JP4803834B2 - Zn-Al eutectoid alloy bonding material, method for producing Zn-Al eutectoid alloy bonding material, bonding method using Zn-Al eutectoid alloy bonding material, and Zn-Al eutectoid alloy bonding material Semiconductor device - Google Patents
Zn-Al eutectoid alloy bonding material, method for producing Zn-Al eutectoid alloy bonding material, bonding method using Zn-Al eutectoid alloy bonding material, and Zn-Al eutectoid alloy bonding material Semiconductor device Download PDFInfo
- Publication number
- JP4803834B2 JP4803834B2 JP2007285825A JP2007285825A JP4803834B2 JP 4803834 B2 JP4803834 B2 JP 4803834B2 JP 2007285825 A JP2007285825 A JP 2007285825A JP 2007285825 A JP2007285825 A JP 2007285825A JP 4803834 B2 JP4803834 B2 JP 4803834B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- bonding material
- eutectoid
- alloy bonding
- eutectoid alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 102
- 229910045601 alloy Inorganic materials 0.000 title claims description 94
- 239000000956 alloy Substances 0.000 title claims description 94
- 229910007570 Zn-Al Inorganic materials 0.000 title claims description 85
- 239000004065 semiconductor Substances 0.000 title claims description 29
- 238000000034 method Methods 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims description 48
- 229910052751 metal Inorganic materials 0.000 claims description 36
- 239000002184 metal Substances 0.000 claims description 36
- 238000005304 joining Methods 0.000 claims description 35
- 239000000919 ceramic Substances 0.000 claims description 15
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical group [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 8
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 238000010583 slow cooling Methods 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims 5
- 238000005096 rolling process Methods 0.000 claims 1
- 239000007790 solid phase Substances 0.000 description 14
- 229910000679 solder Inorganic materials 0.000 description 13
- 239000010949 copper Substances 0.000 description 11
- 238000001816 cooling Methods 0.000 description 9
- 239000006023 eutectic alloy Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 230000035882 stress Effects 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000000635 electron micrograph Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229910017518 Cu Zn Inorganic materials 0.000 description 3
- 229910017752 Cu-Zn Inorganic materials 0.000 description 3
- 229910017943 Cu—Zn Inorganic materials 0.000 description 3
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 229910020994 Sn-Zn Inorganic materials 0.000 description 1
- 229910009069 Sn—Zn Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Description
本発明は超塑性現象を利用して対象物を接合するZn−Al共析系合金接合材、Zn−Al共析系合金接合材の製造方法、Zn−Al共析系合金接合材を用いた接合方法及びZn−Al共析系合金接合材を用いた半導体装置に関する。 The present invention uses a Zn-Al eutectoid alloy bonding material that joins objects using a superplastic phenomenon, a method for producing a Zn-Al eutectoid alloy bonding material, and a Zn-Al eutectoid alloy bonding material. The present invention relates to a bonding method and a semiconductor device using a Zn—Al eutectoid alloy bonding material.
パワー半導体素子のダイボンデイング、パワーモジュールにおける半導体素子の実装基板への接合及び実装基板の放熱板への接合にはんだ接合が従来から使用されている。はんだ材としては鉛−錫系合金、Zn−Al共晶系合金が周知で、鉛−錫合金系は錫の添加量を調整することにより低温はんだ及び高温はんだを実現し、Zn−Al共晶系合金は鉛フリーの高温はんだとして使用されている。Zn−Al共晶系合金はんだの場合、液相状態から固相状態に凝固する過程で接合が行われる。この際、体積収縮が発生し、大きな熱応力が発生し、大きな残留応力をもつ固相になる。更に、脆いZn−rich相(β相)が大部分を占めるため、強度に問題が残る。これらの点から、Zn−Al共晶系合金はんだを用いて接合した場合、温度変化や機械的なストレスによって接合部に亀裂が入り易くなり、接合部の寿命が短くなること、及び過酷なヒートサイクルや外力が加わる用途には適用できなくなるという問題がある。 Conventionally, solder bonding is used for die bonding of power semiconductor elements, bonding of semiconductor elements in power modules to mounting boards, and bonding of mounting boards to heat sinks. Lead-tin alloy and Zn-Al eutectic alloy are well known as solder materials. Lead-tin alloy system realizes low-temperature solder and high-temperature solder by adjusting the amount of tin added, Zn-Al eutectic Alloys are used as lead-free high-temperature solder. In the case of Zn—Al eutectic alloy solder, bonding is performed in the process of solidifying from a liquid phase state to a solid phase state. At this time, volume shrinkage occurs, a large thermal stress is generated, and a solid phase having a large residual stress is obtained. Furthermore, since a brittle Zn-rich phase (β phase) occupies most, there remains a problem in strength. From these points, when joining using Zn-Al eutectic alloy solder, the joint is liable to crack due to temperature change and mechanical stress, shortening the life of the joint, and severe heat There is a problem that it cannot be applied to applications where a cycle or external force is applied.
環境対応ハイブリッド車の燃費向上及びコスト低減には、モータ制御に用いられるインバータ用IGBTモジュールの動作温度を高めることが極めて有効である。最高動作温度を現状の120℃から200℃に高めることが実現できれば、冷却装置を水冷方式から空冷方式に変更が可能になり、大幅な軽量化が期待できる。IGBTモジュールの200℃動作の実現に際して、半導体自体には基本的に障害はなく、インバータを構成するMOS型パワーデバイスのはんだ接合に使用する高温はんだ合金の実現が課題となっている。 Increasing the operating temperature of an inverter IGBT module used for motor control is extremely effective in improving fuel efficiency and reducing costs in an environmentally friendly hybrid vehicle. If it is possible to increase the maximum operating temperature from the current 120 ° C. to 200 ° C., the cooling device can be changed from the water cooling method to the air cooling method, and a significant reduction in weight can be expected. In realizing the 200 ° C. operation of the IGBT module, there is basically no obstacle to the semiconductor itself, and the realization of a high-temperature solder alloy used for solder bonding of the MOS type power device constituting the inverter is an issue.
高温はんだ合金の一例として、1〜7質量%Al−0.5〜6質量%Mg−1〜25質量%Sn−Znからなり300℃程度の融点を有するZn−Al共晶系合金はんだが提案されている(特許文献1)。
特許文献1に開示されたZn−Al共晶系合金はんだは、300℃程度の融点を有し、鉛を使用しない点で環境性に優れた高温はんだであるが、接合に溶融工程及び凝固工程を経る必要があり、接合部が高い脆性を有しているという問題が残されている。 The Zn—Al eutectic alloy solder disclosed in Patent Document 1 is a high-temperature solder having a melting point of about 300 ° C. and excellent in environmental properties in that lead is not used. There remains a problem that the joint has high brittleness.
本発明の目的は鉛フリーで高い融点を有しかつ固相状態で接合が可能なZn−Al共析系合金接合材を提供することにある。
本発明の他の目的はZn−Al共析系合金接合材の製造方法を提供することにある。
本発明の別の目的はZn−Al共析系合金接合材を用いた接合方法を提供することにある。
本発明の更に他の目的はZn−Al共析系合金接合材を使用した半導体装置を提供することにある。
An object of the present invention is to provide a Zn-Al eutectoid alloy bonding material that is lead-free, has a high melting point, and can be bonded in a solid phase.
Another object of the present invention is to provide a method for producing a Zn—Al eutectoid alloy bonding material.
Another object of the present invention is to provide a bonding method using a Zn-Al eutectoid alloy bonding material.
Still another object of the present invention is to provide a semiconductor device using a Zn—Al eutectoid alloy bonding material.
本発明Zn−Al共析系合金接合材の特徴とするところは、17〜30質量%Al−0〜1.5質量%Cu−0〜0.5質量%Mg−Znからなり、超塑性現象を利用して対象物を接合する点にある。Alを17〜30質量%にする理由は250℃以上の高温で使用できるZn−Al共析系合金において超塑性を発現するために必要な組成範囲であること、Cu及びMgを添加する理由は強度の向上及び微細組織の安定化を図ることにある。Zn−Al共析系合金の強度は温度が上昇すると徐々に低下し、430℃を超えると急激に低下する特性を示す。Cu及びMgを添加すると温度上昇に伴う強度の低下を抑制することが可能となる。詳述すると、CuはAl−rich及びZn−rich相の何れにも固溶し、両相の強化(主に固溶強化)に寄与する。Mgは合金の粒界や異相境界に偏析し、粒界や異相境界の移動を抑制する働きがあり、結晶粒組織を微細な状態に保持する効果がある。しかしながら、添加量が多過ぎると延性が低下し脆性が現れる。従って、添加量は0〜1.5質量%Cu及び0〜0.5質量%Mgが好ましい。このような特徴を有するZn−Al共析系合金は、等軸粒状の微細組織を有し、200〜410℃の温度領域で超塑性現象を発現し、280〜410℃から徐冷することによって超塑性を発現しない層状の金属組織に変態するため、この金属組織の変態を利用することによって半導体基体をセラミック基板もしくは金属基板に接合するための接合層を形成する本発明の接合材として使用される。 The Zn-Al eutectoid alloy bonding material of the present invention is characterized by comprising 17-30 mass % Al-0-1.5 mass % Cu-0-0.5 mass % Mg-Zn, and a superplastic phenomenon. It is in the point which joins a target object using. The reason why Al is 17 to 30% by mass is the composition range necessary for developing superplasticity in a Zn-Al eutectoid alloy that can be used at a high temperature of 250 ° C. or higher, and the reason for adding Cu and Mg. The purpose is to improve the strength and stabilize the microstructure. The strength of the Zn—Al eutectoid alloy gradually decreases as the temperature increases, and rapidly decreases when the temperature exceeds 430 ° C. When Cu and Mg are added, it is possible to suppress a decrease in strength accompanying a temperature rise. More specifically, Cu dissolves in both Al-rich and Zn-rich phases and contributes to strengthening of both phases (mainly solid solution strengthening). Mg segregates at the grain boundaries and heterogeneous boundaries of the alloy and has a function of suppressing movement of the grain boundaries and heterophase boundaries, and has the effect of maintaining the crystal grain structure in a fine state. However, when the addition amount is too large, ductility is lowered and brittleness appears. Therefore, the addition amount is preferably 0 to 1.5 mass % Cu and 0 to 0.5 mass % Mg. A Zn—Al eutectoid alloy having such characteristics has an equiaxed granular microstructure, exhibits a superplastic phenomenon in a temperature range of 200 to 410 ° C., and is gradually cooled from 280 to 410 ° C. Since it transforms into a layered metal structure that does not exhibit superplasticity, it is used as a bonding material of the present invention for forming a bonding layer for bonding a semiconductor substrate to a ceramic substrate or a metal substrate by utilizing this metal structure transformation. The
本発明Zn−Al共析系合金接合材の製造方法の特徴とするところは、17〜30質量%Al−0〜1.5質量%Cu−0〜0.5質量%Mg−Zn共析系合金を溶解鋳造し、これを280〜410℃の温度で30分〜3時間保持した後、−4〜20℃の水中で急冷する点にある。この処理によって、等軸粒状の微細組織が形成される。急冷後のZn−Al共析系合金の鋳塊は、半導体とセラミック基板もしくは金属基板との接合材として、更に150〜270℃の温度範囲において厚さ0.1〜1mmの帯状に圧延加工される。このような組織を持つZn−Al共析系合金は低変形応力で大きな延性を示す超塑性を生じる。 The feature of the method for producing a Zn-Al eutectoid alloy bonding material of the present invention is that 17-30 mass % Al-0-1.5 mass % Cu-0-0.5 mass % Mg-Zn eutectoid system. The alloy is melt-cast, held at a temperature of 280 to 410 ° C for 30 minutes to 3 hours, and then rapidly cooled in water at -4 to 20 ° C. By this treatment, an equiaxed granular microstructure is formed. The rapidly cooled Zn-Al eutectoid alloy ingot is rolled into a strip of 0.1 to 1 mm in thickness in the temperature range of 150 to 270 ° C as a bonding material between the semiconductor and the ceramic substrate or metal substrate. The A Zn—Al eutectoid alloy having such a structure produces superplasticity exhibiting large ductility at low deformation stress.
本発明Zn−Al共析系合金接合材を用いた第1の接合方法の特徴は固相にて対象物を接合することにある。固相には完全な固相と固相と液相が混合した半溶融状態を含み、具体的には次の接合方法がある。
第1の接合方法の特徴とするところは、第1の部材及び第2の部材の接合する面にZnまたはZn−Al系合金の被膜を形成し、第1の部材と第2の部材との間に17〜30質量%Al−0〜1.5質量%Cu−0〜0.5質量%Mg−Zn系からなるZn−Al共析系合金接合材を介在し、該接合材を加熱して固相状態で接合した後徐冷する点にある。この接合方法は超塑性を100%利用した固相による接合であるため低変形応力となる。超塑性を発現する組織は強度が低いけれど、接合後の徐冷によって超塑性を発現しない層状の強度の高い金属組織になる。この結果、低変形応力で接合強度の高い接合部を実現することが出来る。
また、第1の部材及び第2の部材がそれぞれ半導体基体及びセラミック基板もしくは金属基板である場合は、半導体基体とセラミック基板もしくは金属基板との間に17〜30質量%Al−0〜1.5質量%Cu−0〜0.5質量%Mg−Zn系からなるZn−Al共析系合金接合材を介在し、該接合材を280〜410℃に加熱し、超塑性を発現する状態で1〜30分間保持した後徐冷する接合方法、又は200〜275℃に加熱し、超塑性を発現する状態で1〜30分間保持した後、280〜410℃に昇温後徐冷する接合方法である。
第2の接合方法の特徴とするところは、第1の部材と第2の部材との間に17〜30質量%Al−0〜1.5質量%Cu−0〜0.5質量%Mg−Zn系からなるZn−Al共析系合金接合材を介在し、該接合材を加熱して半溶融状態にした後徐冷する点にある。この接合方法は超塑性100%利用することは出来ないが、固液2相で超塑性のような変形が生じる状態で接合するため、第1の接合方法より劣るが共晶系合金を使用する場合に比較して低変形応力となる。接合後の徐冷によって超塑性を発現しない2種類の層状の強度の高い金属組織になる。この結果、低変形応力で接合強度の高い接合部を実現することが出来る。
The feature of the first bonding method using the Zn—Al eutectoid alloy bonding material of the present invention is that the objects are bonded in a solid phase. The solid phase includes a complete solid phase and a semi-molten state in which the solid phase and the liquid phase are mixed. Specifically, there are the following bonding methods.
A feature of the first joining method is that a coating of Zn or a Zn—Al alloy is formed on the surfaces to be joined of the first member and the second member, and the first member and the second member interposing a 17 to 30 wt% Al-0 to 1.5 wt% Cu-0 to 0.5 wt% Mg-Zn consisting based Zn-Al co析系alloy bonding material between, heated the bonding material Then, after joining in the solid phase state, it is gradually cooled. Since this joining method is joining by solid phase using 100% of superplasticity, it becomes low deformation stress. Although the structure exhibiting superplasticity is low in strength, it becomes a layered high-strength metal structure that does not exhibit superplasticity by slow cooling after joining. As a result, it is possible to realize a joint with low deformation stress and high joint strength.
Further, when the first member and the second member are a semiconductor substrate and a ceramic substrate or a metal substrate, respectively, 17-30 mass % Al-0 to 1.5 between the semiconductor substrate and the ceramic substrate or the metal substrate. A Zn—Al eutectoid alloy bonding material composed of mass % Cu-0 to 0.5 mass % Mg—Zn is interposed, and the bonding material is heated to 280 to 410 ° C. to develop superplasticity. In a joining method of holding for 30 minutes and then gradually cooling, or in a joining method of heating to 200 to 275 ° C. and holding for 1 to 30 minutes in a state of developing superplasticity, and then gradually cooling to 280 to 410 ° C. is there.
A feature of the second joining method is that 17 to 30% by mass Al-0 to 1.5% by mass Cu-0 to 0.5% by mass Mg— between the first member and the second member. A Zn—Al eutectoid alloy bonding material made of Zn is interposed, and the bonding material is heated to a semi-molten state and then gradually cooled. Although this joining method cannot be used with 100% superplasticity, it is inferior to the first joining method but uses a eutectic alloy because joining is performed in a state where superplasticity occurs in a solid-liquid two-phase. Compared to the case, the deformation stress is low. Two types of layered high-strength metal structures that do not exhibit superplasticity are formed by slow cooling after joining. As a result, it is possible to realize a joint with low deformation stress and high joint strength.
本発明半導体装置の特徴とするところは、半導体基体、半導体基体に直接またはセラミック基板を介して接合層によって接合された金属基板を備え、接合層が17〜30質量%Al−0〜1.5質量%Cu−0〜0.5質量%Mg−Zn系からなるZn−Al共析系合金接合材からなり、接合時に超塑性現象を発現し、接合後に超塑性を発現しない金属組織を有する点にある。超塑性接合材を用いて接合するメリットは、接合時には超塑性を利用して固相状態でかつ低変形応力で接合でき、接合後は超塑性を発現せず延性と機械的強度を持つ接合部を実現できることである。接合部が接合後において超塑性を発現しない金属組織になっていることは、過酷なヒートサイクルで使用される半導体装置においては必須の要件である。
半導体基体としては、シリコン、化合物半導体、炭化珪素が使用できる。本発明Zn−Al共析系合金接合材の特徴の一つは高い融点を有する点にあり、この点から半導体基体に炭化珪素を使用すると高温動作が可能な半導体装置を実現できる。
A feature of the semiconductor device of the present invention is that it includes a semiconductor substrate, a metal substrate bonded to the semiconductor substrate by a bonding layer directly or via a ceramic substrate, and the bonding layer is 17 to 30% by mass Al-0 to 1.5. It consists of a Zn-Al eutectoid alloy joining material consisting of a mass % Cu-0 to 0.5 mass % Mg-Zn system, and has a metal structure that exhibits a superplastic phenomenon during joining and does not develop superplasticity after joining. It is in. The merit of joining using superplastic joint material is that it can be joined in a solid state with low deformation stress using superplasticity at the time of joining, and after joining, it has ductility and mechanical strength without manifesting superplasticity. Can be realized. It is an essential requirement for a semiconductor device used in a severe heat cycle that the joint has a metal structure that does not exhibit superplasticity after joining.
As the semiconductor substrate, silicon, a compound semiconductor, or silicon carbide can be used. One of the features of the Zn—Al eutectoid alloy bonding material of the present invention is that it has a high melting point. From this point, a semiconductor device capable of high-temperature operation can be realized by using silicon carbide for the semiconductor substrate.
本発明Zn−Al共析系合金接合材は17〜30質量%Al−0〜1.5質量%Cu−0〜0.5質量%Mg−Znからなっているため、250℃以上の高温で使用でき、かつ超塑性現象を利用して対象物を固相状態で接合することが可能になり、延性があり長寿命の接合部を実現できる。また、本発明Zn−Al共析系合金接合材を使用した半導体装置は、接合材が接合時には超塑性を発現し、接合後は超塑性を発現しない金属組織になっているため、過酷なヒートサイクルに耐えかつ長寿命の接合部を実現できる。 Since the Zn-Al eutectoid alloy bonding material of the present invention is composed of 17 to 30 mass % Al-0 to 1.5 mass % Cu-0 to 0.5 mass % Mg-Zn, at a high temperature of 250 ° C or higher. It can be used, and the object can be joined in a solid phase using the superplastic phenomenon, and a ductile and long-life joint can be realized. In addition, the semiconductor device using the Zn—Al eutectoid alloy bonding material of the present invention has a metal structure that exhibits superplasticity during bonding and does not exhibit superplasticity after bonding. A long-life joint that can withstand the cycle can be realized.
本発明の最良の実施形態は、接合する対象物である一対の被接合材の間にZn−Al共析系合金接合材を介在した状態で加熱してZn−Al共析系合金接合材に超塑性を発現して固相状態で被接合材を接合し、接合後はZn−Al共析系合金接合材を徐冷して超塑性を発現しない金属組織にする使い方である。特に、半導体装置の接合材としての用途が本発明Zn−Al共析系合金接合材の効果を発揮できる分野である。 In the best mode of the present invention, a Zn-Al eutectoid alloy bonding material is heated by interposing a Zn-Al eutectoid alloy bonding material between a pair of materials to be bonded. This is a method of joining the materials to be joined in a solid state by developing superplasticity and, after joining, gradually cooling the Zn-Al eutectoid alloy joining material to form a metal structure that does not develop superplasticity. In particular, the use as a bonding material for semiconductor devices is a field in which the effect of the Zn—Al eutectoid alloy bonding material of the present invention can be exhibited.
表1に種々の組成を有するZn−Al共析系合金接合材を準備し、被接合材を接合した後における接合層の延性特性及び強度特性を比較した結果を示す。No.1からNo.9の接合材は表に示す組成の合金を溶解鋳造し、これを280〜410℃の温度で30分〜3時間保持した後、−4〜20℃の水中で急冷して製造したものを被接合材の間に介在して超塑性を発現する温度範囲において固相状態で接合した後徐冷した。No.10の接合材については表に示す組成の合金を溶製したものを被接合材の間に介在して360℃で加熱・溶融後凝固した。 Table 1 shows the results of comparing the ductility characteristics and strength characteristics of the bonding layers after preparing Zn-Al eutectoid alloy bonding materials having various compositions and bonding the materials to be bonded. No. 1 to No. The bonding material of No. 9 was prepared by melting and casting an alloy having the composition shown in the table, holding it at a temperature of 280 to 410 ° C. for 30 minutes to 3 hours, and then rapidly cooling it in water at −4 to 20 ° C. It was annealed after joining in a solid phase in a temperature range in which it was interposed between joining materials and developed superplasticity. No. For the 10 bonding materials, a melted alloy having the composition shown in the table was interposed between the materials to be bonded, heated at 360 ° C. and solidified after melting.
図1は本発明Zn−Al共析系合金接合材の製造方法の工程図で、縦軸に処理温度、横軸に時間を採ってTMT(Thermo−Mechanical Treatment:加工熱処理)線図として示してある。まず、17〜30質量%Al−0〜1.5質量%Cu−0〜0.5質量%Mg−Znからなる組成のZn−Al共析系合金を準備し、室温から345±65℃まで加熱して所定時間(例えば30分〜3時間)保持して溶体化処理した後、−4〜20℃の水中で急冷する。20℃の水中で急冷したときはそのままの状態で所定時間(例えば10分〜1時間)保持し、−4℃の水中で急冷したときは急冷後20〜50℃の温度に10分〜1時間保持した後室温に戻す。この処理によって、図2に示す超塑性を発現する等軸粒状の微細組織が形成される。図2(a)は22質量%Al−0.15質量%Cu−Zn共析系合金接合材の組織を示す電子顕微鏡写真で、平均粒径dが0.87μm、1.9μm、3.9μmの場合を示している。図2(b)は22質量%Al−1.0質量%Cu−0.03質量%Mg−Zn共析系合金接合材の組織を示す電子顕微鏡写真である。次に、等軸粒状の微細組織化されたZn−Al共析系合金を150〜270℃で加熱しながら圧延して所定厚さ(0.1〜1mm)に加工する。これによって得られた帯状のZn−Al共析系合金接合材が出来上がる。接合材として使用するときには、接合個所の面積に応じた寸法に切断して被接合材の間に介在する。 FIG. 1 is a process diagram of a method for producing a Zn—Al eutectoid alloy bonding material according to the present invention, and shows a TMT (Thermo-Mechanical Treatment) diagram with the processing temperature on the vertical axis and the time on the horizontal axis. is there. First, a Zn-Al eutectoid alloy having a composition of 17 to 30% by mass Al-0 to 1.5% by mass Cu-0 to 0.5% by mass Mg-Zn is prepared, and from room temperature to 345 ± 65 ° C. After heating and holding for a predetermined time (for example, 30 minutes to 3 hours) and solution treatment, it is rapidly cooled in water at -4 to 20 ° C. When rapidly cooled in water at 20 ° C., it is maintained for a predetermined time (for example, 10 minutes to 1 hour), and when rapidly cooled in water at −4 ° C., it is rapidly cooled to a temperature of 20 to 50 ° C. for 10 minutes to 1 hour. Return to room temperature after holding. By this process, an equiaxed granular microstructure that exhibits superplasticity shown in FIG. 2 is formed. FIG. 2A is an electron micrograph showing the structure of a 22 mass % Al-0.15 mass % Cu—Zn eutectoid alloy bonding material, with an average particle diameter d of 0.87 μm, 1.9 μm, and 3.9 μm. Shows the case. FIG. 2B is an electron micrograph showing the structure of the 22 mass % Al-1.0 mass % Cu-0.03 mass % Mg-Zn eutectoid alloy bonding material. Next, the equiaxed granular microstructured Zn—Al eutectoid alloy is rolled while being heated at 150 to 270 ° C. to be processed to a predetermined thickness (0.1 to 1 mm). A band-shaped Zn—Al eutectoid alloy bonding material obtained in this way is completed. When used as a bonding material, it is cut into dimensions according to the area of the bonding portion and interposed between the materials to be bonded.
本発明Zn−Al共析系合金接合材を用いた第1の接合方法を説明する。まず、接合する第1の部材と第2の部材の接合する面にZnまたはZn−Al系合金の被膜を(ドブ付け法などにより)形成する。第1の部材と第2の部材との間に17〜30質量%Al−0〜1.5質量%Cu−0〜0.5質量%Mg−Zn系からなる板状または箔状のZn−Al共析系合金接合材を介在し、280〜410℃(α’領域)または200〜275℃(α+β領域)の温度領域で1〜30分加熱して接合材に超塑性を発現して、固相状態で接合する。本発明のZn−Al共析系合金接合材は275℃以下では(α+β)の2相合金状態が熱力学的に安定相であるので、熱処理後は共析変態により(α+β)の2相状態になる。280〜410℃の接合では接合後に徐冷する。200〜270℃の接合では、接合後280〜410℃の範囲に昇温後徐冷する。これによって、接合材(接合層)は図3に示す超塑性を発現しない層状の金属組織になる。図3(a)は22質量%Al−0.15質量%Cu−Zn共析系合金接合材を用いて接合した後徐冷した場合の接合部の金属組織を、図3(b)は22質量%Al−1.0質量%Cu−0.03質量%Mg−Zn共析系合金接合材を用いて接合した後徐冷した場合の接合部の金属組織をそれぞれ示す電子顕微鏡写真である。図から分かるように、図2に示す等軸粒状の微細組織が層状の金属組織になっていることが分かる。等軸粒状の微細組織は高温での強度が低くかつ耐クリープ性も低いが、接合によって強度及び耐クリープ性の高い層状の金属組織に変わることにより、強度及び耐クリープ性の高い接合部を実現できる。 A first bonding method using the Zn—Al eutectoid alloy bonding material of the present invention will be described. First, a coating film of Zn or a Zn—Al-based alloy is formed on the surfaces of the first member to be joined and the second member to be joined (by a dobbing method or the like). A plate-like or foil-like Zn— consisting of 17-30 mass % Al-0-1.5 mass % Cu-0-0.5 mass % Mg—Zn system between the first member and the second member. By interposing an Al eutectoid alloy bonding material, and heating in a temperature range of 280 to 410 ° C. (α ′ region) or 200 to 275 ° C. (α + β region) for 1 to 30 minutes, the bonding material exhibits superplasticity, Join in solid state. In the Zn—Al eutectoid alloy bonding material of the present invention, since the two-phase alloy state of (α + β) is a thermodynamically stable phase at 275 ° C. or less, the two-phase state of (α + β) is caused by eutectoid transformation after heat treatment. become. In joining at 280 to 410 ° C., it is gradually cooled after joining. In the joining at 200 to 270 ° C., the temperature is raised in the range of 280 to 410 ° C. after the joining and then gradually cooled. As a result, the bonding material (bonding layer) has a layered metal structure that does not exhibit superplasticity as shown in FIG. FIG. 3 (a) shows the metal structure of the joint when it is annealed using a 22% by mass Al—0.15% by mass Cu—Zn eutectoid alloy bonding material, and FIG. It is an electron micrograph which each shows the metal structure of the junction part when it joins using the mass % Al-1.0 mass % Cu-0.03 mass % Mg-Zn eutectoid system alloy joining material, and it anneals. As can be seen, the equiaxed granular microstructure shown in FIG. 2 is a layered metal structure. The equiaxed granular microstructure has low strength at high temperatures and low creep resistance, but by joining it into a layered metal structure with high strength and creep resistance, a joint with high strength and creep resistance is realized. it can.
本発明Zn−Al共析系合金接合材を用いた第2の接合方法を説明する。接合する第1の部材と第2の部材との間に17〜30質量%Al−0〜1.5質量%Cu−0〜0.5質量%Mg−Zn系からなる板状または箔状のZn−Al共析系合金接合材を介在し、430〜480℃の温度領域で1〜30分加熱する。これによって接合材は固相と液相が混在した半溶融状態になる。この状態を所定時間保持した後徐冷する。徐冷により半溶融状態の接合材は凝固するが、このとき図4に示すように等軸粒状の微細組織の固相部分が残り、その後の冷却により2種類の層状組織が混在した金属組織になる。図4は22質量%Al−0.15質量%Cu−Zn共析系合金接合材を用いて接合した後徐冷した場合の接合部の金属組織を示す電子顕微鏡写真である。層状組織であるので超塑性を発現しない。従って、半溶融状態で接合しても固相状態で接合する場合に比較すれば多少劣るが、従来例に比較すれば強度及び耐クリープ性の優れた接合部が得られる。 A second bonding method using the Zn—Al eutectoid alloy bonding material of the present invention will be described. Between the first member and the second member to be joined, a plate-like or foil-like material composed of 17-30 mass % Al-0-1.5 mass % Cu-0-0.5 mass % Mg-Zn system. A Zn—Al eutectoid alloy bonding material is interposed and heated in a temperature range of 430 to 480 ° C. for 1 to 30 minutes. As a result, the bonding material is in a semi-molten state in which a solid phase and a liquid phase are mixed. This state is kept for a predetermined time and then slowly cooled. The semi-molten bonding material is solidified by slow cooling. At this time, as shown in FIG. 4, a solid phase portion of an equiaxed granular microstructure remains, and the subsequent cooling results in a metal structure in which two types of layered structures are mixed. Become. FIG. 4 is an electron micrograph showing the metallographic structure of the bonded part when it is bonded using a 22 mass % Al-0.15 mass % Cu-Zn eutectoid alloy bonding material and then slowly cooled. Since it is a layered structure, it does not exhibit superplasticity. Therefore, even if it is joined in the semi-molten state, it is somewhat inferior to the case of joining in the solid phase state, but a joint having excellent strength and creep resistance can be obtained as compared with the conventional example.
図5は本発明Zn−Al共析系合金接合材を使用したダイオードを示す。図において、1は底部が閉鎖され上端が開放された例えば銅製の円筒状ヒートシンク、2はダイオード機能を備えたシリコンチップ、3は銅−インバー(鉄ニッケル合金)−銅からなる緩衝板、4は円板部4aと円板部から垂直に伸びるリード4bとからなるリード電極で、円筒状ヒートシンク1の底部上にZn−Al共析系合金接合材5を介して緩衝板3が、その上にZn−Al系合金接合材6を介してシリコンチップ2が、その上にZn−Al共析系合金接合材7を介してリード電極4の円板部4aが接合されている。シリコンチップ2、緩衝板3及び円板部4aのZn−Al共析系合金接合材と接する面にはNi−Pめっき膜を形成している。8は円筒状ヒートシンク1内に充填したシリコンゴムである。かかる構成のダイオードは所定数の貫通孔を有する冷却フィンの貫通孔に圧入されて自動車用整流装置に使用される。この種整流装置はエンジンルームに配置され、熱的及び機械的に過酷な環境で使用されることから、高温でかつ機械的強度の高い接合材が要求されている。本発明Zn−Al共析系合金接合材を使用することにより、250℃以上の高温に耐え、延性と強度を有する接合部を実現できる。この実施例ではシリコンチップを使用した場合を説明したが、シリコンチップの代わりに炭化珪素チップを使用することが出来る。炭化珪素チップは500℃でも安定した特性を保持できることから、接合材が固液共有状態に相変態する温度近くまで使用可能な高温ダイオードを実現できる。
FIG. 5 shows a diode using the Zn—Al eutectoid alloy bonding material of the present invention. In the figure, 1 is a cylindrical heat sink made of, for example, copper whose bottom is closed and the top is open, 2 is a silicon chip having a diode function, 3 is a buffer plate made of copper-invar (iron nickel alloy) -copper, 4 is A
図6、図7及び図8は本発明Zn−Al共析系合金接合材を用いた300A級IGBTモジュールの平面図及び断面図を示したものである。
図6は本発明の一実施例であり、1個の300A級モジュール単位の平面図を示したものである。また、図7は図6のA−Aに沿う断面図、図8は図6のB−B線に沿う断面図である。図において、101は放熱板及び支持板として機能する金属基板、102は金属基板101上に2枚並べてZn−Al共析系合金接合層103により固着された例えばAlNからなるセラミックス基板、104は各セラミックス基板102上に形成した例えばNi/Cuからなる回路層で、回路層104は分離された異なる形状を有する3個の部分、即ち、T字型のコレクタ共通電極となる第1の部分104a、エミッタ電極となる片状の第2の部分104b、ゲート電極となる片状の第3の部分104cからなり、第1の部分104aが中央部に、第1の部分104aの脚部一側に第2の部分104bが、他方側に第3の部分104cが配置されている。第2の部分104b及び第3の部分104cはNi層上にAl層105が形成されている。106はそのアノード側が回路層104の第1の部分104aの脚部上に3個並べてZn−Al共析系合金接合層107を介して接合されたIGBTチップ、108はそのカソード側が第1の部分104aの上辺部上にZn−Al共析系合金接合層109を介して接合されたダイオードチップ、110はIGBTチップ106のエミッタ層上に形成したAlを主成分とする金属層111と第2の部分104b上のAl層105とを超音波ボンディングによって接続した直径500μmAl−0.1〜1質量%X(Cu、Fe、Mn、Mg、Co、Li、Pd、Ag、Hfから選ばれた少なくとも一種類の金属)ボンディングワイヤ、112はIGBTチップ105のゲート層上に形成したAlを主成分とする金属層113と第3の部分104c上のAl層105とを超音波ボンディングによって接続した直径500μmAl−0.1〜1質量%X(同上)ボンディングワイヤ、114はダイオードチップ108のアノード層上に形成したAlを主成分とする金属層115と第2の部分104b上のAl層105とを超音波ボンディングによって接続したAl−0.1〜1質量%X(同上)ボンディングワイヤである。これによって、1枚のセラミックス基板102上に3個の並列接続されたIGBTチップ106と1個のダイオードチップ108とが逆並列接続された回路要素が形成され、1枚の金属基板101上に2個の回路要素が形成される。インバータを構成する場合には、1枚の金属基板101上の2個の回路要素を直列接続し、これを3個並列接続して、各回路要素の接続点を交流出力端子に、並列接続点を直流入力端子にすればよい。電流容量を増やすときはIGBTチップ106及びダイオードチップ108の並列接続数を増やし、高電圧化するときはIGBTチップ106及びダイオードチップ108の直列接続数を増やせばよい。
6, 7 and 8 are a plan view and a cross-sectional view of a 300A class IGBT module using the Zn—Al eutectoid alloy bonding material of the present invention.
FIG. 6 is an embodiment of the present invention, and shows a plan view of one 300A class module unit. 7 is a cross-sectional view taken along line AA in FIG. 6, and FIG. 8 is a cross-sectional view taken along line BB in FIG. In the figure, 101 is a metal substrate that functions as a heat radiating plate and a support plate, 102 is a ceramic substrate made of, for example, AlN, arranged on the
図9は本発明Zn−Al共析系合金接合材を使用した電力用MOSトランジスタを示す概略断面図である。図において、21は放熱板及び支持板として機能する金属基板、22は金属基板21上にZn−Al共析系合金接合層23により固着された例えばAlNからなるセラミックス基板、24はセラミックス基板22上にZn−Al共析系合金接合層25により固着された電力用MOSトランジスタ基体、26、27及び28は電力用MOSトランジスタ基体のアノード領域、カソード領域及びゲート領域に設けられたアルミニウムからなるアノード電極、カソード電極及びゲート電極である。ゲート電極28は当然のことながら絶縁層29を介してゲート領域上に設けられている。30及び31はカソード電極27及びゲート電極28にZn−Al共析系合金接合層32及び33により固着されたカソード外部電極及びゲート外部電極である。これらカソード外部電極30及びゲート外部電極31は間に例えば樹脂を充填して一体構造にしてもよい。この実施例の特徴は、カソード電極27及びゲート電極28とカソード外部電極30及びゲート外部電極31をボンディングワイヤを使用せずに直接接合している点にある。この実施例におけるMOSトランジスタ基体24はシリコン及び炭化珪素を使用することが出来る。炭化珪素基体を使用する場合には炭化珪素が500℃でも安定した特性を保持できることから、接合材が固液共有状態に相変態する温度近くまで使用可能な高温MOSトランジスタを実現できる。
FIG. 9 is a schematic cross-sectional view showing a power MOS transistor using the Zn—Al eutectoid alloy bonding material of the present invention. In the figure, 21 is a metal substrate that functions as a heat sink and a support plate, 22 is a ceramic substrate made of, for example, AlN fixed on the
本発明Zn−Al共析系合金接合材はIGBTモジュールに限らず一般のパワーモジュール、ダイオードモジュールなどに使用できる。 The Zn-Al eutectoid alloy bonding material of the present invention can be used not only for IGBT modules but also for general power modules, diode modules and the like.
1・・・円筒状ヒートシンク、2・・・シリコンチップ、3・・・緩衝板、4・・・リード電極、5,6,7・・・Zn−Al共析系合金接合材、8・・・シリコンゴム。 DESCRIPTION OF SYMBOLS 1 ... Cylindrical heat sink, 2 ... Silicon chip, 3 ... Buffer plate, 4 ... Lead electrode, 5, 6, 7 ... Zn-Al eutectoid alloy bonding material, ... ·Silicon rubber.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007285825A JP4803834B2 (en) | 2007-11-02 | 2007-11-02 | Zn-Al eutectoid alloy bonding material, method for producing Zn-Al eutectoid alloy bonding material, bonding method using Zn-Al eutectoid alloy bonding material, and Zn-Al eutectoid alloy bonding material Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007285825A JP4803834B2 (en) | 2007-11-02 | 2007-11-02 | Zn-Al eutectoid alloy bonding material, method for producing Zn-Al eutectoid alloy bonding material, bonding method using Zn-Al eutectoid alloy bonding material, and Zn-Al eutectoid alloy bonding material Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009113050A JP2009113050A (en) | 2009-05-28 |
JP4803834B2 true JP4803834B2 (en) | 2011-10-26 |
Family
ID=40780776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007285825A Active JP4803834B2 (en) | 2007-11-02 | 2007-11-02 | Zn-Al eutectoid alloy bonding material, method for producing Zn-Al eutectoid alloy bonding material, bonding method using Zn-Al eutectoid alloy bonding material, and Zn-Al eutectoid alloy bonding material Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4803834B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5675525B2 (en) * | 2011-07-28 | 2015-02-25 | 日産自動車株式会社 | Semiconductor device manufacturing method and semiconductor device |
JP6003108B2 (en) | 2011-09-22 | 2016-10-05 | 日産自動車株式会社 | Joining method and joining part manufacturing method |
JP6016095B2 (en) * | 2011-09-22 | 2016-10-26 | 日産自動車株式会社 | Joining method and joining parts |
WO2016052700A1 (en) * | 2014-10-02 | 2016-04-07 | 国立大学法人茨城大学 | Bonding layer structure using alloy bonding material, forming method for same, semiconductor device having said bonding layer structure, and method for manufacturing same |
JP6590336B2 (en) * | 2015-06-03 | 2019-10-16 | 国立大学法人茨城大学 | High heat-resistant solder junction semiconductor device and manufacturing method thereof |
JP6732189B2 (en) * | 2016-10-21 | 2020-07-29 | 国立研究開発法人産業技術総合研究所 | Semiconductor device and manufacturing method thereof |
CN107739870A (en) * | 2017-09-11 | 2018-02-27 | 北方民族大学 | A kind of preparation method of SiC reinforcement high Al-Zn base composite |
JP7297148B2 (en) * | 2020-03-27 | 2023-06-23 | 三菱電機株式会社 | METHOD OF JOINING METAL JOINTED BODY, SEMICONDUCTOR DEVICE, WAVEGUIDE AND JOINTED MEMBER |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5245567A (en) * | 1975-10-09 | 1977-04-11 | Mitsubishi Heavy Ind Ltd | Metal diffusion welding method using superplastic material |
JPH0288735A (en) * | 1988-09-26 | 1990-03-28 | Toyota Central Res & Dev Lab Inc | Composite material combining ductility and wear resistance, its manufacture and its application |
JPH04210448A (en) * | 1990-11-30 | 1992-07-31 | Agency Of Ind Science & Technol | Functionally gradient material using zn-22al superplastic powder and method for forming the same |
JPH09312295A (en) * | 1996-03-21 | 1997-12-02 | Matsushita Electric Ind Co Ltd | Bump forming body and forming method of bump |
JP3674897B2 (en) * | 1998-02-06 | 2005-07-27 | 株式会社神戸製鋼所 | Zn-Al alloy for vibration control and manufacturing method thereof |
JP3936165B2 (en) * | 2001-10-23 | 2007-06-27 | 株式会社神戸製鋼所 | Bolt friction joining method and filler material for bolt friction joining |
-
2007
- 2007-11-02 JP JP2007285825A patent/JP4803834B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009113050A (en) | 2009-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4803834B2 (en) | Zn-Al eutectoid alloy bonding material, method for producing Zn-Al eutectoid alloy bonding material, bonding method using Zn-Al eutectoid alloy bonding material, and Zn-Al eutectoid alloy bonding material Semiconductor device | |
Mokhtari | A review: Formation of voids in solder joint during the transient liquid phase bonding process-Causes and solutions | |
US8592986B2 (en) | High melting point soldering layer alloyed by transient liquid phase and fabrication method for the same, and semiconductor device | |
JP2008311383A (en) | Bonding wire, bonding method using the same, and semiconductor device as well as joint construction | |
TWI655296B (en) | Highly reliable lead-free solder alloy, its use and method of forming solder joints | |
US20210407953A1 (en) | Solder material for semiconductor device | |
KR101332890B1 (en) | Aluminium alloy wire for connecting semiconductor apparatuses | |
JP2019520985A6 (en) | Highly reliable lead-free solder alloy | |
JP6429208B2 (en) | Semiconductor device and moving body | |
JP2011124585A (en) | Ceramic wiring board and manufacturing method and semiconductor module of the same | |
JP2009147111A (en) | Bonding material, method of manufacturing the same, and semiconductor apparatus | |
US9070561B2 (en) | Semiconductor device and die bonding structure thereof | |
JP5281191B1 (en) | Aluminum alloy wire for power semiconductor devices | |
CN109641323B (en) | Soft soldering material | |
CN107431051A (en) | Manufacture method with gelled power module substrate | |
JP5186719B2 (en) | Ceramic wiring board, manufacturing method thereof, and semiconductor module | |
CN112823073B (en) | Joined body, insulated circuit board with heat sink, and heat sink | |
JP4699822B2 (en) | Manufacturing method of semiconductor module | |
JP4057436B2 (en) | Copper base alloy and heat sink material using the copper base alloy | |
JP4592486B2 (en) | Semiconductor module | |
JP6579551B2 (en) | Bonding layer structure using alloy bonding material and method for forming the same, semiconductor device having the bonding layer structure, and method for manufacturing the same | |
CN100362655C (en) | Thermal interface materials, and compositions comprising indium and zinc | |
JP2017147285A (en) | CONJUGATE JOINED BY CLAD MATERIAL OF Pb-free Zn-Al-based ALLOY SOLDER AND METAL BASE MATERIAL | |
Zhang et al. | Perspectives of High-Temperature Pb-Free Bonding Materials | |
JP2017001049A (en) | Joint layer structure and joint method by alloy joint material, semiconductor device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100402 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101101 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20101101 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20101124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110808 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4803834 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |