Nothing Special   »   [go: up one dir, main page]

JP4801133B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4801133B2
JP4801133B2 JP2008318134A JP2008318134A JP4801133B2 JP 4801133 B2 JP4801133 B2 JP 4801133B2 JP 2008318134 A JP2008318134 A JP 2008318134A JP 2008318134 A JP2008318134 A JP 2008318134A JP 4801133 B2 JP4801133 B2 JP 4801133B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
semiconductor
electrode pad
chip
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008318134A
Other languages
Japanese (ja)
Other versions
JP2009088557A5 (en
JP2009088557A (en
Inventor
連也 川野
信明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2008318134A priority Critical patent/JP4801133B2/en
Publication of JP2009088557A publication Critical patent/JP2009088557A/en
Publication of JP2009088557A5 publication Critical patent/JP2009088557A5/ja
Application granted granted Critical
Publication of JP4801133B2 publication Critical patent/JP4801133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device in which a plurality of semiconductor elements are laminated, which is high in the degree of freedom of selection of a chip size of a semiconductor element and wiring connection and is excellent in reliability and high speed of signal transmission between semiconductor elements. <P>SOLUTION: The semiconductor device 100 includes a lower side semiconductor chip 104, an upper side semiconductor chip 106, and a silicon spacer 108 which is located between the lower side semiconductor chip 104 and upper side chip 106 and has an extensive portion extended in an outward direction more than the outer circumference of the upper side semiconductor chip 106. The silicon spacer 108 has through-electrodes 190a, 190b and rewiring 128a, 128b. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、半導体装置に関する。   The present invention relates to a semiconductor device.

近年、半導体素子の高集積化を目的として、LSIなどの半導体素子同士を縦方向に積層する3次元実装の開発が精力的に行われている。この種の技術として、特許文献1記載のものがある。同文献に記載された半導体装置を図10および図11に示す。図10は、従来のフリップチップ形式の接続方法を用いる多段チップ積層構造を示す断面図である。図11は、図10の一点鎖で囲まれた領域の拡大図である。   In recent years, for the purpose of high integration of semiconductor elements, three-dimensional mounting in which semiconductor elements such as LSIs are stacked in the vertical direction has been vigorously developed. There exists a thing of patent document 1 as this kind of technique. The semiconductor device described in this document is shown in FIGS. FIG. 10 is a cross-sectional view showing a multi-stage chip stack structure using a conventional flip chip type connection method. FIG. 11 is an enlarged view of a region surrounded by a one-dot chain in FIG.

図10に示したように、この半導体装置1001は、ニッケルなどの金属によって形成されたダイパッド1004上に第二の半導体チップ1003が樹脂性などの接着剤1006を介して実装され、この第二の半導体チップ1003上にさらに第一の半導体チップ1002としての制御用の半導体チップが積層された構成とされている。また、第一の半導体チップ1002、第二の半導体チップ1003、およびダイパッド1004は、エポキシ樹脂などの熱硬化性樹脂を用いて形成された樹脂パッケージ1005によって封入された構成となっている。   As shown in FIG. 10, in the semiconductor device 1001, a second semiconductor chip 1003 is mounted on a die pad 1004 formed of a metal such as nickel via an adhesive 1006 such as a resin. A semiconductor chip for control as the first semiconductor chip 1002 is further laminated on the semiconductor chip 1003. In addition, the first semiconductor chip 1002, the second semiconductor chip 1003, and the die pad 1004 are sealed by a resin package 1005 formed using a thermosetting resin such as an epoxy resin.

図10に示したように、上記第一の半導体チップ1002は、主面1002a側に所定の回路(図示略)およびこれらの回路を駆動させるための配線パターンが一体的に造り込まれており、この配線パターン(図示略)を介して回路と導通する複数の第一の端子パッド1020aをさらに有している。また、上記回路および配線パターンは、上記各第一の端子パッド1020aを露出させるようにして絶縁膜(図示略)によって覆われた構成とされており、各第一の端子パッド1020aのみ第一の半導体チップ1002の外部と導通可能とされている。   As shown in FIG. 10, the first semiconductor chip 1002 has a predetermined circuit (not shown) and a wiring pattern for driving these circuits integrally formed on the main surface 1002a side. It further has a plurality of first terminal pads 1020a that are electrically connected to the circuit through this wiring pattern (not shown). The circuit and the wiring pattern are covered with an insulating film (not shown) so that the first terminal pads 1020a are exposed, and only the first terminal pads 1020a are the first. The semiconductor chip 1002 can be electrically connected to the outside.

上記第二の半導体チップ1003は、上記第一の半導体チップ1002よりも大の平面視面積を有しており、その主面1003a側には、第一の半導体チップ1002と同様に所定の回路(図示略)が一体的に造り込まれている。また、図10に示したように、上記第二の半導体チップ1003上には複数の第二の端子パッド1030a、1031a、1032aがさらに形成されており、これらの第二の端子パッド1030a、1031a、1032aを露出させるようにして絶縁膜(図示略)が形成されている。   The second semiconductor chip 1003 has a larger planar view area than the first semiconductor chip 1002, and a predetermined circuit (similar to the first semiconductor chip 1002) is provided on the main surface 1003 a side. (Not shown) is integrated. Further, as shown in FIG. 10, a plurality of second terminal pads 1030a, 1031a, 1032a are further formed on the second semiconductor chip 1003, and these second terminal pads 1030a, 1031a, An insulating film (not shown) is formed so as to expose 1032a.

第二の端子パッド1031aは、図11に示したように、第一の半導体チップ1002を第二の半導体チップ1003上に積層した状態における、第一の半導体チップの側方領域1003bに形成されており、配線部1033を介して第二の端子パッド1030aと導通している。上記配線部1033は、各端子パッド1030a、1031a、1032aや配線パターンと同時に形成される。また、各端子パッド1031aの上面には、金などによってバンプ1031bが設けられており、信号用の端子パッド1031aとバンプ1031bとによって信号用の端子部1031が形成されている。   As shown in FIG. 11, the second terminal pad 1031a is formed in the side region 1003b of the first semiconductor chip in a state where the first semiconductor chip 1002 is stacked on the second semiconductor chip 1003. It is electrically connected to the second terminal pad 1030a through the wiring portion 1033. The wiring portion 1033 is formed simultaneously with the terminal pads 1030a, 1031a, 1032a and the wiring pattern. Further, bumps 1031b are formed of gold or the like on the upper surfaces of the terminal pads 1031a, and signal terminal portions 1031 are formed by the signal terminal pads 1031a and the bumps 1031b.

ここで、上記配線部1033は、第二の端子パッド1030aと信号用の端子パッド1031aとのそれぞれの上面間を繋ぐようにして金属によってメッキを施すことによって、あるいは金属を蒸着するなどして形成される。もちろん、所定の形状とされた金属箔を張り付けるなどして形成してもよい。   Here, the wiring portion 1033 is formed by plating with metal so as to connect the upper surfaces of the second terminal pad 1030a and the signal terminal pad 1031a, or by depositing metal. Is done. Of course, you may form by sticking the metal foil made into the predetermined shape.

また、第二の半導体チップ1003の信号用の端子部1031および第二の端子部1032は、それぞれ外部接続用端子1040とワイヤWを介して接続されている。外部接続用端子1040は、半導体装置1001を所定の回路基板などに実装する場合に利用されるものであり、上記樹脂パッケージ1005内に封入された内部端子部としての内部リード1041と、この内部リード1041に連続するとともに上記樹脂パッケージ1005の外部に形成された外部端子部としての外部リード1042とを有している。   Further, the signal terminal portion 1031 and the second terminal portion 1032 of the second semiconductor chip 1003 are connected to the external connection terminal 1040 via wires W, respectively. The external connection terminal 1040 is used when the semiconductor device 1001 is mounted on a predetermined circuit board or the like. The internal lead 1041 as an internal terminal portion enclosed in the resin package 1005 and the internal lead are provided. The external lead 1042 as an external terminal portion is formed outside the resin package 1005 and is continuous with 1041.

ここで、この異方性導電樹脂1007を用いた技術では、樹脂成分1070を溶融状態としておき、第一の半導体チップ1002の第一の端子部1020を第二の半導体チップ1003の第二の端子部1030に対応させて第一の半導体チップ1002を第二の半導体チップ1003側に圧しつけることによって積層が行われる。   Here, in the technique using the anisotropic conductive resin 1007, the resin component 1070 is in a molten state, and the first terminal portion 1020 of the first semiconductor chip 1002 is replaced with the second terminal of the second semiconductor chip 1003. Lamination is performed by pressing the first semiconductor chip 1002 against the second semiconductor chip 1003 in correspondence with the portion 1030.

このとき、樹脂成分1070を溶融状態とされているとともに、樹脂成分1070内に導電ボール1071が分散されていることから、第一の端子部1020、第二の端子部1030間の樹脂成分1070が押し退けられ第一の端子部1020、第二の端子部1030間に導電ボール1071が介在させられる。そして、樹脂成分1070を熱硬化させることによって第一の半導体チップの主面1002a、第二の半導体チップの主面1003aの間が機械的に接続される。また、第一の端子部1020、第二の端子部1030間には導電ボール1071が介在していることから、第一の端子部1020、第二の端子部1030間が電気的に導通接続される。   At this time, since the resin component 1070 is in a molten state and the conductive balls 1071 are dispersed in the resin component 1070, the resin component 1070 between the first terminal portion 1020 and the second terminal portion 1030 is The conductive ball 1071 is interposed between the first terminal portion 1020 and the second terminal portion 1030 by being pushed away. The main surface 1002a of the first semiconductor chip and the main surface 1003a of the second semiconductor chip are mechanically connected by thermosetting the resin component 1070. In addition, since the conductive ball 1071 is interposed between the first terminal portion 1020 and the second terminal portion 1030, the first terminal portion 1020 and the second terminal portion 1030 are electrically connected. The

この構成によれば、第一の半導体チップ1002と、第二の半導体チップ1003とを、それぞれの第一の端子部1020および第二の端子部1030が向かい合うように対向配置する。そして、第一の半導体チップ1002の外部端子として信号用の端子部1031を第一の半導体チップ1002の側方位置に形成する。さらに、この信号用の端子部1031をワイヤボンディング部位として利用して外部接続用端子1040とワイヤWを介して接続することができる旨が記載されている。   According to this configuration, the first semiconductor chip 1002 and the second semiconductor chip 1003 are arranged to face each other such that the first terminal portion 1020 and the second terminal portion 1030 face each other. Then, a signal terminal portion 1031 is formed at a lateral position of the first semiconductor chip 1002 as an external terminal of the first semiconductor chip 1002. Further, it is described that the signal terminal portion 1031 can be used as a wire bonding part to be connected to the external connection terminal 1040 via the wire W.

また、この種の技術として、特許文献2記載のものがある。同文献に記載された半導体装置を図12に示す。図12は、従来の絶縁フィルムを用いるチップオンチップ構造を示す断面図である。   Moreover, there exists a thing of patent document 2 as this kind of technique. A semiconductor device described in this document is shown in FIG. FIG. 12 is a cross-sectional view showing a chip-on-chip structure using a conventional insulating film.

このチップオンチップ構造は、第一の半導体チップ411と第二の半導体チップ417とを備える。第一の半導体チップ411と第二の半導体チップ417との間には、絶縁フィルム414が挟まれている。絶縁フィルム414は、フィルム415中に配線パターン416と配線パターン420が設けられてなる構造を有する。   This chip-on-chip structure includes a first semiconductor chip 411 and a second semiconductor chip 417. An insulating film 414 is sandwiched between the first semiconductor chip 411 and the second semiconductor chip 417. The insulating film 414 has a structure in which a wiring pattern 416 and a wiring pattern 420 are provided in the film 415.

配線パターン416の下側表面には、接続部423が設けられている。接続部423は、第一の半導体チップの表面412に設けられている第一の半導体チップのバンプ413aと接続している。配線パターン416の上側表面には、接続部424が設けられている。接続部424は、第二の半導体チップの表面418に設けられている第二の半導体チップのバンプ419aと接続している。   A connection portion 423 is provided on the lower surface of the wiring pattern 416. The connection part 423 is connected to the bump 413a of the first semiconductor chip provided on the surface 412 of the first semiconductor chip. A connection portion 424 is provided on the upper surface of the wiring pattern 416. The connection part 424 is connected to the bump 419a of the second semiconductor chip provided on the surface 418 of the second semiconductor chip.

配線パターン420の下側表面には、接続部427が設けられている。接続部427は、第一の半導体チップの表面412に設けられている第一の半導体チップのバンプ413cと接続している。配線パターン420の上側表面には、接続部426が設けられている。接続部426は、第二の半導体チップの表面418に設けられている第二の半導体チップのバンプ419bと接続している。   A connection portion 427 is provided on the lower surface of the wiring pattern 420. The connection part 427 is connected to the bump 413c of the first semiconductor chip provided on the surface 412 of the first semiconductor chip. A connection portion 426 is provided on the upper surface of the wiring pattern 420. The connection part 426 is connected to the bump 419b of the second semiconductor chip provided on the surface 418 of the second semiconductor chip.

特許文献2には、この構造によれば、電極の配置ピッチや配置位置が異なる半導体チップ同士を重ね合わせて接合でき、設計の自由度の高いチップオンチップ型半導体装置を提供できる旨が記載されている。   Patent Document 2 describes that according to this structure, it is possible to provide a chip-on-chip type semiconductor device having a high degree of freedom in design, in which semiconductor chips having different electrode arrangement pitches and arrangement positions can be overlapped and joined together. ing.

特開2000−22074号公報Japanese Patent Laid-Open No. 2000-22074 特開2000−252408号公報JP 2000-252408 A

しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。   However, the prior art described in the above literature has room for improvement in the following points.

第一に、特許文献1に記載の半導体装置1001は、第一の半導体チップ1002と第二の半導体チップ1003とのチップサイズの組合せの自由度が制限される。例えば、第一の半導体チップ1002および第二の半導体チップ1003として、ともに汎用の半導体チップを用いる場合には、第二の半導体チップ1003のチップサイズを第一の半導体チップ1002のチップサイズに応じて自由に変更することは通常困難である。   First, in the semiconductor device 1001 described in Patent Document 1, the degree of freedom of the combination of chip sizes of the first semiconductor chip 1002 and the second semiconductor chip 1003 is limited. For example, when general-purpose semiconductor chips are used as the first semiconductor chip 1002 and the second semiconductor chip 1003, the chip size of the second semiconductor chip 1003 is set according to the chip size of the first semiconductor chip 1002. It is usually difficult to change freely.

第一の半導体チップ1002のチップサイズが第二の半導体チップ1003よりも大きい場合もあり得る。この場合には、第一の半導体チップ1002の側方領域に電極パッドを形成することが困難であり、第一の半導体チップ1002を外部接続することが困難となる。   There may be a case where the chip size of the first semiconductor chip 1002 is larger than that of the second semiconductor chip 1003. In this case, it is difficult to form an electrode pad in a lateral region of the first semiconductor chip 1002, and it is difficult to externally connect the first semiconductor chip 1002.

また、第一の半導体チップ1002および第二の半導体チップ1003間の接続は導電ボール1071を介して行っているが、導電ボール1071の隙間には樹脂成分1070が混在している。このため、第一の半導体チップ1002および第二の半導体チップ1003間の信号伝達の信頼性および高速性の面でさらなる改善の余地を有していた。   Further, the connection between the first semiconductor chip 1002 and the second semiconductor chip 1003 is made through the conductive ball 1071, and the resin component 1070 is mixed in the gap between the conductive balls 1071. For this reason, there is room for further improvement in terms of reliability and high speed of signal transmission between the first semiconductor chip 1002 and the second semiconductor chip 1003.

第二に、特許文献2に記載のチップオンチップ構造は、絶縁フィルム414が剛性を有さないため、ワイヤーボンディングに応用することが困難である。また、絶縁フィルム414が剛性を有さないため、充分に寸法安定性よく製造することが困難であった。   Second, the chip-on-chip structure described in Patent Document 2 is difficult to apply to wire bonding because the insulating film 414 does not have rigidity. Further, since the insulating film 414 does not have rigidity, it has been difficult to produce the film with sufficient dimensional stability.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、複数の半導体素子を積層してなる半導体装置であって、半導体素子のチップサイズの選択および配線接続の自由度が高く、半導体素子間の信号伝達の信頼性および高速性に優れる半導体装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is a semiconductor device in which a plurality of semiconductor elements are stacked, and the degree of freedom of selection of the chip size of the semiconductor elements and wiring connection is improved. An object of the present invention is to provide a semiconductor device that is high in reliability and high speed in signal transmission between semiconductor elements.

本発明によれば、第一の半導体素子と、第二の半導体素子と、第一の半導体素子と第二の半導体素子との間に設けられ、第二の半導体素子の外周縁よりも外方向へ張り出した張出部分を有する板状体と、を備え、第一の半導体素子は、板状体側の面に第一の電極パッドを有し、第二の半導体素子は、前記板状体側の面に第二の電極パッドおよび第三の電極パッドを有し、板状体は、第一の電極パッドと前記第二の電極パッドとを接続する貫通電極と、張出部分における第二の半導体素子側の面に設けられた第四の電極パッドと、第三の電極パッドと第四の電極パッドとを接続する配線と、を有する半導体装置が提供される。   According to the present invention, the first semiconductor element, the second semiconductor element, and the first semiconductor element and the second semiconductor element are provided between the first semiconductor element, the second semiconductor element, and the outer edge of the second semiconductor element. The first semiconductor element has a first electrode pad on the surface on the plate-like body side, and the second semiconductor element is on the plate-like body side. The plate has a second electrode pad and a third electrode pad on the surface, the plate-like body connects the first electrode pad and the second electrode pad, and the second semiconductor in the overhanging portion There is provided a semiconductor device having a fourth electrode pad provided on a surface on the element side and a wiring connecting the third electrode pad and the fourth electrode pad.

この構成によれば、板状体に第一の電極パッドと第二の電極パッドとを接続する貫通電極が設けられているため、第一の半導体素子と第二の半導体素子とを貫通電極を介して短い経路で接続できるので、半導体素子間の信号伝達の信頼性および伝達速度を向上することができる。   According to this configuration, since the through electrode for connecting the first electrode pad and the second electrode pad is provided on the plate-like body, the first semiconductor element and the second semiconductor element are connected to the through electrode. Therefore, the reliability and speed of signal transmission between semiconductor elements can be improved.

また、この構成によれば、板状体に第三の電極パッドと第四の電極パッドとを接続する配線が設けられているため、第一の半導体素子と第二の半導体素子とのチップサイズの組合せに関係なく、第二の半導体素子の板状体側の面の第三の電極パッドに接続する配線を第二の半導体素子の外周縁よりも外方向の第四の電極パッドまで引き出すことができる。そして、第四の電極パッドを任意の箇所に接続することにより、第三の電極パッドも配線および第四の電極パッドを介して任意の箇所に接続できる。このため、半導体素子のチップサイズの選択および配線接続の自由度が向上する。   Further, according to this configuration, since the wiring for connecting the third electrode pad and the fourth electrode pad is provided on the plate-like body, the chip size of the first semiconductor element and the second semiconductor element Regardless of the combination, the wiring connected to the third electrode pad on the surface of the second semiconductor element on the plate-like body side can be drawn out to the fourth electrode pad outward from the outer peripheral edge of the second semiconductor element. it can. Then, by connecting the fourth electrode pad to an arbitrary location, the third electrode pad can also be connected to an arbitrary location via the wiring and the fourth electrode pad. For this reason, the selection of the chip size of the semiconductor element and the freedom of wiring connection are improved.

また、本発明では、剛性を有する板状体を用いるため、板状体の張出部分の第四の電極パッドにワイヤーボンディングなどの接続方法により配線接続する際に、板状体が剛性を有するために安定して接続することができる。このため、自由度の高い配線接続を安定的に形成できる。   Further, in the present invention, since a plate-like body having rigidity is used, the plate-like body has rigidity when wiring is connected to the fourth electrode pad of the protruding portion of the plate-like body by a connection method such as wire bonding. Therefore, it can connect stably. For this reason, a highly flexible wiring connection can be formed stably.

以上、本発明の構成について説明したが、これらの構成を任意に組み合わせたものも本発明の態様として有効である。また、本発明の表現を他のカテゴリーに変換したものもまた本発明の態様として有効である。   As mentioned above, although the structure of this invention was demonstrated, what combined these structures arbitrarily is effective as an aspect of this invention. Moreover, what converted the expression of this invention into the other category is also effective as an aspect of this invention.

例えば、本発明により提供される多段チップ積層構造を備える半導体装置は、二段階の積層構造だけでなく、二段階以上の積層構造であればよい。すなわち、三段階の積層構造や、四段階の積層構造などであってもよい。   For example, the semiconductor device provided with the multi-stage chip stack structure provided by the present invention may be not only a two-step stack structure but also a two-step or more stack structure. That is, a three-stage laminated structure or a four-stage laminated structure may be used.

また、本発明において、第一の電極パッドと第二の電極パッドとを接続する貫通電極は、第一の電極パッドと第二の電極パッドとに直接に接合していてもよいが、特にこの構成に限定されない。例えば、電極パッド、バンプ、配線、その他の導電部材などを介して電気的に接続していてもよい。いずれの場合にも、本発明においては、貫通電極は、第一の電極パッドと第二の電極パッドとに接続しているものとする。   In the present invention, the through electrode connecting the first electrode pad and the second electrode pad may be directly bonded to the first electrode pad and the second electrode pad. It is not limited to the configuration. For example, the electrodes may be electrically connected via electrode pads, bumps, wiring, other conductive members, or the like. In either case, in the present invention, the through electrode is connected to the first electrode pad and the second electrode pad.

本発明によれば、複数の半導体素子を積層してなる半導体装置であって、半導体素子のチップサイズの選択および配線接続の自由度が高く、半導体素子間の信号伝達の信頼性および高速性に優れる半導体装置が提供される。   According to the present invention, a semiconductor device in which a plurality of semiconductor elements are stacked, the degree of freedom in selecting the chip size of the semiconductor elements and wiring connection is high, and the reliability and high speed of signal transmission between the semiconductor elements An excellent semiconductor device is provided.

本発明において、上記貫通電極は、第一の電極パッドおよび第二の電極パッドと、それぞれバンプ接合している構成とすることができる。   In the present invention, the through electrode may be bump-bonded to the first electrode pad and the second electrode pad.

この構成によれば、第一の半導体素子と第二の半導体素子とを接続する距離が短くなるため、配線抵抗および配線容量を低減できる。また、第一の半導体素子と第二の半導体素子との間の接続の信頼性および信号伝達速度を向上できる。このため、半導体素子間で信頼性の高い高速データ転送が可能になる。   According to this configuration, since the distance for connecting the first semiconductor element and the second semiconductor element is shortened, the wiring resistance and the wiring capacity can be reduced. Further, the reliability of connection between the first semiconductor element and the second semiconductor element and the signal transmission speed can be improved. This enables high-speed data transfer with high reliability between semiconductor elements.

なお、本発明において、第一の電極パッドおよび第二の電極パッドと、それぞれバンプ接合している貫通電極は、貫通電極の両端部と、第一の電極パッドおよび第二の電極パッドと、が半田材料などからなる導電性のバンプを介して直接接合する構成をとってもよいが、特にこの構成に限定されない。例えば、貫通電極の両端部に設けられたさらに別の電極パッドと、第一の電極パッドおよび第二の電極パッドと、がバンプを介して接合する構成をとってもよい。いずれの場合にも、本発明においては、貫通電極は、第一の電極パッドと第二の電極パッドとにバンプ接続しているものとする。   In the present invention, the first electrode pad and the second electrode pad, and the through electrode that is bump-bonded to each other, have both end portions of the through electrode, the first electrode pad and the second electrode pad, Although a configuration may be adopted in which bonding is directly performed via conductive bumps made of a solder material or the like, the configuration is not particularly limited to this configuration. For example, another electrode pad provided at both end portions of the through electrode, the first electrode pad, and the second electrode pad may be joined via bumps. In any case, in the present invention, the through electrode is bump-connected to the first electrode pad and the second electrode pad.

また、上記板状体は、板状スペーサーとすることができる。   The plate-like body can be a plate-like spacer.

この構成によれば、剛性を有する板状スペーサーを備えるため、ワイヤーボンディングなどの接続方法により、板状スペーサーの張出部分の第四の電極パッドを任意の箇所に安定して接続することができる。このため、配線接続の自由度が高く、信頼性に優れる半導体装置が得られる。   According to this configuration, since the plate-like spacer having rigidity is provided, the fourth electrode pad on the protruding portion of the plate-like spacer can be stably connected to an arbitrary position by a connection method such as wire bonding. . Therefore, a semiconductor device having a high degree of freedom in wiring connection and excellent reliability can be obtained.

また、上記板状体は、シリコンスペーサーとすることができる。   The plate-like body can be a silicon spacer.

この構成によれば、シリコンスペーサーは剛性を有するため、ワイヤーボンディングなどの接続方法により、スペーサーの張出部分の第二の電極パッドを任意の箇所に接続することができる。このため、配線接続の自由度が高く、製造安定性や信頼性に優れる半導体装置が得られる。   According to this configuration, since the silicon spacer has rigidity, the second electrode pad of the protruding portion of the spacer can be connected to an arbitrary position by a connection method such as wire bonding. For this reason, a semiconductor device having a high degree of freedom in wiring connection and excellent in manufacturing stability and reliability can be obtained.

また、上記板状体がシリコンスペーサーである場合に、さらに上記第一の半導体素子および第二の半導体素子をシリコン系半導体素子とすることができる。   In addition, when the plate-like body is a silicon spacer, the first semiconductor element and the second semiconductor element can be silicon semiconductor elements.

この構成によれば、シリコンスペーサーの線膨張率は、シリコン系半導体素子である第一の半導体素子および第二の半導体素子の線膨張率と同程度であるため、温度変化による剥離などが抑制され、半導体装置の信頼性が向上する。   According to this configuration, the linear expansion coefficient of the silicon spacer is approximately the same as the linear expansion coefficient of the first semiconductor element and the second semiconductor element, which are silicon-based semiconductor elements. The reliability of the semiconductor device is improved.

また、上記第四の電極パッドは、第一の半導体素子の外周縁よりも外側に設けられていてもよい。   The fourth electrode pad may be provided outside the outer peripheral edge of the first semiconductor element.

この構成によれば、上記第四の電極パッドの周囲の空間が広くなるため、上記第四の電極パッドに対する接続の自由度が高くなる。   According to this configuration, since the space around the fourth electrode pad is widened, the degree of freedom of connection to the fourth electrode pad is increased.

また、上記第四の電極パッドは、ワイヤーボンディングにより接続されていてもよい。   The fourth electrode pad may be connected by wire bonding.

この構成によれば、上記第四の電極パッドは、ワイヤーボンディングにより、任意の箇所に接続可能となり、第四の電極パッドの接続先の選択の自由度が高くなる。   According to this configuration, the fourth electrode pad can be connected to an arbitrary position by wire bonding, and the degree of freedom in selecting the connection destination of the fourth electrode pad is increased.

また、上記半導体装置は、基板をさらに備え、第一の半導体素子は、基板の上部に設けられており、第二の半導体素子は、第一の半導体素子の上部に設けられている構成とすることができる。   The semiconductor device further includes a substrate, the first semiconductor element is provided on an upper portion of the substrate, and the second semiconductor element is provided on an upper portion of the first semiconductor element. be able to.

この構成によれば、板状体の張出部分のうち第二の半導体素子側の面上に設けられた第四の電極パッドは、板状体の張出部分の上面に設けられていることになる。このため、第四の電極パッドの上部の空間が開放されているため、第四の電極パッドに対する接続の自由度がさらに高くなる。例えば、ワイヤーボンディングなどを好適に行うことが可能となる。   According to this configuration, the fourth electrode pad provided on the surface on the second semiconductor element side in the overhanging portion of the plate-like body is provided on the upper surface of the overhanging portion of the plate-like body. become. For this reason, since the space above the fourth electrode pad is open, the degree of freedom of connection to the fourth electrode pad is further increased. For example, wire bonding can be suitably performed.

また、上記半導体装置は、基板上に、板状体を張出部分において支持する補強材をさらに備える構成とすることができる。   The semiconductor device may further include a reinforcing material that supports the plate-like body at the protruding portion on the substrate.

この構成によれば、板状体の張出部分の強度が向上するため、板状体の張出部分の第四の電極パッドを、ワイヤーボンディングなどにより任意の箇所に好適に接続できる。このため、配線接続の自由度が高く、製造安定性や信頼性に優れる半導体装置が得られる。   According to this configuration, since the strength of the overhanging portion of the plate-like body is improved, the fourth electrode pad of the overhanging portion of the plate-like body can be suitably connected to an arbitrary location by wire bonding or the like. For this reason, a semiconductor device having a high degree of freedom in wiring connection and excellent in manufacturing stability and reliability can be obtained.

また、上記半導体装置は、第一の半導体素子上に、板状体を張出部分において支持する補強材をさらに備える構成とすることができる。   The semiconductor device may further include a reinforcing material that supports the plate-like body at the projecting portion on the first semiconductor element.

この構成によれば、板状体の張出部分が第一の半導体素子の周縁部よりも内側に設けられている場合にも、板状体を張出部分において支持する補強材を設けることができる。その結果、板状体の張出部分の強度が向上するため、板状体の張出部分の第四の電極パッドを、ワイヤーボンディングなどにより任意の箇所に好適に接続できる。このため、配線接続の自由度が高く、製造安定性や信頼性に優れる半導体装置が得られる。   According to this configuration, even when the protruding portion of the plate-like body is provided inside the peripheral edge portion of the first semiconductor element, it is possible to provide the reinforcing material that supports the plate-like body at the protruding portion. it can. As a result, since the strength of the protruding portion of the plate-like body is improved, the fourth electrode pad of the protruding portion of the plate-like body can be suitably connected to an arbitrary location by wire bonding or the like. For this reason, a semiconductor device having a high degree of freedom in wiring connection and excellent in manufacturing stability and reliability can be obtained.

また、上記半導体装置が上記基板を備える場合に、上記基板の上面に第五の電極パッドが設けられており、第四の電極パッドは、第五の電極パッドにワイヤーボンディングにより接続している構成とすることができる。   When the semiconductor device includes the substrate, a fifth electrode pad is provided on the upper surface of the substrate, and the fourth electrode pad is connected to the fifth electrode pad by wire bonding. It can be.

この構成によれば、第一の半導体素子と第二の半導体素子とのチップサイズの組合せに関わらず、第二の半導体素子の第三の電極パッドを第二の半導体素子の外周縁よりも外方向に引き出し、第四の電極パッドを介してワイヤーボンディングにより容易に基板の第五の電極パッドに接続できる。よって、半導体素子のチップサイズの選択および配線接続の自由度が高く、信号伝達の信頼性および高速性に優れる多段チップ積層構造を備える半導体装置が提供される。   According to this configuration, regardless of the chip size combination of the first semiconductor element and the second semiconductor element, the third electrode pad of the second semiconductor element is outside the outer peripheral edge of the second semiconductor element. It can be easily pulled out in the direction and connected to the fifth electrode pad of the substrate by wire bonding through the fourth electrode pad. Therefore, there is provided a semiconductor device having a multi-stage chip stacking structure that has a high degree of freedom in selection of a chip size and wiring connection of a semiconductor element, and is excellent in signal transmission reliability and high speed.

また、上記第一の半導体素子は、メモリ素子であり、上記第二の半導体素子は、ロジック素子であってもよい。   The first semiconductor element may be a memory element, and the second semiconductor element may be a logic element.

この構成においても、近年小型化の傾向にあるメモリ素子と、近年大型化の傾向にあるロジック素子との組合せに関わらず、第二の半導体素子の第三の電極パッドを第二の半導体素子の外周縁よりも外方向に引き出し、第四の電極パッドを介してワイヤーボンディングなどにより任意の箇所に好適に接続できる。よって、半導体素子のチップサイズの選択および配線接続の自由度が高く、信号伝達の信頼性および高速性に優れる多段チップ積層構造を備える半導体装置が提供される。   Even in this configuration, the third electrode pad of the second semiconductor element is connected to the second semiconductor element regardless of the combination of the memory element that has been recently reduced in size and the logic element that has been recently increased in size. It can be drawn out outward from the outer peripheral edge, and can be suitably connected to an arbitrary location by wire bonding or the like through the fourth electrode pad. Therefore, there is provided a semiconductor device having a multi-stage chip stacking structure that has a high degree of freedom in selection of a chip size and wiring connection of a semiconductor element, and is excellent in signal transmission reliability and high speed.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

<実施形態1>
図1は、実施形態1の多段チップ積層構造を示す断面図である。
<Embodiment 1>
FIG. 1 is a cross-sectional view showing the multi-stage chip stack structure of the first embodiment.

この半導体装置100は、基板102上に半導体チップ104と半導体チップ106とを備える。半導体チップ104と半導体チップ106との間には、シリコンスペーサー108が挟まれている。   The semiconductor device 100 includes a semiconductor chip 104 and a semiconductor chip 106 on a substrate 102. A silicon spacer 108 is sandwiched between the semiconductor chip 104 and the semiconductor chip 106.

なお、半導体チップ104と半導体チップ106とは、特に限定するものではないが、シリコンスペーサー108と主として同種の材料からなるシリコンチップであってもよい。また、半導体チップ104は、DRAMなどのメモリ素子としてもよく、半導体チップ106は、ASICなどのロジック素子である構成とすることもできる。   The semiconductor chip 104 and the semiconductor chip 106 are not particularly limited, but may be a silicon chip mainly made of the same material as the silicon spacer 108. The semiconductor chip 104 may be a memory element such as a DRAM, and the semiconductor chip 106 may be a logic element such as an ASIC.

基板102の上部表面には、電極パッド112a、112b、112c、112dが、設けられている。半導体チップ104の上部表面には、電極パッド114c、114dが設けられている。半導体チップ106の下部表面には、電極パッド116a、116b、116c、116dが設けられている。   On the upper surface of the substrate 102, electrode pads 112a, 112b, 112c, and 112d are provided. Electrode pads 114 c and 114 d are provided on the upper surface of the semiconductor chip 104. Electrode pads 116 a, 116 b, 116 c and 116 d are provided on the lower surface of the semiconductor chip 106.

シリコンスペーサー108には、シリコンスペーサー108を貫通する貫通電極190a、190bが設けられている。シリコンスペーサー108には、半導体チップ106の外周縁の内外に端部を有する再配線128aおよび再配線128bが設けられている。シリコンスペーサー108の上部表面には、電極パッド118a、118b、118c、118d、118e、118f、118g、118hが設けられている。シリコンスペーサー108の下部表面には、電極パッド192c、192dが設けられている。   The silicon spacer 108 is provided with through electrodes 190 a and 190 b that penetrate the silicon spacer 108. The silicon spacer 108 is provided with a rewiring 128 a and a rewiring 128 b having end portions inside and outside the outer peripheral edge of the semiconductor chip 106. On the upper surface of the silicon spacer 108, electrode pads 118a, 118b, 118c, 118d, 118e, 118f, 118g, and 118h are provided. Electrode pads 192c and 192d are provided on the lower surface of the silicon spacer.

電極パッド118cは、貫通電極190aの上側端部と接続している。電極パッド118dは、貫通電極190bの上側端部と接続している。電極パッド192cは、貫通電極190aの下側端部と接続している。電極パッド192dは、貫通電極190bの下側端部と接続している。   The electrode pad 118c is connected to the upper end portion of the through electrode 190a. The electrode pad 118d is connected to the upper end portion of the through electrode 190b. The electrode pad 192c is connected to the lower end of the through electrode 190a. The electrode pad 192d is connected to the lower end of the through electrode 190b.

電極パッド118aは、半導体チップ106の外周縁の内側に設けられており、再配線128aの内側端部と接続している。電極パッド118eは、半導体チップ106の外周縁の外側に設けられており、再配線128aの外側端部と接続している。電極パッド118fは、電極パッド118eよりもさらに外側に設けられている。   The electrode pad 118a is provided inside the outer peripheral edge of the semiconductor chip 106 and is connected to the inner end of the rewiring 128a. The electrode pad 118e is provided outside the outer peripheral edge of the semiconductor chip 106 and is connected to the outer end of the rewiring 128a. The electrode pad 118f is provided further outside than the electrode pad 118e.

電極パッド118bは、半導体チップ106の外周縁の内側に設けられており、再配線128bの内側端部と接続している。電極パッド118gは、半導体チップ106の外周縁の外側に設けられており、再配線128bの外側端部と接続している。電極パッド118hは、電極パッド118gよりもさらに外側に設けられている。   The electrode pad 118b is provided inside the outer peripheral edge of the semiconductor chip 106 and is connected to the inner end of the rewiring 128b. The electrode pad 118g is provided outside the outer peripheral edge of the semiconductor chip 106, and is connected to the outer end of the rewiring 128b. The electrode pad 118h is provided further outside than the electrode pad 118g.

下側の半導体チップ104の電極パッド114c、114dは、それぞれシリコンスペーサー108の貫通電極190a、190bに導通する電極パッド192c、192dと直接に接続している。   The electrode pads 114c and 114d of the lower semiconductor chip 104 are directly connected to the electrode pads 192c and 192d that are electrically connected to the through electrodes 190a and 190b of the silicon spacer 108, respectively.

上側の半導体チップ106の電極パッド116c、116dは、それぞれシリコンスペーサー108の貫通電極190a、190bに導通する電極パッド118c、118dと直接に接続している。   The electrode pads 116c and 116d of the upper semiconductor chip 106 are directly connected to the electrode pads 118c and 118d that are electrically connected to the through electrodes 190a and 190b of the silicon spacer 108, respectively.

ここで、下側の半導体チップ104の電極パッド114cと、シリコンスペーサー108の電極パッド192cと、貫通電極190aと、電極パッド118cと、半導体チップ106の電極パッド116cと、は実質的に同一直線上に設けられている。   Here, the electrode pad 114c of the lower semiconductor chip 104, the electrode pad 192c of the silicon spacer 108, the through electrode 190a, the electrode pad 118c, and the electrode pad 116c of the semiconductor chip 106 are substantially collinear. Is provided.

なお、本発明において、同一直線上に設けられているとは、完全に同一直線上に設けられていることを意味するものではない。すなわち、同一直線上または同一直線のごく近傍に設けられている、実質的に同一線上に設けられた状態を意味するものとする。別の観点から見ると、これらの部材は、平面視で見た場合にいずれも同じ位置またはごく近傍に設けられている。   In the present invention, being provided on the same straight line does not mean being provided on the same straight line. That is, it means a state provided on the same straight line or in the vicinity of the same straight line and substantially on the same line. From another point of view, these members are provided at the same position or very close to each other when viewed in a plan view.

また、上側の半導体チップ106の電極パッド116a、116bは、それぞれシリコンスペーサー108の再配線128a、128bの内側端部と導通する電極パッド118a、118bと直接に接続している。   The electrode pads 116a and 116b of the upper semiconductor chip 106 are directly connected to the electrode pads 118a and 118b that are electrically connected to the inner ends of the rewirings 128a and 128b of the silicon spacer 108, respectively.

シリコンスペーサー108の電極パッド118f、118hは、基板102の上面に設けられている電極パッド112b、112cとそれぞれワイヤー120b、120cで接続されている。   The electrode pads 118f and 118h of the silicon spacer 108 are connected to the electrode pads 112b and 112c provided on the upper surface of the substrate 102 by wires 120b and 120c, respectively.

シリコンスペーサー108の電極パッド118e、118gは、基板102の上面に設けられている電極パッド112a、112dとそれぞれワイヤー120a、120dで接続されている。   The electrode pads 118e and 118g of the silicon spacer 108 are connected to electrode pads 112a and 112d provided on the upper surface of the substrate 102 by wires 120a and 120d, respectively.

以下、本実施形態の半導体装置100の構成による作用効果について説明する。   Hereinafter, the function and effect of the configuration of the semiconductor device 100 of the present embodiment will be described.

半導体装置100では、積層させる半導体チップ104、106間に、上側の半導体チップ104よりもサイズが大きいシリコンスペーサー108を挟んでいる。   In the semiconductor device 100, a silicon spacer 108 having a size larger than that of the upper semiconductor chip 104 is sandwiched between the semiconductor chips 104 and 106 to be stacked.

また、別の観点から見れば、半導体装置100では、積層させる半導体チップ104、106間に、半導体チップ104の外周縁よりも外側に張り出した張出部分を備えるシリコンスペーサー108を備えている。   From another point of view, the semiconductor device 100 includes a silicon spacer 108 having a protruding portion that protrudes outward from the outer peripheral edge of the semiconductor chip 104 between the semiconductor chips 104 and 106 to be stacked.

このため、半導体装置100の両側面において、上側の半導体チップ106の下面に設けられている電極パッド116a、116bを、それぞれシリコンスペーサー108の張出部分に設けられている電極パッド118e、118gに引き出すことができる。   Therefore, on both side surfaces of the semiconductor device 100, the electrode pads 116a and 116b provided on the lower surface of the upper semiconductor chip 106 are pulled out to the electrode pads 118e and 118g provided on the protruding portions of the silicon spacer 108, respectively. be able to.

よって、半導体装置100の構造によれば、シリコンスペーサー108に設けた電極パッド118e、118gと基板102の電極パッド112a、112bとをそれぞれワイヤーボンディングすることにより、上側の半導体チップ106と基板102とを接続することができる。   Therefore, according to the structure of the semiconductor device 100, the upper semiconductor chip 106 and the substrate 102 are bonded by wire bonding the electrode pads 118e and 118g provided on the silicon spacer 108 and the electrode pads 112a and 112b of the substrate 102, respectively. Can be connected.

なお、半導体装置100においては、シリコンスペーサー108は、半導体チップ106よりもサイズが小さいものを用いている。このため、半導体装置100の構造が構造力学的に安定する利点がある。また、後述するように、半導体チップ106の周縁部の上部の空間が広がるため、半導体チップ106の周縁部に別途電極パッドを設けてワイヤーボンディング接続などを行うことも可能となる。   In the semiconductor device 100, a silicon spacer 108 having a size smaller than that of the semiconductor chip 106 is used. For this reason, there is an advantage that the structure of the semiconductor device 100 is stabilized structurally. As will be described later, since the space above the peripheral portion of the semiconductor chip 106 is widened, it is possible to provide a wire bonding connection by providing a separate electrode pad on the peripheral portion of the semiconductor chip 106.

もっとも、シリコンスペーサー108は、半導体チップ106よりもサイズが大きいものを用いてもよい。この場合にも、シリコンスペーサー108に設けられている貫通電極190a、190bを介して半導体チップ104と半導体チップ106とは接続することが可能である。また、後述するようにシリコンスペーサー108を支持する支持部材を設ければ、半導体装置100は構造力学的にも安定する。   However, a silicon spacer 108 having a size larger than that of the semiconductor chip 106 may be used. Also in this case, the semiconductor chip 104 and the semiconductor chip 106 can be connected through the through electrodes 190a and 190b provided in the silicon spacer 108. In addition, if a support member for supporting the silicon spacer 108 is provided as will be described later, the semiconductor device 100 is also stable in terms of structural mechanics.

一方、図10および図11に示した、従来のスペーサーを用いない多段チップ積層構造の場合には、下側の半導体チップの上面に再配線を設けることにより、配線の引き出しを行う必要があった。このとき、下側の半導体チップの上面に再配線を設けるには、例えば、下側の半導体チップの上面に金属によってメッキを施すことによって、あるいは金属を蒸着したり、所定の形状とされた金属箔を張り付けるなどして再配線層を形成する場合もあった。   On the other hand, in the case of the conventional multi-stage chip stack structure shown in FIGS. 10 and 11 that does not use a spacer, it is necessary to draw out wiring by providing rewiring on the upper surface of the lower semiconductor chip. . At this time, in order to provide the rewiring on the upper surface of the lower semiconductor chip, for example, the upper surface of the lower semiconductor chip is plated with metal, or the metal is deposited or formed into a predetermined shape. In some cases, a rewiring layer is formed by attaching a foil.

従来の構造では、このように、下側の半導体チップとして、汎用のメモリ素子などを用いることはできず、特殊な加工を施したカスタム化されたメモリ素子などを用いる必要があったため、半導体装置の設計期間が長期化し、製造コストも上昇する場合があった。   In the conventional structure, a general-purpose memory element or the like cannot be used as the lower semiconductor chip in this way, and it is necessary to use a customized memory element or the like subjected to special processing. In some cases, the design period becomes longer and the manufacturing cost also increases.

これに対して、図1に示した半導体装置100では、シリコンスペーサー108に備わる再配線128による配線の引き出しが可能であるので、図10または図11で示した従来の多段チップ積層構造のように、ワイヤボンディングを可能にするために下側の半導体チップの上面を加工して再配線を設ける必要が無い。   On the other hand, in the semiconductor device 100 shown in FIG. 1, since the wiring can be drawn by the rewiring 128 provided in the silicon spacer 108, like the conventional multi-stage chip stacked structure shown in FIG. 10 or FIG. In order to enable wire bonding, it is not necessary to process the upper surface of the lower semiconductor chip and provide rewiring.

このため、図1に示した半導体装置100において、下側の半導体チップ104として、カスタム化されたメモリ素子などを用いる必要はなく、汎用のメモリ素子などをそのまま用いることができる。そのため、半導体装置1001の設計の自由度を高め、製造コストを低減することができる。また、汎用素子をそのままの状態で利用できるため、半導体装置1001の開発期間を短縮できる。   Therefore, in the semiconductor device 100 shown in FIG. 1, it is not necessary to use a customized memory element or the like as the lower semiconductor chip 104, and a general-purpose memory element or the like can be used as it is. Therefore, the degree of freedom in designing the semiconductor device 1001 can be increased and the manufacturing cost can be reduced. In addition, since the general-purpose element can be used as it is, the development period of the semiconductor device 1001 can be shortened.

一方、図10および図11に示した、従来のスペーサーを用いない多段チップ積層構造の場合には、例えば、下側の半導体チップが上側の半導体チップよりも小さい場合には、上側の半導体チップの側方に電極パッドを設けることが困難となり、上側の半導体チップの電極パッドを外部に引き出して接続することが困難となる場合があった。   On the other hand, in the case of the conventional multi-stage chip stack structure shown in FIG. 10 and FIG. 11 where the lower semiconductor chip is smaller than the upper semiconductor chip, for example, In some cases, it is difficult to provide an electrode pad on the side, and it is difficult to connect the electrode pad of the upper semiconductor chip to the outside.

これに対して、図1に示した半導体装置100において、上側の半導体チップ106は、下側の半導体チップ104よりも大きくても小さくてもよい。このため、半導体装置100においては、上下の半導体チップサイズの組み合わせに依存することなく、半導体チップ106と基板102とを容易に接続できる。   In contrast, in the semiconductor device 100 shown in FIG. 1, the upper semiconductor chip 106 may be larger or smaller than the lower semiconductor chip 104. Therefore, in the semiconductor device 100, the semiconductor chip 106 and the substrate 102 can be easily connected without depending on the combination of the upper and lower semiconductor chip sizes.

また、図1に示した半導体装置100において、シリコンスペーサー108の貫通電極190a、190bは、上側の半導体チップ106の電極パッド116c、116dと、それぞれシリコンスペーサー108の電極パッド118c、118dを介してバンプ接続している。なお、図1では、電極パッド間の半田バンプを特に図示していない。以下の図面でも同様である。   Further, in the semiconductor device 100 shown in FIG. 1, the through electrodes 190a and 190b of the silicon spacer 108 are bumped via the electrode pads 116c and 116d of the upper semiconductor chip 106 and the electrode pads 118c and 118d of the silicon spacer 108, respectively. Connected. In FIG. 1, solder bumps between the electrode pads are not particularly illustrated. The same applies to the following drawings.

また、シリコンスペーサー108の貫通電極190a、190bは、下側の半導体チップ104の電極パッド114c、114dと、それぞれシリコンスペーサー108の電極パッド192c、192dを介してバンプ接続している。   The through electrodes 190a and 190b of the silicon spacer 108 are bump-connected to the electrode pads 114c and 114d of the lower semiconductor chip 104 via the electrode pads 192c and 192d of the silicon spacer 108, respectively.

このため、上側の半導体チップ106および下側の半導体チップ104は、実質的に最短の経路で導電性よく接続される。その結果、上側の半導体チップ106および下側の半導体チップ104の間の信号伝達の信頼性および伝達速度は、ワイヤーボンディング接続などされる場合に比べて著しく向上する。   For this reason, the upper semiconductor chip 106 and the lower semiconductor chip 104 are connected with high conductivity through a substantially shortest path. As a result, the reliability and transmission speed of signal transmission between the upper semiconductor chip 106 and the lower semiconductor chip 104 are remarkably improved as compared with the case of wire bonding connection or the like.

ここで、このシリコンスペーサー108の厚みは、例えば50マイクロメーター以上100マイクロメーター以下とすることができる。この範囲内の厚みであれば、充分な剛性を有しつつ、シリコンスペーサー108を薄くできるため、薄型化された多段チップ積層構造が得られる。   Here, the thickness of the silicon spacer 108 can be, for example, not less than 50 micrometers and not more than 100 micrometers. If the thickness is within this range, the silicon spacer 108 can be made thin while having sufficient rigidity, so that a thin multistage chip stack structure can be obtained.

特に、この範囲内の厚みのシリコンスペーサー108を用いれば、COC、MCP、3次元SiPなどの構造を備える半導体装置において、半導体チップサイズの組合せに依存せずに外部とのワイヤボンディング接続および半導体チップ間の高速信号伝達を可能しつつ、半導体素子が高集積された薄型のパッケージを実現できる。   In particular, when a silicon spacer 108 having a thickness within this range is used, in a semiconductor device having a structure such as COC, MCP, and three-dimensional SiP, wire bonding connection to the outside and the semiconductor chip are independent of the combination of semiconductor chip sizes. A thin package in which semiconductor elements are highly integrated can be realized while high-speed signal transmission is possible.

さらに、半導体装置100は、下側の半導体チップ104および上側の半導体チップ106をフェイスダウン形式により接続しているため、上側の半導体チップ106にはワイヤボンディングが必要無い。このため、そのワイヤの高さの分が薄くなり、多段チップ積層構造のトータルの厚さが更に薄くなり、より小型のパッケージとすることが可能である。また、2チップ間の信号経路長が短くなり、信号伝達速度が向上し、上下の半導体チップの特性をより効率的に引き出せる。   Furthermore, since the semiconductor device 100 has the lower semiconductor chip 104 and the upper semiconductor chip 106 connected in a face-down manner, the upper semiconductor chip 106 does not require wire bonding. For this reason, the height of the wire is reduced, the total thickness of the multi-stage chip stacked structure is further reduced, and a smaller package can be obtained. Further, the signal path length between the two chips is shortened, the signal transmission speed is improved, and the characteristics of the upper and lower semiconductor chips can be extracted more efficiently.

一方、図12に示した従来のチップオンチップ構造では、柔軟性を有するフィルム絶縁体を用いるため、フィルム絶縁体上に電極パッドを設けたとしても、ワイヤーボンディングにより接続することは困難である。   On the other hand, in the conventional chip-on-chip structure shown in FIG. 12, since a flexible film insulator is used, even if an electrode pad is provided on the film insulator, it is difficult to connect by wire bonding.

これに対して、シリコンスペーサー108は、板状体であり、剛性を有するため、電極パッド118e、118f、118g、118hに好適にワイヤーボンディングすることができる。   On the other hand, since the silicon spacer 108 is a plate-like body and has rigidity, it can be suitably wire-bonded to the electrode pads 118e, 118f, 118g, and 118h.

さらに、図1に示した半導体装置100のように、シリコンスペーサー108は、下側の半導体チップ104および上側の半導体チップ106がともにシリコンチップである場合には、線膨張率が下側の半導体チップ104および上側の半導体チップ106と同程度であるため、線膨張率の違いが小さい。   Further, as in the semiconductor device 100 shown in FIG. 1, the silicon spacer 108 has a linear expansion coefficient of a lower semiconductor chip when the lower semiconductor chip 104 and the upper semiconductor chip 106 are both silicon chips. 104 and the upper semiconductor chip 106, the difference in linear expansion coefficient is small.

このため、温度変化が生じても、図12に示した従来のフィルム絶縁体を用いるチップオンチップ構造の場合に比べて、下側の半導体チップ104と、シリコンスペーサー108と、上側の半導体チップ106とに設けられている電極パッド間のコンタクト性の低下または剥離が生じることを抑制できる。   For this reason, even if the temperature changes, the lower semiconductor chip 104, the silicon spacer 108, and the upper semiconductor chip 106 are compared with the chip-on-chip structure using the conventional film insulator shown in FIG. It is possible to suppress a decrease in contact property or peeling between electrode pads provided on the substrate.

また、図1に示した半導体装置100においては、上側の半導体チップ106はASICなどの回路素子とすることができ、下側の半導体チップ104はDRAMまたはSRAMなどのメモリ素子とすることができる。   In the semiconductor device 100 shown in FIG. 1, the upper semiconductor chip 106 can be a circuit element such as an ASIC, and the lower semiconductor chip 104 can be a memory element such as a DRAM or an SRAM.

ここで、ASICなどの回路素子の大きさは、これに一体的に造り込まれる各配線の幅やピッチなどによって規定されることが大きい。このため、ASICなどの回路素子の大きさは配線パターンの細密化に伴い小型化の傾向にあるといえる。一方、DRAMまたはSRAMなどのメモリ素子は、大容量化が望まれていることから今後ますます大型化の傾向にあると言える。   Here, the size of a circuit element such as an ASIC is often defined by the width and pitch of each wiring integrally formed therein. For this reason, it can be said that the size of circuit elements such as ASICs tends to be reduced as the wiring pattern becomes finer. On the other hand, it can be said that memory elements such as DRAMs and SRAMs have a tendency to increase in size in the future because a large capacity is desired.

このような、小型の回路素子と大型のメモリ素子を積層して半導体装置を構成する場合において、大型のメモリ素子上に小型の回路素子を、互いの端子部同士を対向配置してフリップチップ形式で半導体装置を構成すれば、構造力学的な安定性は向上する。   When a semiconductor device is configured by stacking such a small circuit element and a large memory element, the small circuit element is arranged on the large memory element, and the terminal portions thereof are arranged opposite to each other so as to be flip-chip type. If the semiconductor device is configured as described above, the structural mechanical stability is improved.

しかし、このとき、上記のような構成からなる板状体を用いない場合には、上側の回路素子の主面(端子部の形成面)が下方を向いてしまい、下側のメモリ素子の主面(端子部の形成面)によって回路素子の主面が隠されてしまう。このため、上側の回路素子の主面にワイヤーボンディング部位としての端子部を形成することが困難になる。   However, at this time, when the plate-shaped body having the above-described configuration is not used, the main surface of the upper circuit element (formation surface of the terminal portion) faces downward, and the main memory element of the lower memory element The main surface of the circuit element is hidden by the surface (formation surface of the terminal portion). For this reason, it becomes difficult to form a terminal portion as a wire bonding portion on the main surface of the upper circuit element.

上側の回路素子と下側のメモリ素子との間の電荷(電気または信号)のやりとりを行うための端子部であれば、電気的な導通状態が確保できれば下方を向いていてもよいが、ワイヤボンディング部位として利用される端子部に関しては少なくとも上面が露出していることが好ましい。例えば、上側のASICなどの回路素子が、外部と直接的に信号の送受を行うための信号用の端子部は、実装用の端子とワイヤを介して行われることが多いため、上側のASICなどの回路素子の端子部の上面が露出していることが望まれる。   As long as it is a terminal portion for exchanging electric charges (electricity or signals) between the upper circuit element and the lower memory element, it may face downward as long as an electrical conduction state can be secured. It is preferable that at least the upper surface of the terminal portion used as the bonding site is exposed. For example, a signal terminal portion for a circuit element such as an upper ASIC to directly send and receive signals to the outside is often performed via a mounting terminal and a wire. It is desirable that the upper surface of the terminal portion of the circuit element is exposed.

このため、ASICなどの回路素子の上面(裏面)にワイヤボンディング部位を形成することも考えられるが、ASICなどの回路素子の両面に配線パターン(端子部)を形成することは技術的に困難である。   For this reason, it may be possible to form a wire bonding portion on the upper surface (back surface) of a circuit element such as an ASIC, but it is technically difficult to form a wiring pattern (terminal portion) on both surfaces of the circuit element such as an ASIC. is there.

また、同様に、DRAMまたはSRAMなどのメモリ素子の上面(主面)に再配線を設けることにより、回路素子の主面の端子部から配線の引き出しを行うことも考えられる。このとき、下側の半導体チップの上面に再配線を設けるには、例えば、下側の半導体チップの上面に金属によってメッキを施すことによって、あるいは金属を蒸着したり、所定の形状とされた金属箔を張り付けるなどして再配線層を形成することが考えられる。   Similarly, it is also conceivable that wiring is drawn out from the terminal portion of the main surface of the circuit element by providing rewiring on the upper surface (main surface) of a memory element such as DRAM or SRAM. At this time, in order to provide the rewiring on the upper surface of the lower semiconductor chip, for example, the upper surface of the lower semiconductor chip is plated with metal, or the metal is deposited or formed into a predetermined shape. It is conceivable to form a rewiring layer by sticking a foil or the like.

しかし、この場合には、下側の半導体チップとして、汎用のメモリ素子などを用いることはできず、金属の蒸着などの特殊な加工を施したカスタム化されたメモリ素子などを用いる必要があったため、半導体装置の設計、製造のリードタイムが長期化し、製造コストも上昇する場合があった。   However, in this case, a general-purpose memory element cannot be used as the lower semiconductor chip, and a customized memory element subjected to special processing such as metal deposition must be used. In some cases, the lead time for designing and manufacturing a semiconductor device is prolonged and the manufacturing cost is increased.

これに対して、図1に示した半導体装置100において、下側の半導体チップ104として、カスタム化されたメモリ素子などを用いる必要はなく、汎用のメモリ素子などをそのまま用いることができる。そのため、半導体装置1001の設計の自由度を高め、製造コストを低減することができる。また、汎用素子をそのままの状態で利用できるため、半導体装置1001の開発期間および製造リードタイムを短縮できる。   On the other hand, in the semiconductor device 100 shown in FIG. 1, it is not necessary to use a customized memory element or the like as the lower semiconductor chip 104, and a general-purpose memory element or the like can be used as it is. Therefore, the degree of freedom in designing the semiconductor device 1001 can be increased and the manufacturing cost can be reduced. In addition, since the general-purpose element can be used as it is, the development period and manufacturing lead time of the semiconductor device 1001 can be shortened.

また、上側のASICなどの回路素子が、ワイヤーボンディング接続により外部と直接的に信号の送受信を行うことができ、下側のメモリ素子とはフリップチップ接続により高速データ送受信を行うことができるため、半導体装置100の設計の自由度が向上し、半導体装置100の動作の信頼性および高速性が向上する。   In addition, circuit elements such as the upper ASIC can directly send and receive signals to and from the outside by wire bonding connection, and high-speed data transmission and reception by the flip chip connection to the lower memory element, The degree of freedom in designing the semiconductor device 100 is improved, and the reliability and high speed of operation of the semiconductor device 100 are improved.

図9は、実施形態1の多段チップ積層構造を有する半導体装置にボールグリッドアレイ構造を適用した場合の断面図である。   FIG. 9 is a cross-sectional view when the ball grid array structure is applied to the semiconductor device having the multi-stage chip stack structure of the first embodiment.

本実施形態の多段積層構造にボールグリッドアレイ構造を適用する場合、基板102の裏側に電極パッド136を設け、電極パッド136上に半田ボール138を設ける構造とする。電極パッド136は、図1における電極パッド112a、112b、112c、112dなどと接続する構造とすることができる。   When the ball grid array structure is applied to the multi-layer stacked structure of this embodiment, the electrode pad 136 is provided on the back side of the substrate 102 and the solder ball 138 is provided on the electrode pad 136. The electrode pad 136 can be connected to the electrode pads 112a, 112b, 112c, and 112d in FIG.

また、多段積層構造全体を封止樹脂層132で封止する。なお、図1の下側の半導体チップ104とシリコンスペーサー108との間の隙間は、アンダーフィル樹脂層134aで封止する。また、上側の半導体チップ106とシリコンスペーサー108との間の隙間は、アンダーフィル樹脂層134bで封止する。   Further, the entire multi-layer laminated structure is sealed with a sealing resin layer 132. A gap between the lower semiconductor chip 104 and the silicon spacer 108 in FIG. 1 is sealed with an underfill resin layer 134a. The gap between the upper semiconductor chip 106 and the silicon spacer 108 is sealed with an underfill resin layer 134b.

図2〜図3は、実施形態1の多段チップ積層構造の製造方法を示す工程断面図である。   2 to 3 are process cross-sectional views illustrating the manufacturing method of the multistage chip stacked structure according to the first embodiment.

実施形態1に示す多段チップ積層構造を得るには、まず、図2(a)に示すように、基板102上に電極パッド112a、112b、112c、112dを形成する。   In order to obtain the multi-stage chip stack structure shown in the first embodiment, first, electrode pads 112a, 112b, 112c, and 112d are formed on the substrate 102 as shown in FIG.

次いで、図2(b)に示すように、基板102の上面に下側の半導体チップ104を積層する。半導体チップ104の上部表面(主面)には、あらかじめ電極パッド114c、114dが設けられている。   Next, as shown in FIG. 2B, the lower semiconductor chip 104 is stacked on the upper surface of the substrate 102. On the upper surface (main surface) of the semiconductor chip 104, electrode pads 114c and 114d are provided in advance.

続いて、図2(c)に示すように、半導体チップ104の上部にシリコンスペーサー108を積層する。シリコンスペーサー108には、後述する方法により貫通電極190a、190bおよび再配線128a、128bを形成する。   Subsequently, as shown in FIG. 2C, a silicon spacer 108 is stacked on the semiconductor chip 104. In the silicon spacer 108, through electrodes 190a and 190b and rewirings 128a and 128b are formed by a method described later.

この際、下側の半導体チップ104の上部表面の電極パッド114c、114dと、シリコンスペーサー108の貫通電極190a、190bの下端に設けられた電極パッド192c、192dとを、それぞれバンプ接続させる。   At this time, the electrode pads 114c and 114d on the upper surface of the lower semiconductor chip 104 and the electrode pads 192c and 192d provided at the lower ends of the through electrodes 190a and 190b of the silicon spacer 108 are bump-connected, respectively.

また、シリコンスペーサー108の上部表面には、あらかじめ電極パッド118a、118b、118c、118d、118e、118f、118g、118hが設けられている。電極パッド118c、118dは、それぞれ貫通電極190a、190bの上端に設けられている。電極パッド118a、118bは、それぞれ再配線128a、128bの内側端部に設けられている。電極パッド118e、118gは、それぞれ再配線128a、128bの外側端部に設けられている。電極パッド118f、118hは、それぞれ電極パッド118e、118gよりも外側に設けられている。   In addition, electrode pads 118a, 118b, 118c, 118d, 118e, 118f, 118g, and 118h are provided on the upper surface of the silicon spacer 108 in advance. The electrode pads 118c and 118d are provided at the upper ends of the through electrodes 190a and 190b, respectively. The electrode pads 118a and 118b are provided at the inner ends of the rewirings 128a and 128b, respectively. The electrode pads 118e and 118g are provided at the outer ends of the rewirings 128a and 128b, respectively. The electrode pads 118f and 118h are provided outside the electrode pads 118e and 118g, respectively.

その後、図3(d)に示すように、シリコンスペーサー108上に上側の半導体チップ106を積層する。上側の半導体チップ106の下部表面(主面)には、あらかじめ電極パッド116a、116b、116c、116dが設けられている。   Thereafter, as shown in FIG. 3D, the upper semiconductor chip 106 is stacked on the silicon spacer 108. On the lower surface (main surface) of the upper semiconductor chip 106, electrode pads 116a, 116b, 116c, and 116d are provided in advance.

この際、上側の半導体チップ106の下部表面の電極パッド116a、116b、116c、116dを、それぞれシリコンスペーサー108上の電極パッド118a、118b、118c、118dとバンプ接続する。   At this time, the electrode pads 116a, 116b, 116c, and 116d on the lower surface of the upper semiconductor chip 106 are bump-connected to the electrode pads 118a, 118b, 118c, and 118d on the silicon spacer 108, respectively.

次いで、図3(e)に示すように、ワイヤーボンディングを行う。具体的には、シリコンスペーサー108の上側(外側)表面の電極パッド118e、118f、118g、118hを、それぞれ基板102上の電極パッド112a、112b、112d、112cとワイヤーボンディングにより接続する。   Next, wire bonding is performed as shown in FIG. Specifically, the electrode pads 118e, 118f, 118g, and 118h on the upper (outer) surface of the silicon spacer 108 are connected to the electrode pads 112a, 112b, 112d, and 112c on the substrate 102 by wire bonding, respectively.

この方法によれば、シリコンスペーサー108に貫通電極190a、190bが設けられているため、下側の半導体チップ104と上側の半導体チップ106とを貫通電極190a、190bを介して導電性よく短い経路で安定的に接続できる。そのため、下側の半導体チップ104と上側の半導体チップ106との間の信号伝達の信頼性および伝達速度を安定して向上することができる。   According to this method, since the through electrodes 190a and 190b are provided in the silicon spacer 108, the lower semiconductor chip 104 and the upper semiconductor chip 106 are connected to each other through the through electrodes 190a and 190b with a short path with good conductivity. A stable connection is possible. Therefore, the reliability and transmission speed of signal transmission between the lower semiconductor chip 104 and the upper semiconductor chip 106 can be stably improved.

また、この方法によれば、シリコンスペーサー108に電極パッド118a、118bと電極パッド118e、118gとをそれぞれ接続する再配線128a、128bが設けられているため、下側の半導体チップ104と上側の半導体チップ106とのチップサイズの組合せに関係なく、上側の半導体チップ106のシリコンスペーサー108側の面の電極パッド116a、116bに電極パッド118a、118bを介して接続する再配線128a、128bを上側の半導体チップ106の外周縁よりも外方向の電極パッド118e、118gまで引き出すことができる。   Further, according to this method, since the rewiring 128a, 128b for connecting the electrode pads 118a, 118b and the electrode pads 118e, 118g to the silicon spacer 108 is provided, the lower semiconductor chip 104 and the upper semiconductor Regardless of the chip size combination with the chip 106, the rewiring 128a, 128b connected to the electrode pads 116a, 116b on the surface of the upper semiconductor chip 106 on the silicon spacer 108 side through the electrode pads 118a, 118b is connected to the upper semiconductor. The electrode pads 118e and 118g can be pulled out outward from the outer peripheral edge of the chip 106.

そして、電極パッド118e、118gをワイヤー120a、120dにより基板102上面の電極パッド112a、112dに接続することにより、電極パッド116a、116bも、それぞれ電極パッド118a、118b、再配線128a、128bおよび電極パッド118e、118gを介して基板102上面の電極パッド112a、112dに接続できる。このため、下側の半導体チップ104および上側の半導体チップ106のチップサイズの選択およびワイヤー120a、120dによる配線接続の自由度が向上する。   Then, by connecting the electrode pads 118e and 118g to the electrode pads 112a and 112d on the upper surface of the substrate 102 by the wires 120a and 120d, the electrode pads 116a and 116b are also connected to the electrode pads 118a and 118b, the rewiring 128a and 128b, and the electrode pads, respectively. It can be connected to electrode pads 112a and 112d on the upper surface of the substrate 102 via 118e and 118g. For this reason, the freedom degree of selection of the chip size of the lower semiconductor chip 104 and the upper semiconductor chip 106 and wiring connection by the wires 120a and 120d is improved.

また、この構成によれば、シリコンスペーサー108の張出部分の電極パッド118e、118gにワイヤーボンディングなどの接続方法により配線接続する際に、シリコンスペーサー108が剛性を有するために安定して接続することができる。このため、自由度の高いワイヤーボンディングなどによる配線接続を安定的に形成できる。   Further, according to this configuration, when the wiring connection is made to the electrode pads 118e and 118g of the overhanging portion of the silicon spacer 108 by a connection method such as wire bonding, the silicon spacer 108 has a rigidity, so that the connection is stable. Can do. For this reason, wiring connection by wire bonding etc. with a high degree of freedom can be formed stably.

図8は、実施形態1の貫通電極の製造方法を示す工程断面図である。なお、図8の上側は、シリコンスペーサー108の上側(図1の上側)を示す。   FIG. 8 is a process cross-sectional view illustrating the method for manufacturing the through electrode according to the first embodiment. 8 indicates the upper side of the silicon spacer 108 (the upper side in FIG. 1).

実施形態1に示したシリコンスペーサーに貫通電極を設けるには、まず、シリコンスペーサー1108上にレジスト膜(不図示)を設け、レジスト膜をマスクとしてシリコンスペーサー1108を選択的にエッチングし、シリコンスペーサー1108の上面に凹部を形成する。次いで、図8(a)に示すように、凹部内に導電部材1128c、1128dを埋め込む。   In order to provide a through electrode in the silicon spacer shown in Embodiment Mode 1, first, a resist film (not shown) is provided on the silicon spacer 1108, and the silicon spacer 1108 is selectively etched using the resist film as a mask. A recess is formed on the upper surface of the substrate. Next, as shown in FIG. 8A, conductive members 1128c and 1128d are embedded in the recesses.

これらの導電部材は、例えばAlやCuなどを含む金属材料からなる部材であってもよい。また、これらの導電部材は、例えばめっき法により形成可能である。また、これらの導電部材は、例えば底面および側面にTiNなどからなるバリアメタル膜を有していてもよい。   These conductive members may be members made of a metal material containing, for example, Al or Cu. Further, these conductive members can be formed by, for example, a plating method. In addition, these conductive members may have a barrier metal film made of TiN or the like on the bottom and side surfaces, for example.

次に、図8(b)に示すように、シリコンスペーサー1108の裏面にレジスト膜1132a、1132b、1132cを形成する。これらのレジスト膜は、導電部材1128c、1128dの上面およびその上面に隣接する領域を覆うように形成される。また、これらのレジスト膜は、再配線を形成する予定の部位に開口部を備えるように形成される。続いて、これらの開口部に、例えばAlやCuなどを含む金属材料からなる導電部材1138a、1138bを、例えばスパッタ法などにより形成する。   Next, as illustrated in FIG. 8B, resist films 1132 a, 1132 b, and 1132 c are formed on the back surface of the silicon spacer 1108. These resist films are formed so as to cover the upper surfaces of the conductive members 1128c and 1128d and regions adjacent to the upper surfaces. Further, these resist films are formed so as to have an opening at a site where a rewiring is to be formed. Subsequently, conductive members 1138a and 1138b made of a metal material containing, for example, Al or Cu are formed in these openings by, for example, sputtering.

続いて、図8(c)に示すように、シリコンスペーサー1108の裏面からレジスト膜1132a、1132b、1132cを剥離する。そして、シリコンスペーサー1108を下面側から研磨(バックグラウンド)し、シリコンスペーサー1108の厚みを50〜100マイクロメーター程度まで薄くする。   Subsequently, as illustrated in FIG. 8C, the resist films 1132 a, 1132 b, and 1132 c are peeled from the back surface of the silicon spacer 1108. Then, the silicon spacer 1108 is polished (background) from the lower surface side to reduce the thickness of the silicon spacer 1108 to about 50 to 100 micrometers.

その結果、導電部材1128c、1128dの下面側の端部が露出し、貫通電極が形成される。研磨後に、シリコンスペーサー1108の下面側を仕上げポリッシュして、貫通電極および再配線を備えるシリコンスペーサー1108が得られる。   As a result, end portions on the lower surface side of the conductive members 1128c and 1128d are exposed, and a through electrode is formed. After polishing, the lower surface side of the silicon spacer 1108 is finish-polished to obtain a silicon spacer 1108 having through electrodes and rewiring.

実施形態1において、シリコンスペーサーとして、このような貫通電極および再配線を備えるシリコンスペーサー1108を用いることにより、上側の半導体チップの下部表面の電極パッドを、再配線を介して、シリコンスペーサーの上側(外側)表面の電極パッドに引き出すことができる。また、下側の半導体チップの上部表面の電極パッドと、上側の半導体チップの下部表面の電極パッドと、を貫通電極を介して、フリップチップ接続することができる。   In the first embodiment, by using the silicon spacer 1108 having such a through electrode and rewiring as the silicon spacer, the electrode pad on the lower surface of the upper semiconductor chip can be connected to the upper side of the silicon spacer (via the rewiring ( Can be pulled out to the electrode pad on the outer side. In addition, the electrode pad on the upper surface of the lower semiconductor chip and the electrode pad on the lower surface of the upper semiconductor chip can be flip-chip connected via a through electrode.

よって、このような構成からなるシリコンスペーサーを用いると、図1に示したように、下側の半導体チップ104および上側の半導体チップ106を積層してなる半導体装置100であって、下側の半導体チップ104および上側の半導体チップ106のチップサイズの選択および配線接続の自由度が高く、下側の半導体チップ104および上側の半導体チップ106の間の信号伝達の信頼性および高速性に優れる半導体装置100が提供される。   Therefore, when the silicon spacer having such a configuration is used, as shown in FIG. 1, the semiconductor device 100 is formed by stacking the lower semiconductor chip 104 and the upper semiconductor chip 106, and the lower semiconductor chip The semiconductor device 100 has a high degree of freedom in selecting the chip size and wiring connection of the chip 104 and the upper semiconductor chip 106, and is excellent in signal transmission reliability and high speed between the lower semiconductor chip 104 and the upper semiconductor chip 106. Is provided.

<実施形態2>
図4は、実施形態2の多段チップ積層構造を示す断面図である。
<Embodiment 2>
FIG. 4 is a cross-sectional view showing the multi-stage chip stack structure of the second embodiment.

本実施形態の多段チップ積層構造は、実施形態1と同様の構成であるが、シリコンスペーサー108には貫通電極190c、190dが形成されている。   The multistage chip stack structure of the present embodiment has the same configuration as that of the first embodiment, but through electrodes 190c and 190d are formed in the silicon spacer 108.

貫通電極190c、190dの上端には、それぞれ電極パッド118f、118hが設けられている。また、貫通電極190c、190dの下端には、それぞれ電極パッド192a、192bが設けられている。   Electrode pads 118f and 118h are provided at the upper ends of the through electrodes 190c and 190d, respectively. In addition, electrode pads 192a and 192b are provided at the lower ends of the through electrodes 190c and 190d, respectively.

また、下側の半導体チップ104の上面に設けられた電極パッド114a、114bは、それぞれシリコンスペーサー108の下面の電極パッド192a、192bとバンプ接続している。   The electrode pads 114a and 114b provided on the upper surface of the lower semiconductor chip 104 are bump-connected to the electrode pads 192a and 192b on the lower surface of the silicon spacer 108, respectively.

また、シリコンスペーサー108の上面の電極パッド118f、118hは、基板102上面に設けられている電極パッド112b、112cと、それぞれワイヤー120b、120cを介してワイヤーボンディング接続している。   Further, the electrode pads 118f and 118h on the upper surface of the silicon spacer 108 are connected to the electrode pads 112b and 112c provided on the upper surface of the substrate 102 by wire bonding via wires 120b and 120c, respectively.

この構成によれば、下側の半導体チップ104の上部表面に設けられている電極パッド114a、114bを、それぞれシリコンスペーサー108に設けられている電極パッド192a、192bおよび貫通電極190c、190dにより、シリコンスペーサー108の上側(外側)に設けられている電極パッド118f、118hに引き出すことができる。   According to this configuration, the electrode pads 114a and 114b provided on the upper surface of the lower semiconductor chip 104 are made into silicon by the electrode pads 192a and 192b and the through electrodes 190c and 190d provided on the silicon spacer 108, respectively. It can be pulled out to the electrode pads 118 f and 118 h provided on the upper side (outside) of the spacer 108.

この際、シリコンスペーサー108は、下側の半導体チップ104よりも平面視のサイズが大きくてもよく、小さくてもよい。すなわち、シリコンスペーサー108は、下側の半導体チップ104の外周部の上部の空間を狭めるように設けられていてもよい。   At this time, the silicon spacer 108 may be larger or smaller in plan view than the lower semiconductor chip 104. That is, the silicon spacer 108 may be provided so as to narrow the space above the outer peripheral portion of the lower semiconductor chip 104.

よって、下側の半導体チップ104とシリコンスペーサー108とのサイズの組合せに依存することなく、下側の半導体チップ104へのワイヤボンディングを、シリコンスペーサー108上の電極パッド118f、118hを通して行うことができる。よって、このような構成からなるシリコンスペーサー108を用いれば、下側の半導体チップ104および上側の半導体チップ106のチップサイズの組合せに依存することなく、下側の半導体チップ104にワイヤーボンディング接続をすることができる。   Therefore, wire bonding to the lower semiconductor chip 104 can be performed through the electrode pads 118f and 118h on the silicon spacer 108 without depending on the size combination of the lower semiconductor chip 104 and the silicon spacer 108. . Therefore, when the silicon spacer 108 having such a configuration is used, wire bonding connection is made to the lower semiconductor chip 104 without depending on the combination of the chip sizes of the lower semiconductor chip 104 and the upper semiconductor chip 106. be able to.

特に、COC、MCP、3次元SiPなどの構造を備える半導体装置において、半導体チップサイズの組合せに依存せずにワイヤボンディング可能とするため、半導体素子が高集積された薄型のパッケージを実現できる。   In particular, in a semiconductor device having a structure such as COC, MCP, and three-dimensional SiP, wire bonding can be performed without depending on the combination of semiconductor chip sizes, so that a thin package in which semiconductor elements are highly integrated can be realized.

また、この構成によれば、半導体チップ104の外周部の上面に電極パッド114a、114bが設けられており、シリコンスペーサー108の張出部の下面に電極パッド192a、192bが設けられている。このため、電極パッド114a、114bおよび電極パッド192a、192bがシリコンスペーサー108の支持部材としても機能する。そのため、シリコンスペーサー108上面の電極パッド118e、118f、118g、118hへのワイヤボンディングをより安定的に実施することができる。   Further, according to this configuration, the electrode pads 114 a and 114 b are provided on the upper surface of the outer peripheral portion of the semiconductor chip 104, and the electrode pads 192 a and 192 b are provided on the lower surface of the protruding portion of the silicon spacer 108. Therefore, the electrode pads 114a and 114b and the electrode pads 192a and 192b also function as support members for the silicon spacer 108. Therefore, wire bonding to the electrode pads 118e, 118f, 118g, and 118h on the upper surface of the silicon spacer 108 can be more stably performed.

よって、この構成によれば、下側の半導体チップ104および上側の半導体チップ106を積層してなる半導体装置200であって、下側の半導体チップ104および上側の半導体チップ106のチップサイズの選択および配線接続の自由度が高く、下側の半導体チップ104および上側の半導体チップ106の間の信号伝達の信頼性および高速性に優れる半導体装置200が提供される。   Therefore, according to this configuration, the semiconductor device 200 is formed by stacking the lower semiconductor chip 104 and the upper semiconductor chip 106, and the selection of the chip size of the lower semiconductor chip 104 and the upper semiconductor chip 106 and A semiconductor device 200 having a high degree of freedom in wiring connection and excellent in signal transmission reliability and high speed between the lower semiconductor chip 104 and the upper semiconductor chip 106 is provided.

<実施形態3>
図5は、実施形態3の多段チップ積層構造を示す断面図である。
<Embodiment 3>
FIG. 5 is a cross-sectional view showing the multi-stage chip stack structure of the third embodiment.

本実施形態の多段チップ積層構造を備える半導体装置300は、実施形態1の多段チップ積層構造と同様の構成であるが、半導体チップ104の外周部の上面に、電極パッド114a、114bが設けられた構造である。   The semiconductor device 300 having the multi-stage chip stack structure of the present embodiment has the same configuration as the multi-stage chip stack structure of the first embodiment, but electrode pads 114a and 114b are provided on the upper surface of the outer peripheral portion of the semiconductor chip 104. Structure.

また、半導体チップ104の上面の電極パッド114a、114bは、基板102上面に設けられている電極パッド112b、112cと、それぞれワイヤー120b、120cを介してワイヤーボンディング接続している。   Further, the electrode pads 114a and 114b on the upper surface of the semiconductor chip 104 are connected to the electrode pads 112b and 112c provided on the upper surface of the substrate 102 by wire bonding via wires 120b and 120c, respectively.

この際、シリコンスペーサー108は、下側の半導体チップ104よりも平面視のサイズが小さいことが好ましい。すなわち、シリコンスペーサー108は、下側の半導体チップ104の外周部の上部には設けられていないことが好ましい。   At this time, the silicon spacer 108 is preferably smaller in plan view than the lower semiconductor chip 104. That is, it is preferable that the silicon spacer 108 is not provided in the upper part of the outer peripheral portion of the lower semiconductor chip 104.

この構成によれば、下側の半導体チップ104へのワイヤボンディングを、基板102上面の電極パッド112b、112cから直接に行うことができる。よって、このような構成からなる半導体装置300においては、下側の半導体チップ104への配線接続の自由度をさらに向上することができる。   According to this configuration, wire bonding to the lower semiconductor chip 104 can be performed directly from the electrode pads 112 b and 112 c on the upper surface of the substrate 102. Therefore, in the semiconductor device 300 having such a configuration, the degree of freedom of wiring connection to the lower semiconductor chip 104 can be further improved.

特に、COC、MCP、3次元SiPなどの構造を備える半導体装置において、ワイヤボンディングによる配線接続の自由度を向上することを可能とするため、半導体素子が高集積された薄型のパッケージの設計の自由度の向上を実現できる。   In particular, in a semiconductor device having a structure such as COC, MCP, or three-dimensional SiP, it is possible to improve the degree of freedom of wiring connection by wire bonding, so that a thin package in which semiconductor elements are highly integrated can be freely designed. The improvement of the degree can be realized.

よって、この構成によれば、下側の半導体チップ104および上側の半導体チップ106を積層してなる半導体装置300であって、下側の半導体チップ104および上側の半導体チップ106のチップサイズの選択および配線接続の自由度が高く、下側の半導体チップ104および上側の半導体チップ106の間の信号伝達の信頼性および高速性に優れる半導体装置300が提供される。   Therefore, according to this configuration, the semiconductor device 300 is formed by stacking the lower semiconductor chip 104 and the upper semiconductor chip 106, and the selection of the chip size of the lower semiconductor chip 104 and the upper semiconductor chip 106 and A semiconductor device 300 having a high degree of freedom in wiring connection and excellent in signal transmission reliability and high speed between the lower semiconductor chip 104 and the upper semiconductor chip 106 is provided.

<実施形態4>
図6は、実施形態4の多段チップ積層構造を示す断面図である。
<Embodiment 4>
FIG. 6 is a cross-sectional view illustrating the multi-stage chip stack structure of the fourth embodiment.

本実施形態の多段チップ積層構造を備える半導体装置400は、実施形態1の多段チップ積層構造と同様の構成であるが、下側の半導体チップ104とシリコンスペーサー108との間に、シリコンスペーサー108を支持するための補強材が設けられた構造である。   The semiconductor device 400 having the multi-stage chip stack structure of the present embodiment has the same configuration as that of the multi-stage chip stack structure of the first embodiment, except that the silicon spacer 108 is interposed between the lower semiconductor chip 104 and the silicon spacer 108. It is a structure provided with a reinforcing material for supporting.

下側の半導体チップ104とシリコンスペーサー108との間に設けられた補強材は、それぞれ下側の半導体チップ104の外周部の上面に設けられたダミーバンプ194a、194bと、シリコンスペーサー108の張出部の下面に設けられたダミーバンプ196a、196bと、から構成される。   The reinforcing material provided between the lower semiconductor chip 104 and the silicon spacer 108 includes dummy bumps 194a and 194b provided on the upper surface of the outer peripheral portion of the lower semiconductor chip 104, and the protruding portion of the silicon spacer 108, respectively. And dummy bumps 196a and 196b provided on the lower surface of the substrate.

この際、シリコンスペーサー108は、下側の半導体チップ104よりも平面視のサイズが大きくてもよく、小さくてもよい。すなわち、シリコンスペーサー108は、下側の半導体チップ104の外周部の上部の空間を狭めるように設けられていてもよい。   At this time, the silicon spacer 108 may be larger or smaller in plan view than the lower semiconductor chip 104. That is, the silicon spacer 108 may be provided so as to narrow the space above the outer peripheral portion of the lower semiconductor chip 104.

なお、ダミーバンプ194a、194b、196a、196bは、通常の電極パッドと同様の導電材料などから構成されていてもよいが、非電材料から構成されていてもよい。ダミーバンプ194a、194b、196a、196bは、電極パッドとして機能する必要はないからである。   The dummy bumps 194a, 194b, 196a, and 196b may be made of a conductive material similar to a normal electrode pad, but may be made of a non-electric material. This is because the dummy bumps 194a, 194b, 196a, 196b do not need to function as electrode pads.

この構成のように、シリコンスペーサー108の張出部分を支持する補強材をダミーバンプ194a、194b、196a、196bにより形成することにより、シリコンスペーサー108上の電極パッド118e、118f、118g、118hと、基板102の上部表面の電極パッド112a、112b、112d、112cと、をそれぞれワイヤー120a、120b、120d、120cにより接続する際に、ワイヤボンディングをより安定的に実施することができる。   As in this configuration, the reinforcing material that supports the protruding portion of the silicon spacer 108 is formed by the dummy bumps 194a, 194b, 196a, 196b, so that the electrode pads 118e, 118f, 118g, 118h on the silicon spacer 108 and the substrate are formed. Wire bonding can be more stably performed when the electrode pads 112a, 112b, 112d, and 112c on the upper surface of the wire 102 are connected by the wires 120a, 120b, 120d, and 120c, respectively.

よって、この構成によれば、下側の半導体チップ104および上側の半導体チップ106を積層してなる半導体装置400であって、下側の半導体チップ104および上側の半導体チップ106のチップサイズの選択および配線接続の自由度が高く、下側の半導体チップ104および上側の半導体チップ106の間の信号伝達の信頼性および高速性に優れる半導体装置400が提供される。   Therefore, according to this configuration, the semiconductor device 400 is formed by stacking the lower semiconductor chip 104 and the upper semiconductor chip 106, and the selection of the chip size of the lower semiconductor chip 104 and the upper semiconductor chip 106 and A semiconductor device 400 having a high degree of freedom in wiring connection and excellent in signal transmission reliability and high speed between the lower semiconductor chip 104 and the upper semiconductor chip 106 is provided.

<実施形態5>
図7は、実施形態5の多段チップ積層構造を示す断面図である。
<Embodiment 5>
FIG. 7 is a cross-sectional view illustrating the multi-stage chip stack structure of the fifth embodiment.

本実施形態の多段チップ積層構造を備える半導体装置500は、実施形態1の多段チップ積層構造と同様の構成であるが、基板102とシリコンスペーサー108との間に、シリコンスペーサー108を支持するための補強材130a、130bが設けられた構造である。なお、補強材130a、130bは、例えばディスペンサー等で樹脂を注入し硬化させることにより形成することができる。   The semiconductor device 500 including the multi-stage chip stack structure of the present embodiment has the same configuration as that of the multi-stage chip stack structure of the first embodiment, but for supporting the silicon spacer 108 between the substrate 102 and the silicon spacer 108. In this structure, the reinforcing members 130a and 130b are provided. The reinforcing members 130a and 130b can be formed by injecting resin with a dispenser or the like and curing the resin.

この際、シリコンスペーサー108は、下側の半導体チップ104よりも平面視のサイズが大きいことが好ましい。すなわち、シリコンスペーサー108は、下側の半導体チップ104の外周部よりも外側に張り出した部分を有することが望ましい。   At this time, the silicon spacer 108 is preferably larger in plan view than the lower semiconductor chip 104. That is, it is desirable that the silicon spacer 108 has a portion protruding outward from the outer peripheral portion of the lower semiconductor chip 104.

この構成によれば、シリコンスペーサー108上の電極パッド118e、118f、118g、118hと、基板102の上部表面の電極パッド112a、112b、112d、112cと、をそれぞれワイヤー120a、120b、120d、120cにより接続する際に、ワイヤボンディングをより安定的に実施することができる。   According to this configuration, the electrode pads 118e, 118f, 118g, and 118h on the silicon spacer 108 and the electrode pads 112a, 112b, 112d, and 112c on the upper surface of the substrate 102 are respectively connected by the wires 120a, 120b, 120d, and 120c. When connecting, wire bonding can be more stably performed.

よって、この構成によれば、下側の半導体チップ104および上側の半導体チップ106を積層してなる半導体装置500であって、下側の半導体チップ104および上側の半導体チップ106のチップサイズの選択および配線接続の自由度が高く、下側の半導体チップ104および上側の半導体チップ106の間の信号伝達の信頼性および高速性に優れる半導体装置500が提供される。   Therefore, according to this configuration, the semiconductor device 500 is formed by stacking the lower semiconductor chip 104 and the upper semiconductor chip 106, and the selection of the chip size of the lower semiconductor chip 104 and the upper semiconductor chip 106 and A semiconductor device 500 having a high degree of freedom in wiring connection and excellent in signal transmission reliability and high speed between the lower semiconductor chip 104 and the upper semiconductor chip 106 is provided.

以上、本発明の構成について説明したが、これらの構成を任意に組み合わせたものも本発明の態様として有効である。また、本発明の表現を他のカテゴリーに変換したものもまた本発明の態様として有効である。   As mentioned above, although the structure of this invention was demonstrated, what combined these structures arbitrarily is effective as an aspect of this invention. Moreover, what converted the expression of this invention into the other category is also effective as an aspect of this invention.

例えば、上記の実施形態においては、板状のスペーサーとして、一枚板からなるスペーサーを用いたが、特に限定する趣旨ではない。例えば、二枚板が継ぎ合わせられたスペーサーを用いてもよい、一定の間隔を空けて並べられた複数の板状のスペーサーを用いてもよい。   For example, in the above embodiment, a spacer made of a single plate is used as the plate-like spacer, but there is no particular limitation. For example, a spacer in which two plates are joined together may be used, or a plurality of plate-like spacers arranged at regular intervals may be used.

このような構成であっても、上側の半導体チップ106の下部表面の電極パッドを、スペーサーに設けられた配線により、上側の半導体チップ106の外周縁より外側に引き出すことができる。   Even in such a configuration, the electrode pad on the lower surface of the upper semiconductor chip 106 can be drawn out from the outer peripheral edge of the upper semiconductor chip 106 by the wiring provided in the spacer.

また、上記の実施形態においては、板状のスペーサーとして、シリコンスペーサーを用いたが、特に限定する趣旨ではない。例えば、他の半導体からなる板状のスペーサーを用いてもよく、あるいは樹脂組成物からなる板状のスペーサーを用いてもよい。   In the above-described embodiment, a silicon spacer is used as the plate-like spacer, but there is no particular limitation. For example, a plate-like spacer made of another semiconductor may be used, or a plate-like spacer made of a resin composition may be used.

どのような材料からなるスペーサーであっても、一定の剛性を有する板状のスペーサーであれば、引き出した配線の外側端部をワイヤーボンディングにより任意の箇所に接続した場合にも、スペーサーの湾曲や傾きの発生が抑制される。   Any spacer made of any material can be used as long as it is a plate-shaped spacer with a certain rigidity, even when the outer end of the drawn wiring is connected to an arbitrary location by wire bonding. The occurrence of tilt is suppressed.

もっとも、図12に示す従来のチップオンチップ構造に用いられる絶縁フィルムに比べれば、より剛性に優れる板状のスペーサーである方が、ワイヤーボンディングを好適に行うことができ、多段チップ積層構造の製造安定性が高まる。   However, compared to the insulating film used in the conventional chip-on-chip structure shown in FIG. 12, a plate-like spacer having higher rigidity can perform wire bonding more favorably, and manufacture of a multi-stage chip laminated structure. Increased stability.

また、上記の実施形態においては、板状のスペーサーの上部表面の電極パッドと基板の上部表面の電極パッドとの接続にはワイヤーボンディングによる接続を用いたが、特に限定する趣旨ではない。例えば、板状のスペーサーの上部表面の電極パッドと貫通電極により接続する板状のスペーサーの下側表面に設けられた配線が直接基板上の電極パッドに接続する構成であってもよい。   In the above embodiment, the connection by wire bonding is used for the connection between the electrode pad on the upper surface of the plate-like spacer and the electrode pad on the upper surface of the substrate, but there is no particular limitation. For example, the wiring provided on the lower surface of the plate-like spacer connected by the electrode pad on the upper surface of the plate-like spacer and the through electrode may be directly connected to the electrode pad on the substrate.

このような構成であっても、上側の半導体チップ106の下部表面の電極パッドを、スペーサーに設けられた配線により、上側の半導体チップ106の外周縁より外側に引き出し、基板上の電極パッドに接続することができる。   Even in such a configuration, the electrode pad on the lower surface of the upper semiconductor chip 106 is drawn out from the outer peripheral edge of the upper semiconductor chip 106 by the wiring provided in the spacer and connected to the electrode pad on the substrate. can do.

実施形態1の多段チップ積層構造を示す断面図である。1 is a cross-sectional view showing a multistage chip stack structure of Embodiment 1. FIG. 実施形態1の多段チップ積層構造の製造方法を示す工程断面図である。FIG. 5 is a process cross-sectional view illustrating the manufacturing method of the multistage chip stack structure of Embodiment 1. 実施形態1の多段チップ積層構造の製造方法を示す工程断面図である。FIG. 5 is a process cross-sectional view illustrating the manufacturing method of the multistage chip stack structure of Embodiment 1. 実施形態2の多段チップ積層構造を示す断面図である。FIG. 5 is a cross-sectional view showing a multistage chip stack structure of Embodiment 2. 実施形態3の多段チップ積層構造を示す断面図である。It is sectional drawing which shows the multistage chip laminated structure of Embodiment 3. 実施形態4の多段チップ積層構造を示す工程断面図である。It is process sectional drawing which shows the multistage chip laminated structure of Embodiment 4. 実施形態5の多段チップ積層構造を示す工程断面図である。FIG. 10 is a process cross-sectional view illustrating a multistage chip stack structure of Embodiment 5. 実施形態1の貫通電極の製造方法を示す工程断面図である。FIG. 5 is a process cross-sectional view illustrating the method for manufacturing the through electrode according to the first embodiment. 実施形態1の多段チップ積層構造を有する半導体装置にボールグリッドアレイ構造を適用した場合の断面図である。FIG. 3 is a cross-sectional view when a ball grid array structure is applied to the semiconductor device having the multi-stage chip stack structure of Embodiment 1. 従来のフリップチップ形式の接続方法を用いる多段チップ積層構造を示す断面図である。It is sectional drawing which shows the multistage chip | tip laminated structure using the connection method of the conventional flip chip format. 従来のフリップチップ形式の接続方法を用いる多段チップ積層構造の一部を示す拡大断面図である。It is an expanded sectional view which shows a part of multistage chip | tip laminated structure using the connection method of the conventional flip chip format. 従来の絶縁フィルムを用いるチップオンチップ構造を示す断面図である。It is sectional drawing which shows the chip-on-chip structure using the conventional insulating film.

符号の説明Explanation of symbols

100 半導体装置
102 基板
104 半導体チップ
106 半導体チップ
108 シリコンスペーサー
112 電極パッド
114 電極パッド
116 電極パッド
118 電極パッド
120 ワイヤー
128 再配線
130 補強材
132 封止樹脂層
134 アンダーフィル樹脂層
136 電極パッド
138 半田ボール
142 再配線層
190 貫通電極
192 電極パッド
194 ダミーバンプ
196 ダミーバンプ
200 半導体装置
300 半導体装置
400 半導体装置
411 第一の半導体チップ
412 第一の半導体チップの表面
413 第一の半導体チップのバンプ
414 絶縁フィルム
415 フィルム
416 配線パターン
417 第二の半導体チップ
418 第二の半導体チップの表面
419 第二の半導体チップのバンプ
420 配線パターン
423 接続部
424 接続部
425 接続部
426 接続部
427 接続部
500 半導体装置
1001 半導体装置
1002 第一の半導体チップ
1002a 主面
1003 第二の半導体チップ
1003b 側方領域
1004 ダイパッド
1005 樹脂パッケージ
1006 接着剤
1007 異方性導電樹脂
1020 第一の端子部
1020a 第一の端子パッド
1020b バンプ
1030 第二の端子部
1030a 第二の端子パッド
1030b バンプ
1031 信号用の端子部
1031a 信号用の端子パッド
1031b バンプ
1032 第二の端子部
1032a 第二の端子パッド
1032b バンプ
1033 配線部
1040 外部接続用端子
1041 内部リード
1042 外部リード
1070 樹脂成分
1071 導電ボール
W ワイヤ
1100 半導体装置
1102 基板
1104 半導体チップ
1106 半導体チップ
1108 シリコンスペーサー
1112 電極パッド
1116 電極パッド
1120 ワイヤー
1128 導電部材
1132 レジスト膜
1138 導電部材
DESCRIPTION OF SYMBOLS 100 Semiconductor device 102 Substrate 104 Semiconductor chip 106 Semiconductor chip 108 Silicon spacer 112 Electrode pad 114 Electrode pad 116 Electrode pad 118 Electrode pad 120 Wire 128 Rewiring 130 Reinforcement material 132 Sealing resin layer 134 Underfill resin layer 136 Electrode pad 138 Solder ball 142 Rewiring layer 190 Through-electrode 192 Electrode pad 194 Dummy bump 196 Dummy bump 200 Semiconductor device 300 Semiconductor device 400 Semiconductor device 411 First semiconductor chip 412 First semiconductor chip surface 413 First semiconductor chip bump 414 Insulating film 415 Film 416 wiring pattern 417 second semiconductor chip 418 surface of second semiconductor chip 419 bump 420 of second semiconductor chip wiring pattern 423 connection portion 24 connecting portion 425 connecting portion 426 connecting portion 427 connecting portion 500 semiconductor device 1001 semiconductor device 1002 first semiconductor chip 1002a main surface 1003 second semiconductor chip 1003b lateral region 1004 die pad 1005 resin package 1006 adhesive 1007 anisotropic conductive Resin 1020 First terminal portion 1020a First terminal pad 1020b Bump 1030 Second terminal portion 1030a Second terminal pad 1030b Bump 1031 Signal terminal portion 1031a Signal terminal pad 1031b Bump 1032 Second terminal portion 1032a Second terminal pad 1032b Bump 1033 Wiring portion 1040 External connection terminal 1041 Internal lead 1042 External lead 1070 Resin component 1071 Conductive ball W Wire 1100 Semiconductor device 1102 Substrate 110 The semiconductor chip 1106 semiconductor chip 1108 silicon spacer 1112 electrode pad 1116 electrode pad 1120 wire 1128 conductive member 1132 resist film 1138 electrically conductive member

Claims (11)

第一の半導体素子と、
第二の半導体素子と、
前記第一の半導体素子と前記第二の半導体素子との間に設けられ、前記第二の半導体素子の外周縁よりも外方向へ張り出した張出部分を有する板状体と、を備え、
前記第一の半導体素子は、前記板状体側の面に第一の電極パッドを有し、
前記第二の半導体素子は、前記板状体側の面に第二の電極パッドおよび第三の電極パッドを有し、
前記第一の半導体素子のチップサイズは、前記第二の半導体素子のチップサイズよりも大きく、
前記第一の半導体素子はメモリ素子であり、前記第二の半導体素子はロジック素子であり、
前記板状体は、
前記第一の電極パッドと前記第二の電極パッドとを接続する貫通電極と、
前記張出部分における前記第二の半導体素子側の面に設けられた第四の電極パッドと、
前記第三の電極パッドと前記第四の電極パッドとを、前記第一の半導体素子上のいかなる電極部材をも経由せずに接続するとともに、前記第二の半導体素子を介してのみ前記第一の半導体素子に接続する配線と、を有することを特徴とする半導体装置。
A first semiconductor element;
A second semiconductor element;
A plate-like body that is provided between the first semiconductor element and the second semiconductor element and has a protruding portion that protrudes outward from the outer peripheral edge of the second semiconductor element;
The first semiconductor element has a first electrode pad on the surface on the plate-like body side,
The second semiconductor element has a second electrode pad and a third electrode pad on the surface on the plate-like body side,
The chip size of the first semiconductor element is larger than the chip size of the second semiconductor element,
The first semiconductor element is a memory element, and the second semiconductor element is a logic element;
The plate-like body is
A through electrode connecting the first electrode pad and the second electrode pad;
A fourth electrode pad provided on the surface of the projecting portion on the second semiconductor element side;
The third electrode pad and the fourth electrode pad are connected without passing through any electrode member on the first semiconductor element, and only through the second semiconductor element. And a wiring connected to the semiconductor element .
請求項1に記載の半導体装置において、
前記貫通電極は、前記第一の電極パッドおよび前記第二の電極パッドと、それぞれバンプ接合していることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the through electrode is bump-bonded to the first electrode pad and the second electrode pad.
請求項1または2に記載の半導体装置において、
前記板状体は、板状スペーサーであることを特徴とする半導体装置。
The semiconductor device according to claim 1 or 2,
The semiconductor device, wherein the plate-like body is a plate-like spacer.
請求項1乃至3いずれかに記載の半導体装置において、
前記板状体は、シリコンスペーサーであることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The plate-like body is a silicon spacer.
請求項4に記載の半導体装置において、
前記第一の半導体素子および前記第二の半導体素子は、シリコン系半導体素子であることを特徴とする半導体装置。
The semiconductor device according to claim 4,
The semiconductor device, wherein the first semiconductor element and the second semiconductor element are silicon-based semiconductor elements.
請求項1乃至5いずれかに記載の半導体装置において、
前記第四の電極パッドは、前記第一の半導体素子の外周縁よりも外側に設けられていることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the fourth electrode pad is provided outside an outer peripheral edge of the first semiconductor element.
請求項1乃至6いずれかに記載の半導体装置において、
前記第四の電極パッドは、ワイヤーボンディングにより接続されていることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the fourth electrode pad is connected by wire bonding.
請求項1乃至7いずれかに記載の半導体装置において、
基板をさらに備え、
前記第一の半導体素子は、前記基板の上部に設けられており、
前記第二の半導体素子は、前記第一の半導体素子の上部に設けられていることを特徴とする半導体装置。
The semiconductor device according to claim 1,
Further comprising a substrate,
The first semiconductor element is provided on an upper portion of the substrate,
The semiconductor device, wherein the second semiconductor element is provided on an upper part of the first semiconductor element.
請求項8に記載の半導体装置において、
前記基板上に、前記板状体を前記張出部分において支持する補強材をさらに備えることを特徴とする半導体装置。
The semiconductor device according to claim 8,
A semiconductor device, further comprising: a reinforcing material that supports the plate-like body at the projecting portion on the substrate.
請求項8または9に記載の半導体装置において、
前記第一の半導体素子上に、前記板状体を前記張出部分において支持する補強材をさらに備えることを特徴とする半導体装置。
The semiconductor device according to claim 8 or 9,
A semiconductor device, further comprising a reinforcing material that supports the plate-like body at the projecting portion on the first semiconductor element.
請求項8乃至10いずれかに記載の半導体装置において、
前記基板の上面に第五の電極パッドが設けられており、
前記第四の電極パッドは、前記第五の電極パッドにワイヤーボンディングにより接続していることを特徴とする半導体装置。
The semiconductor device according to claim 8,
A fifth electrode pad is provided on the upper surface of the substrate;
The semiconductor device according to claim 4, wherein the fourth electrode pad is connected to the fifth electrode pad by wire bonding.
JP2008318134A 2008-12-15 2008-12-15 Semiconductor device Expired - Fee Related JP4801133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008318134A JP4801133B2 (en) 2008-12-15 2008-12-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008318134A JP4801133B2 (en) 2008-12-15 2008-12-15 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004095965A Division JP4580671B2 (en) 2004-03-29 2004-03-29 Semiconductor device

Publications (3)

Publication Number Publication Date
JP2009088557A JP2009088557A (en) 2009-04-23
JP2009088557A5 JP2009088557A5 (en) 2010-07-15
JP4801133B2 true JP4801133B2 (en) 2011-10-26

Family

ID=40661468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318134A Expired - Fee Related JP4801133B2 (en) 2008-12-15 2008-12-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4801133B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014136156A1 (en) * 2013-03-08 2017-02-09 パナソニック株式会社 Semiconductor device
KR102605617B1 (en) * 2016-11-10 2023-11-23 삼성전자주식회사 Stacked semiconductor package

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548001A (en) * 1991-08-19 1993-02-26 Fujitsu Ltd Mounting method for semiconductor integrated circuit
JPH08213545A (en) * 1995-02-06 1996-08-20 Mitsui High Tec Inc Semiconductor device
JP2001024150A (en) * 1999-07-06 2001-01-26 Sony Corp Semiconductor device
JP2003060153A (en) * 2001-07-27 2003-02-28 Nokia Corp Semiconductor package

Also Published As

Publication number Publication date
JP2009088557A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4580671B2 (en) Semiconductor device
US8338963B2 (en) Multiple die face-down stacking for two or more die
JP3722209B2 (en) Semiconductor device
JP5042591B2 (en) Semiconductor package and stacked semiconductor package
US7598617B2 (en) Stack package utilizing through vias and re-distribution lines
US9437579B2 (en) Multiple die face-down stacking for two or more die
US20070278657A1 (en) Chip stack, method of fabrication thereof, and semiconductor package having the same
US7642632B2 (en) Pad redistribution chip for compactness, method of manufacturing the same, and stacked package using the same
US7071569B2 (en) Electrical package capable of increasing the density of bonding pads and fine circuit lines inside a interconnection
JP4360941B2 (en) Semiconductor device
US10217710B2 (en) Wiring board with embedded component and integrated stiffener, method of making the same and face-to-face semiconductor assembly using the same
US8361857B2 (en) Semiconductor device having a simplified stack and method for manufacturing thereof
US8164189B2 (en) Multi-chip semiconductor device
KR100914987B1 (en) Molded reconfigured wafer and stack package using the same
JP2002217354A (en) Semiconductor device
JP4801133B2 (en) Semiconductor device
US8618637B2 (en) Semiconductor package using through-electrodes having voids
JP3850712B2 (en) Multilayer semiconductor device
US20090309236A1 (en) Package on Package Structure with thin film Interposing Layer
US20240170456A1 (en) Semiconductor package
US9966364B2 (en) Semiconductor package and method for fabricating the same
KR100808586B1 (en) Stack type package

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees