Nothing Special   »   [go: up one dir, main page]

JP4809173B2 - Multilayer ceramic capacitor - Google Patents

Multilayer ceramic capacitor Download PDF

Info

Publication number
JP4809173B2
JP4809173B2 JP2006262520A JP2006262520A JP4809173B2 JP 4809173 B2 JP4809173 B2 JP 4809173B2 JP 2006262520 A JP2006262520 A JP 2006262520A JP 2006262520 A JP2006262520 A JP 2006262520A JP 4809173 B2 JP4809173 B2 JP 4809173B2
Authority
JP
Japan
Prior art keywords
internal electrode
electrode layer
multilayer ceramic
per unit
unit area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006262520A
Other languages
Japanese (ja)
Other versions
JP2008085041A (en
Inventor
政浩 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006262520A priority Critical patent/JP4809173B2/en
Publication of JP2008085041A publication Critical patent/JP2008085041A/en
Application granted granted Critical
Publication of JP4809173B2 publication Critical patent/JP4809173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、積層セラミックコンデンサに関し、特に、薄層化したセラミック誘電体層と内部電極層とが交互に積層され構成されたコンデンサ本体を具備する高容量の積層セラミックコンデンサに関する。
The present invention relates to a multilayer ceramic capacitor, in particular, relates to a multilayer ceramic con den support high capacity having a condenser body and the ceramic dielectric layers and internal electrode layers made thin is configured by alternately stacking.

近年、電子部品の小型化、高機能化に伴い、積層セラミックコンデンサは小型、高容量化が求められ、そのため誘電体層および内部電極層の薄層化と多積層化が行われている。例えば、下記の特許文献1によれば、厚みが1.5μm以下の誘電体層を形成するために、粒径が0.01〜0.3μmの誘電体粉末を用いることが記載されている。
特開平11−45617号公報
In recent years, with the miniaturization and high functionality of electronic components, multilayer ceramic capacitors are required to be small in size and high in capacity, and accordingly, dielectric layers and internal electrode layers have been made thinner and multi-layered. For example, according to the following Patent Document 1, it is described that a dielectric powder having a particle size of 0.01 to 0.3 μm is used to form a dielectric layer having a thickness of 1.5 μm or less.
Japanese Patent Laid-Open No. 11-45617

しかしながら、誘電体層および内部電極層を薄層、高積層化した積層セラミックコンデンサでは、積層時の変形に伴い内部電極層の誘電体層に対する被覆率が低下し、静電容量の低下やそのばらつきが増加するという問題があり、また、積層時の変形により内部電極層の表面粗さが大きくなるためにショートが発生するという問題があった。   However, in a multilayer ceramic capacitor in which the dielectric layer and internal electrode layer are thin and highly laminated, the coverage ratio of the internal electrode layer to the dielectric layer is reduced due to deformation during lamination, and the capacitance decreases and its variation. In addition, there is a problem that a short circuit occurs because the surface roughness of the internal electrode layer increases due to deformation during lamination.

従って本発明は、誘電体層および内部電極層を薄層、高積層化しても、静電容量の低下やばらつきの増加ならびにショートの発生を低減できる積層セラミックコンデンサを提供することを目的とする。
Accordingly the present invention, the dielectric layer and the internal electrode layer thin layer, even if high laminated, and an object thereof is to provide a multilayer ceramic con den service that can reduce the occurrence of increased and short reduction and variation in capacitance .

本発明の積層セラミックコンデンサは、誘電体層および内部電極層が交互に積層されたコンデンサ本体の端面に外部電極を具備する積層セラミックコンデンサであって、前記内部電極層における周縁部の単位面積当たりの空孔数が前記周縁部を除く中央部の単位面積当たりの空孔数よりも少なく、かつ前記周縁部の単位面積当たりの平均空孔面積をc、前記周縁部を除く前記中央部の単位面積当たりの平均空孔面積をdとしたとき、空孔の面積比が1.2≦d/c≦2.0であることを特徴とする。
The multilayer ceramic capacitor of the present invention is a multilayer ceramic capacitor having an external electrode on an end face of a capacitor body in which dielectric layers and internal electrode layers are alternately stacked, and is provided per unit area of a peripheral portion of the internal electrode layer. vacancy number rather less than the pore number per unit area of the central portion excluding the peripheral portion, and an average pore area per unit area of the peripheral portion c, the unit of the central portion excluding the peripheral edge portion When the average hole area per area is d, the hole area ratio is 1.2 ≦ d / c ≦ 2.0 .

本発明の積層セラミックコンデンサでは、内部電極層の外部電極との接続端を除く周縁部における単位面積当たりの空孔数、内部電極層の周縁部を除く中央部の単位面積当たりの空孔数よりも少なく、かつ周縁部の単位面積当たりの平均空孔面積をc、周縁部を除く中央部の単位面積当たりの平均空孔面積をdとしたとき、空孔の面積比が1.2≦d/c≦2.0であることにより、積層セラミックコンデンサにおいて欠陥が発生しやすく電界の影響が大きい内部電極層の周辺における欠陥を低減したことにより誘電体層および内部電極層を薄層、高積層化しても、静電容量の低下やばらつきの増加ならびにショートの発生を低減できる。
In the multilayer ceramic capacitor of the present invention, the number of holes per unit area in the peripheral portion excluding the connection end of the internal electrode layer with the external electrode is the number of holes per unit area in the central portion excluding the peripheral portion of the internal electrode layer. And the average pore area per unit area of the peripheral portion is c, and the average pore area per unit area of the central portion excluding the peripheral portion is d, the pore area ratio is 1.2 ≦ Since d / c ≦ 2.0 , defects are easily generated in the multilayer ceramic capacitor, and defects around the internal electrode layer having a large electric field effect are reduced. Even when stacked, it is possible to reduce the decrease in capacitance, increase in dispersion, and occurrence of short circuits.

以下、本発明の積層セラミックコンデンサについて説明する。図1は本発明の積層セラミックコンデンサを示す概略断面図である。   Hereinafter, the multilayer ceramic capacitor of the present invention will be described. FIG. 1 is a schematic sectional view showing a multilayer ceramic capacitor of the present invention.

本発明の積層セラミックコンデンサを構成するコンデンサ本体1は、複数の誘電体層5が積層された積層体7により構成されており、また、この積層体7の内部には内部電極層9が誘電体層5の積層方向に交互に形成され、積層体7の対向する第1端面7aおよび第2端面7bに誘電体層5の積層方向に交互に引き出されている。また、積層体7の第1端面7aおよび第2端面7bのそれぞれの接続端9a、9bにはそれぞれ第1外部電極3aおよび第2外部電極3bが接続されている。   The capacitor body 1 constituting the multilayer ceramic capacitor of the present invention is composed of a multilayer body 7 in which a plurality of dielectric layers 5 are laminated, and an internal electrode layer 9 is a dielectric body inside the multilayer body 7. The layers 5 are alternately formed in the stacking direction, and are alternately drawn out in the stacking direction of the dielectric layers 5 to the first end surface 7 a and the second end surface 7 b facing the stack 7. The first external electrode 3a and the second external electrode 3b are connected to the connection ends 9a and 9b of the first end surface 7a and the second end surface 7b of the multilayer body 7, respectively.

図2は本発明の積層セラミックコンデンサの内部における内部電極層の平面図である。   FIG. 2 is a plan view of the internal electrode layer in the multilayer ceramic capacitor of the present invention.

内部電極層9は、図2に示すように、積層体7の第1端面7aで第1外部電極3aに接続された接続端9aの辺と、この接続端7aとは反対側に非接続端9bの辺を有している。   As shown in FIG. 2, the internal electrode layer 9 includes a side of the connection end 9a connected to the first external electrode 3a on the first end surface 7a of the multilayer body 7, and a non-connection end on the opposite side of the connection end 7a. It has 9b sides.

本発明の積層セラミックコンデンサは内部電極層9の第1外部電極3aまたは第2外部電極3bとの接続端9aを除く周縁部9cにおける単位面積当たりの空孔13の数が、内部電極層9の周縁部9cを除く中央部9dの単位面積当たりの空孔13の数よりも少なく、かつ周縁部9cの単位面積当たりの平均空孔面積をc、周縁部9cを除く中央部9dの単位面積当たりの平均空孔面積をdとしたとき、空孔の面積比が1.2≦d/c≦2.0であることを特徴とする。
In the multilayer ceramic capacitor of the present invention, the number of holes 13 per unit area in the peripheral portion 9c excluding the connection end 9a of the internal electrode layer 9 with the first external electrode 3a or the second external electrode 3b is unit area of the central portion 9d rather less than the number of holes 13 per unit area of the central portion 9d, and the average pore area per unit area of the peripheral edge portion 9c except c, and periphery 9c except for the peripheral portion 9c When the average hole area per hit is d, the hole area ratio is 1.2 ≦ d / c ≦ 2.0 .

本発明では、このように内部電極層9の外部電極3a、3bとの接続端9aを除く周縁部9cにおける単位面積当たりの空孔13の数、内部電極層9の周縁部9cを除く中央部9dの単位面積当たりの空孔13の数よりも少なく、かつ周縁部9cの単位面積当たりの平均空孔面積をc、周縁部9cを除く中央部9dの単位面積当たりの平均空孔面積をdとしたとき、空孔の面積比が1.2≦d/c≦2.0であることにより、誘電体層5および内部電極層9を薄層、高積層化しても、静電容量の低下やばらつきの増加ならびにショートの発生を低減できる。
In the present invention, the number of holes 13 per unit area in the peripheral portion 9c except thus external electrodes 3a of the internal electrode layer 9, the connection end 9a of the 3b is a central except a peripheral portion 9c of the internal electrode layer 9 The average hole area per unit area of the central part 9d excluding the peripheral part 9c is c and the average hole area per unit area of the peripheral part 9c is smaller than the number of holes 13 per unit area of the part 9d. When d, the area ratio of the holes is 1.2 ≦ d / c ≦ 2.0, so that even if the dielectric layer 5 and the internal electrode layer 9 are thin and highly stacked, the capacitance Reduction, increase in variation, and occurrence of short circuit can be reduced.

発明において、内部電極層9の外部電極3a、3bとの接続端9aを除く周縁部9cにおける単位面積当たりの空孔13の数が、内部電極層9の周縁部9cを除く中央部9dの単位面積当たりの空孔13の数よりも少ない範囲とは、内部電極層9の周縁部9cの部分の単位面積当空孔13の数aと中央部9dの部分の単位面積当りの空孔13の数bが1.2≦b/a≦5の関係を満たすものであ
In the present invention, the number of holes 13 per unit area in the peripheral edge portion 9 c excluding the connection end 9 a of the internal electrode layer 9 with the external electrodes 3 a and 3 b is equal to that of the central portion 9 d excluding the peripheral edge portion 9 c of the internal electrode layer 9. the smaller range than the number of holes 13 per unit area, unit area numbers a and part of the central portion 9d of the inner electrode layer 9 of the peripheral edge portion 9c of the portion of the unit area those other Ri of the holes 13 equivalents the number b of Rino holes 13 Ru der satisfy the relation of 1.2 ≦ b / a ≦ 5.

これに対して、b/a比が1.2より小さい場合には、内部電極層9の周縁部9cと中央部9dにおける単位面積当たりの空孔13の数が同程度となり静電容量の低下やばらつきの増加ならびにショートの発生が起こりやすい。   On the other hand, when the b / a ratio is smaller than 1.2, the number of holes 13 per unit area in the peripheral portion 9c and the central portion 9d of the internal electrode layer 9 is approximately the same, and the capacitance is reduced. Increase in variation and occurrence of short circuit are likely to occur.

また、b/a比が5より大きい場合には、そもそも中央部9dにおける空孔13の数が多すぎるために低い静電容量しか得られない。   On the other hand, when the b / a ratio is larger than 5, the number of the holes 13 in the central portion 9d is too large in the first place, so that only a low capacitance can be obtained.

また、本発明では、前記周縁部7cの幅Wが、該周縁部7cの幅Wと同一方向の前記内部電極層9の幅の5〜15%であることが望ましい。周縁部7cの幅Wと同一方向の内部電極層9の幅とは、図2において、例えば、図2において矢印で示した方向であり、この場合、周縁部7cの幅Wは内部電極層9の長さLおよび内部電極層9の幅Wの両方向に対応する。 In the present invention, the width W of the peripheral edge portion 7c is preferably 5 to 15% of the width of the internal electrode layer 9 in the same direction as the width W of the peripheral edge portion 7c. The width of the internal electrode layer 9 in the same direction as the width W of the peripheral edge portion 7c is the direction indicated by the arrow in FIG. 2, for example, and in this case, the width W of the peripheral edge portion 7c is the internal electrode layer 9 in FIG. Corresponding to both the length L and the width W 0 of the internal electrode layer 9.

つまり、この周縁部7cの幅Wが、内部電極層9の接続端7aから非接続端7bとの間の間隔L、および接続端7aおよび非接続端7bの方向とは垂直な方向の内部電極層9の端部間の間隔Wの8〜15%の領域であることが望ましい。 In other words, the width W of the peripheral edge portion 7c is the internal electrode in a direction perpendicular to the distance L between the connection end 7a and the non-connection end 7b of the internal electrode layer 9 and the direction of the connection end 7a and the non-connection end 7b. A region of 8 to 15% of the interval W 0 between the end portions of the layer 9 is desirable.

周縁部7cの幅Wが、内部電極層9の接続端7aから非接続端7bとの間の間隔L、または接続端7aと非接続端7bの方向とは垂直な方向の内部電極層9の端部間の間隔Wの8%以上であると、空孔13の発生しやすい領域である内部電極層9の周縁部7cにおいて膜密度の高い領域を増やすことができ、静電容量の低下やばらつきを小さくできるという利点がある。 The width W of the peripheral edge portion 7c is the distance L between the connection end 7a and the non-connection end 7b of the internal electrode layer 9 or the direction of the internal electrode layer 9 in the direction perpendicular to the direction of the connection end 7a and the non-connection end 7b. When the distance W 0 between the end portions is 8% or more, a region having a high film density can be increased in the peripheral portion 7c of the internal electrode layer 9 which is a region where the holes 13 are likely to be generated, and the capacitance is decreased. There is an advantage that variation can be reduced.

一方、周縁部7cの幅Wが、内部電極層9の接続端7aから非接続端7bとの間の間隔L、または接続端7aと非接続端7bの方向とは垂直な方向の内部電極層9の端部間の間隔Wの15%以下であると、内部電極層9において、空孔13の多い中央部9dの面積が増えて積層方向の誘電体層5間のセラミック粉末の割合が多くなり、このことから誘電体層5間の接着性(接続強度)を高めることができ、デラミネーションやクラックを抑制できるという利点がある。 On the other hand, the width W of the peripheral edge portion 7c is the internal electrode layer in the direction perpendicular to the distance L between the connection end 7a and the non-connection end 7b of the internal electrode layer 9 or the direction of the connection end 7a and the non-connection end 7b. If it is less than 15% of the distance W 0 between the ends of the 9, in the internal electrode layer 9, the ratio of ceramic powder between the large central portion 9d dielectric layer area is increased in the laminating direction of 5 the holes 13 As a result, the adhesiveness (connection strength) between the dielectric layers 5 can be increased, and there is an advantage that delamination and cracks can be suppressed.

ここで、内部電極層9の厚みは1〜2μmの範囲であり誘電体層5の厚みよりも薄いことが好ましい。内部電極層9の厚みが1μm以上であると空孔13を抑制できるという利点がある。内部電極層9の厚みが2μm以下であるとクラックやデラミネーションを抑制できるという利点がある。   Here, the thickness of the internal electrode layer 9 is in the range of 1 to 2 μm and is preferably thinner than the thickness of the dielectric layer 5. There exists an advantage that the void | hole 13 can be suppressed as the thickness of the internal electrode layer 9 is 1 micrometer or more. When the thickness of the internal electrode layer 9 is 2 μm or less, there is an advantage that cracks and delamination can be suppressed.

本発明の積層セラミックコンデンサを構成する誘電体層5はその厚みが0.5〜2.5μmの範囲が好ましい。誘電体層5の厚みが0.5μm以上であると高い絶縁性が得られるという利点がある。   The dielectric layer 5 constituting the multilayer ceramic capacitor of the present invention preferably has a thickness in the range of 0.5 to 2.5 μm. When the thickness of the dielectric layer 5 is 0.5 μm or more, there is an advantage that high insulating properties can be obtained.

一方、誘電体層5の厚みが2μm以下であると薄層化による静電容量の増加が期待できるという利点がある。   On the other hand, when the thickness of the dielectric layer 5 is 2 μm or less, there is an advantage that an increase in capacitance due to the thinning can be expected.

誘電体層5を構成する結晶粒子5aは少なくともBaTiOを主成分とするものが好ましい。 The crystal particles 5a constituting the dielectric layer 5 are preferably composed mainly of at least BaTiO 3 .

次に、本発明の積層セラミックコンデンサの製法について説明する。図3は、本発明の積層セラミックコンデンサを製造するための工程図である。   Next, a method for producing the multilayer ceramic capacitor of the present invention will be described. FIG. 3 is a process diagram for manufacturing the multilayer ceramic capacitor of the present invention.

先ず、チタン酸バリウム系の誘電体粉末と、ガラス粉末などの添加剤とを、バインダを含む分散媒に分散させてセラミックスラリを得る。   First, a ceramic slurry is obtained by dispersing a barium titanate-based dielectric powder and an additive such as glass powder in a dispersion medium containing a binder.

次に、得られたスラリを公知のコーター、例えばドクターブレード等を用いてシート成形を行い、焼成後に誘電体層5となる誘電体グリーンシート31を得る。   Next, the obtained slurry is formed into a sheet using a known coater, such as a doctor blade, to obtain a dielectric green sheet 31 that becomes the dielectric layer 5 after firing.

誘電体グリーンシートの厚みは0.8〜4μmの範囲が好ましい。誘電体グリーンシート31を構成する誘電体粉末の平均粒径は高誘電率という点で0.1μm以上、高絶縁性という点で0.25μm以下であることがより望ましい。   The thickness of the dielectric green sheet is preferably in the range of 0.8 to 4 μm. The average particle size of the dielectric powder constituting the dielectric green sheet 31 is more preferably 0.1 μm or more in terms of high dielectric constant and 0.25 μm or less in terms of high insulation.

次に、上記誘電体グリーンシート31上に内部電極パターン33を形成する。この印刷に用いる導体ペーストは誘電体グリーンシート31に用いるチタン酸バリウムを主成分とする誘電体粉末との同時焼成を可能とする点でNi、Cuもしくはこれらの合金粉末である卑金属粉末を用いることが好ましい。   Next, an internal electrode pattern 33 is formed on the dielectric green sheet 31. The conductive paste used in this printing uses a base metal powder which is Ni, Cu or an alloy powder thereof in that it can be fired simultaneously with a dielectric powder mainly composed of barium titanate used for the dielectric green sheet 31. Is preferred.

電体グリーンシート31上における内部電極パターン33は以下のように形成する(図3(b))。
Internal electrode patterns 33 in the derivative collector green sheet on 31 is formed as follows (Figure 3 (b)).

図4(a)(b)は、内部電極パターンの形成方法を示す模式図である。
Figure 4 (a) (b) are schematic views showing a method of forming the internal electrode pattern.

図4(a)に平面図で示すように、誘電体グリーンシート31の表面に、セラミック粉末を多く含む導体ペーストを用いて長方形状パターン33aを形成し、次いで、該長方形状パターン33aの周囲に前記長方形状パターン33aよりもセラミック粉末を少量含むフレームパターン33bを形成する。この場合、長方形状パターン33aとフレームパターン33bとは実質的に同一厚みであることが望ましい。
As shown in a plan view in FIG. 4A, a rectangular pattern 33a is formed on the surface of the dielectric green sheet 31 using a conductive paste containing a large amount of ceramic powder, and then around the rectangular pattern 33a. that form a small Ryo含 no frame pattern 33b ceramic powder than the rectangular pattern 33a. In this case, it is desirable that the rectangular pattern 33a and the frame pattern 33b have substantially the same thickness.

内部電極パターン33の厚みは1〜2μmが好ましい。内部電極パターン33の厚みが1μm以上であると印刷時や積層時あるいは焼成後において発生する空孔13を低減できるという利点がある。   The thickness of the internal electrode pattern 33 is preferably 1 to 2 μm. When the thickness of the internal electrode pattern 33 is 1 μm or more, there is an advantage that the voids 13 generated at the time of printing, laminating or after firing can be reduced.

内部電極パターン33の厚みが3μm以下であると誘電体グリーンシート31上における内部電極パターン33との段差を低減できるという利点がある。   When the thickness of the internal electrode pattern 33 is 3 μm or less, there is an advantage that a step with the internal electrode pattern 33 on the dielectric green sheet 31 can be reduced.

ここで、フレームパターン33bの幅Wg1が長方形状パターン33aの長寸方向の間隔Lの2.5〜8%、短寸方向の間隔Wg2の5〜15%であることが望ましい。この場合、フレームパターン33bの幅Wg1は長方形状パターン33aの長寸方向の間隔Lの方向および短寸方向の間隔Wg2方向に対応する方向である。 Here, it is preferable that the width W g1 of the frame pattern 33b is 2.5 to 8% of the long dimension interval L g of the rectangular pattern 33a and 5 to 15% of the short dimension interval W g2 . In this case, the width W g1 of the frame pattern 33b is the direction corresponding to the direction and the part-length direction of the spacing W g2 direction spacing L g elongate direction of the rectangular pattern 33a.

また、長方形状パターン33aに含まれるセラミック粉末量は金属粉末量を100質量%としたときに25〜40質量%であることが望ましく、一方、フレームパターン33bに含まれるセラミック粉末量は金属粉末量を100質量%としたときに5〜20質量%であることが望ましい。   The amount of ceramic powder contained in the rectangular pattern 33a is preferably 25 to 40% by mass when the amount of metal powder is 100% by mass, while the amount of ceramic powder contained in the frame pattern 33b is the amount of metal powder. The content is preferably 5 to 20% by mass when the content is 100% by mass.

また、本発明ではフレームパターン33bに含まれるセラミック粉末の平均粒径が長方形状パターン33aに含まれるセラミック粉末の平均粒径よりも小さいことが望ましい。   In the present invention, it is desirable that the average particle size of the ceramic powder included in the frame pattern 33b is smaller than the average particle size of the ceramic powder included in the rectangular pattern 33a.

ここで、内部電極パターン33を形成するための卑金属粉末の平均粒径は0.2〜0.4μm、長方形状パターン33aに含まれるセラミック粉末の平均粒径は0.3〜0.35μm、さらに、フレームパターン33bに含まれるセラミック粉末の平均粒径は0.2〜0.25μmであることが望ましい。
The average particle size of the ceramic powder having an average particle diameter of the base metal powder for forming the internal electrode pattern 33 is contained 0.2 to 0.4 [mu] m, in a rectangular pattern 33a is 0.3~0.35Myuemu, Furthermore, the average particle size of the ceramic powder contained in the frame pattern 33b is preferably 0.2 to 0.25 μm.

次に、内部電極パターン33を形成した誘電体グリーンシート31を複数積層して積層体35を形成する(図3(c−1)(c−2))。図3(c−1)はサイドマージン側に平行な面、図3(c−2)はエンドマージン側に平行な面を示す。   Next, a plurality of dielectric green sheets 31 on which the internal electrode pattern 33 is formed are stacked to form a stacked body 35 (FIGS. 3C-1 and 3C-2). 3C-1 shows a surface parallel to the side margin side, and FIG. 3C-2 shows a surface parallel to the end margin side.

次に、この積層体35を格子状に切断して、内部電極パターン33の端部が露出したコンデンサ成形体37を形成し(図3(d))、次いで、還元雰囲気にて焼成を行いコンデンサ本体1を形成する。   Next, the laminate 35 is cut into a lattice shape to form a capacitor molded body 37 in which the end portions of the internal electrode pattern 33 are exposed (FIG. 3D), and then fired in a reducing atmosphere to perform the capacitor The main body 1 is formed.

次に、図1に示すように、コンデンサ本体1の内部電極層9が導出された端面に外部電極ペーストを付着、焼付けし、外部電極3a、3bの附設された積層セラミックコンデンサを得る。   Next, as shown in FIG. 1, an external electrode paste is attached and baked on the end surface from which the internal electrode layer 9 of the capacitor body 1 is led out to obtain a multilayer ceramic capacitor having external electrodes 3a and 3b attached thereto.

積層セラミックコンデンサを以下のようにして作製した。原料として粒径0.3μmのチタン酸バリウム粉末を用意し、これに誘電特性を制御する添加剤と焼結助剤とを添加し、混合溶媒を用いてジルコニアボールにより湿式混合した。   A multilayer ceramic capacitor was produced as follows. A barium titanate powder having a particle size of 0.3 μm was prepared as a raw material, an additive for controlling dielectric properties and a sintering aid were added thereto, and wet-mixed with zirconia balls using a mixed solvent.

次に、混合粉末にポリビニルブチラール樹脂およびトルエンとアルコールの混合溶媒を添加し、同じくジルコニアボールを用いて湿式混合しセラミックスラリを調製し、ドクターブレード法により厚み3μmの誘電体グリーンシートを作製した。   Next, a polyvinyl butyral resin and a mixed solvent of toluene and alcohol were added to the mixed powder, and wet mixing was similarly performed using zirconia balls to prepare a ceramic slurry. A dielectric green sheet having a thickness of 3 μm was prepared by a doctor blade method.

次に、この誘電体グリーンシートの上面にNiを主成分とする矩形状の内部電極パターンを複数形成した。内部電極パターン形成は図3(b)(c)に示すように、長方形状パターン33a、フレームパターン33bに分けて行った。この場合、周縁部の幅Wは、内部電極層の接続端から非接続端との間の間隔Lに対する割合、接続端と前記非接続端の方向とは垂直な方向の内部電極層の端部間の間隔Wに対する割合が同じになるように形成した。なお、周縁部の幅Wは内部電極パターンの印刷時のパターンの割合とした。 Next, a plurality of rectangular internal electrode patterns mainly composed of Ni were formed on the upper surface of the dielectric green sheet. As shown in FIGS. 3B and 3C, the internal electrode pattern was formed by dividing it into a rectangular pattern 33a and a frame pattern 33b. In this case, the width W of the peripheral edge is the ratio to the distance L between the connection end and the non-connection end of the internal electrode layer, and the end of the internal electrode layer in the direction perpendicular to the direction of the connection end and the non-connection end ratio interval W 0 between was formed to be the same. In addition, the width W of the peripheral portion is a ratio of the pattern at the time of printing the internal electrode pattern.

内部電極パターンに用いた導体ペーストは、Ni粉末として平均粒径0.3μmのものを用いた。 The conductor paste used for the internal electrode pattern was Ni powder having an average particle size of 0.3 μm.

内部電極パターンを構成する長方形状パターンおよびフレームパターンに含まれるセラミック粉末の平均粒径および添加量、ならびにフレームパターンの幅の割合を表1に示す値になるように調整した。   The average particle size and amount of ceramic powder contained in the rectangular pattern and frame pattern constituting the internal electrode pattern, and the ratio of the width of the frame pattern were adjusted to the values shown in Table 1.

次に、内部電極パターンを印刷した誘電体グリーンシートを360枚積層し、その上下面に内部電極パターンを印刷していない厚み10μmの誘電体グリーンシートをそれぞれ20枚積層し、プレス機を用いて温度60℃、圧力10Pa、時間10分の条件で一括積層し、所定の寸法に切断してコンデンサ本体成形体を形成した。 Next, 360 dielectric green sheets on which internal electrode patterns were printed were laminated, and 20 dielectric green sheets each having a thickness of 10 μm, on which the internal electrode patterns were not printed, were laminated on the upper and lower surfaces using a press machine. The capacitor body molded body was formed by batch lamination under conditions of a temperature of 60 ° C., a pressure of 10 7 Pa, and a time of 10 minutes, and cut into predetermined dimensions.

次に、得られたコンデンサ本体成形体を10℃/hの昇温速度で大気中で300℃/hにて脱バインダ処理を行い、500℃からの昇温速度が300℃/hの昇温速度で、1170℃(酸素分圧10−6Pa)で2時間焼成し、続いて、窒素雰囲気中1000℃で4時間の再酸化処理を施してコンデンサ本体を作製した。このコンデンサ本体の大きさは2×1×1mm、誘電体層の厚みは2μmであった。 Next, the obtained capacitor body molded body was debindered at 300 ° C./h in the air at a temperature rising rate of 10 ° C./h, and the temperature rising rate from 500 ° C. was 300 ° C./h. The capacitor body was fabricated by firing at 1170 ° C. (oxygen partial pressure 10 −6 Pa) for 2 hours at a rate, followed by reoxidation treatment at 1000 ° C. for 4 hours in a nitrogen atmosphere. The size of the capacitor body was 2 × 1 × 1 mm 3 and the thickness of the dielectric layer was 2 μm.

次に、焼成したコンデンサ本体をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃で焼き付けを行い外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiメッキ及びSnメッキを行い、積層セラミックコンデンサを作製した。   Next, the fired capacitor body was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends of the capacitor body and baked at 850 ° C. to form external electrodes. Thereafter, using an electrolytic barrel machine, Ni plating and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.

次に、これらの積層セラミックコンデンサについて以下の評価を行った。   Next, the following evaluation was performed on these multilayer ceramic capacitors.

積層セラミックコンデンサを内部電極層と平行に切断した後走査型電子顕微鏡により内部組織を観察し、画像処理により内部電極層の空孔数比、空孔の面積比を算出した。内部電極層の空孔数、空孔の面積は100μmの範囲における全面積に対する累積の空孔の面積を算出して求めた。試料数は5個、評価した内部電極層は各試料で2点とし、平均化して求めた。なお、内部電極層に見られる空孔は最大径が0.5μm以上のものについてカウントした。 After cutting the multilayer ceramic capacitor in parallel with the internal electrode layer, the internal structure was observed with a scanning electron microscope, and the hole number ratio and hole area ratio of the internal electrode layer were calculated by image processing. The number of vacancies in the internal electrode layer and the area of the vacancies were obtained by calculating the cumulative vacancy area with respect to the total area in the range of 100 μm 2 . The number of samples was five, and the evaluated internal electrode layers were two points for each sample, and were obtained by averaging. Note that the pores found in the internal electrode layer were counted for those having a maximum diameter of 0.5 μm or more.

静電容量の測定は、周波数1.0kHz、測定電圧0.5Vrms、25℃の測定条件でn=20として行った。容量ばらつき(CV)値は(標準偏差)/(平均値)×100として算出した。   The capacitance was measured with n = 20 under the measurement conditions of a frequency of 1.0 kHz, a measurement voltage of 0.5 Vrms, and 25 ° C. The capacity variation (CV) value was calculated as (standard deviation) / (average value) × 100.

耐熱衝撃試験ははんだ槽を用いて室温との間の温度差を340℃とした。評価した試料数は各試料につき100個とした。

Figure 0004809173
In the thermal shock test, the temperature difference from room temperature was 340 ° C. using a solder bath. The number of samples evaluated was 100 for each sample.
Figure 0004809173

表1から明らかなように、試料No.1、2のように内部電極層の周縁部と中央部のセラミック粉末量が同等の場合、静電容量が小さく、ばらつきが大きく、ショート率が大きかった。   As is clear from Table 1, sample No. When the amount of ceramic powder in the peripheral portion and the central portion of the internal electrode layer was the same as in 1 and 2, the capacitance was small, the variation was large, and the short-circuit rate was large.

これに対して、誘電体グリーンシートの表面に、内部電極パターンとして、セラミック粉末を多く含む長方形状パターンを形成し、次いで、該長方形状パターンの周囲に長方形状パターンよりもセラミック粉末を少量の含むフレームパターンを形成して作製し、焼結後において、内部電極層における周縁部の単位面積当たりの空孔数が周縁部を除く中央部の単位面積当たりの空孔数よりも少なく、かつ周縁部の単位面積当たりの平均空孔面積を
c、周縁部を除く中央部の単位面積当たりの平均空孔面積をdとしたとき、空孔の面積比が1.2≦d/c≦2.0の関係を満たす試料ではショート率が5%以下であり、静電容量も8.5μFと設定目標値の85%以上にでき、CV値も5.%以下と小さかった。
In contrast, the surface of the dielectric green sheet, an internal electrode pattern, to form a rectangular pattern containing many ceramic powder, then a small amount of a ceramic powder than rectangular shape pattern around the long square shape pattern The number of holes per unit area of the peripheral part in the internal electrode layer is smaller than the number of holes per unit area of the central part excluding the peripheral part and is Average pore area per unit area
c, where d is the average hole area per unit area in the central part excluding the peripheral part , the short ratio is 5 in the sample satisfying the relation that the hole area ratio is 1.2 ≦ d / c ≦ 2.0. %, The capacitance can be 8.5 μF, which is 85% or more of the set target value, and the CV value is also 5. It was as small as 0 % or less.

本発明の積層セラミックコンデンサを示す概略断面図である。It is a schematic sectional drawing which shows the multilayer ceramic capacitor of this invention. 本発明の積層セラミックコンデンサの内部における内部電極層の平面図である。It is a top view of the internal electrode layer in the inside of the multilayer ceramic capacitor of this invention. 本発明の積層セラミックコンデンサを製造するための工程図である。It is process drawing for manufacturing the multilayer ceramic capacitor of this invention. (a)は誘電体グリーンシートの表面に長方形状パターンを形成する工程であり、(b)は長方形状パターンの周囲にフレームパターン33bを形成する工程である。(A) is a step of forming a rectangular pattern on the surface of the dielectric green sheet, and (b) is a step of forming a frame pattern 33b around the rectangular pattern.

符号の説明Explanation of symbols

1・・コンデンサ本体
3a・第1外部電極
3b・第2外部電極
5・・誘電体層
7・・積層体
7a・第1端面
7b・第2端面
9・・内部電極層
9a・接続端
9b・非接続端
9c・周縁部
9d・中央部
13・空孔
31・誘電体グリーンシート
33・内部電極パターン
33a・長方形状パターン
33b・フレームパターン
35・積層体
37・コンデンサ成形体
1 .. Capacitor body 3a. First external electrode 3b. Second external electrode 5. Dielectric layer 7. Laminate 7a. First end surface 7b. Second end surface 9. Internal electrode layer 9a. Connection end 9b. Non-connection end 9c, peripheral edge portion 9d, central portion 13, hole 31, dielectric green sheet 33, internal electrode pattern 33a, rectangular pattern 33b, frame pattern 35, laminate 37, capacitor molded body

Claims (1)

誘電体層および内部電極層が交互に積層されたコンデンサ本体の端面に外部電極を具備する積層セラミックコンデンサであって、前記内部電極層における周縁部の単位面積当たりの空孔数が前記周縁部を除く中央部の単位面積当たりの空孔数よりも少なく、かつ前記周縁部の単位面積当たりの平均空孔面積をc、前記周縁部を除く前記中央部の単位面積当たりの平均空孔面積をdとしたとき、空孔の面積比が1.2≦d/c≦2.0であることを特徴とする積層セラミックコンデンサ。 A multilayer ceramic capacitor having an external electrode on an end surface of a capacitor body in which dielectric layers and internal electrode layers are alternately stacked, wherein the number of holes per unit area of the peripheral portion of the internal electrode layer rather less than the pore number per unit area of the central portion excluding, and an average pore area of c per unit area of the peripheral portion, the average pore area per unit area of the central portion excluding the peripheral edge portion A multilayer ceramic capacitor, wherein an area ratio of holes is 1.2 ≦ d / c ≦ 2.0, where d is d .
JP2006262520A 2006-09-27 2006-09-27 Multilayer ceramic capacitor Active JP4809173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262520A JP4809173B2 (en) 2006-09-27 2006-09-27 Multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262520A JP4809173B2 (en) 2006-09-27 2006-09-27 Multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2008085041A JP2008085041A (en) 2008-04-10
JP4809173B2 true JP4809173B2 (en) 2011-11-09

Family

ID=39355590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262520A Active JP4809173B2 (en) 2006-09-27 2006-09-27 Multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP4809173B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258468A (en) * 2007-04-06 2008-10-23 Matsushita Electric Ind Co Ltd Multilayer ceramic capacitor and manufacturing method thereof
JP5951958B2 (en) * 2011-10-27 2016-07-13 京セラ株式会社 Electronic components
WO2014174875A1 (en) 2013-04-25 2014-10-30 株式会社村田製作所 Laminated ceramic capacitor
US10650974B2 (en) 2017-03-14 2020-05-12 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
JP6984368B2 (en) * 2017-03-14 2021-12-17 株式会社村田製作所 Multilayer ceramic capacitors
WO2023238453A1 (en) * 2022-06-08 2023-12-14 株式会社村田製作所 Laminated ceramic capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2971993B2 (en) * 1991-06-25 1999-11-08 株式会社トーキン Multilayer ceramic capacitors
JP2001035747A (en) * 1999-07-21 2001-02-09 Taiyo Yuden Co Ltd Laminated ceramic capacitor
JP2004179349A (en) * 2002-11-26 2004-06-24 Kyocera Corp Laminated electronic component and method of manufacturing the same
WO2006046597A1 (en) * 2004-10-26 2006-05-04 Murata Manufacturing Co., Ltd Conductive paste and stacked type piezoelectric ceramic component

Also Published As

Publication number Publication date
JP2008085041A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
KR101862396B1 (en) Laminated ceramic electronic parts and fabricating method thereof
US9326381B2 (en) Multilayer ceramic capacitor and board having the same mounted thereon
JP5711696B2 (en) Multilayer ceramic electronic components
WO2013145423A1 (en) Laminated ceramic capacitor and method for producing same
KR101912266B1 (en) Laminated ceramic electronic parts and fabricating method thereof
US20130002388A1 (en) Multilayered ceramic electronic component and manufacturing method thereof
KR20130013438A (en) Laminated ceramic electronic parts
KR20120133696A (en) Multilayer Ceramic Electronic Components
KR102762889B1 (en) Multi-layered ceramic electronic component
KR20130058430A (en) Laminated ceramic electronic parts
JP4809173B2 (en) Multilayer ceramic capacitor
JP2014005155A (en) Dielectric ceramics, method for manufacturing dielectric ceramics and laminated ceramic capacitor
JP5423977B2 (en) Manufacturing method of multilayer ceramic electronic component
JP5293951B2 (en) Electronic components
JP2007142342A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2013030775A (en) Multi-layered ceramic electronic component
JP2012182355A (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
JP5780856B2 (en) Multilayer ceramic capacitor
KR102018310B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR20130027781A (en) Conductive paste and multi-layer ceramic electronic parts fabricated by using the same
JP2015141982A (en) Laminated electronic component
JP2003178926A (en) Manufacturing method for monolithic ceramic electronic part
JP2006128282A (en) Multilayer electronic component and manufacturing method thereof
JP2004179349A (en) Laminated electronic component and method of manufacturing the same
JP2024093966A (en) Multilayer ceramic electronic component and manufacturing method of multilayer ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4809173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150