検討した結果、金属粒子が繊維状黒鉛質材料によって保持され、さらに、その少なくとも一部が炭素質材料で被覆された複合粒子では、合金形成時の金属の膨張を吸収でき、複合粒子の粉化や剥離を防止でき、かつ導電性を維持できることを見出し、本発明を完成するに至った。
本発明は、前記のような知見に鑑みてなされたものであり、リチウムイオン二次電池用負極材料として用いたときに、放電容量が大きく、優れたサイクル特性と初期充放電効率が得られる負極材料と負極、それを用いたリチウムイオン二次電池を提供することが目的である。
The present inventor presumes that the above-described conventional graphite composite particles cannot absorb the expansion of metal particles capable of forming an alloy with lithium, and therefore, when used as a negative electrode material, the cycle characteristics deteriorate. As a result of intensive studies, the composite particles in which the metal particles are held by the fibrous graphite material and further coated at least partially with the carbonaceous material can absorb the expansion of the metal at the time of alloy formation. It has been found that powdering and peeling can be prevented and conductivity can be maintained, and the present invention has been completed.
The present invention has been made in view of the above knowledge, and when used as a negative electrode material for a lithium ion secondary battery, the negative electrode has a large discharge capacity and excellent cycle characteristics and initial charge / discharge efficiency. It is an object to provide a material, a negative electrode, and a lithium ion secondary battery using the material.
本発明は、以下の(1)〜(12)である。 The present invention includes the following (1) to (1 2 ).
(1)繊維状黒鉛質材料がリチウムと合金化可能な金属粒子に絡んで該金属粒子を挟持し、かつ空隙が存在する構造を有する複合粒子の外表面の少なくとも一部が、炭素質材料で被覆されている被覆複合粒子であり、前記金属粒子、前記繊維状黒鉛質材料および前記炭素質材料の含有量が、前記被覆複合粒子の全質量に対する質量%で、該金属粒子/該繊維状黒鉛質材料/該炭素質材料=1以上30未満/30〜95/4〜50である、リチウムイオン二次電池用負極材料。 (1) At least a part of the outer surface of the composite particles having a structure in which the fibrous graphite material is entangled with metal particles that can be alloyed with lithium and sandwiches the metal particles, and voids exist, is a carbonaceous material. Ri Oh coated composite particles coated, the metal particles, the content of the fibrous graphitized material and the carbonaceous material is, in wt% relative to the total weight of the coated complex particles, the metal particles / the fibrous Negative electrode material for lithium ion secondary battery , wherein graphite material / carbonaceous material = 1 or more and less than 30/30 to 95/4 to 50 .
(2)繊維状黒鉛質材料がリチウムと合金化可能な金属粒子に絡んで該金属粒子を挟持し、かつ空隙が存在する構造を有する複合粒子の外表面の少なくとも一部が、炭素質材料で被覆されている被覆複合粒子であり、前記被覆複合粒子が、さらに非繊維状黒鉛質材料を含有し、前記金属粒子、前記繊維状黒鉛質材料、前記非繊維状黒鉛質材料および前記炭素質材料の含有量が、前記被覆複合粒子の全質量に対する質量%で、該金属粒子/該繊維状黒鉛質材料/該非繊維状黒鉛質材料/該炭素質材料=1以上30未満/28〜75/2〜20/4〜50である、リチウムイオン二次電池用負極材料。 ( 2 ) At least a part of the outer surface of the composite particle having a structure in which the fibrous graphite material is entangled with metal particles that can be alloyed with lithium and sandwiches the metal particles and there is a void, is a carbonaceous material. Coated composite particles, wherein the coated composite particles further contain a non-fibrous graphite material, and the metal particles, the fibrous graphite material, the non-fibrous graphite material, and the carbonaceous material The metal particles / the fibrous graphite material / the non-fibrous graphite material / the carbonaceous material = 1 or more and less than 30/28 to 75/2, in mass% with respect to the total mass of the coated composite particles. The negative electrode material for lithium ion secondary batteries which is -20 / 4-50 .
(3)前記非繊維状黒鉛質材料が、前記被覆複合粒子の構造体の内部に分散して保持されていることを特徴とする上記(2)に記載のリチウムイオン二次電池用負極材料。
(4)前記被覆複合粒子の外表面の少なくとも一部が、前記炭素質材料および前記非繊維状黒鉛質材料で被覆されていることを特徴とする上記(2)に記載のリチウムイオン二次電池用負極材料。
( 3 ) The negative electrode material for a lithium ion secondary battery as described in ( 2 ) above, wherein the non-fibrous graphite material is dispersed and held inside the structure of the coated composite particles.
( 4 ) The lithium ion secondary battery according to ( 2 ) above, wherein at least a part of the outer surface of the coated composite particle is coated with the carbonaceous material and the non-fibrous graphite material. Negative electrode material .
(5)前記被覆複合粒子の比表面積が10m2/g以下であることを特徴とする上記(1)〜(4)のいずれかに記載のリチウムイオン二次電池用負極材料。 ( 5 ) The negative electrode material for a lithium ion secondary battery according to any one of the above (1) to ( 4 ), wherein the covering composite particles have a specific surface area of 10 m 2 / g or less.
(6)リチウムと合金化可能な金属粒子と、繊維状黒鉛質材料と、を混合・攪拌処理(混合および/または攪拌処理)して複合粒子とした後、該複合粒子と炭素質材料の前駆体とを混合し、熱処理して上記(1)に記載の被覆複合粒子を得ることを特徴とするリチウムイオン二次電池用負極材料の製造方法。 ( 6 ) Mixing and stirring treatment (mixing and / or stirring treatment) of metal particles that can be alloyed with lithium and fibrous graphite material to form composite particles, and then precursors of the composite particles and carbonaceous material The coated composite particles according to the above (1 ) are obtained by mixing with a body and heat-treating, and a method for producing a negative electrode material for a lithium ion secondary battery.
(7)リチウムと合金化可能な金属粒子、繊維状黒鉛質材料および非繊維状黒鉛質材料を混合・攪拌処理(混合および/または攪拌処理)して複合粒子とした後、該複合粒子と炭素質材料の前駆体とを混合し、熱処理して上記(2)または(3)に記載の被覆複合粒子を得ることを特徴とするリチウムイオン二次電池用負極材料の製造方法。 ( 7 ) After mixing and stirring treatment (mixing and / or stirring treatment) of metal particles that can be alloyed with lithium, fibrous graphite material, and non-fibrous graphite material, the composite particles and carbon A method for producing a negative electrode material for a lithium ion secondary battery, wherein the coated composite particles according to the above ( 2) or (3 ) are obtained by mixing with a precursor of a porous material and heat-treating.
(8)リチウムと合金化可能な金属粒子と、繊維状黒鉛質材料と、を混合・攪拌処理(混合および/または攪拌処理)して複合粒子とした後、該複合粒子、炭素質材料の前駆体および非繊維状黒鉛質材料を混合し、熱処理して上記(2)または(4)に記載の被覆複合粒子を得ることを特徴とするリチウムイオン二次電池用負極材料の製造方法。 ( 8 ) Mixing and stirring treatment (mixing and / or stirring treatment) of metal particles that can be alloyed with lithium and fibrous graphite material to form composite particles, and then the composite particles and the precursor of the carbonaceous material A method for producing a negative electrode material for a lithium ion secondary battery, comprising mixing a body and a non-fibrous graphite material and heat-treating to obtain coated composite particles according to ( 2) or (4 ) above.
(9)前記混合・攪拌処理が、メカノケミカル処理であることを特徴とする上記(6)〜(8)のいずれかに記載のリチウムイオン二次電池用負極材料の製造方法。 ( 9 ) The method for producing a negative electrode material for a lithium ion secondary battery according to any one of the above ( 6 ) to ( 8 ), wherein the mixing / stirring treatment is a mechanochemical treatment.
(10)前記した熱処理の温度が600℃以上1300℃未満であることを特徴とする上記(6)〜(9)のいずれかに記載のリチウムイオン二次電池用負極材料の製造方法。 (1 0 ) The method for producing a negative electrode material for a lithium ion secondary battery according to any one of the above ( 6 ) to ( 9 ), wherein the temperature of the heat treatment is 600 ° C. or higher and lower than 1300 ° C.
(11)上記(1)〜(5)のいずれかに記載のリチウムイオン二次電池用負極材料を含有することを特徴とするリチウムイオン二次電池用負極。 (1 1 ) A negative electrode for a lithium ion secondary battery comprising the negative electrode material for a lithium ion secondary battery according to any one of the above (1) to ( 5 ).
(12)上記(11)に記載のリチウムイオン二次電池用負極を用いることを特徴とするリチウムイオン二次電池。 (1 2 ) A lithium ion secondary battery using the negative electrode for a lithium ion secondary battery described in (1 1 ) above.
本発明のリチウムイオン二次電池用負極材料を用いて作製した負極およびリチウムイオン二次電池は、高い放電容量を有し、初期充放電効率およびサイクル特性に優れる。そのため、本発明の負極材料を用いてなるリチウムイオン二次電池は、近年の高エネルギー密度化に対する要望を満たし、搭載する電子機器の小型化および高性能化に有効である。 A negative electrode and a lithium ion secondary battery produced using the negative electrode material for a lithium ion secondary battery of the present invention have a high discharge capacity, and are excellent in initial charge / discharge efficiency and cycle characteristics. Therefore, the lithium ion secondary battery using the negative electrode material of the present invention satisfies the recent demand for higher energy density, and is effective for downsizing and higher performance of electronic devices to be mounted.
本発明は、繊維状黒鉛質材料がリチウムと合金化可能な金属粒子を保持した構造を有する複合粒子の少なくとも一部が、炭素質材料で被覆されている被覆複合粒子、好ましくは、該被覆複合粒子がさらに非繊維状黒鉛質材料を含有する被覆複合粒子であることを特徴とするリチウムイオン二次電池用負極材料である。また、本発明は、その製造方法であり、該負極材料を含有するリチウムイオン二次電池用負極であり、該負極を用いたリチウムイオン二次電池である。
以下、本発明について説明する。
The present invention provides a coated composite particle in which at least a part of a composite particle having a structure in which a fibrous graphite material holds metal particles that can be alloyed with lithium is coated with a carbonaceous material, preferably the coated composite A negative electrode material for a lithium ion secondary battery, wherein the particles are coated composite particles further containing a non-fibrous graphite material. Moreover, this invention is the manufacturing method, it is a negative electrode for lithium ion secondary batteries containing this negative electrode material, and is a lithium ion secondary battery using this negative electrode.
The present invention will be described below.
(被覆複合粒子)
本発明に使用される被覆複合粒子は、繊維状黒鉛質材料がリチウムと合金化可能な金属粒子を保持した構造を有する複合粒子の少なくとも一部が、炭素質材料で被覆されている被覆複合粒子である。該被覆複合粒子は、その内部に複数の大小の空隙を分散して保有していることが好ましい。特に、金属粒子の周囲に空隙が存在するのが好ましい。該被覆複合粒子の内部に空隙があると、充電時の膨張を吸収でき、サイクル特性を改善することができる。これは繊維状黒鉛質材料の比表面積が大きいため、流動性を持った炭素質材料の前駆体を混合する際、該流動性前駆体が主に該繊維状炭素質材料の表面に吸着し、内部にまで浸透しにくいという現象に拠るものである。なお、該被覆複合粒子の形状は不特定であり、その大きさも特に制限されるものではない。また、該被覆複合粒子の比表面積は10m2/g以下であることが好ましい。比表面積が10m2/gを超えると、該被覆複合粒子をリチウムイオン二次電池の負極材料として用いたときに、該二次電池の充放電効率が低下することがある。
(Coated composite particles)
The coated composite particle used in the present invention is a coated composite particle in which at least a part of a composite particle having a structure in which a fibrous graphite material holds metal particles that can be alloyed with lithium is coated with a carbonaceous material. It is. The coated composite particles preferably have a plurality of large and small voids dispersed therein. In particular, it is preferable that voids exist around the metal particles. If there are voids inside the coated composite particles, the expansion during charging can be absorbed, and the cycle characteristics can be improved. Since the specific surface area of the fibrous graphite material is large, when mixing the precursor of the carbonaceous material having fluidity, the fluid precursor is mainly adsorbed on the surface of the fibrous carbonaceous material, It is based on the phenomenon that it is difficult to penetrate inside. The shape of the coated composite particles is not specified, and the size is not particularly limited. The specific surface area of the coated composite particles is preferably 10 m 2 / g or less. When the specific surface area exceeds 10 m 2 / g, when the coated composite particles are used as a negative electrode material of a lithium ion secondary battery, the charge / discharge efficiency of the secondary battery may be lowered.
本発明の被覆複合粒子の主要成分の好ましい組成は、該被覆複合粒子の全質量に対する質量%で金属粒子/繊維状黒鉛質材料/炭素質材料(被覆材)=1以上30未満/30〜95/4〜50の範囲であり、好ましくは、1〜20/30〜95/4〜50の範囲であり、より好ましくは2〜10/55〜93/5〜35の範囲である。金属粒子の割合が該範囲より少ないと、該被覆複合粒子をリチウムイオン二次電池用負極材料に用いたときに、該二次電池の放電容量の増加が小さいことがあり、逆に該範囲より多くなると該二次電池のサイクル特性の向上が小さい場合がある。また、繊維状黒鉛質材料の割合が前記範囲を逸脱すると、サイクル特性の向上が十分とは言えない場合がある。また、炭素質材料の割合が該範囲を逸脱すると、該二次電池の充放電効率やサイクル特性の向上が十分とは言えない場合がある。 A preferable composition of the main component of the coated composite particle of the present invention is metal particle / fibrous graphite material / carbonaceous material (coating material) = 1 or more and less than 30/30 to 95 in mass% with respect to the total mass of the coated composite particle. It is the range of / 4-50, Preferably, it is the range of 1-20 / 30-95 / 4-50, More preferably, it is the range of 2-10 / 55-93 / 5-35. When the proportion of the metal particles is less than the range, when the coated composite particles are used for the negative electrode material for a lithium ion secondary battery, the increase in the discharge capacity of the secondary battery may be small. If the number is increased, the improvement of the cycle characteristics of the secondary battery may be small. Further, when the ratio of the fibrous graphite material deviates from the above range, the cycle characteristics may not be sufficiently improved. Further, if the proportion of the carbonaceous material deviates from the range, it may not be said that the charge / discharge efficiency and cycle characteristics of the secondary battery are sufficiently improved.
また、本発明の被覆複合粒子がさらに非繊維状黒鉛質材料を含有する場合は、金属粒子/繊維状黒鉛質材料/非繊維状黒鉛質材料/炭素質材料の質量組成(該被覆複合粒子の全質量に対する質量%)が1以上30未満/28〜75/2〜20/4〜50であり、好ましくは1〜20/28〜75/2〜20/4〜50であることが好ましい。さらに好ましいのは2〜10/45〜88/5〜10/5〜35である。金属粒子の割合が該範囲より少ないと、該被覆複合粒子をリチウムイオン二次電池用負極材料に用いたときに、該二次電池の放電容量の増加が少ないことがあり、逆に該範囲より多くなると、該二次電池のサイクル特性の向上が小さい場合がある。また、繊維状黒鉛質材料の割合が前記範囲を逸脱すると、サイクル特性の向上が十分とは言えない場合がある。非繊維状黒鉛質材料の割合が該範囲より少ないと該二次電池の充放電効率の向上が小さい場合があり、逆に該範囲より多くなると該二次電池のサイクル特性の向上が小さい場合がある。さらに、炭素質材料の割合が該範囲を逸脱すると、該二次電池の充放電効率やサイクル特性の向上が十分とは言えない場合がある。 When the coated composite particles of the present invention further contain a non-fibrous graphite material, the mass composition of the metal particles / fibrous graphite material / non-fibrous graphite material / carbonaceous material (of the coated composite particles) % By mass relative to the total mass) is 1 or more and less than 30/28 to 75/2 to 20/4 to 50, and preferably 1 to 20/28 to 75/2 to 20/4 to 50. More preferred is 2 to 10/45 to 88/5 to 10/5 to 35. When the ratio of the metal particles is less than the range, when the coated composite particles are used as a negative electrode material for a lithium ion secondary battery, the increase in discharge capacity of the secondary battery may be small. If it increases, the improvement of the cycle characteristics of the secondary battery may be small. Further, when the ratio of the fibrous graphite material deviates from the above range, the cycle characteristics may not be sufficiently improved. If the ratio of non-fibrous graphite material is less than the range, the improvement of the charge / discharge efficiency of the secondary battery may be small. Conversely, if the ratio is higher than the range, the improvement of the cycle characteristics of the secondary battery may be small. is there. Furthermore, if the proportion of the carbonaceous material deviates from the range, it may not be said that the charge / discharge efficiency and cycle characteristics of the secondary battery are sufficiently improved.
なお、該被覆複合粒子の質量組成は、金属については、被覆複合粒子を灰化したのち、発光分光法による元素分析を行って、金属としての濃度に換算した値とする。
繊維状黒鉛質材料と炭素質材料の割合は、被覆複合粒子の断面を偏光顕微鏡を用いて倍率1000倍で撮影し、任意の粒子10個について結晶性の高低に由来する外観の相違から、被覆複合粒子内部の繊維状黒鉛質材料と炭素質材料が占める、目視で測定した面積割合の平均値である。なお、繊維状黒鉛質材料と炭素質材料が占める面積割合は、被覆複合粒子の断面の薄片を調整して透過型電子顕微鏡を用いて観察することによって求めることができる。ここで、繊維状黒鉛質材料と炭素質材料の面積割合を求めるが、繊維状黒鉛質材料と炭素質材料の密度に大きな差異がないため、本発明においては、前述のように求める面積割合を質量割合とみなすことにする。
The mass composition of the coated composite particles is a value converted into a concentration as a metal by conducting elemental analysis by emission spectroscopy after ashing the coated composite particles.
The ratio between the fibrous graphite material and the carbonaceous material is determined by taking a cross-section of the coated composite particle using a polarizing microscope at a magnification of 1000 times, and from the difference in appearance derived from high and low crystallinity of any 10 particles. It is the average value of the area ratio measured visually by the fibrous graphite material and the carbonaceous material inside the composite particles. In addition, the area ratio which a fibrous graphite material and a carbonaceous material occupy can be calculated | required by adjusting the slice of the cross section of a coating composite particle, and observing using a transmission electron microscope. Here, the area ratio between the fibrous graphite material and the carbonaceous material is obtained, but since there is no significant difference in the density between the fibrous graphite material and the carbonaceous material, the area ratio obtained as described above is determined in the present invention. Consider it as a mass ratio.
さらに、非繊維状黒鉛質材料を含有する場合は、被覆複合粒子断面の偏光顕微鏡写真で、繊維状黒鉛質材料と非繊維状黒鉛質材料を形状に由来する外観の相違から区別して観察し、前記と同様な方法で面積割合から非繊維状黒鉛質材料の割合を求める。 Furthermore, in the case of containing a non-fibrous graphite material, in the polarizing microscope photograph of the coated composite particle cross section, the fibrous graphite material and the non-fibrous graphite material are observed separately from the difference in appearance derived from the shape, The ratio of non-fibrous graphite material is determined from the area ratio by the same method as described above.
本発明のリチウムイオン二次電池用負極材料において、複合粒子の少なくとも一部が炭素質材料で被覆されていること、および、被覆複合粒子の内部に空隙を有することは、以下のようにして確認することができる。
被覆複合粒子の少なくとも一部が炭素質材料で被覆されていることは、該被覆複合粒子の断面の偏光顕微鏡写真(倍率1000倍)で確認することができる。炭素質材料と黒鉛質材料とは前記のように区別して観察できる。内部に空隙を有することは、該被覆複合粒子の断面の、走査型電子顕微鏡写真(倍率400倍)で確認することができる。
In the negative electrode material for a lithium ion secondary battery of the present invention, it is confirmed as follows that at least a part of the composite particles are coated with a carbonaceous material and that there are voids inside the coated composite particles. can do.
That at least a part of the coated composite particles is coated with the carbonaceous material can be confirmed by a polarizing micrograph (magnification 1000 times) of the cross section of the coated composite particles. The carbonaceous material and the graphite material can be observed separately as described above. The presence of voids inside can be confirmed by a scanning electron micrograph (400 magnifications) of the cross section of the coated composite particles.
本発明の被覆複合粒子においては、金属粒子が繊維状黒鉛質材料によって保持、さらに炭素質材料により複合粒子の少なくとも一部が被覆されているため、被覆複合粒子からの金属粒子の脱落が防止され、充放電を繰返しても負極材料の導電性が保持される。また、金属粒子が繊維状黒鉛質材料によって保持されているため、被覆複合粒子内に、好ましくは、適度な空隙が形成され、充放電に伴う金属粒子の膨張を緩衝することができ、被覆複合粒子の構造破壊が抑制される。その結果、リチウムイオン二次電池のサイクル特性が改良されるものと推定される。また、炭素質材料が該被覆複合粒子の少なくとも一部を被覆することで、繊維状黒鉛質材料の露出が抑制され、初期充放電効率が改良されるものと推定される。 In the coated composite particles of the present invention, the metal particles are retained by the fibrous graphite material, and at least a part of the composite particles are coated with the carbonaceous material, so that the metal particles are prevented from falling off from the coated composite particles. Even when charging and discharging are repeated, the conductivity of the negative electrode material is maintained. Further, since the metal particles are held by the fibrous graphite material, preferably, an appropriate void is formed in the coated composite particles, and the expansion of the metal particles accompanying charge / discharge can be buffered, and the coated composite particles Structural destruction of the particles is suppressed. As a result, it is estimated that the cycle characteristics of the lithium ion secondary battery are improved. Further, it is presumed that the carbonaceous material covers at least a part of the coated composite particles, thereby suppressing the exposure of the fibrous graphite material and improving the initial charge / discharge efficiency.
(リチウムと合金化可能な金属)
リチウムと合金化可能な金属を配合するのは、黒鉛質材料を負極材料に用いたリチウムイオン二次電池の高容量化を達成するためである。リチウムと合金化可能な金属はAl、Pb、Zn、Sn、Bi、In、Mg、Ga、Cd、Ag、Si、B、Au、Pt、Pd、Sb、Ge、Niなどであり、これら金属の2種以上の合金であってもよい。合金には、前記以外の元素をさらに含有していてもよい。また、金属の一部が酸化物、窒化物、炭化物などの化合物であってもよい。好ましい金属は、特に容量が高いリチウムイオン二次電池が得られ、比較的容易に入手できるシリコンおよびスズであり、より高容量化に有効なシリコンが特に好ましい。なお、金属は結晶質、非晶質のいずれの状態であってもよい。
本発明において、該金属は粒子として使用される。金属粒子の形状は特に制約されないが、粒状、球状、板状、鱗片状、針状、糸状などである。金属粒子の平均粒子径は10μm以下であることが好ましく、0.1〜5μmであることがより好ましい。金属粒子の平均粒子径が10μmを超えるとリチウムイオン二次電池のサイクル特性の向上が小さい場合がある。ここで、平均粒子径とはレーザー回折式粒度計で測定される累積度数が体積百分率で50%となる粒子径を意味する。
(Metal that can be alloyed with lithium)
The reason why the metal that can be alloyed with lithium is blended is to achieve a high capacity lithium ion secondary battery using a graphite material as a negative electrode material. Metals that can be alloyed with lithium are Al, Pb, Zn, Sn, Bi, In, Mg, Ga, Cd, Ag, Si, B, Au, Pt, Pd, Sb, Ge, Ni, etc. Two or more kinds of alloys may be used. The alloy may further contain elements other than those described above. In addition, a part of the metal may be a compound such as an oxide, nitride, or carbide. Preferred metals are silicon and tin, which can obtain a lithium ion secondary battery having a particularly high capacity and are relatively easily available, and silicon that is effective for higher capacity is particularly preferred. The metal may be in a crystalline or amorphous state.
In the present invention, the metal is used as particles. The shape of the metal particles is not particularly limited, but may be granular, spherical, plate-like, scale-like, needle-like or thread-like. The average particle diameter of the metal particles is preferably 10 μm or less, and more preferably 0.1 to 5 μm. When the average particle diameter of the metal particles exceeds 10 μm, the improvement of the cycle characteristics of the lithium ion secondary battery may be small. Here, the average particle diameter means a particle diameter at which the cumulative frequency measured by a laser diffraction particle size meter is 50% by volume.
(繊維状黒鉛質材料)
繊維状黒鉛質材料はその形状が繊維状であり、材質が黒鉛質であるため導電性を有し、リチウムイオンを吸蔵・離脱することができる。繊維状黒鉛質材料は凝集した状態であっても、凝集が解かれた分散した状態であってもよいが、特に金属粒子を内包するように綿状に凝集した状態であることが好ましい。
また、繊維状黒鉛質材料は比表面積が大きいので、流動性を持った炭素質材料の前駆体を複合粒子と混合する際、該流動性前駆体が、複合粒子を構成する該繊維状炭素質材料の表面に吸着して、複合粒子内部にまで浸透しにくく、被覆複合粒子内部に空隙を確保しやすい。
繊維状黒鉛質材料はその前駆体を最終的に1500〜3300℃で熱処理することにより得ることができる。該前駆体としては、繊維状黒鉛質材料が得られるものであれば、いかなるものであってもよいが、特に黒鉛化可能な繊維状炭素質材料が好ましい。例えば、カーボンナノファイバー、カーボンナノチューブや気相成長炭素繊維などが挙げられる。該前駆体は、短軸長(直径)が1〜500nm、特に10〜200nmであることが好ましい。また、該前駆体のアスペクト比は5以上、特に10〜300であることが好ましい。ここで、アスペクト比とは繊維長/短軸長を言う。
また、繊維状黒鉛質材料は、液相、気相、固相における各種化学的処理、熱処理、酸化処理、物理的処理などを施したものであってもよい。
(Fibrous graphite material)
The fibrous graphite material has a fibrous shape and is made of graphite, so that it has conductivity and can occlude / release lithium ions. The fibrous graphite material may be in an agglomerated state or a dispersed state in which the agglomeration is released, but it is particularly preferable that the fibrous graphite material is in an agglomerated state so as to enclose the metal particles.
Further, since the fibrous graphite material has a large specific surface area, when the carbonaceous material precursor having fluidity is mixed with the composite particles, the fluidic precursor forms the fibrous carbonaceous material constituting the composite particles. It adsorbs on the surface of the material and does not easily penetrate into the composite particles, and it is easy to ensure voids inside the coated composite particles.
The fibrous graphite material can be obtained by finally heat-treating the precursor at 1500 to 3300 ° C. The precursor may be any material as long as a fibrous graphite material can be obtained, and a graphitizable fibrous carbonaceous material is particularly preferable. Examples include carbon nanofibers, carbon nanotubes, and vapor grown carbon fibers. The precursor preferably has a minor axis length (diameter) of 1 to 500 nm, particularly 10 to 200 nm. The aspect ratio of the precursor is preferably 5 or more, particularly 10 to 300. Here, the aspect ratio means fiber length / short axis length.
The fibrous graphite material may be subjected to various chemical treatments in the liquid phase, gas phase, and solid phase, heat treatment, oxidation treatment, physical treatment, and the like.
(非繊維状黒鉛質材料)
本発明の被覆複合粒子には、繊維状黒鉛質材料以外の黒鉛質材料(非繊維状黒鉛質材料)をさらに含むことが好ましい。非繊維状黒鉛質材料をさらに用いるのは、非繊維状黒鉛質材料が繊維状黒鉛質材料に比べて比表面積が小さく、充放電効率を向上させることができるためである。該繊維状黒鉛質材料と非繊維状黒鉛質材料は、前記複合粒子として一体化して用いてもよいし、前記複合粒子および炭素質材料の前駆体と混合して用いてもよい。非繊維状黒鉛質材料はリチウムイオンを吸蔵・離脱できるものであればよく、特に限定されない。その一部または全部が黒鉛質で形成されているもの、例えば、タールピッチ類を最終的に1500℃以上で熱処理(黒鉛化)して得られる人造黒鉛や天然黒鉛などである。具体的には、石油系または石炭系のタールピッチ類などの易黒鉛化性炭素材料を、熱処理して重縮合させたメソフェーズ焼成体、メソフェーズ小球体、コークス類を1500℃以上、好ましくは2800〜3300℃で黒鉛化処理したものなどである。
非繊維状黒鉛質材料の形状は繊維状以外であればよく、球状、塊状、板状、鱗片状などであるが、鱗片状または鱗片状に近い形状が好ましい。それは、被覆複合粒子間または該粒子内の接点を確保しやすく、導電性がさらに向上するからである。また、前記した各種の混合物、造粒物、被覆物、積層物であってもよい。また、液相、気相、固相における各種化学的処理、熱処理、酸化処理、物理的処理などを施したものであってもよい。非繊維状黒鉛質材料の平均粒子径は1〜30μm、特に3〜15μmであることが好ましい。
(Non-fibrous graphite material)
The coated composite particles of the present invention preferably further contain a graphite material (non-fibrous graphite material) other than the fibrous graphite material. The non-fibrous graphite material is further used because the non-fibrous graphite material has a smaller specific surface area than the fibrous graphite material and can improve charge / discharge efficiency. The fibrous graphite material and the non-fibrous graphite material may be used integrally as the composite particles, or may be used by mixing with the composite particles and a precursor of the carbonaceous material. The non-fibrous graphite material is not particularly limited as long as it can occlude and release lithium ions. A part or all of which is formed of graphite, for example, artificial graphite or natural graphite obtained by finally heat treating (graphitizing) tar pitches at 1500 ° C. or higher. Specifically, mesophase fired bodies, mesophase spherules, and cokes obtained by heat-treating and polycondensing easily graphitizable carbon materials such as petroleum-based or coal-based tar pitches are 1500 ° C. or higher, preferably 2800- And those graphitized at 3300 ° C.
The shape of the non-fibrous graphite material may be other than the fiber shape, and may be a spherical shape, a block shape, a plate shape, a scale shape, etc., but a scale shape or a shape close to a scale shape is preferable. This is because it is easy to secure a contact between the coated composite particles or in the particles, and the conductivity is further improved. Moreover, the above-mentioned various mixtures, granulated products, coatings, and laminates may be used. Further, it may be subjected to various chemical treatments in the liquid phase, gas phase, and solid phase, heat treatment, oxidation treatment, physical treatment and the like. The average particle size of the non-fibrous graphite material is preferably 1 to 30 μm, particularly preferably 3 to 15 μm.
(炭素質材料)
本発明に使用される炭素質材料は導電性を有し、金属粒子が繊維状黒鉛質材料で保持された複合粒子の少なくとも一部を被覆するものとして不可欠な成分である。炭素質材料を用いるのは、複合粒子の少なくとも一部を被覆することで、主に繊維状黒鉛質材料または非繊維状黒鉛質材料に由来する比表面積を低減し、充放電効率を向上させるためである。該炭素質材料はその前駆体を熱処理して得ることができる。該炭素質材料の前駆体の種類は問わないが、タールピッチ類および/または樹脂類であることが好ましい。具体的には、石油系または石炭系のタールピッチ類としてコールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられる。また、樹脂類としては、ポリビニルアルコールなどの熱可塑性樹脂、フェノール樹脂、フラン樹脂などが挙げられる。好ましい前駆体はコールタールピッチ、フェノール樹脂などである。
該前駆体の熱処理温度は後述するように600℃以上、好ましくは800℃以上である。
(Carbonaceous material)
The carbonaceous material used in the present invention has conductivity and is an essential component for covering at least a part of the composite particles in which the metal particles are held by the fibrous graphite material. The carbonaceous material is used in order to reduce the specific surface area mainly derived from the fibrous graphite material or non-fibrous graphite material and improve the charge / discharge efficiency by covering at least a part of the composite particles. It is. The carbonaceous material can be obtained by heat-treating the precursor. The type of the precursor of the carbonaceous material is not limited, but tar pitches and / or resins are preferable. Specifically, coal or tar tar pitches such as coal tar, tar light oil, tar medium oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxygen-crosslinked petroleum pitch, heavy oil Etc. Examples of the resins include thermoplastic resins such as polyvinyl alcohol, phenol resins, and furan resins. Preferred precursors are coal tar pitch, phenol resin and the like.
As will be described later, the heat treatment temperature of the precursor is 600 ° C. or higher, preferably 800 ° C. or higher.
(被覆複合粒子の作製方法)
本発明の被覆複合粒子は、リチウムと合金化可能な金属粒子を繊維状黒鉛質材料により保持した複合粒子に、炭素質材料の前駆体を混合して熱処理する方法によって製造される。
すなわち、該被覆複合粒子の製造には、該金属粒子と該繊維状黒鉛質材料を混合・攪拌処理(混合および/または攪拌処理)する方法、特に、好ましくはこれらに圧縮、剪断、衝突、摩擦などの機械的エネルギーを付与する方法、いわゆるメカノケミカル処理などや、該繊維状黒鉛質材料を分散させた有機溶媒中に該金属粒子を投入した後、有機溶媒を除去する方法などが用いられる。特に好ましくはメカノケミカル処理である。
(Method for producing coated composite particles)
The coated composite particles of the present invention are produced by a method of mixing and heat-treating a precursor of a carbonaceous material to composite particles in which metal particles that can be alloyed with lithium are held by a fibrous graphite material.
That is, for the production of the coated composite particles, a method of mixing and stirring (mixing and / or stirring) the metal particles and the fibrous graphite material, particularly preferably compressing, shearing, colliding, and frictioning them. For example, a method of applying mechanical energy such as a so-called mechanochemical treatment, a method of removing the organic solvent after the metal particles are introduced into the organic solvent in which the fibrous graphite material is dispersed, or the like is used. Particularly preferred is a mechanochemical treatment.
メカノケミカル処理は、黒鉛質材料などに圧縮力と剪断力を同時にかける処理を言う。剪断力や圧縮力は通常一般の攪拌力よりも大きいが、これらの機械的応力は、黒鉛質材料の表面にかけられることが好ましく、黒鉛質材料の粒子骨格を破壊しないことが好ましい。該骨格が破壊されると、負極材料として使用したときに、不可逆容量の増大を招く傾向がある。剪断力や圧縮力は、一般的にはメカノケミカル処理による黒鉛質材料の平均粒子径の低下率を20%以下に抑える程度であることが好ましい。
メカノケミカル処理装置は、前記黒鉛質材料と前記金属粒子に剪断力と圧縮力を同時にかけることができる装置であれば、装置の種類、構造は特に限定されない。例えば、加圧ニーダー、二本ロールなどの混練機、回転ボールミル、ハイブリダイゼーションシステム((株)奈良機械製作所製)などの高速衝撃式乾式複合化装置、メカノマイクロシステム((株)奈良機械製作所製)、メカノフュージョシステム(ホソカワミクロン(株))などの圧縮剪断式乾式粉体複合化装置などを使用することができる。
Mechanochemical treatment refers to a treatment in which a compressive force and a shear force are applied simultaneously to a graphite material or the like. Although the shearing force and compressive force are usually larger than general stirring force, these mechanical stresses are preferably applied to the surface of the graphite material, and preferably do not destroy the particle skeleton of the graphite material. When the skeleton is destroyed, when used as a negative electrode material, the irreversible capacity tends to increase. In general, the shearing force and compressive force are preferably such that the reduction rate of the average particle diameter of the graphite material by mechanochemical treatment is suppressed to 20% or less.
As long as the mechanochemical treatment apparatus is an apparatus capable of simultaneously applying a shearing force and a compressive force to the graphite material and the metal particles, the type and structure of the apparatus are not particularly limited. For example, a kneader such as a pressure kneader or two rolls, a rotating ball mill, a high-speed impact dry compounding device such as a hybridization system (manufactured by Nara Machinery Co., Ltd.), a mechano micro system (manufactured by Nara Machinery Co., Ltd.) ), A compression shear type dry powder compounding device such as Mechano-Fusion System (Hosokawa Micron Co., Ltd.) can be used.
中でも、回転速度差を利用して剪断力と圧縮力を同時にかける装置が好ましい。具体的には、回転するドラム(回転ローター)と、該ドラムと回転速度の異なる内部部材(インナーピース)と、前記黒鉛質材料と前記金属粒子の循環機構(例:循環用ブレード)とを有する装置(メカノフュージョシステム)を用い、回転ドラムと内部部材との間に供給された前記黒鉛質材料と前記金属粒子に遠心力を付与しながら、内部部材により回転ドラムとの速度差に起因する剪断力と圧縮力とを同時に繰返しかけることによりメカノケミカル処理することが好ましい。
また、固定ドラム(ステーター)と、高速回転する回転ローターの間に該黒鉛質材料と該金属粒子を通すことで固定ドラムと回転ローターとの速度差に起因する剪断力と圧縮力を該黒鉛質材料と該金属粒子に同時にかける装置(ハイブリダイゼーションシステム)も好ましい。
Among them, an apparatus that applies a shearing force and a compressing force simultaneously using a rotational speed difference is preferable. Specifically, it has a rotating drum (rotating rotor), an internal member (inner piece) having a rotation speed different from that of the drum, and a circulation mechanism (for example, a blade for circulation) of the graphite material and the metal particles. Using a device (mechano-fusion system), while applying centrifugal force to the graphite material and the metal particles supplied between the rotating drum and the internal member, the internal member is caused by a speed difference from the rotating drum. The mechanochemical treatment is preferably performed by repeatedly applying a shearing force and a compressive force simultaneously.
Further, by passing the graphite material and the metal particles between a fixed drum (stator) and a rotating rotor rotating at a high speed, shear force and compressive force due to a speed difference between the fixed drum and the rotating rotor can be obtained. An apparatus (hybridization system) for simultaneously applying the material and the metal particles is also preferable.
メカノケミカル処理の条件は、使用する装置によっても異なり一概に言えないが、例えば、メカノフュージョシステムの場合には、回転ドラムと内部部材との周速度差が5〜50m/s、両者間の距離が1〜100mm、処理時間が3〜90minであることが好ましい。また、ハイブリダイゼーションシステムの場合には、固定ドラムと回転ローターとの周速度差が10〜100m/s、処理時間が30s〜10minであることが好ましい。 The conditions of the mechanochemical treatment differ depending on the apparatus used, and cannot be said unconditionally. For example, in the case of a mechanofusion system, the peripheral speed difference between the rotating drum and the internal member is 5 to 50 m / s. It is preferable that the distance is 1 to 100 mm and the processing time is 3 to 90 min. In the case of a hybridization system, it is preferable that the peripheral speed difference between the fixed drum and the rotating rotor is 10 to 100 m / s, and the processing time is 30 s to 10 min.
次に、該複合粒子に、前記炭素質材料の前駆体を混合し、熱処理して炭素質化するとともに、炭素質物で該複合粒子の少なくとも一部を被覆して被覆複合粒子を製造するが、該前駆体の混合と熱処理を同時に行なってもよい。該熱処理は該炭素質材料の前駆体が炭素化され、炭素質材料に導電性が付与されるように、600℃以上、好ましくは800℃以上の温度で実施される。ただし、金属粒子としてシリコン粒子を用いた場合には、シリコンが1300℃以上では炭素と反応してSiCを生成するため、熱処理温度は1300℃未満とする必要があり、1000℃以上1300℃未満であることが好ましい。
該熱処理は二軸加熱ニーダーのような一般的な混合装置を用いて一段で行っても、段階的に数回に分けて複数回行ってもよい。該炭素質材料の前駆体は溶融するか、媒体に分散または溶解させて供給される。該熱処理は触媒の存在下に行ってもよい。該媒体は、熱処理後、炭素質材料の前駆体が軟化、分解しない温度以下で除去されることが好ましい。
Next, the carbonaceous material precursor is mixed with the composite particles and heat treated to carbonize, and at least a part of the composite particles is coated with a carbonaceous material to produce coated composite particles. Mixing of the precursor and heat treatment may be performed simultaneously. The heat treatment is performed at a temperature of 600 ° C. or higher, preferably 800 ° C. or higher, so that the precursor of the carbonaceous material is carbonized and conductivity is imparted to the carbonaceous material. However, when silicon particles are used as the metal particles, when silicon is 1300 ° C. or higher, it reacts with carbon to produce SiC, so the heat treatment temperature must be lower than 1300 ° C., and 1000 ° C. or higher and lower than 1300 ° C. Preferably there is.
The heat treatment may be performed in a single stage using a general mixing apparatus such as a biaxial heating kneader, or may be performed a plurality of times in stages. The precursor of the carbonaceous material is supplied after being melted or dispersed or dissolved in a medium. The heat treatment may be performed in the presence of a catalyst. The medium is preferably removed after the heat treatment at a temperature at which the precursor of the carbonaceous material does not soften or decompose.
また、本発明の被覆複合粒子は、リチウムと合金化可能な金属粒子を繊維状黒鉛質材料および非繊維状黒鉛質材料により保持した複合粒子に、炭素質材料の前駆体を混合して熱処理することにより製造される。すなわち、リチウムと合金化可能な金属粒子と繊維状黒鉛質材料を一体化する際に、非繊維状黒鉛質材料も共存させ、一体化し、複合粒子とし、前記製造方法と同様に製造される。
さらに、本発明の被覆複合粒子は、リチウムと合金化可能な金属粒子を繊維状黒鉛質材料により保持し一体化した複合粒子に、炭素質材料の前駆体および非繊維状黒鉛質材料を混合して熱処理する方法によって製造される。すなわち、前記製造方法において、炭素質材料の前駆体を複合粒子として混合する際に、非繊維状黒鉛質材料も同時に混合する以外は、前記製造方法と同様に製造される。
The coated composite particles of the present invention are heat-treated by mixing a precursor of a carbonaceous material with composite particles in which metal particles that can be alloyed with lithium are held by a fibrous graphite material and a non-fibrous graphite material. It is manufactured by. That is, when the metal particles that can be alloyed with lithium and the fibrous graphite material are integrated, the non-fibrous graphite material is also coexisted and integrated into composite particles, which are manufactured in the same manner as in the above manufacturing method.
Furthermore, the coated composite particle of the present invention is obtained by mixing a precursor of a carbonaceous material and a non-fibrous graphite material into a composite particle in which metal particles that can be alloyed with lithium are held and integrated with a fibrous graphite material. Manufactured by a heat treatment method. That is, in the said manufacturing method, when mixing the precursor of a carbonaceous material as a composite particle, it manufactures similarly to the said manufacturing method except mixing a non-fibrous graphite material simultaneously.
(負極)
本発明の負極の作製は、従来公知の負極の作製方法に拠り実施されるが、前記被覆複合粒子と結着剤と溶媒からペースト状の負極合剤を調製し、これを集電材の片面または両面に塗布乾燥し、負極合剤層を形成する方法が好ましい。負極合剤層を形成した後、プレス加工などの圧着を行うと、負極合剤層と集電材との接着強度をさらに高めることができる。負極合剤の層厚は10〜200μm、好ましくは20〜200μmである。
(Negative electrode)
The production of the negative electrode of the present invention is carried out according to a conventionally known production method of a negative electrode. A paste-like negative electrode mixture is prepared from the coated composite particles, a binder and a solvent, and this is prepared on one side of a current collector or A method of applying and drying on both sides to form a negative electrode mixture layer is preferable. When the negative electrode mixture layer is formed and then pressure bonding such as press working is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased. The layer thickness of the negative electrode mixture is 10 to 200 μm, preferably 20 to 200 μm.
負極合剤ペーストの調製は公知の攪拌機、混合機、混練機、ニーダーなどを用いて実施される。具体的には、該金属粒子を保持する繊維状黒鉛質材料と、他の黒鉛質材料を分級等によって適当な粒径に調整し、これらと結着剤および/または溶媒を、混合機を用いて混合して調製することができる。 The negative electrode mixture paste is prepared using a known stirrer, mixer, kneader, kneader or the like. Specifically, the fibrous graphite material holding the metal particles and the other graphite material are adjusted to an appropriate particle size by classification or the like, and these are combined with a binder and / or solvent using a mixer. Can be prepared by mixing.
結着剤としては、電解質に対して化学的安定性、電気化学的安定性を有するものが好ましく、有機溶媒に溶解および/または分散させる有機系結着剤はもちろんのこと、水系溶媒に溶解および/または分散する水系結着剤が広く挙げられる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリビニルアルコールなどの樹脂、さらにはカルボキシメチルセルロース、スチレンブタジエンゴムなどのゴムなどが用いられるが、カルボキシメチルセルロース、ポリビニルアルコール、スチレンブタジエンゴムなどの水系結着剤を用いることが特に好ましい。これらを併用することもできる。結着剤は、通常、負極合剤の全量中0.5〜20質量%の割合で使用されるのが好ましい。
溶媒としては、負極合剤の調製に使用される通常の溶媒が使用されるが、溶媒自体が結着剤として使用するものが好ましく使用される。具体的には、Nーメチルピロリドン、ジメチルホルムアミド、水、アルコールなどが挙げられるが、水系溶媒の使用が環境汚染、安全性の点から好ましい。
As the binder, those having chemical stability and electrochemical stability with respect to the electrolyte are preferable. In addition to the organic binder that is dissolved and / or dispersed in the organic solvent, the binder is dissolved in the aqueous solvent. A wide range of water-based binders are / are dispersed. For example, fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, resins such as polyethylene and polyvinyl alcohol, and rubbers such as carboxymethyl cellulose and styrene butadiene rubber are used. It is particularly preferable to use an aqueous binder such as These can also be used together. In general, the binder is preferably used at a ratio of 0.5 to 20% by mass in the total amount of the negative electrode mixture.
As the solvent, a normal solvent used for the preparation of the negative electrode mixture is used, but the solvent itself is preferably used as the binder. Specific examples include N-methylpyrrolidone, dimethylformamide, water, alcohol and the like. Use of an aqueous solvent is preferable from the viewpoint of environmental pollution and safety.
負極に用いる集電材の形状は特に限定されないが、箔状、またはメッシュ、エキスパンドメタルなどの網状のものなどが用いられる。集電材の材質としては、銅、ステンレス、ニッケルなどが挙げられる。集電材の厚さは、箔状の場合は、5〜20μmであることが好ましい。 The shape of the current collector used for the negative electrode is not particularly limited, but a foil or a net-like material such as a mesh or expanded metal is used. Examples of the material for the current collector include copper, stainless steel, and nickel. In the case of a foil, the thickness of the current collector is preferably 5 to 20 μm.
また、前記被覆複合粒子とポリエチレン、ポリビニルアルコールなどの樹脂粉末を、必要ならば、他の黒鉛質材料とともに乾式混合し、通常の成形方法に準じて負極を成形することができる。例えば、金型内で該混合物をホットプレス成形して負極を成形することができる。 Moreover, if necessary, the coated composite particles and resin powder such as polyethylene and polyvinyl alcohol can be dry-mixed together with other graphite materials to form a negative electrode according to a normal molding method. For example, the negative electrode can be formed by hot press molding the mixture in a mold.
該被覆複合粒子を用いて負極材料・負極を作製する際に、負極材料の作製に通常使用される導電材、改質材、添加剤などを共存させてもよい。例えば、天然黒鉛、人造黒鉛、カーボンブラック、気相成長炭素繊維、低結晶性炭素粒子またはこれらの黒鉛化物などを添加してもよい。これらの添加量は、一概に言えないが、総量として0.1〜50質量%である。 When the negative electrode material / negative electrode is prepared using the coated composite particles, a conductive material, a modifier, an additive, and the like that are usually used for the preparation of the negative electrode material may coexist. For example, natural graphite, artificial graphite, carbon black, vapor grown carbon fiber, low crystalline carbon particles, or a graphitized product thereof may be added. Although these addition amounts cannot be generally stated, the total amount is 0.1 to 50% by mass.
(リチウムイオン二次電池)
リチウムイオン二次電池は、通常、負極、正極および非水電解質を主たる電池構成要素として、正極および負極はそれぞれリチウムイオンの担持体であり、充電時にはリチウムイオンが負極に吸蔵され、放電時に負極から離脱する電池機構に拠っている。
本発明のリチウムイオン二次電池の構成要素は、上記被覆複合粒子を用いる以外は特に限定されない。正極、電解質、セパレータなどの他の電池構成要素については一般的なリチウムイオン二次電池の構成要素に準じる。
(Lithium ion secondary battery)
A lithium ion secondary battery usually has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main battery components. Each of the positive electrode and the negative electrode is a lithium ion carrier. Lithium ions are occluded in the negative electrode during charging and from the negative electrode during discharging. It depends on the battery mechanism to be detached.
The constituent elements of the lithium ion secondary battery of the present invention are not particularly limited except that the above coated composite particles are used. Other battery components such as a positive electrode, an electrolyte, and a separator conform to the components of a general lithium ion secondary battery.
(正極)
正極は、例えば正極材料と結着剤と導電剤よりなる正極号剤を集電体の表面に塗布することにより形成される。正極材料(正極活物質)は、十分量のリチウムを吸蔵/離脱し得るものを選択することが好ましい。正極活物質としては、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物(V2O5、V6O13、V2O4、V3O8など)およびそのリチウム化合物などのリチウム含有化合物、一般式MXMo6S8−y(式中Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦4、Yは0≦Y≦1の範囲の数である)で表されるシェブレル相化合物、活性炭、活性炭素繊維などを用いることができる。該リチウム含有遷移金属酸化物はリチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。
(Positive electrode)
The positive electrode is formed, for example, by applying a positive electrode material composed of a positive electrode material, a binder, and a conductive agent to the surface of the current collector. It is preferable to select a positive electrode material (positive electrode active material) that can occlude / release a sufficient amount of lithium. Examples of positive electrode active materials include lithium-containing transition metal oxides, transition metal chalcogenides, vanadium oxides (V 2 O 5 , V 6 O 13 , V 2 O 4 , V 3 O 8, etc.) and lithium compounds such as lithium compounds thereof. Containing compound, general formula M X Mo 6 S 8-y (wherein M is at least one transition metal element, X is a number in the range of 0 ≦ X ≦ 4, Y is 0 ≦ Y ≦ 1) The chevrel phase compound, activated carbon, activated carbon fiber, etc. which are represented can be used. The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals.
該リチウム含有遷移金属酸化物は、具体的には、LiM1 1−pM2 pO2(式中M1およびM2は少なくとも一種の遷移金属元素であり、pは0≦p≦1の範囲の数である)、またはLiM1 1−qM2 qO4(式中M1およびM2は少なくとも一種の遷移金属元素であり、qは0≦q≦1の範囲の数である)で示される。
M、M1およびM2で示される遷移金属は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのはCo、Fe、Mn、Cr、Ti、V、Alなどである。好ましい具体例はLiCoO2、LiNiO2、LiMnO2、LiNi0.9Co0.1O2、LiNi0.5Mn0.5O2などである。
該リチウム含有遷移金属酸化物は、例えば、リチウムと、遷移金属の酸化物または塩類を出発原料として、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下、600〜1000℃の温度で焼成することにより得ることができる。出発原料は酸化物または塩類に限定されず、水酸化物などでもよい。
Specifically, the lithium-containing transition metal oxide is LiM 1 1-p M 2 p O 2 (wherein M 1 and M 2 are at least one transition metal element, and p is 0 ≦ p ≦ 1) LiM 1 1-q M 2 q O 4 (wherein M 1 and M 2 are at least one transition metal element, and q is a number in the range of 0 ≦ q ≦ 1). Indicated by
Transition metals represented by M, M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Fe, Mn, Cr, Ti, V, Al and the like. Preferred examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 and the like.
The lithium-containing transition metal oxide is prepared by mixing lithium and a transition metal oxide or salt as starting materials, for example, and mixing these starting materials according to the composition of the desired metal oxide, and in an oxygen atmosphere, 600 to 1000 It can be obtained by firing at a temperature of ° C. The starting material is not limited to oxides or salts, but may be hydroxides.
本発明では、正極活物質は、前記化合物を単独で使用しても、2種類以上併用してもよい。例えば、正極材料に炭酸リチウムなどの炭酸アルカリ塩を添加することもできる。
このような正極材料によって正極を形成するには、例えば、正極材料と結着材および電極に導電性を付与するための導電剤よりなる正極合剤を集電材の両面に塗布することで正極合剤層を形成する。結着剤としては、例えば、炭素材料、黒鉛やカーボンブラックが用いられる。
In the present invention, the positive electrode active material may be used alone or in combination of two or more. For example, an alkali carbonate such as lithium carbonate can be added to the positive electrode material.
In order to form a positive electrode using such a positive electrode material, for example, a positive electrode mixture comprising a positive electrode material, a binder, and a conductive agent for imparting conductivity to the electrode is applied to both surfaces of the current collector. An agent layer is formed. As the binder, for example, a carbon material, graphite or carbon black is used.
正極に用いる集電材の形状は特に限定されないが、箔状、またはメッシュ、エキスパンドメタルなどの網状のものなどが用いられる。集電材の材質としては、アルミニウム、銅、ステンレス、ニッケルなどが挙げられる。集電材の厚さは、箔状の場合は、10〜40μmであることが好ましい。
正極の場合も負極の場合と同様に、正極合剤を溶剤中に分散させることでペースト状にし、このペースト状負極合剤を集電材に塗布し乾燥することによって正極合剤層を形成してよく、正極合剤層を形成した後、さらにプレス加圧などの圧着を行っても構わない。これにより、正極合剤層が均一かつ強固に集電材に接着される。
The shape of the current collector used for the positive electrode is not particularly limited, but a foil or a net-like material such as a mesh or expanded metal is used. Examples of the material for the current collector include aluminum, copper, stainless steel, and nickel. In the case of a foil, the thickness of the current collector is preferably 10 to 40 μm.
In the case of the positive electrode, as in the case of the negative electrode, the positive electrode mixture is dispersed in a solvent to form a paste, and the paste-like negative electrode mixture is applied to a current collector and dried to form a positive electrode mixture layer. In addition, after forming the positive electrode mixture layer, pressure bonding such as press pressing may be further performed. Thereby, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.
(非水電解質)
本発明のリチウムイオン二次電池は、非水電解質として液系の電解質のほかに、固体電解質またはゲル電解質などの高分子電解質を使用することができる。
本発明のリチウムイオン二次電池に使用される非水電解質は、通常の非水電解液に使用される電解質塩であり、具体的には、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C6H5)、LiCl、LiBr、LiCF3SO3、LiCH3SO3、LiN(CF3SO2)2、LiC(CF3SO2)3、LIN(CF3CH2OSO2)2、LIN(CF3CF3OSO2)2、LIN(HCF2CF2CH2OSO2)2、LIN[(CF3)2CHOSO2]2]、LIB[(C6H3)(CF3)2]4、LiAlCl4、LiSiF6などのリチウム塩が挙げられる。特にLiPF6とLiBF4が酸化安定性の点から好ましい。
(Nonaqueous electrolyte)
In the lithium ion secondary battery of the present invention, a polymer electrolyte such as a solid electrolyte or a gel electrolyte can be used as a nonaqueous electrolyte in addition to a liquid electrolyte.
Non-aqueous electrolyte used in the lithium ion secondary battery of the present invention is an electrolyte salt used in the conventional non-aqueous electrolyte, specifically, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LIN (CF 3 CH 2 OSO 2 ) 2 , LIN (CF 3 CF 3 OSO 2 ) 2 , LIN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LIN [(CF 3 ) 2 CHOSO 2 ] 2 ], LIB [(C 6 H 3 ) (CF 3 ) 2 ] 4, LiAlCl 4, include lithium salts such as LiSiF 6. In particular, LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability.
非水電解質液とするための溶媒としては、通常の非水電解液の溶媒として使用されるもが挙げられる。具体的には、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1−または1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γーブトロラクトン、1,3−ジオキソフラン、4−メチルー1,3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3ーメチルー2−オキサゾリドン、エチレングリコール、サルファイト、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。電解液中の電解質塩の濃度は0.1〜5mol/dm3(0.1〜5mol/l)であることが好ましく、0.5〜3.0mol/dm3(0.5〜3.0mol/l)であることがより好ましい。 Examples of the solvent for making the non-aqueous electrolyte include those used as solvents for ordinary non-aqueous electrolytes. Specifically, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butrolactone, 1,3-dioxofuran, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, nitriles such as acetonitrile, chloronitrile and propionitrile, trimethyl borate, tetrasilicate Methyl, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethylorthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydro Thiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, may be used an aprotic organic solvent such as sulfite, dimethyl sulfite. Preferably the concentration of the electrolyte salt in the electrolytic solution is 0.1~5mol / dm 3 (0.1~5mol / l ), 0.5~3.0mol / dm 3 (0.5~3.0mol / l) is more preferable.
高分子電解質の製造方法は特に制限されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融・溶解する方法、混合用有機溶媒に、高分子化合物、リチウム化合物および非水溶媒を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒を混合し、混合物に紫外線、電子線または分子線などを照射して重合させる方法などを挙げることができる。高分子電解質中の非水溶媒の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を越えると機械的強度が弱くなり、製膜しにくくなる。 The method for producing the polymer electrolyte is not particularly limited. For example, the polymer compound, lithium salt and non-aqueous solvent (plasticizer) constituting the matrix are mixed and heated to melt and dissolve the polymer compound. A method in which a polymer compound, a lithium compound, and a non-aqueous solvent are dissolved in an organic solvent for use, and then the organic solvent for mixing is evaporated. A polymerizable monomer, a lithium salt, and a non-aqueous solvent are mixed. Or the method of irradiating with a molecular beam etc. and polymerizing can be mentioned. The ratio of the nonaqueous solvent in the polymer electrolyte is preferably 10 to 90% by mass, and more preferably 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.
該高分子電解質としては、ポリエチレンオキサイドやその架橋体などのエーテル系重合体、ポリメタクリレート系重合体、ポリアクリレート系重合体、ポリビニリデンフルオライドやビニリデンフルオライドーヘキサフルオロプロピレン共重合体などのフッ素系樹脂などを単独または混合して用いることができる。これらの中では、酸化還元安定性などの観点から、ポリビニリデンフルオライドやビニリデンフルオライドーヘキサフルオロプロピレン共重合体などのフッ素系樹脂などを用いることが好ましい。高分子ゲル電解質の場合、可塑剤である電解液中の電解質塩濃度は0.1〜5mol/dm3(0.1〜5mol/l)であることが好ましく、0.5〜2.0mol/dm3(0.5〜2.0mol/l)であることがより好ましい。 Examples of the polymer electrolyte include ether polymers such as polyethylene oxide and cross-linked polymers thereof, polymethacrylate polymers, polyacrylate polymers, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene copolymers. These resins can be used alone or in combination. Among these, it is preferable to use a fluorine-based resin such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer from the viewpoint of oxidation-reduction stability. In the case of the polymer gel electrolyte, the concentration of the electrolyte salt in the electrolytic solution as a plasticizer is preferably 0.1 to 5 mol / dm 3 (0.1 to 5 mol / l), and preferably 0.5 to 2.0 mol / l. dm and more preferably 3 (0.5~2.0mol / l).
本発明のリチウムイオン二次電池は、前記被覆複合粒子を用いることから、ゲル電解質を用いることができる。
ゲル電解質を用いたリチウムイオン二次電池は、前記被覆複合粒子を含有する負極と、正極およびゲル電解質から構成される。例えば、負極、ゲル電解質、正極の順で積層し、電池の外装材内に収容することで構成される。なお、これに加えて、さらに負極と正極の外側にゲル電解質を配するようにしてもよい。本発明の負極材料を用いるゲル電解質のリチウムイオン二次電池では、ゲル電解質にプロピレンカーボネートを含有させることができる。一般にプロピレンカーボネートは黒鉛質材料に対して電気的分解反応が激しいが、本発明の負極材料に対しては分解反応性が低いので、第1サイクルにおける不可逆的な容量を小さく抑えることができる。
Since the lithium ion secondary battery of the present invention uses the coated composite particles, a gel electrolyte can be used.
A lithium ion secondary battery using a gel electrolyte is composed of a negative electrode containing the coated composite particles, a positive electrode, and a gel electrolyte. For example, the negative electrode, the gel electrolyte, and the positive electrode are stacked in this order and accommodated in the battery outer packaging material. In addition to this, a gel electrolyte may be further arranged outside the negative electrode and the positive electrode. In the gel electrolyte lithium ion secondary battery using the negative electrode material of the present invention, the gel electrolyte can contain propylene carbonate. In general, propylene carbonate has a strong electrolysis reaction with respect to the graphite material, but since the decomposition reactivity with the negative electrode material of the present invention is low, the irreversible capacity in the first cycle can be kept small.
(セパレータ)
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。セパレータは特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜などが挙げられる。合成樹脂製微多孔膜が好ましいが、なかでもポリオレフィン系製微多孔膜が厚さ、膜強度、膜抵抗などの点から好ましい。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜などである。
(Separator)
In the lithium ion secondary battery of the present invention, a separator can also be used. Although a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned. A microporous membrane made of synthetic resin is preferred, and among these, a microporous membrane made of polyolefin is preferred from the viewpoint of thickness, membrane strength, membrane resistance, and the like. Specifically, it is a microporous film made of polyethylene and polypropylene, or a microporous film in which these are combined.
本発明のリチウムイオン二次電池の構造は任意であり、その形状、形態について特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。高分子固体電解質や高分子ゲル電解質電池の場合には、アルミラミネートフィルムに封入した構造とすることもできる。 The structure of the lithium ion secondary battery of the present invention is arbitrary, and is not particularly limited with respect to its shape and form, and may be cylindrical, rectangular, depending on the application, mounted equipment, required charge / discharge capacity, etc. A coin type, a button type, or the like can be arbitrarily selected. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to include a means for detecting an increase in the internal pressure of the battery and shutting off the current when there is an abnormality such as overcharging. In the case of a polymer solid electrolyte or a polymer gel electrolyte battery, it can also have a structure enclosed in an aluminum laminate film.
本発明を実施例および比較例により具体的に説明するが、本発明はこれらに限定されるものではない。また、実施例および比較例では、図1に示す構成の評価用のボタン型二次電池を作製して評価した。該電池は、本発明の趣旨に基づき、公知の方法に準じて作製することができる。該評価用電池においては、作用電極を負極、対極を正極と表現した。
なお、実施例および比較例において、複合粒子の粒度(粒子径)はレーザー回折式粒度計を用いて測定した累積度数が体積百分率で50%となる粒子径である。繊維状炭素質材料の繊維長と短軸長は、走査型電子顕微鏡で各材料の形状が認識できる倍率で100個分を撮影し、測定し、平均値を求めた。また平均アスペクト比はそれらの繊維長/短軸長の比の平均値とした。炭素質材料で被覆された複合粒子の構造と形状は走査型電子顕微鏡で観察した。また炭素質材料で被覆された複合粒子の比表面積は窒素ガスを吸着させるBET法により測定した。
The present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these. In Examples and Comparative Examples, button-type secondary batteries for evaluation having the configuration shown in FIG. 1 were produced and evaluated. The battery can be manufactured according to a known method based on the gist of the present invention. In the evaluation battery, the working electrode was expressed as a negative electrode, and the counter electrode was expressed as a positive electrode.
In the examples and comparative examples, the particle size (particle size) of the composite particles is a particle size at which the cumulative frequency measured with a laser diffraction particle size meter is 50% by volume. The fiber length and short axis length of the fibrous carbonaceous material were measured by taking 100 images at a magnification with which the shape of each material can be recognized with a scanning electron microscope, and the average value was obtained. The average aspect ratio was the average value of the ratios of the fiber length / short axis length. The structure and shape of the composite particles coated with the carbonaceous material were observed with a scanning electron microscope. The specific surface area of the composite particles coated with the carbonaceous material was measured by the BET method in which nitrogen gas is adsorbed.
(実施例1)
黒鉛化処理された気相成長炭素繊維(昭和電工(株)製、VGCF、短軸長150nm、平均アスペクト比約50)92.7質量部と、シリコン粒子(高純度化学研究所(株)製、平均粒子径2μm)7.3質量部を混合し、メカノフージョンシステム(ホソカワミクロン(株)製)内に投入して、機械的エネルギーを付与し、メカノケミカル処理を施した。すなわち、回転ドラムの周速度20m/s、処理時間30min、回転ドラムと内部部材の距離5mmの条件で圧縮力、剪断力を繰返し付加し、シリコン粒子が気相成長炭素繊維に挟持された複合粒子を得た。
(Example 1)
92.7 parts by mass of graphitized vapor-grown carbon fiber (Showa Denko KK, VGCF, short axis length 150 nm, average aspect ratio about 50) and silicon particles (manufactured by High Purity Chemical Laboratory Co., Ltd.) Then, 7.3 parts by mass of an average particle size of 2 μm) was mixed and put into a mechano-fusion system (manufactured by Hosokawa Micron Co., Ltd.) to give mechanical energy and perform mechanochemical treatment. That is, composite particles in which silicon particles are sandwiched between vapor-grown carbon fibers by repeatedly applying compressive force and shearing force under conditions of a peripheral speed of the rotating drum of 20 m / s, a processing time of 30 min, and a distance of 5 mm between the rotating drum and the internal member. Got.
ついで、コールタールピッチ(JFEケミカル(株)製、残炭率60%)30gにタール中油(JFEケミカル(株)製)300gを混合して調製したコールタールピッチ溶液と該複合粒子とを、二軸加熱ニーダーを用いて、200℃で1h混練した。その際、固形分比率がコールタールピッチ:該複合粒子=42:58となるように調整した。混練後、真空にして該混練物から溶媒タール中油を除去し、コールタールピッチが被覆した複合粒子を得た。得られた複合粒子を粗粉砕した後、1000℃で10h焼成し、被覆複合粒子を得た。焼成の際に、揮発分の実質的全量が除去された。なお、残炭率はJIS K2425の固定炭素法に準拠し、800℃に加熱し、実質的に全量が炭素化されたときの残部を言い、百分率で表したものである。 Next, a coal tar pitch solution prepared by mixing 30 g of coal tar pitch (manufactured by JFE Chemical Co., Ltd., residual carbon ratio 60%) with 300 g of tar middle oil (manufactured by JFE Chemical Co., Ltd.) and the composite particles, The mixture was kneaded at 200 ° C. for 1 h using a shaft heating kneader. At that time, the solid content ratio was adjusted to be coal tar pitch: composite particles = 42: 58. After kneading, the solvent tar oil was removed from the kneaded product under vacuum to obtain composite particles coated with coal tar pitch. The obtained composite particles were coarsely pulverized and then fired at 1000 ° C. for 10 hours to obtain coated composite particles. During firing, substantially all of the volatiles were removed. The residual carbon ratio is based on the fixed carbon method of JIS K2425, and is expressed as a percentage, which is the remainder when heated to 800 ° C. and substantially completely carbonized.
該炭素質材料で被覆された複合粒子は球状であり、平均粒子径は10μm、比表面積は5.2m2/gであった。
該炭素質材料が該複合粒子の外表面を被覆しており、シリコン粒子が気相成長炭素繊維に絡んで挟持され、多数の空隙が複合粒子の内部全体に分散して形成されていることが確認された。得られた被覆複合粒子のシリコン/繊維状黒鉛質材料/炭素質材料の質量組成は5.1/64.6/30.3であった。
なお、被覆複合粒子におけるシリコンの割合は前述した発光分光法のより求めた。繊維状黒鉛質材料と炭素質材料の割合は前述した偏光顕微鏡を用いる方法により求めた。
The composite particles coated with the carbonaceous material were spherical, the average particle diameter was 10 μm, and the specific surface area was 5.2 m 2 / g.
The carbonaceous material covers the outer surface of the composite particles, the silicon particles are sandwiched between the vapor-grown carbon fibers, and a large number of voids are dispersed throughout the composite particles. confirmed. The mass composition of silicon / fibrous graphite material / carbonaceous material of the obtained coated composite particles was 5.1 / 64.6 / 30.3.
Note that the ratio of silicon in the coated composite particles was determined by the above-described emission spectroscopy. The ratio between the fibrous graphite material and the carbonaceous material was determined by the method using the polarizing microscope described above.
(負極合剤ペーストの作製)
前記炭素化物で被覆された複合粒子90質量%と、ポリフッ化ビニリデン10質量%を、N−メチルピロリドン溶媒に入れ、ホモミキサーを用いて、2000rpmで3min間攪拌混合し、有機溶媒系負極合剤ペーストを調製した。
(Preparation of negative electrode mixture paste)
90% by mass of the composite particles coated with the carbonized product and 10% by mass of polyvinylidene fluoride are placed in an N-methylpyrrolidone solvent, and are stirred and mixed at 2000 rpm for 3 minutes using a homomixer. A paste was prepared.
(作用電極の作製)
前記負極合剤ペーストを、銅箔上に均一な厚さで塗布し、真空中90℃で溶媒N−メチルピロリドンを揮発させ、乾燥した。得られた負極合剤層をハンドプレスによって加圧した。集電材銅箔と負極合剤層を直径15.5mmの円柱状に打抜いて、銅箔(厚み16μm)と該銅箔に密着した負極合剤(厚み50μm)からなる作用電極を作製した。
(Production of working electrode)
The negative electrode mixture paste was applied to a copper foil with a uniform thickness, and the solvent N-methylpyrrolidone was volatilized at 90 ° C. in a vacuum and dried. The obtained negative electrode mixture layer was pressurized by a hand press. The current collector copper foil and the negative electrode mixture layer were punched into a cylindrical shape having a diameter of 15.5 mm, and a working electrode composed of a copper foil (thickness 16 μm) and a negative electrode mixture (thickness 50 μm) adhered to the copper foil was produced.
(対極の作製)
リチウム箔を集電材ニッケルネットに押付け、直径15.5mmの円柱状に打抜いて、ニッケルネットに密着したリチウム箔(厚み0.5μm)からなる対極を作製した。
(Production of counter electrode)
The lithium foil was pressed against the current collector nickel net and punched into a cylindrical shape with a diameter of 15.5 mm to produce a counter electrode made of lithium foil (thickness 0.5 μm) in close contact with the nickel net.
(電解液・セパレータ)
エチレンカーボネート33vol%ーメチルエチルカーボネート67vol%を混合してなる混合溶媒に、LiPF6を1mol/dm3となる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質シート(厚み20μm)に含浸させ、電解液が含浸したセパレータを作製した。
(Electrolyte / Separator)
LiPF 6 was dissolved at a concentration of 1 mol / dm 3 in a mixed solvent obtained by mixing 33 vol% of ethylene carbonate and 67 vol% of methyl ethyl carbonate to prepare a nonaqueous electrolytic solution. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous sheet (thickness: 20 μm) to produce a separator impregnated with the electrolytic solution.
(評価電池の作製)
評価電池として、図1に示すボタン型二次電池を次の手順により作製した。
集電材7bに密着した作用電極2と集電材7aに密着した対極4との間に、電解液を含浸させたセパレータ5を挟んで、積層した。その後、作用電極2の集電材7b側が外装カップ1内に、対極4の集電材7a側から外装缶3内に収容されるように、外装カップ1と外装カップ3とを合わせた。その際、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密着した。
(Production of evaluation battery)
As an evaluation battery, a button-type secondary battery shown in FIG. 1 was produced by the following procedure.
The separator 5 impregnated with an electrolytic solution was sandwiched between the working
該評価電池について、温度25℃で下記のような充放電試験を行い、充放電容量、初期充放電効率、サイクル特性を計算した。充放電特性(放電容量、初期充放電効率およびサイクル特性)を表2に示した。
(放電容量・初期充放電効率)
0.9mAの電流値で回路電圧が0mVになるまで定電流充電を行い、回路電圧が0mV
に達した時点で定電圧充電に切換え、さらに電流値が20μAになるまで。充電を続けた。その間の通電量から充電容量を求めた。その後、120間休止した。次に、0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。次式から、初期充放電効率を計算した。なお、この試験では、リチウムを黒鉛質粒子へ吸蔵する過程を充電、離脱する過程を放電とした。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)
×100
The evaluation battery was subjected to the following charge / discharge test at a temperature of 25 ° C., and the charge / discharge capacity, initial charge / discharge efficiency, and cycle characteristics were calculated. The charge / discharge characteristics (discharge capacity, initial charge / discharge efficiency, and cycle characteristics) are shown in Table 2.
(Discharge capacity and initial charge / discharge efficiency)
Constant current charging is performed until the circuit voltage reaches 0 mV at a current value of 0.9 mA, and the circuit voltage is 0 mV.
Switch to constant voltage charging until the current value reaches 20μA. Continued charging. The charging capacity was determined from the amount of electricity applied during that time. After that, it rested for 120 hours. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity was obtained from the energization amount during this period. The initial charge / discharge efficiency was calculated from the following equation. In this test, the process of occluding lithium into the graphite particles was charged and the process of detaching was defined as discharge.
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity)
× 100
(サイクル特性)
また、これらの評価試験とは別に、回路電圧が0mVに達するまで4.0mAの電流値で定電流充電を行た後、定電圧充電に切換え、電流値が20μmになるまで充電を続けた後、120min間休止した。つぎに、4.0mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行った。この充放電を20サイクル繰返した。1サイクル目と20サイクル目における放電容量を求め、次式からサイクル特性を計算した。
サイクル特性(%)=(第20サイクルの放電容量/第1サイクルの放電容量)
×100
(Cycle characteristics)
In addition to these evaluation tests, after performing constant current charging at a current value of 4.0 mA until the circuit voltage reaches 0 mV, switching to constant voltage charging and continuing charging until the current value reaches 20 μm. For 120 minutes. Next, constant current discharge was performed until the circuit voltage reached 1.5 V at a current value of 4.0 mA. This charging / discharging was repeated 20 cycles. The discharge capacities at the 1st and 20th cycles were determined, and the cycle characteristics were calculated from the following equation.
Cycle characteristics (%) = (discharge capacity of 20th cycle / discharge capacity of 1st cycle)
× 100
(実施例2)
実施例1において、繊維状黒鉛質材料として気相成長炭素繊維の代わりに黒鉛化処理されたカーボンナノチューブ(直径10nm、平均アスペクト比約300)を用いる以外は、実施例1と同様な方法と条件で、シリコン粒子とカーボンナノチューブからなる複合粒子を作製し、引き続きコールタールピッチの炭素化物で被覆された複合粒子を作製した。得られた被覆複合粒子は球状であり、平均粒径は12μmであり、比表面積は6.1m2/gであった。該被覆複合粒子の外表面は一様に被覆されており、シリコン粒子がカーボンナノチューブに絡んで挟持され、多数の空隙が複合粒子の内部全体に分散して形成されていることが確認された。該被覆複合粒子のシリコン/繊維状黒鉛質材料/炭素質材料の質量組成は5.1/64.6/30.3であった。
(Example 2)
In Example 1, the same methods and conditions as in Example 1 except that carbonized nanotubes (diameter 10 nm, average aspect ratio of about 300) were used instead of vapor-grown carbon fibers as the fibrous graphite material. Thus, composite particles composed of silicon particles and carbon nanotubes were prepared, and then composite particles coated with carbonized carbon of coal tar pitch were prepared. The obtained coated composite particles were spherical, the average particle size was 12 μm, and the specific surface area was 6.1 m 2 / g. It was confirmed that the outer surface of the coated composite particles was uniformly coated, silicon particles were entangled between carbon nanotubes, and a large number of voids were dispersed throughout the interior of the composite particles. The mass composition of silicon / fibrous graphite material / carbonaceous material of the coated composite particles was 5.1 / 64.6 / 30.3.
実施例1において、被覆複合粒子として、気相成長炭素繊維に基づく複合粒子の代わりに黒鉛化処理されたカーボンナノチューブに基づく被覆複合粒子を用いる以外は、実施例1と同様な方法と条件で、負極合剤ペースト、負極材料、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様な方法と条件で測定した。その結果を表2に示した。 In Example 1, as the coated composite particles, except for using the composite particles based on graphitized carbon nanotubes instead of the composite particles based on vapor-grown carbon fibers, the same method and conditions as in Example 1, A negative electrode mixture paste, a negative electrode material, a working electrode, and an evaluation battery were prepared. The charge / discharge characteristics of the evaluation battery were measured by the same method and conditions as in Example 1. The results are shown in Table 2.
(実施例3)
実施例1において、コールタールピッチ溶液と複合粒子とを二軸加熱ニーダーを用いて、200℃で1h混練する際に、鱗片状天然黒鉛((株)中越黒鉛工業所製、平均粒子径5μm)を、固形分比率としてコールタールピッチ:複合粒子:鱗片状天然黒鉛=34:60:6となるように調整して加える以外は、実施例1と同様な方法と条件で、複合粒子を作製し、引続き、焼成を行い、被覆複合粒子を得た。得られた被覆複合粒子は塊状であり、平均粒子径は12μmであり、比表面積は5.3m2/gであった。
該炭素質材料と鱗片状天然黒鉛が該複合粒子の外表面を被覆しており、シリコン粒子が気相成長炭素繊維に絡んで挟持され、かつ多数の大小の空隙が複合粒子の内部全体に分散して形成されていることが確認された。得られた被覆複合粒子のシリコン/繊維状黒鉛質材料/鱗片状黒鉛質材料/炭素質材料の質量組成は5.1/64.8/6.5/23.6であった。
(Example 3)
In Example 1, when the coal tar pitch solution and the composite particles were kneaded at 200 ° C. for 1 h using a biaxial heating kneader, scaly natural graphite (manufactured by Chuetsu Graphite Industries Co., Ltd., average particle diameter: 5 μm) Was added in the same manner and under the same conditions as in Example 1 except that coal tar pitch: composite particles: scale-like natural graphite = 34: 60: 6 was added as a solid content ratio. Subsequently, firing was performed to obtain coated composite particles. The obtained coated composite particles were agglomerated, the average particle diameter was 12 μm, and the specific surface area was 5.3 m 2 / g.
The carbonaceous material and scaly natural graphite cover the outer surface of the composite particle, silicon particles are entangled between vapor-grown carbon fibers, and many large and small voids are dispersed throughout the composite particle. It was confirmed that it was formed. The mass composition of silicon / fibrous graphite material / flaky graphite material / carbonaceous material of the obtained coated composite particles was 5.1 / 64.8 / 6.5 / 23.6.
実施例1において、被覆複合粒子として、気相成長炭素繊維に基づく複合粒子に,さらに鱗片状天然黒鉛を加えて得た被覆複合粒子を用いる以外は、実施例1と同様な方法と条件で、負極合剤ペースト、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様に測定した。その結果を表2に示した。 In Example 1, as the coated composite particles, except for using the coated composite particles obtained by adding scaly natural graphite to the composite particles based on vapor-grown carbon fibers, the same method and conditions as in Example 1, A negative electrode mixture paste, a working electrode, and an evaluation battery were prepared. The charge / discharge characteristics of the evaluation battery were measured in the same manner as in Example 1. The results are shown in Table 2.
(実施例4)
実施例3において、鱗片状天然黒鉛の代わりにメソフェーズ小球体の黒鉛化物を平均粒子径が3μmとなるように粉砕したものを用いる以外は、実施例1と同様な方法と条件で、複合粒子を作製し、引続き、焼成を行い、被覆複合粒子を得た。得られた被覆複合粒子は塊状であり、平均粒子径は10μmであり、比表面積は4.0m2/gであった。
該炭素質材料と、メソフェーズ小球体の黒鉛化物が該複合粒子の外表面を被覆しており、シリコン粒子が気相成長炭素繊維に絡んで挟持され、かつ多数の大小の空隙が複合粒子の内部全体に分散して形成されていることが確認された。得られた被覆複合粒子のシリコン/繊維状黒鉛質材料/非繊維状黒鉛質材料/炭素質材料の質量組成は5.1/64.8/6.5/23.6であった。
実施例1において、被覆複合粒子として、気相成長炭素繊維に基づく複合粒子に,さらにメソフェーズ小球体の黒鉛化物を加えて得た被覆複合粒子を用いる以外は、実施例1と同様な方法と条件で、負極合剤ペースト、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様に測定した。その結果を表2に示した。
Example 4
In Example 3, the composite particles were prepared in the same manner and under the same conditions as in Example 1 except that a mesophase small sphere graphitized material was used instead of scaly natural graphite and pulverized so that the average particle size was 3 μm. It was produced and subsequently fired to obtain coated composite particles. The obtained coated composite particles were agglomerated, the average particle diameter was 10 μm, and the specific surface area was 4.0 m 2 / g.
The carbonaceous material and graphitized mesophase spherules coat the outer surface of the composite particle, silicon particles are sandwiched between vapor-grown carbon fibers, and a large number of large and small voids are formed inside the composite particle. It was confirmed that it was dispersed throughout. The mass composition of silicon / fibrous graphite material / non-fibrous graphite material / carbonaceous material of the obtained coated composite particles was 5.1 / 64.8 / 6.5 / 23.6.
In Example 1, the same method and conditions as in Example 1 were used except that the coated composite particles obtained by adding graphitized mesophase spherules to the composite particles based on vapor-grown carbon fibers were used as the coated composite particles. Thus, a negative electrode mixture paste, a working electrode, and an evaluation battery were produced. The charge / discharge characteristics of the evaluation battery were measured in the same manner as in Example 1. The results are shown in Table 2.
(実施例5)
実施例1において、メカノケミカル処理に供する気相成長炭素繊維とシリコン粒子の質量比を95.7:4.3とする以外は、実施例1と同様な方法と条件で、コールタールピッチで被覆された複合粒子を作製し、引続き、焼成を行い、被覆複合粒子を得た。得られた被覆複合粒子は球状であり、平均粒子径は10μmであり、比表面積は5.0m2/gであった。
該炭素質材料は該複合粒子の外表面を被覆しており、シリコン粒子が気相成長炭素繊維に絡んで挟持され、多数の空隙が複合粒子の内部全体に分散して形成されていることが確認された。該被覆複合粒子のシリコン/繊維状黒鉛質材料/炭素質材料の質量組成は3.0/66.7/30.3であった。
実施例1において、シリコンの配合量を変えた被覆複合粒子を用いる以外は、実施例1と同様の方法と条件で、負極合剤ペースト、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様に測定した。結果を表2に示した。
(Example 5)
In Example 1, except that the mass ratio of vapor-grown carbon fiber and silicon particles subjected to mechanochemical treatment was 95.7: 4.3, coating with coal tar pitch in the same manner and conditions as in Example 1 The composite particles thus prepared were produced, followed by firing to obtain coated composite particles. The obtained coated composite particles were spherical, the average particle diameter was 10 μm, and the specific surface area was 5.0 m 2 / g.
The carbonaceous material covers the outer surface of the composite particles, and silicon particles are sandwiched between vapor-grown carbon fibers, and a large number of voids are dispersed throughout the interior of the composite particles. confirmed. The mass composition of silicon / fibrous graphite material / carbonaceous material of the coated composite particles was 3.0 / 66.7 / 30.3.
A negative electrode mixture paste, a working electrode, and an evaluation battery were produced in the same manner and in the same manner as in Example 1, except that the coated composite particles with different amounts of silicon were used. The charge / discharge characteristics of the evaluation battery were measured in the same manner as in Example 1. The results are shown in Table 2.
(実施例6)
実施例1において、シリコン粒子の代わりにスズ粒子を用い、メカノケミカル処理に供する気相成長炭素繊維とスズ粒子の質量比を94.2:5.8とする以外は、実施例1と同様な方法と条件で、コールタールピッチで被覆された複合粒子を作製し、引続き、焼成を行い、被覆複合粒子を得た。得られた被覆複合粒子は球状であり、平均粒子径は9μmであり、比表面積は4.8m2/gであった。
該炭素質材料は該複合粒子の外表面を被覆しており、スズ粒子が気相成長炭素繊維に絡んで挟持され、多数の空隙が複合粒子の内部全体に分散して形成されていることが確認された。該被覆複合粒子のスズ/繊維状黒鉛質材料/炭素質材料の質量組成は4.0/65.7/30.3であった。
実施例1において、シリコンをスズに変えた被覆複合粒子を用いる以外は、実施例1と同様の方法と条件で、負極合剤ペースト、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様に測定した。結果を表2に示した。
(Example 6)
Example 1 is the same as Example 1 except that tin particles are used instead of silicon particles, and the mass ratio of vapor-grown carbon fibers to be subjected to mechanochemical treatment and tin particles is 94.2: 5.8. Composite particles coated with coal tar pitch were produced by the method and conditions, followed by firing to obtain coated composite particles. The obtained coated composite particles were spherical, the average particle diameter was 9 μm, and the specific surface area was 4.8 m 2 / g.
The carbonaceous material covers the outer surface of the composite particle, tin particles are sandwiched between vapor-grown carbon fibers, and a large number of voids are dispersed throughout the composite particle. confirmed. The mass composition of tin / fibrous graphite material / carbonaceous material of the coated composite particles was 4.0 / 65.7 / 30.3.
A negative electrode mixture paste, a working electrode, and an evaluation battery were produced in the same manner and in the same manner as in Example 1 except that coated composite particles in which silicon was changed to tin were used in Example 1. The charge / discharge characteristics of the evaluation battery were measured in the same manner as in Example 1. The results are shown in Table 2.
(実施例7)
実施例1において、コールタールピッチ溶液の代わりに、フェノール樹脂(JFEケミカル(株)製、残炭率40%)50gをエタノール200gに混合して調製したフェノール樹脂溶液を用い、該フェノール樹脂溶液と複合粒子とを二軸加熱ニーダーを用いて混練する際、固形分比率をフェノール樹脂:複合粒子=50:50とし、かつ混練条件を150℃、1hとする以外は、実施例1と同様な方法と条件で、フェノール樹脂で被覆された複合粒子を作製し、引続き、焼成を行い、被覆複合粒子を得た。得られた被覆複合粒子は球状であり、平均粒子径は10μmであり、比表面積は5.1m2/gであった。
該炭素質材料は該複合粒子の外表面を被覆しており、シリコン粒子が気相成長炭素繊維に絡んで挟持され、多数の空隙が複合粒子の内部全体に分散して形成されていることが確認された。該被覆複合粒子のシリコン/繊維状黒鉛質材料/炭素質材料の質量組成は5.2/66.2/28.6であった。
実施例1において、コールタールピッチをフェノール樹脂に変えた被覆複合粒子を用いる以外は、実施例1と同様な方法と条件で、負極合剤ペースト、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様に測定した。その結果を表2に示した。
(Example 7)
In Example 1, instead of the coal tar pitch solution, a phenol resin solution prepared by mixing 50 g of phenol resin (manufactured by JFE Chemical Co., Ltd., residual carbon ratio 40%) with 200 g of ethanol was used. When kneading the composite particles with a biaxial heating kneader, the same method as in Example 1 except that the solid content ratio is phenol resin: composite particles = 50: 50 and the kneading conditions are 150 ° C. and 1 h. The composite particles coated with the phenol resin were prepared under the above conditions, followed by firing to obtain the coated composite particles. The obtained coated composite particles were spherical, the average particle diameter was 10 μm, and the specific surface area was 5.1 m 2 / g.
The carbonaceous material covers the outer surface of the composite particles, and silicon particles are sandwiched between vapor-grown carbon fibers, and a large number of voids are dispersed throughout the interior of the composite particles. confirmed. The mass composition of silicon / fibrous graphite material / carbonaceous material of the coated composite particles was 5.2 / 66.2 / 28.6.
A negative electrode mixture paste, a working electrode, and an evaluation battery were produced in the same manner and in the same manner as in Example 1 except that coated composite particles in which the coal tar pitch was changed to a phenol resin were used in Example 1. The charge / discharge characteristics of the evaluation battery were measured in the same manner as in Example 1. The results are shown in Table 2.
(実施例8)
実施例1において、コールタールピッチ溶液と複合粒子とを二軸加熱ニーダーを用いて、200℃で1h混練する際に、固形分比率をコールタールピッチ:複合粒子=30:70とする以外は、実施例1と同様な方法と条件で、コールタールピッチで被覆された複合粒子を作製し、引続き、焼成を行い、被覆複合粒子を得た。得られた被覆複合粒子は球状であり、平均粒子径は10μmであり、比表面積は5.5m2/gであった。
該炭素質材料は該複合粒子の外表面を被覆しており、シリコン粒子が気相成長炭素繊維に絡んで挟持され、多数の空隙が複合粒子の内部全体に分散して形成されていることが確認された。該被覆複合粒子のシリコン/繊維状黒鉛質材料/炭素質材料の質量組成は5.8/73.7/20.5であった。
実施例1において、コールタールピッチの配合量を変えた被覆複合粒子を用いる以外は、実施例1と同様な方法と条件で、負極合剤ペースト、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様に測定した。その結果を表2に示した。
(Example 8)
In Example 1, when the coal tar pitch solution and the composite particles were kneaded at 200 ° C. for 1 h using a biaxial heating kneader, the solid content ratio was set to coal tar pitch: composite particles = 30: 70, In the same manner and conditions as in Example 1, composite particles coated with coal tar pitch were produced, followed by firing to obtain coated composite particles. The obtained coated composite particles were spherical, the average particle diameter was 10 μm, and the specific surface area was 5.5 m 2 / g.
The carbonaceous material covers the outer surface of the composite particles, and silicon particles are sandwiched between vapor-grown carbon fibers, and a large number of voids are dispersed throughout the interior of the composite particles. confirmed. The mass composition of silicon / fibrous graphite material / carbonaceous material of the coated composite particles was 5.8 / 73.7 / 20.5.
A negative electrode mixture paste, a working electrode, and an evaluation battery were produced in the same manner and in the same manner as in Example 1 except that the coated composite particles in which the blend amount of coal tar pitch was changed in Example 1. The charge / discharge characteristics of the evaluation battery were measured in the same manner as in Example 1. The results are shown in Table 2.
(実施例9)
実施例1において、メカノケミカル処理に供する試料を、黒鉛化処理された気相成長炭素繊維84.3質量部、シリコン粒子6.6質量部に加えて、実施例3の鱗片状天然黒鉛9.1質量部とする以外は、実施例1と同様な方法と条件で、コールタールピッチで被覆された複合粒子を作製し、引続き、焼成を行い、被覆複合粒子を得た。得られた被覆複合粒子は球状であり、平均粒子径は11μmであり、比表面積は5.2m2/gであった。
該炭素質材料は該複合粒子の外表面を被覆しており、シリコン粒子が気相成長炭素繊維に絡んで挟持された構造体の中に鱗片状黒鉛が分散して保持され、多数の空隙が複合粒子の内部全体に分散して形成されていることが確認された。該被覆複合粒子のシリコン/繊維状黒鉛質材料/鱗片状黒鉛質材料/炭素質材料の質量組成は5.1/64.8/6.5/23.6であった。
実施例1において、メカノケミカル処理に供する試料に鱗片状黒鉛質材料を加えた被覆複合粒子を用いる以外は、実施例1と同様な方法と条件で、負極合剤ペースト、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様に測定した。その結果を表2に示した。
Example 9
In Example 1, in addition to 84.3 parts by mass of graphitized vapor-grown carbon fiber and 6.6 parts by mass of silicon particles, the sample to be subjected to mechanochemical treatment was used in addition to the scaly natural graphite of Example 3. A composite particle coated with coal tar pitch was produced under the same method and conditions as in Example 1 except that the amount was 1 part by mass, followed by firing to obtain a coated composite particle. The obtained coated composite particles were spherical, the average particle diameter was 11 μm, and the specific surface area was 5.2 m 2 / g.
The carbonaceous material covers the outer surface of the composite particles, and scaly graphite is dispersed and held in a structure in which silicon particles are sandwiched between vapor-grown carbon fibers, and a large number of voids are formed. It was confirmed that it was dispersed throughout the interior of the composite particles. The mass composition of silicon / fibrous graphite material / flaky graphite material / carbonaceous material of the coated composite particles was 5.1 / 64.8 / 6.5 / 23.6.
A negative electrode mixture paste, working electrode, and evaluation battery were prepared in the same manner and in the same manner as in Example 1 except that coated composite particles obtained by adding scaly graphite material to a sample subjected to mechanochemical treatment in Example 1 were used. Produced. The charge / discharge characteristics of the evaluation battery were measured in the same manner as in Example 1. The results are shown in Table 2.
(比較例1)
実施例1において、気相成長炭素繊維の代わりに鱗片状天然黒鉛((株)中越黒鉛工業所製、平均粒子径10μm)を用いる以外は、実施例1と同様な方法と条件で、シリコン粒子を含有する複合粒子を作製し、引続き、コールタールピッチが被覆した被覆複合粒子を作製し、焼成を行い、粒子を得た。得られた粒子は球状であり、平均粒子径は10μmであり、比表面積は3.1m2/gであった。
該粒子の内部にはシリコン粒子と天然黒鉛が存在し、コールタールピッチの炭素化物が該粒子の外表面を被覆していたが、空隙が殆ど確認されなかった。該粒子のシリコン/鱗片状黒鉛質材料/炭素質材料の質量組成は5.1/64.6/30.3であった。
(Comparative Example 1)
In Example 1, silicon particles were obtained in the same manner and under the same conditions as in Example 1 except that scaly natural graphite (manufactured by Chuetsu Graphite Industry Co., Ltd., average particle size: 10 μm) was used instead of vapor-grown carbon fiber. Then, composite particles containing the coal tar were coated, and coated composite particles coated with coal tar pitch were prepared and baked to obtain particles. The obtained particles were spherical, the average particle size was 10 μm, and the specific surface area was 3.1 m 2 / g.
Silicon particles and natural graphite were present inside the particles, and the carbonized product of coal tar pitch covered the outer surface of the particles, but almost no voids were confirmed. The mass composition of silicon / flaky graphite material / carbonaceous material of the particles was 5.1 / 64.6 / 30.3.
実施例1において、前記炭素質材料で被覆された複合粒子として、気相成長炭素繊維に基づく複合粒子の代わりに鱗片状天然黒鉛を用いて得た前記粒子を用いる以外は、実施例1と同様な方法と条件で、負極合剤ペースト、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様に測定した。その結果を表2に示した。 Example 1 is the same as Example 1 except that the particles obtained by using scaly natural graphite instead of the composite particles based on vapor-grown carbon fibers are used as the composite particles coated with the carbonaceous material. The negative electrode mixture paste, the working electrode, and the evaluation battery were prepared by various methods and conditions. The charge / discharge characteristics of the evaluation battery were measured in the same manner as in Example 1. The results are shown in Table 2.
(比較例2)
実施例1において、黒鉛化処理された気相成長炭素繊維(昭和電工(株)製、VGCF、短軸長150nm、平均アスペクト比約50)と、シリコン粒子(高純度化学研究所(株)製、平均粒子径2μm)との混合比を92.7質量部:7.3質量部から95質量部:5質量部に代え、実施例1と同様な方法と条件でメカノケミカル処理のみを行い複合粒子を作製し、粗粉砕し、炭素質材料の被覆がない粒子を得た。得られた粒子は塊状であり、平均粒子径は8μmであり、比表面積は50m2/gであった。
該粒子において、シリコン粒子が気相成長炭素繊維に絡んで挟持され、多数の空隙が粒子の内部全体に分散して形成されているが、炭素質材料の被覆がないことが確認された。該粒子は質量比で、シリコン/黒鉛化された気相成長炭素繊維=5.1/94.9であった。
(Comparative Example 2)
In Example 1, graphitized vapor-grown carbon fiber (manufactured by Showa Denko KK, VGCF, short axis length 150 nm, average aspect ratio of about 50) and silicon particles (manufactured by High Purity Chemical Laboratory Co., Ltd.) The mixture ratio is 92.7 parts by mass: 7.3 parts by mass to 95 parts by mass: 5 parts by mass, and only the mechanochemical treatment is performed under the same method and conditions as in Example 1. Particles were prepared and coarsely pulverized to obtain particles having no carbonaceous material coating. The obtained particles were massive, the average particle diameter was 8 μm, and the specific surface area was 50 m 2 / g.
In the particles, silicon particles were sandwiched between vapor-grown carbon fibers, and a large number of voids were dispersed throughout the interior of the particles, but it was confirmed that there was no carbonaceous material coating. The particles had a mass ratio of silicon / graphitized vapor grown carbon fiber = 5.1 / 94.9.
実施例1において、前記被覆複合粒子の代わりに、炭素質材料の被覆がない前記粒子を用いる以外は、実施例1と同様な方法と条件で、負極合剤ペースト、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様に測定した。その結果を表2に示した。 In Example 1, a negative electrode mixture paste, a working electrode, and an evaluation battery were produced in the same manner and under the same conditions as in Example 1 except that the particles having no carbonaceous material coating were used instead of the coated composite particles. did. The charge / discharge characteristics of the evaluation battery were measured in the same manner as in Example 1. The results are shown in Table 2.
(比較例3)
コールタールピッチ(JFEケミカル(株)製)30gにタール中油(JFEケミカル(株)製)300gを混合し、コールタールピッチ溶液を調製した。該溶液と黒鉛化処理された気相成長炭素繊維(昭和電工(株)製、VGCF、短軸長150nm、平均アスペクト比約50)92.7質量部と、シリコン粒子(高純度化学研究所(株)製、平均粒子径2μm)7.3質量部とを、二軸加熱ニーダーを用いて、200℃で1h混練したのち、1000℃で10h焼成し、コールタールピッチの炭素化物、繊維状黒鉛質材料およびシリコン粒子が一体化した粒子を作製した。得られた粒子は塊状であり、平均粒子径は10μmであり、比表面積は20m2/gであった。
該粒子は、シリコン粒子と気相成長炭素繊維はコールタールピッチの炭素化物と接しており、空隙が殆ど観察されなかった。該粒子は質量比で、シリコン/繊維状炭素質材料/炭素質材料=5.1/64.6/30.3であった。
(Comparative Example 3)
A coal tar pitch solution was prepared by mixing 30 g of coal tar pitch (manufactured by JFE Chemical Co., Ltd.) with 300 g of tar medium oil (manufactured by JFE Chemical Co., Ltd.). 92.7 parts by mass of the solution and graphitized vapor-grown carbon fiber (manufactured by Showa Denko KK, VGCF, short axis length 150 nm, average aspect ratio about 50) and silicon particles (High Purity Chemical Laboratory ( Co., Ltd.,
In the particles, silicon particles and vapor-grown carbon fibers were in contact with the carbonized product of coal tar pitch, and almost no voids were observed. The particles had a mass ratio of silicon / fibrous carbonaceous material / carbonaceous material = 5.1 / 64.6 / 30.3.
実施例1において、メカノケミカル処理により作製した被覆複合粒子の代わりに、メカノケミカル処理に拠らないで作製した前記粒子を用いる以外は、実施例1と同様な方法と条件で、負極合剤ペースト、負極材料、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様に測定した。その結果を表2に示した。 In Example 1, in place of the coated composite particles prepared by mechanochemical treatment, a negative electrode mixture paste was prepared in the same manner and under the same conditions as in Example 1 except that the particles produced without using mechanochemical treatment were used. A negative electrode material, a working electrode, and an evaluation battery were prepared. The charge / discharge characteristics of the evaluation battery were measured in the same manner as in Example 1. The results are shown in Table 2.
(比較例4)
実施例1において黒鉛化処理された気相成長炭素繊維に代えて、黒鉛化処理されていない気相成長炭素繊維を用いる以外は、実施例1と同様な方法と条件で複合粒子を作製し、引き続き焼成を行い被覆複合粒子を得た。得られた被覆複合粒子は球状であり、平均粒子径は10μm、比表面積は5.5m2/gであった。該被覆複合粒子の外表面は一様に被覆されており、シリコン粒子が炭素繊維に絡んで狭持され、多数の空隙が複合粒子の内部全体に分散して形成されていることが確認された。得られた被覆複合粒子のシリコン/繊維状炭素材料/炭素質材料の質量組成は、5.1/64.6/30.3であった。
実施例1において被覆複合粒子として、黒鉛化処理された気相成長炭素繊維に基づく複合粒子の代わりに、黒鉛化処理されていない気相成長炭素繊維に基づく被覆複合粒子を用いる以外は、実施例1と同様な方法と条件で、負極合剤ペースト、作用電極および評価電池を作製した。該評価電池の充放電特性を実施例1と同様に測定した。その結果を表2に示した。
(Comparative Example 4)
In place of the vapor-grown carbon fiber graphitized in Example 1, a composite particle is produced by the same method and conditions as in Example 1 except that the vapor-grown carbon fiber not graphitized is used. Subsequently, firing was performed to obtain coated composite particles. The obtained coated composite particles were spherical, the average particle diameter was 10 μm, and the specific surface area was 5.5 m 2 / g. It was confirmed that the outer surface of the coated composite particles was uniformly coated, the silicon particles were entangled between carbon fibers, and a large number of voids were dispersed throughout the interior of the composite particles. . The mass composition of silicon / fibrous carbon material / carbonaceous material of the obtained coated composite particles was 5.1 / 64.6 / 30.3.
Example 1 except that coated composite particles based on vapor-grown carbon fibers that have not been graphitized are used as coated composite particles instead of composite particles based on vapor-grown carbon fibers that have been graphitized. A negative electrode mixture paste, a working electrode and an evaluation battery were produced in the same manner and under the same conditions as in 1. The charge / discharge characteristics of the evaluation battery were measured in the same manner as in Example 1. The results are shown in Table 2.
表2に示すように、実施例1〜9の本発明の被覆複合粒子を用いた作用電極からなる評価電池は、現行の負極材料である黒鉛を用いた場合の放電容量350〜360mAh/gに比べ、さらには、層間化合物LiC6の理論値372mAh/gに比べても、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに、優れたサイクル特性を示す。
比較例1のように、繊維状黒鉛質材料を用いない複合粒子を用いた作用電極からなる評価電池は、高い初期充放電効率やサイクル特性が得られない。これは、充放電時のシリコン粒子の膨張・収縮により複合粒子の構造が破壊され、導電性の低下や活物質の集電材からの剥離が生じたためと考えられる。
比較例2のように、複合粒子が炭素質材料で被覆されていない複合粒子を用いた作用電極からなる評価電池は、高い初期充放電効率やサイクル特性が得られない。これは、繊維状黒鉛質材料の表面での電解液の分解や、シリコン粒子の脱落が発生したためと考えられる。
比較例3のように、繊維状黒鉛質材料とシリコン粒子を、メカノケミカル処理等の機械的エネルギーを付与することなしに、コールタールを結着剤として保持し、一体化した粒子を用いた作用電極からなる評価電池は、高い初期充放電効率やサイクル特性が得られない。これは、炭素質材料が粒子の内部にまで浸透し、シリコン粒子の周囲に空隙が形成されなかったことと、内部に浸透した分だけ、外表面の炭素質材料の被覆が不十分になったことに拠るものと考えることができる。
比較例4のように、黒鉛化処理されていない繊維状炭素質材料を用いた複合粒子を用いた作用電極からなる評価電池は、高い放電容量、初期充放電効率、サイクル特性が得られない。これは炭素繊維が黒鉛化処理されていないために結晶性が低く、また導電性も低いためと考えられる。
As shown in Table 2, the evaluation battery composed of the working electrode using the coated composite particles of the present invention of Examples 1 to 9 has a discharge capacity of 350 to 360 mAh / g when graphite, which is the current negative electrode material, is used. In comparison, even compared with the theoretical value 372 mAh / g of the intercalation compound LiC 6 , it shows a high discharge capacity and has a high initial charge / discharge efficiency. Furthermore, it exhibits excellent cycle characteristics.
As in Comparative Example 1, an evaluation battery including a working electrode using composite particles that do not use a fibrous graphite material does not provide high initial charge / discharge efficiency and cycle characteristics. This is presumably because the structure of the composite particles was destroyed by the expansion / contraction of the silicon particles during charge / discharge, resulting in a decrease in conductivity and separation of the active material from the current collector.
As in Comparative Example 2, an evaluation battery composed of a working electrode using composite particles in which the composite particles are not coated with a carbonaceous material cannot obtain high initial charge / discharge efficiency and cycle characteristics. This is presumably because decomposition of the electrolyte solution on the surface of the fibrous graphite material or dropping of the silicon particles occurred.
As in Comparative Example 3, the action of using the integrated particles that hold coal tar as a binder without applying mechanical energy such as mechanochemical treatment to the fibrous graphite material and silicon particles. An evaluation battery composed of electrodes cannot obtain high initial charge / discharge efficiency and cycle characteristics. This is because the carbonaceous material penetrated into the interior of the particle, no void was formed around the silicon particle, and the coating of the carbonaceous material on the outer surface was insufficient due to the penetration into the interior. It can be considered that it depends.
As in Comparative Example 4, an evaluation battery including a working electrode using composite particles using a fibrous carbonaceous material that has not been graphitized does not have high discharge capacity, initial charge / discharge efficiency, and cycle characteristics. This is presumably because the carbon fiber is not graphitized and thus has low crystallinity and low conductivity.
1 外装カップ
2 作用電極
3 外装缶
4 対極
5 セパレータ
6 絶縁ガスケット
7a、7b 集電材
DESCRIPTION OF SYMBOLS 1
Claims (12)
前記金属粒子、前記繊維状黒鉛質材料および前記炭素質材料の含有量が、前記被覆複合粒子の全質量に対する質量%で、該金属粒子/該繊維状黒鉛質材料/該炭素質材料=1以上30未満/30〜95/4〜50である、リチウムイオン二次電池用負極材料。 At least a part of the outer surface of the composite particle having a structure in which the fibrous graphite material is entangled with metal particles that can be alloyed with lithium and sandwiches the metal particles and a void exists is coated with the carbonaceous material. Ri Oh coated composite particles are,
The content of the metal particles, the fibrous graphite material, and the carbonaceous material is mass% with respect to the total mass of the coated composite particles, and the metal particles / the fibrous graphite material / the carbonaceous material = 1 or more. The negative electrode material for lithium ion secondary batteries which is less than 30 / 30-95 / 4-50 .
前記被覆複合粒子が、さらに非繊維状黒鉛質材料を含有し、
前記金属粒子、前記繊維状黒鉛質材料、前記非繊維状黒鉛質材料および前記炭素質材料の含有量が、前記被覆複合粒子の全質量に対する質量%で、該金属粒子/該繊維状黒鉛質材料/該非繊維状黒鉛質材料/該炭素質材料=1以上30未満/28〜75/2〜20/4〜50である、リチウムイオン二次電池用負極材料。 At least a part of the outer surface of the composite particle having a structure in which the fibrous graphite material is entangled with metal particles that can be alloyed with lithium and sandwiches the metal particles and a void exists is coated with the carbonaceous material. Coated composite particles,
The coated composite particles further contain a non-fibrous graphite material ;
Content of the metal particles, the fibrous graphite material, the non-fibrous graphite material, and the carbonaceous material is mass% with respect to the total mass of the coated composite particles, and the metal particles / the fibrous graphite material. / Non-fibrous graphite material / Carbonaceous material = 1 or more and less than 30/28 to 75/2 to 20/4 to 50, A negative electrode material for a lithium ion secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005077578A JP4809617B2 (en) | 2004-03-22 | 2005-03-17 | Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004083282 | 2004-03-22 | ||
JP2004083282 | 2004-03-22 | ||
JP2005077578A JP4809617B2 (en) | 2004-03-22 | 2005-03-17 | Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005310760A JP2005310760A (en) | 2005-11-04 |
JP4809617B2 true JP4809617B2 (en) | 2011-11-09 |
Family
ID=35439248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005077578A Active JP4809617B2 (en) | 2004-03-22 | 2005-03-17 | Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4809617B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015105167A1 (en) | 2014-01-09 | 2015-07-16 | 昭和電工株式会社 | Negative electrode active material for lithium-ion secondary cell |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007207466A (en) * | 2006-01-31 | 2007-08-16 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP5351990B2 (en) * | 2006-01-31 | 2013-11-27 | Jfeケミカル株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP4986222B2 (en) * | 2006-01-31 | 2012-07-25 | Jfeケミカル株式会社 | Method for producing negative electrode material for lithium ion secondary battery |
KR101328982B1 (en) * | 2006-04-17 | 2013-11-13 | 삼성에스디아이 주식회사 | Anode active material and method of preparing the same |
JP5124975B2 (en) * | 2006-04-24 | 2013-01-23 | 三菱化学株式会社 | Negative electrode material for lithium ion secondary battery and method for producing the same |
JP5516929B2 (en) * | 2008-11-25 | 2014-06-11 | 独立行政法人産業技術総合研究所 | Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode |
KR101057162B1 (en) * | 2008-12-01 | 2011-08-16 | 삼성에스디아이 주식회사 | Anode active material, anode and lithium secondary battery having same |
EP2497144A4 (en) * | 2009-11-03 | 2014-04-23 | Envia Systems Inc | High capacity anode materials for lithium ion batteries |
JP5626531B2 (en) * | 2011-04-19 | 2014-11-19 | ダイソー株式会社 | Nonaqueous electrolyte secondary battery |
CN103891015B (en) * | 2011-08-22 | 2017-05-24 | 可知直芳 | Composite active material for lithium secondary batteries and method for producing same |
JP2013058452A (en) * | 2011-09-09 | 2013-03-28 | Mitsubishi Chemicals Corp | Composite carbon material for nonaqueous secondary battery and method for manufacturing the same, negative electrode, and nonaqueous secondary battery |
JP2013182706A (en) * | 2012-02-29 | 2013-09-12 | Sumitomo Bakelite Co Ltd | Precursor for negative electrode, manufacturing method of precursor for negative electrode, production method of material for negative electrode, electrode and lithium ion secondary battery |
WO2013146300A1 (en) * | 2012-03-30 | 2013-10-03 | 戸田工業株式会社 | Negative electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery |
JP5941437B2 (en) * | 2012-06-29 | 2016-06-29 | Jfeケミカル株式会社 | Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP5993337B2 (en) * | 2012-07-03 | 2016-09-14 | Jfeケミカル株式会社 | Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery |
FR3011234B1 (en) | 2013-09-30 | 2015-10-02 | Renault Sa | ELECTRODE FOR ELECTRIC ENERGY STORAGE BATTERY COMPRISING A GRAPHITE COMPOSITE MATERIAL / SILICON / CARBON FIBERS |
WO2015118849A1 (en) | 2014-02-04 | 2015-08-13 | 三井化学株式会社 | Negative electrode for lithium ion secondary cell, lithium-ion secondary cell, mixture paste for negative electrode for lithium-ion secondary cell, and method for manufacturing negative electrode for lithium-ion secondary cell |
JP6543255B2 (en) * | 2014-07-28 | 2019-07-10 | 昭和電工株式会社 | Negative electrode material for lithium ion secondary battery and method of manufacturing the same |
WO2016102097A1 (en) * | 2014-12-23 | 2016-06-30 | Umicore | Powder, electrode and battery comprising such a powder |
CN107258030A (en) * | 2014-12-23 | 2017-10-17 | 尤米科尔公司 | Powder includes the electrode and battery pack of such powder |
JP6505464B2 (en) * | 2015-02-20 | 2019-04-24 | 大阪瓦斯株式会社 | Negative electrode material for lithium secondary battery, composition for negative electrode active material layer for lithium secondary battery, negative electrode for lithium secondary battery, and method for producing lithium secondary battery |
KR102008873B1 (en) * | 2016-12-16 | 2019-08-08 | 주식회사 포스코 | Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same |
US20230109890A1 (en) | 2020-03-26 | 2023-04-13 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode for secondary batteries, and secondary battery |
WO2024070708A1 (en) * | 2022-09-29 | 2024-04-04 | パナソニックIpマネジメント株式会社 | Negative-electrode material for secondary battery, and secondary battery |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4218098B2 (en) * | 1998-12-02 | 2009-02-04 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery and negative electrode material thereof |
JP2000195518A (en) * | 1998-12-28 | 2000-07-14 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2000294283A (en) * | 1999-04-02 | 2000-10-20 | Toshiba Battery Co Ltd | Polymer lithium secondary battery |
JP4104830B2 (en) * | 2001-03-02 | 2008-06-18 | 三星エスディアイ株式会社 | Carbonaceous material, lithium secondary battery, and method for producing carbonaceous material |
JP4104829B2 (en) * | 2001-03-02 | 2008-06-18 | 三星エスディアイ株式会社 | Carbonaceous material and lithium secondary battery |
JP3897709B2 (en) * | 2002-02-07 | 2007-03-28 | 日立マクセル株式会社 | Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
-
2005
- 2005-03-17 JP JP2005077578A patent/JP4809617B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015105167A1 (en) | 2014-01-09 | 2015-07-16 | 昭和電工株式会社 | Negative electrode active material for lithium-ion secondary cell |
KR20160081969A (en) | 2014-01-09 | 2016-07-08 | 쇼와 덴코 가부시키가이샤 | Negative electrode active material for lithium-ion secondary cell |
Also Published As
Publication number | Publication date |
---|---|
JP2005310760A (en) | 2005-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4809617B2 (en) | Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5348878B2 (en) | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP3957692B2 (en) | Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery | |
JP3995050B2 (en) | Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5993337B2 (en) | Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery | |
KR100702980B1 (en) | Composite particle and negative electrode material using the same, negative electrode and lithium ion secondary battery | |
JP5543533B2 (en) | Anode material for lithium ion secondary battery | |
JP5941437B2 (en) | Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP3868231B2 (en) | Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6316466B2 (en) | Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
KR20150001810A (en) | Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
JP6278870B2 (en) | Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same | |
CN110495026B (en) | Negative electrode material and nonaqueous electrolyte secondary battery | |
JP6285350B2 (en) | Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery | |
JP4996830B2 (en) | Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP4672958B2 (en) | Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode | |
JP4927384B2 (en) | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP4050072B2 (en) | Method for producing graphitic particles and negative electrode material for lithium ion secondary battery | |
JP2007234585A (en) | Negative electrode material for lithium ion secondary battery and manufacturing method for the negative electrode material, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5133543B2 (en) | Method for producing mesocarbon microsphere graphitized material | |
JP5351990B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP4996827B2 (en) | Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2015153496A (en) | Method for manufacturing carbonaceous substance-coated graphite particles for lithium ion secondary battery negative electrodes, lithium ion secondary battery negative electrode, and lithium ion secondary battery | |
JP6322525B2 (en) | Method for producing carbon-coated graphite particles | |
CN115039252A (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110816 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110819 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4809617 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |