Nothing Special   »   [go: up one dir, main page]

JP4897951B2 - Tubular deflection measurement method and apparatus - Google Patents

Tubular deflection measurement method and apparatus Download PDF

Info

Publication number
JP4897951B2
JP4897951B2 JP2006092542A JP2006092542A JP4897951B2 JP 4897951 B2 JP4897951 B2 JP 4897951B2 JP 2006092542 A JP2006092542 A JP 2006092542A JP 2006092542 A JP2006092542 A JP 2006092542A JP 4897951 B2 JP4897951 B2 JP 4897951B2
Authority
JP
Japan
Prior art keywords
tubular body
measuring
tube end
measurement
end chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006092542A
Other languages
Japanese (ja)
Other versions
JP2007263895A (en
Inventor
巧二 加藤
瑞記 大池
泰志 林
裕彦 古田
和幸 永井
哲幸 松尾
数則 田中
稔 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Sky Aluminum Corp
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Sky Aluminum Corp filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2006092542A priority Critical patent/JP4897951B2/en
Publication of JP2007263895A publication Critical patent/JP2007263895A/en
Application granted granted Critical
Publication of JP4897951B2 publication Critical patent/JP4897951B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、電子写真装置に用いられる感光体ドラムその他の管状体の振れを測定する振れ測定方法及び振れ測定装置に関するものである。   The present invention relates to a shake measuring method and a shake measuring apparatus for measuring shake of a photosensitive drum or other tubular body used in an electrophotographic apparatus.

近年例えば複写機やプリンタなどの電子写真装置に対する高性能化(高解像度化)、小型化及び低コスト化の要請から、それらに使用される感光体ドラムについても高精度化及び低コスト化が強く要請されている。
したがって、ドラムは回転中の振れを極力小さく抑えることが要請されるが、電子写真装置の高性能化及び低コスト化の要請に応えるためには、ドラムの振れ測定は抜き取りでなく全製品について実施する必要があり、かつ、より短時間で精度よく行われることが要請されている。
In recent years, due to the demand for higher performance (higher resolution), smaller size, and lower cost for electrophotographic apparatuses such as copiers and printers, high precision and low cost are strongly demanded for the photosensitive drums used therefor. It has been requested.
Therefore, the drum is required to minimize the run-out during rotation, but in order to meet the demand for higher performance and lower cost of the electrophotographic apparatus, the run-out measurement of the drum is not performed on all products. It is required to be performed accurately in a shorter time.

前記要請に応えものとして、以下のようなドラムの振れ測定方法及び装置が提案されている。
その第1は、ドラムの各端部の内周面の二箇所にそれぞれ下方からボールを転接させることにより当該ドラムを四点で水平に支持し、前記ドラムの外周面で前記ボールが点接触する各端部の内周面の二箇所を結ぶ二本の母線のうちの一本の母線上に沿った位置に測定点を持つ距離センサを設置する。そして、前記ドラムを回転させ、当該ドラムの周方向に間隔をおいた最低三箇所において、前記距離センサにより当該距離センサから前記測定点までの距離を計測し、この計測により得られた計測値に演算処理を施すことで、前記ドラムの両端の中心を結ぶ仮想中心軸に対する前記ドラムの外周面の偏心量及びその偏心方向を算出する(後記特許文献1)。
In response to the above request, the following drum shake measuring method and apparatus have been proposed.
The first is to support the drum horizontally at four points by rolling the ball from below at two locations on the inner peripheral surface of each end of the drum, and the ball contacts the outer peripheral surface of the drum. A distance sensor having a measurement point is installed at a position along one of the two buses connecting the two inner peripheral surfaces of each end. Then, the drum is rotated, and the distance from the distance sensor to the measurement point is measured by the distance sensor in at least three places spaced in the circumferential direction of the drum, and the measurement value obtained by this measurement is obtained. By performing arithmetic processing, the eccentric amount and the eccentric direction of the outer peripheral surface of the drum with respect to the virtual central axis connecting the centers of both ends of the drum are calculated (Patent Document 1 described later).

その第2は、ドラムの両端部において内部へ挿入されたコロと外周へ当該コロと対応配置されたコロないしローラからなる固定部材とで挟んで前記ドラムを水平に支持する。そして、前記ドラムを回転させながら、前記ドラムの外にある特定位置と当該ドラムとの距離を測定する距離測定手段を用いて、特定位置とドラムの側面上の測定点との距離を測定し、前記ドラムの両端の中心を結ぶ仮想中心軸に対するドラムの外周面の偏心量及び偏心方向とを算出する(後記特許文献2)。   Secondly, the drum is horizontally supported by being sandwiched between rollers inserted inside at both ends of the drum and rollers or rollers fixed to the outer periphery. And while rotating the drum, using a distance measuring means for measuring the distance between the specific position outside the drum and the drum, measure the distance between the specific position and the measurement point on the side surface of the drum, An eccentric amount and an eccentric direction of the outer peripheral surface of the drum with respect to a virtual central axis connecting the centers of both ends of the drum are calculated (Patent Document 2 described later).

前記従来の振れ測定方法及びその装置には以下の問題があった。
すなわち、ボール精度やその設置精度(前記第1)、コロの偏心量(前記第2)、ドラムの長さ方向のずれ(前記第1)などが測定値に影響して測定精度が低下するおそれがある。
ボールやコロの設置構造を含めたドラムの支持機構が複雑になり、より正確に測定するためには設備費が嵩む。
ドラムは両端支持であるから、測定にとりかかるまでのドラムの支持や支持位置からの撤去に時間がかかり、結果として一連の測定作業に時間がかかる。
特開2002−48530号公報 特開2002−91233号公報
The conventional shake measuring method and apparatus have the following problems.
That is, the accuracy of the ball may be affected by the accuracy of the ball, its installation accuracy (the first), the eccentric amount of the roller (the second), the displacement in the length direction of the drum (the first), etc. There is.
The drum support mechanism including the installation structure of the balls and rollers becomes complicated, and the equipment cost increases for more accurate measurement.
Since the drum is supported at both ends, it takes time to support and remove the drum from the support position until measurement is started, and as a result, a series of measurement operations takes time.
JP 2002-48530 A JP 2002-91233 A

本発明の課題は管状体の振れ測定のさらなる高精度化と測定作業の一層の短縮化にあり、その目的は、回転する管状体の振れをより正確かつ迅速に測定することができる測定方法を提供することにある。
本発明の他の目的は、前記目的を達成できる振れ方法を円滑に実施することができ、かつ、より簡単な構成の振れ測定装置を提供することにある。
An object of the present invention is to further improve the accuracy of the vibration measurement of the tubular body and further shorten the measurement work, and its purpose is to provide a measurement method capable of measuring the vibration of the rotating tubular body more accurately and quickly. It is to provide.
Another object of the present invention is to provide a shake measuring apparatus having a simpler configuration that can smoothly implement a shake method capable of achieving the object.

本発明に係る管状体の振れ測定方法は、前記課題を解決するため、回転可能な管端チャックへ管状体の内側面を押圧する状態で当該管状体の一端部を保持させ、前記管端チャックにより前記管状体を回転させながら、当該管状体の他端部内における所定の計測位置から当該管状体の内周までの距離を計測して所定の回転角度毎の計測値を得るとともに、前記管状体の両端間の所定位置であって当該管状体の外周方向に離れた測定位置から前記管状体の外周までの距離を測定して前記回転角度毎の測定値を得、前記計測値に演算処理を施すことにより管状体の前記他端部の内径中心を算出して当該内径中心と当該管状体の一端部と対応する位置における前記管端チャックの回転中心とから前記管状体の仮想中心軸を求め、前記測定位置において前記管端チャックの回転軸線と直交する面における前記回転軸線に対する前記仮想中心軸の偏倚量により前記測定値を補正する手段を含むことを最も主要な特徴としている。   In order to solve the above-mentioned problem, the tubular body run-out measuring method according to the present invention holds one end of the tubular body while pressing the inner surface of the tubular body against a rotatable tube end chuck, and the tube end chuck. Measure the distance from a predetermined measurement position in the other end of the tubular body to the inner periphery of the tubular body while rotating the tubular body by the above, and obtain a measured value for each predetermined rotation angle. Measuring a distance from a measurement position that is a predetermined position between both ends of the tubular body to the outer circumference of the tubular body to obtain an outer circumference of the tubular body to obtain a measurement value for each rotation angle, and performing an arithmetic process on the measurement value. The virtual center axis of the tubular body is obtained from the inner diameter center of the other end portion of the tubular body by calculating the center of the inner diameter and the rotation center of the tube end chuck at a position corresponding to the one end portion of the tubular body. In the measurement position It is the most important feature that it includes means for correcting the measured value by the bias amount of the imaginary central axis relative to the axis of rotation in a plane perpendicular to the rotation axis of the serial tube end chuck.

本発明に係る管状体の振れ測定装置は前記課題を解決するため、回転可能で回転軸線に対して直交するセット面を有し、当該セット面ヘ一端部がセットされた管状体の内側面を押圧する状態で当該管状体の一端部を保持する管端チャックと、前記管状体と干渉しない所定の設置位置から前記セットされた管状体の前記他端部の内周の一部へ計測ヘッドが臨む位置までの範囲を移動可能な変位計測手段と、前記管状体の両端間の所定位置であって当該管状体の外周方向へ離れた測定位置から当該管状体の外周までの距離を測定すべく設置された距離測定手段とを備えたことを最も主要な特徴としている。   In order to solve the above-described problems, a tubular body shake measuring apparatus according to the present invention has a set surface that is rotatable and orthogonal to the rotation axis, and the inner surface of the tubular body on which one end of the set surface is set. A tube head chuck that holds one end of the tubular body in a pressed state, and a measuring head from a predetermined installation position that does not interfere with the tubular body to a part of the inner periphery of the other end of the set tubular body Displacement measuring means capable of moving in a range up to the facing position, and a predetermined position between both ends of the tubular body to measure the distance from the measurement position away from the outer circumference of the tubular body to the outer circumference of the tubular body The most important feature is that it has a distance measuring means installed.

本発明に係る管状体の振れ測定方法によれば、管状体は内面がチャックされた状態で管端チャックによりその一端部が保持されるので、管状体の前記一端部の内径中心と管端チャックの回転中心とが一致し易く、かつ、管状体の他端部の内径中心と当該管状体の一端部と対応する位置の管端チャックの回転中心とから管状体の仮想中心軸を求めるので、求められた仮想中心軸には管状体の偏肉量は影響せず、よって、管状体の仮想中心軸は当該管状体の真の中心軸により近いものとなる。
前記のように管状体の外周の前記測定値を、当該管状体の一端部の内面をチャックした前記管端チャックの回転軸線と前記管状体の仮想中心軸の偏倚量により補正する。感光体ドラムなどはその両端部内にフランジ部材が内接するように挿入された状態で回転されるが、本発明方法は管状体の一端部の内面をチャックして回転させながら振れを測定するので、感光体ドラムなどの実際の使用状態に沿って管状体の振れを測定することになる。
前記管状体の仮想中心軸は、当該管状体の他端部の内径中心と当該管状体の一端部と対応する位置の管端チャックの回転中心とから求められるので、本発明方法の過程で。
したがって、より正確に振れを測定することができる。
管状体は両端支持でなく片端の内面をチャックした状態で回転されながらその振れが測定されるので、両端の軸合わせが不要なことと、管状体を管端チャックへ保持させる時間と管状体を管端チャックから取り外す時間とがはるかに短縮されることとにより、より一層迅速に(短時間で)振れを測定することができる。
また、管状体は片端支持であるためその支持機構がより簡単(部品点数が少なくて済む)になり、設備費用がより低コストになる。
According to the tubular body run-out measuring method of the present invention, the tubular body is held at its one end by the tube end chuck while the inner surface is chucked. The virtual center axis of the tubular body is obtained from the inner diameter center of the other end of the tubular body and the rotation center of the tube end chuck at a position corresponding to the one end of the tubular body. The calculated virtual center axis does not affect the thickness deviation of the tubular body, and therefore, the virtual center axis of the tubular body is closer to the true center axis of the tubular body.
As described above, the measured value of the outer circumference of the tubular body is corrected by the amount of deviation between the rotation axis of the tube end chuck that chucks the inner surface of one end of the tubular body and the virtual central axis of the tubular body. The photosensitive drum and the like are rotated with the flange members inscribed at both ends thereof, but the method of the present invention measures the deflection while chucking and rotating the inner surface of one end of the tubular body. The vibration of the tubular body is measured along the actual usage state of the photosensitive drum or the like.
Since the virtual central axis of the tubular body is obtained from the inner diameter center of the other end portion of the tubular body and the rotation center of the tube end chuck at a position corresponding to the one end portion of the tubular body, in the course of the method of the present invention.
Therefore, the shake can be measured more accurately.
Since the deflection of the tubular body is measured while being rotated while the inner surface of one end is chucked instead of being supported at both ends, the axial alignment of both ends is unnecessary, the time for holding the tubular body on the tube end chuck, and the tubular body By significantly reducing the time for removing from the tube end chuck, the runout can be measured more quickly (in a short time).
In addition, since the tubular body is supported at one end, the support mechanism is simpler (the number of parts is reduced), and the equipment cost is lower.

本発明に係る管状体の振れ測定装置によれば、前記のように構成されているから前記本発明方法を円滑に実施することができるほか、全体の構成が簡単になる。   According to the tubular body shake measuring apparatus of the present invention, since it is configured as described above, the method of the present invention can be carried out smoothly and the overall configuration is simplified.

図1は本発明に係る管状体の振れ測定装置の概略正面図、図2は図1の実施形態の装置における変位計測手段,押え手段及び管状体との平面視における位置関係を示した拡大平面図、図3は図1の実施形態の装置における管端チャックの拡大平面図、図4は図1の実施形態の装置において管状体を管端チャックへセットして押え手段により押えた状態の部分縦断面図、図5は図1の実施形態の装置における距離測定手段の部分平面図である。   FIG. 1 is a schematic front view of a tubular body shake measuring apparatus according to the present invention, and FIG. 2 is an enlarged plan view showing a positional relationship between the displacement measuring means, the pressing means and the tubular body in the apparatus of the embodiment of FIG. 3 is an enlarged plan view of the tube end chuck in the apparatus of the embodiment of FIG. 1, and FIG. 4 is a portion of the apparatus of the embodiment of FIG. 1 in which the tubular body is set on the tube end chuck and is pressed by the pressing means. FIG. 5 is a partial plan view of the distance measuring means in the apparatus of the embodiment of FIG.

図1で示すように、管状体1の一端(下端)部をその内側面を押圧する状態で保持する管端チャック2は、所定の設置ベース上に設置されたエアスピンドル2aの中央部に取り付けられており、図示されていない駆動手段によりエアスピンドル2aを介して回転するように構成されている。
この実施形態において、管端チャック2は、中央部に突出する案内軸部20を、当該案内軸部20の基端外周へ回転しない状態において当該管端チャック2の回転軸線P’と直交するセット面21をそれぞれ有するバルーンチャック(但し、藤井精密工業株式会社製の商標名)である。
図3で示すように、管端チャック2の作動部は平面視において中心から等角度間隔に分割れた複数個(この実施形態では六個)の分割片20a〜20fから構成されている。この管端チャック2が管状体1の一端部を保持(チャック)する際には、所定の始動操作に伴い、図示しない配管を通じて供給される空気圧により、図4のように各分割片20a〜20fの案内軸部20の端部が周方向に向かって等量ずつ膨らむ(拡大する)状態に作動する。
As shown in FIG. 1, a tube end chuck 2 that holds one end (lower end) portion of a tubular body 1 in a state of pressing the inner surface thereof is attached to a central portion of an air spindle 2a installed on a predetermined installation base. It is configured to rotate via the air spindle 2a by a driving means (not shown).
In this embodiment, the tube end chuck 2 is set to be orthogonal to the rotation axis P ′ of the tube end chuck 2 in a state where the guide shaft portion 20 protruding to the center portion does not rotate to the outer periphery of the proximal end of the guide shaft portion 20. These are balloon chucks each having a surface 21 (trade name of Fujii Seimitsu Kogyo Co., Ltd.).
As shown in FIG. 3, the operating portion of the tube end chuck 2 is composed of a plurality (six in this embodiment) of divided pieces 20a to 20f that are divided at equal angular intervals from the center in plan view. When the tube end chuck 2 holds (chuck) one end portion of the tubular body 1, each of the divided pieces 20 a to 20 f as shown in FIG. The end of the guide shaft portion 20 is swelled (expanded) by an equal amount in the circumferential direction.

図1及び図2の符号3は渦電流変位センサからなる非接触式の変位計測手段であり、管状体1を管端チャック2のセット面21ヘセットするときから所要の測定を終えて当該セット面から取り除くまで間、当該管状体1と干渉しない所定の設置位置で保持ブロック30によって保持されており、保持ブロック30は側方ヘ延びる支持腕31へ取り付けられている。
変位計測手段3は、図示されていない駆動機構により、図1のように設置位置にある状態から、当該変位測定手段3のセンサヘッド面が前記管端チャック2へ保持されている管状体1の他端(上端)部内の計測位置と一致する状態の位置(以下単に「計測位置」と言う。)までの範囲を往復移動し、前記計測位置において当該計測位置から管状体1の内周までの距離を計測する。
Reference numeral 3 in FIG. 1 and FIG. 2 is a non-contact type displacement measuring means comprising an eddy current displacement sensor. When the tubular body 1 is set on the set surface 21 of the tube end chuck 2, the required measurement is finished and the set surface is set. Until it is removed, the holding block 30 is held at a predetermined installation position that does not interfere with the tubular body 1, and the holding block 30 is attached to a support arm 31 that extends sideways.
The displacement measuring means 3 is formed on the tubular body 1 in which the sensor head surface of the displacement measuring means 3 is held by the tube end chuck 2 from a state of being installed as shown in FIG. A range up to a position (hereinafter simply referred to as “measurement position”) that coincides with the measurement position in the other end (upper end) is reciprocated, and the measurement position to the inner circumference of the tubular body 1 at the measurement position. Measure distance.

図1,図2及び図4の符号4は、管状体1を管端チャック2のセット面21ヘセットするときから所要の測定を終えて当該セット面から取り除くまで間、当該管状体1と干渉しない所定の設置位置ヘ設置された押え部材であり、この設置位置から図4で示す位置まで下降して、管端チャック2のセット面21へセットされた管状体1を管端チャック2の回転軸線P’に沿って前記セット面21へ押し付けるように作動する。
この実施形態において、押え部材4は、平面視馬蹄形状等の保持枠41と、この保持枠41の下面へ所定の角度間隔をおいてねじ(図示しない)により三個以上取り付けられた下向きの接触片40とから構成されている。各接触片40は、図示のように円錐状又は円錐台状に形成されている。
この押え部材4は図2で示すように、保持枠41の馬蹄形状に沿った両側部へ前記変位計測手段3の支持腕31と平行するように取り付けられた一対の支持腕42,42を介して、図示しない駆動機構により図4の実線の設置位置から同図二点鎖線の位置まで往復移動する。
各接触片40は、管端チャック2の回転軸線P’から等距離に位置しており、図4のように押え部材4が管状体1を管端チャック2のセット面21へ押し付けるときは、その円錐面の一部が管状体1の他端内縁へ接触する。
前記押え部材4は不可欠な構成部材ではないが、後述のように管端チャック2が管状体1の一端部を内部からチャックしたときに、管端チャック2の回転軸線P’と管状体2の両端部の中心を結ぶ仮想中心軸とのずれをなるべく小さくするために有用である。
1, 2, and 4, reference numeral 4 does not interfere with the tubular body 1 from when the tubular body 1 is set on the set surface 21 of the tube end chuck 2 until it is removed from the set surface after the required measurement is completed. It is a pressing member installed at a predetermined installation position, descends from this installation position to the position shown in FIG. 4, and the tubular body 1 set on the set surface 21 of the pipe end chuck 2 is moved to the axis of rotation of the pipe end chuck 2. It operates to press against the set surface 21 along P ′.
In this embodiment, the pressing member 4 includes a holding frame 41 having a horseshoe shape or the like in plan view, and three or more downward contacts attached to the lower surface of the holding frame 41 with screws (not shown) at a predetermined angular interval. It consists of a piece 40. Each contact piece 40 is formed in a conical shape or a truncated cone shape as illustrated.
As shown in FIG. 2, the pressing member 4 is connected to both sides of the holding frame 41 along the horseshoe shape through a pair of support arms 42 and 42 attached to be parallel to the support arm 31 of the displacement measuring means 3. Then, it is reciprocated from the installation position of the solid line in FIG. 4 to the position of the two-dot chain line in FIG.
Each contact piece 40 is located at an equal distance from the rotation axis P ′ of the tube end chuck 2, and when the pressing member 4 presses the tubular body 1 against the set surface 21 of the tube end chuck 2 as shown in FIG. A part of the conical surface contacts the inner edge of the other end of the tubular body 1.
The pressing member 4 is not an indispensable component, but when the tube end chuck 2 chucks one end of the tubular body 1 from the inside as described later, the rotation axis P ′ of the tube end chuck 2 and the tubular body 2 This is useful for minimizing the deviation from the virtual center axis connecting the centers of both ends.

前記変位計測手段3や押え部材4とそれらを支持する各部材は、これらが前記のように往復移動するとき互いに干渉しないように設計されている。また、変位計測手段3及び押え部材4が設置位置に移動した状態では。前記変位計測手段3及び押え部材4とそれらを支持する各部材は、管状体1の管端チャック2へのセット及び管端チャック2からの取外しの際当該管状体1と干渉しないように設計されている。   The displacement measuring means 3 and the pressing member 4 and the members supporting them are designed so that they do not interfere with each other when they reciprocate as described above. In the state where the displacement measuring means 3 and the presser member 4 are moved to the installation position. The displacement measuring means 3 and the pressing member 4 and the members supporting them are designed so as not to interfere with the tubular body 1 when the tubular body 1 is set on the tube end chuck 2 and removed from the tube end chuck 2. ing.

5は管端チャック2ヘ片端保持された管状体1を介して対向配置されたレーザ光投光部50とレーザ光受光部51とからなる距離測定手段であり、前記管状体1はその直径が投光部50によるレーザ光の投光幅内に位置して(図5)いる。
前記距離測定手段5は、図5の投光部50によるレーザ光の投光幅のいずれかの片側に位置する測定位置52から、管状体1の回転時に前記測定基位置52へ最も近接する管状体1の外周の測定点10までの距離を測定する。
距離測定手段5は、管端チャック2へ保持されている管状体1の両端間の一箇所(例えば両端間の中央部すなわち長さ方向の中央部)で前記距離を測定するように設置されていても実施することができるが、前記管状体1の長さ方向に沿って所定間隔毎に位置する状態で複数設置するのが好ましい。
この実施形態では、前記管状体1の一端部から全長の1/10、1/2及び9/10の各位置へ都合三箇所に設置されている。
Reference numeral 5 denotes a distance measuring means comprising a laser beam projecting section 50 and a laser beam receiving section 51 which are arranged to face each other via a tubular body 1 held at one end to a tube end chuck 2, and the tubular body 1 has a diameter thereof. It is located within the light projection width of the laser light by the light projecting unit 50 (FIG. 5).
The distance measuring means 5 has a tubular shape that is closest to the measurement base position 52 when the tubular body 1 is rotated from the measurement position 52 that is located on one side of the projection width of the laser beam by the light projecting unit 50 of FIG. The distance to the measurement point 10 on the outer periphery of the body 1 is measured.
The distance measuring means 5 is installed so as to measure the distance at one place between both ends of the tubular body 1 held on the tube end chuck 2 (for example, the center portion between both ends, that is, the center portion in the length direction). However, it is preferable to install a plurality of the tubular bodies 1 so as to be located at predetermined intervals along the length direction of the tubular body 1.
In this embodiment, the tubular body 1 is installed at three convenient locations from the one end of the tubular body 1 to the positions of 1/10, 1/2 and 9/10 of the full length.

前記実施形態の測定装置を用いて管状体1の振れ測定する方法について以下説明する。
管状体1は、直径=20mm,肉厚=1mm,長さ260mmのアルミウム合金からなる高精度成形の管とする。
図1のように変位計測手段3及び押え部材4が設置位置に復帰している状態で、管状体1を例えば図示しないロボットなどにより保持して管端チャック2の真上に沿う状態に移動させ、当該管状体1の一端を管端チャック2のセット面21上にセットする。
次いで、前記管状体1を管端チャック2のセット面21へ当該管端チャック2の回転軸線に沿って押し付ける。このとき、押え部材4の各接触片40は、管端チャック2の回転軸線P’から等距離位置にあり、図4のように押え部材4が管状体1を管端チャック2のセット面21へ押し付けた状態では、そのれらの円錐面の一部が管状体1の他端内縁へ接触するようになっているので、管端チャック2の回転軸線P’に対する管状体1の両端部中心間を結ぶ仮想中心軸の上端部のずれ量はより小さくなる。
管状体1を前記のように押し付けた後、図示しないエアー供給配管からのエアーの供給により管端チャック2の各分割片20a〜20fの先端部を周方向に拡大させて管状体1の一端部内面をチャックした状態で保持させ、押え部材4を設置位置ヘ復帰させるとともに(あるいは復帰させた後)、変位計測手段3を図4の二点鎖線で示すように管状体1の上端部内の計測位置へ移動させる。
前記変位計測手段3の計測位置は、できるだけ管状体1の上端へ近付けた位置に設定するのが測定精度上好ましい。
A method for measuring the deflection of the tubular body 1 using the measurement apparatus of the embodiment will be described below.
The tubular body 1 is a high-precision formed tube made of an aluminum alloy having a diameter = 20 mm, a wall thickness = 1 mm, and a length of 260 mm.
1, the tubular body 1 is held by, for example, a robot (not shown) and moved to a state directly above the tube end chuck 2 while the displacement measuring means 3 and the pressing member 4 are returned to the installation position. One end of the tubular body 1 is set on the set surface 21 of the tube end chuck 2.
Next, the tubular body 1 is pressed against the set surface 21 of the tube end chuck 2 along the rotation axis of the tube end chuck 2. At this time, each contact piece 40 of the holding member 4 is at an equidistant position from the rotation axis P ′ of the tube end chuck 2, and the holding member 4 holds the tubular body 1 and the set surface 21 of the tube end chuck 2 as shown in FIG. 4. In the pressed state, a part of these conical surfaces comes into contact with the inner edge of the other end of the tubular body 1, so that the center of both ends of the tubular body 1 with respect to the rotation axis P ′ of the tube end chuck 2. The amount of deviation of the upper end portion of the virtual central axis that connects them becomes smaller.
After pressing the tubular body 1 as described above, the end of each of the divided pieces 20a to 20f of the tube end chuck 2 is expanded in the circumferential direction by supplying air from an air supply pipe (not shown), and one end of the tubular body 1 While holding the inner surface in a chucked state, the pressing member 4 is returned to the installation position (or after being returned), and the displacement measuring means 3 is measured in the upper end portion of the tubular body 1 as indicated by a two-dot chain line in FIG. Move to position.
It is preferable in terms of measurement accuracy that the measurement position of the displacement measuring means 3 is set as close to the upper end of the tubular body 1 as possible.

前記の状態での前記変位計測手段3の位置における管端チャック2の回転軸線P’と直交する面において、管状体1と変位計測手段3及び回転軸線P’との関係を平面図で示すと図6のようになる。図6には回転軸線P’と直交する面におけるX,Y座標が示されており、X軸は回転軸線P’と直交しY軸は回転軸線P’の位置でX軸と直交している。
前記の状態で管端チャック2を一定方向へ360°回転させながら、変位計測手段3によりその測定位置(変位計測手段のヘッド面)から管状体1の内周までの距離を連続的に計測し、管状体1の所定の回転角度θ毎(例えば1°〜10°、ただしこの実施形態では1°)の計測値s(θ)を記録する。例えば、当該計測値を図示しないコンピュータ(本発明方法を実施するための各種の演算や算出などに使用されているコンピュータ)のメモリに格納する。
In a plane perpendicular to the rotational axis P ′ of the tube end chuck 2 at the position of the displacement measuring means 3 in the above state, the relationship between the tubular body 1, the displacement measuring means 3 and the rotational axis P ′ is shown in a plan view. As shown in FIG. FIG. 6 shows X and Y coordinates on a plane orthogonal to the rotation axis P ′. The X axis is orthogonal to the rotation axis P ′, and the Y axis is orthogonal to the X axis at the position of the rotation axis P ′. .
While the tube end chuck 2 is rotated 360 ° in a predetermined direction in the above-described state, the displacement measuring means 3 continuously measures the distance from the measurement position (the head surface of the displacement measuring means) to the inner periphery of the tubular body 1. The measured value s (θ) for each predetermined rotation angle θ of the tubular body 1 (for example, 1 ° to 10 °, but 1 ° in this embodiment) is recorded. For example, the measured value is stored in the memory of a computer (not shown) (computer used for various calculations and calculations for carrying out the method of the present invention).

管状体1が図6の矢印のように反時計方向に回転するとき、これを回転の基準方向である管状体1の下端方向から見た場合は管状体1は時計方向に回転する。変位計測手段3や距離測定手段5が計測ないし測定する対応位置の回転角度は管状体1の上端方向から見た当該管状体1の回転の逆方向、すなわち、管状体1の下端方向から見た回転角度であるので、この明細書では便宜上、管状体1の回転をその上端方向から見て当該管状体1の回転が各回転角度毎に停止したと仮定した場合の回転角度を、「回転角度θ’」と記載し、管状体1の回転をその下端方向から見た場合の回転角度を「回転角度θ」と記載することとする。
したがって、回転角度θ=360°−回転角度θ’である。
この明細書で「回転角度θ’」は、前記のように管状体1の回転を停止させたときのX軸(X>0)と、回転軸線P’と当該位置における管状体1の内径を結ぶ線とがなす角度であって、後述のように管状体1の上端部における内径中心Oを求めるために用いる。
When the tubular body 1 rotates counterclockwise as indicated by the arrow in FIG. 6, when viewed from the lower end direction of the tubular body 1 which is the reference direction of rotation, the tubular body 1 rotates clockwise. The rotation angle of the corresponding position measured or measured by the displacement measuring means 3 or the distance measuring means 5 is viewed from the opposite direction of the rotation of the tubular body 1 as viewed from the upper end direction of the tubular body 1, that is, viewed from the lower end direction of the tubular body 1. Since this is a rotation angle, in this specification, for convenience, the rotation angle when the rotation of the tubular body 1 is assumed to stop at each rotation angle when the rotation of the tubular body 1 is viewed from the upper end direction is expressed as “rotation angle”. θ ′ ”, and the rotation angle when the rotation of the tubular body 1 is viewed from the lower end direction is described as“ rotation angle θ ”.
Therefore, the rotation angle θ = 360 ° −the rotation angle θ ′.
In this specification, “rotation angle θ ′” means the X axis (X> 0) when the rotation of the tubular body 1 is stopped as described above, the rotation axis P ′, and the inner diameter of the tubular body 1 at the position. This is an angle formed by the connecting line, and is used to obtain the inner diameter center O at the upper end of the tubular body 1 as will be described later.

図6で表示されている他の符号は次の記載のとおりである。
s(θ’),s(θ):ある回転角度θ’,θにおける変位計測手段3の計測距離
L:回転軸線P’〜変位検出手段3の計測ヘッド面間距離
e:管状体の内径中心O〜回転軸線P’間距離
α:管状体の回転角度θ,θ’=0°のときの、管状体の内径中心Oと回転軸線P’とを結ぶ線とX軸(X>0)とのなす角度
The other symbols displayed in FIG. 6 are as described below.
s (θ ′), s (θ): Measurement distance L of the displacement measuring means 3 at a certain rotation angle θ ′, θ: Distance between the rotation axis P ′ and the measuring head surface of the displacement detecting means 3 e: Center of inner diameter of the tubular body Distance between O and rotation axis P ′ α 0 : Line connecting the inner diameter center O of the tubular body and the rotation axis P ′ when the rotation angle θ, θ ′ = 0 ° of the tubular body and the X axis (X> 0) Angle made with

前記変位計測手段3による計測値s(θ)と当該計測値に対応する回転角度データに、即時的に演算処理を施して管状体1の仮想中心軸O’(図9)を算出する。
管状体1の仮想中心線O’を算出するまでの手順を以下詳細に説明する。
ステップ1
前記のように、管状体1を回転させながら計測位置から管状体1の上端部の内周までの距離を連続的に計測し、管状体1の回転角度θ毎の計測値を記録する。
A virtual center axis O ′ (FIG. 9) of the tubular body 1 is calculated by immediately performing a calculation process on the measurement value s (θ) obtained by the displacement measurement means 3 and the rotation angle data corresponding to the measurement value.
The procedure for calculating the virtual center line O ′ of the tubular body 1 will be described in detail below.
Step 1
As described above, the distance from the measurement position to the inner circumference of the upper end of the tubular body 1 is continuously measured while rotating the tubular body 1, and the measured value for each rotation angle θ of the tubular body 1 is recorded.

ステップ2
変位計測手段3の計測距離s(θ’)と回転角度θ’を次式1,2によりXY座標データに変換する(回転軸線が原点となる)。
X(θ’)=s(θ’)・cos(θ’)……式1
Y(θ’)=s(θ’)・sin(θ’)……式2
Step 2
The measurement distance s (θ ′) and the rotation angle θ ′ of the displacement measuring means 3 are converted into XY coordinate data by the following equations 1 and 2 (the rotation axis is the origin).
X (θ ′) = s (θ ′) · cos (θ ′) …… Equation 1
Y (θ ′) = s (θ ′) · sin (θ ′) …… Equation 2

ステップ3
前記座標データを図7のようにグラフ化し(円になる)、最小中心二乗法により管状体1の上端部の内径中心Oを求める。図7では回転角度θ’=0°,10°,20°…330°,340°,350°の36の点を用いている。
前記内径中心Oは、最小中心二乗法ではなく、管状体が360°回転した時の各回転角度間隔(θ)毎の変位計測手段3の計測値その最大値からその最小値を減算(式:e=S[θ]max−s[θ]min)することによって求めても実施することができる。
Step 3
The coordinate data is graphed as shown in FIG. 7 (it becomes a circle), and the inner diameter center O of the upper end portion of the tubular body 1 is obtained by the least center square method. In FIG. 7, 36 points of rotation angles θ ′ = 0 °, 10 °, 20 °... 330 °, 340 °, 350 ° are used.
The inner diameter center O is not a minimum center square method, and the minimum value is subtracted from the maximum value measured by the displacement measuring means 3 at each rotation angle interval (θ) when the tubular body is rotated 360 ° (formula: e = S [θ] max−s [θ] min).

ステップ4
回転軸線P’と管状体1の上端部の内径中心Oとから、次式3、4により、内径中心O〜回転軸線P’間距離eと、内径中心Oと回転軸線P’を結ぶ線とX軸(X>0)とのなす角度αを求める。なお、回転軸線を原点としているので回転軸線の座標は(0,0)である。
・内径中心O(x,y)のとき
e=√(x+y)……式3
α00=|tan−1(y/x)……式4
ただし
・x>0,y>=0のとき、α=α00
・x>0,y<0のとき、α=α00+90°
・x<0,y<0のとき、α=α00+180°
・x>=0,y<0のとき、α=α00+270°
以上により求められた内径中心Oと回転軸線P’とを結ぶ線とX軸とのなす角度αと、管端チャック2のセット面21の回転中心Pとからで管状体1の仮想中心線O’(図9)を算出する。
Step 4
From the rotation axis P ′ and the inner diameter center O of the upper end portion of the tubular body 1, a distance e between the inner diameter center O and the rotation axis P ′ and a line connecting the inner diameter center O and the rotation axis P ′ by the following expressions 3 and 4. An angle α 0 formed with the X axis (X> 0) is obtained. Since the rotation axis is the origin, the coordinates of the rotation axis are (0, 0).
・ In the case of inner diameter center O (x, y) e = √ (x 2 + y 2 ) …… Equation 3
α 00 = | tan −1 (y / x) …… Equation 4
However, when x> 0 and y> = 0, α 0 = α 00
・ When x> 0, y <0, α 0 = α 00 + 90 °
・ When x <0, y <0, α 0 = α 00 + 180 °
・ When x> = 0, y <0, α 0 = α 00 + 270 °
The virtual center line of the tubular body 1 from the angle α 0 formed by the line connecting the inner diameter center O and the rotation axis P ′ obtained as described above and the X axis and the rotation center P of the set surface 21 of the tube end chuck 2. O ′ (FIG. 9) is calculated.

なお、回転軸線P’〜変位検出手段の計測位置間距離Lはその値が比較的大きい場合でも、内径中心O〜回転軸線P’間距離eと、回転角度θ’=0°のときの管状体の内径中心Oと回転軸線P’とを結ぶ線とX軸とのなす角度αの算出誤差への影響が微小であるので、これを無視することが可能である。すなわち、これは図10(a)のような回転軸線P’〜変位検出手段の計測位置間距離Lと前記変位計測手段3による計測値s(θ)からグラフ化された円を図10(b)のように半径方向へLだけ縮小すると、図10(c)のように前記変位計測手段3による計測値s(θ)からグラフ化された円と等しくなり、前記Lを無視しても内径中心Oはほとんど変わらないことから説明できる。
例えば、L=10mmのときこれを前記算出に用いた場合とこれを無視した場合、管状体内径中心O〜回転軸線P’間距離eについて0.02μmの差を生じ、管状体の回転角度θ’=0°のときの、管状体の内径中心Oと回転軸線P’とを結ぶ線とX軸とのなす角度α角度について0.21°の差を生じたに過ぎなかった。
Note that the distance L between the rotation axis P ′ and the measurement position of the displacement detection means is tubular when the value is relatively large and the distance e between the inner diameter center O and the rotation axis P ′ and the rotation angle θ ′ = 0 °. Since the influence on the calculation error of the angle α 0 formed by the line connecting the inner diameter center O of the body and the rotation axis P ′ and the X axis is very small, this can be ignored. That is, as shown in FIG. 10A, a circle graphed from the rotation axis P ′ to the distance L between the measurement positions of the displacement detection means and the measurement value s (θ) measured by the displacement measurement means 3 is plotted. ), When reduced in the radial direction by L, it becomes equal to a circle graphed from the measured value s (θ) measured by the displacement measuring means 3 as shown in FIG. This can be explained from the fact that the center O hardly changes.
For example, when L = 10 mm, when this is used for the calculation and when this is ignored, a difference of 0.02 μm is generated with respect to the distance e between the inner diameter center O of the tubular body and the rotation axis P ′, and the rotation angle θ of the tubular body Only a difference of 0.21 ° was produced with respect to the angle α 0 angle formed by the line connecting the inner diameter center O of the tubular body and the rotation axis P ′ and the X axis when “= 0 °”.

図8は、前記変位計測手段3の前記計測位置のレベルでの回転軸線P’と直交する面における管状体1の概略端面図であり、図9は管状体1を図8のY軸方向に沿って見た管状体全長の概略図である。なお、図8の二点鎖線で示す管状体1は、後述の補正データで補正された状態を示している。
前記のように管状体1を360°回転させながら、変位計測手段3によりその計測位置から管状体1の内周までの距離を連続的に計測するのと並行して、図5の距離測定手段5により、図9のように管状体1の長さ方向の所定間隔毎の測定位置L1,L2,L3(図5の距離測定手段5の設置レベル)において、管状体1の外周から離れた測定位置52から管状体1の外周の測定点10までの距離a,a,aを連続的に測定する。
図8及び図9の記載から明かなように、前記測定位置52は、管状体1の外周方向に離れかつ管端チャック2の回転軸線P’との平行線53(図8では点で記載されている)を通る基準面54上に位置しており、測定点10は前記測定位置52において当該測定位置へ最も近接する管状体1の外周上の位置である。ただし、図9の場合測定位置52は各レベルL1〜L3において同一垂直面上に位置していなくてもよい。
図9で示す前記距離a,a,aの管状体1に対する測定レベル(管状体1の長さ方向の所定間隔毎の三箇所)L1〜L3は、この実施形態では前記のように管状体1の長さ=hとして当該管状体1の上端から順にL1=9/10h,L2=1/2h,L3=1/10hの位置である。
8 is a schematic end view of the tubular body 1 in a plane orthogonal to the rotational axis P ′ at the level of the measurement position of the displacement measuring means 3, and FIG. 9 shows the tubular body 1 in the Y-axis direction of FIG. It is the schematic of the tubular body full length seen along. In addition, the tubular body 1 shown with the dashed-two dotted line of FIG. 8 has shown the state correct | amended by the correction data mentioned later.
While the tubular body 1 is rotated 360 ° as described above, the distance measuring means shown in FIG. 5 is simultaneously measured by the displacement measuring means 3 while continuously measuring the distance from the measurement position to the inner periphery of the tubular body 1. 5, measurement away from the outer periphery of the tubular body 1 at the measurement positions L1, L2, L3 (installation level of the distance measuring means 5 in FIG. 5) at predetermined intervals in the length direction of the tubular body 1 as shown in FIG. The distances a 1 , a 2 , a 3 from the position 52 to the measurement point 10 on the outer periphery of the tubular body 1 are continuously measured.
As is apparent from the description of FIGS. 8 and 9, the measurement position 52 is separated in the outer peripheral direction of the tubular body 1 and is parallel to the rotation axis P ′ of the tube end chuck 2 (indicated by dots in FIG. 8). The measurement point 10 is a position on the outer circumference of the tubular body 1 that is closest to the measurement position at the measurement position 52. However, in the case of FIG. 9, the measurement position 52 may not be located on the same vertical plane in each of the levels L1 to L3.
The measurement levels (three locations at predetermined intervals in the length direction of the tubular body 1) L1 to L3 with respect to the tubular body 1 at the distances a 1 , a 2 and a 3 shown in FIG. 9 are as described above in this embodiment. The length of the tubular body 1 is set at h = L1 = 9 / 10h, L2 = 1 / 2h, L3 = 1 / 10h in order from the upper end of the tubular body 1.

前記のように測定された各測定レベルL1〜L3における測定距離a,a,aは、前記変位計測手段3によってその計測位置から管状体1の上端部内周までの距離を測定した際に、管状体1の所定の回転角度θ(この実施形態では1°)毎の計測値s(θ)を記録したので、その各回転角度θの角度データを利用してそれに対応する測定距離a,a,aの測定値を選択すべく即時的に処理する。
これらの距離測定値や角度データ及び関連データに演算処理を施して、管状体1の仮想中心線O’の回転軸線P’に対する偏倚量(補正量)を算出し、当該偏倚量によって前記仮想中心線O’を回転軸線P’と一致させる方向へ補正し、各測定位置における管状体1の振れを算出する。
The measurement distances a 1 , a 2 , and a 3 at the measurement levels L1 to L3 measured as described above are measured when the distance from the measurement position to the inner periphery of the upper end portion of the tubular body 1 is measured by the displacement measuring means 3. Since the measurement value s (θ) for each predetermined rotation angle θ (1 ° in this embodiment) of the tubular body 1 is recorded, the corresponding measurement distance a is obtained using the angle data of each rotation angle θ. Immediate processing is performed to select the measured values of 1 , a 2 , and a 3 .
By calculating the distance measurement value, the angle data, and the related data, a deviation amount (correction amount) with respect to the rotation axis P ′ of the virtual center line O ′ of the tubular body 1 is calculated, and the virtual center is calculated based on the deviation amount. The line O ′ is corrected so as to coincide with the rotation axis P ′, and the deflection of the tubular body 1 at each measurement position is calculated.

以下、前記距離a,a,aを測定した後管状体1の振れ測定までの手順を具体的に説明する。
ステップ5
各回転角度θ毎に、前記のように測定した距離a,a,aと、管状体1の上端部における内径中心O〜管端チャック回転軸線P’間距離eと、前記内径中心Oと回転軸線P’とを結ぶ線とX軸(X>0)のなす角度α(θ)から、次の式5〜7により各測定位置L1,L2,L3における振れ補正データa’(θ),a’(θ),a’(θ)を求める。
’(θ)=a(θ)+e・cosα(θ)・9/10……式5
’(θ)=a(θ)+e・cosα(θ)・1/2………式6
’(θ)=a(θ)+e・cosα(θ)・1/10……式7
ただし
α(θ):α+θ
θ:管状体の回転角度(0〜360°)
前記各式から明かなように、実際に演算される補正量である偏倚量e・cosα(θ)は図8及び図9の管状体1の上端部における、回転軸線P’とそれに対する平行線53とを通る面に投影された回転軸線P’と管状体の内径中心Oとの距離の変化量であり、平面視においては回転軸線O’に対する仮想中心軸P’の偏心量すなわち回転軸線O’と内径中心O間の距離eである。
Hereinafter, the procedure from the measurement of the distances a 1 , a 2 , a 3 to the deflection measurement of the tubular body 1 will be specifically described.
Step 5
For each rotation angle θ, the distances a 1 , a 2 , a 3 measured as described above, the distance e between the inner diameter center O and the tube end chuck rotation axis P ′ at the upper end of the tubular body 1, and the inner diameter center From the angle α (θ) formed by the line connecting O and the rotational axis P ′ and the X axis (X> 0), the shake correction data a 1 ′ (at the measurement positions L1, L2, and L3) according to the following equations 5-7: θ), a 2 ′ (θ), a 3 ′ (θ) are obtained.
a 1 ′ (θ) = a 1 (θ) + e · cos α (θ) · 9/10 (Formula 5)
a 2 ′ (θ) = a 2 (θ) + e · cos α (θ) · 1/2 Equation 6
a 3 ′ (θ) = a 3 (θ) + e · cos α (θ) · 1/10.
Where α (θ): α 0 + θ
θ: rotation angle of the tubular body (0 to 360 °)
As is clear from the above equations, the deviation amount e · cos α (θ), which is the correction amount actually calculated, is the rotation axis P ′ and the parallel line to the rotation axis P ′ at the upper end portion of the tubular body 1 in FIGS. 53, the amount of change in the distance between the rotation axis P ′ projected on the plane passing through 53 and the inner diameter center O of the tubular body. In plan view, the amount of eccentricity of the virtual center axis P ′ with respect to the rotation axis O ′, that is, the rotation axis O The distance e between 'and the inner diameter center O.

ステップ6
次の式8〜10により、管状体が360°回転したときの各測定レベルL1,L2,L3における振れを算出する。
L1の位置の振れ=a’(θ)max−a’(θ)min……式8
L2の位置の振れ=a’(θ)max−a’(θ)min……式9
L3の位置の振れ=a’(θ)max−a’(θ)min……式10
Step 6
The shakes at the measurement levels L1, L2, and L3 when the tubular body is rotated 360 ° are calculated by the following equations 8 to 10.
L1 position fluctuation = a 1 ′ (θ) max−a 1 ′ (θ) min.
L2 position fluctuation = a 2 ′ (θ) max−a 2 ′ (θ) min.
L3 position fluctuation = a 3 ′ (θ) max−a 3 ′ (θ) min.

前記実施形態の管状体の振れ測定方法によれば、管状体1は内面がチャックされた状態で管端チャック2によりその一端部が保持されるので、管状体1の前記一端部の内径中心と管端チャック2の回転中心とが一致し易く、かつ、管状体1の他端部内面の前記計測値に演算処理を施して管状体1の仮想中心線O’を求めるので、その仮想中心線O’は当該管状体1の真実の中心線とより一致し易い。
前記のように管状体1の外周の前記測定値を、当該管状体1の一端部の内面をチャックした前記管端チャック2の回転軸線P’と前記管状体1の仮想中心軸P’の偏倚量により補正する。感光体ドラムなどはその両端部内にフランジ部材が内接するように挿入された状態で回転されるが、前記測定方法は管状体1の一端部の内面をチャックして回転させながら振れを測定するので、感光体ドラムなどの実際の使用状態に沿って管状体の振れを測定することになる。
前記管状体1の仮想中心軸は、当該管状体1の他端部の内径中心Oと当該管状体1の一端部と対応する位置の管端チャック2の回転中心とから求められるので、管状体1の偏肉量も測定される。
したがって、より正確に振れを測定することができる。
According to the tubular body run-out measuring method of the embodiment, the tubular body 1 is held at its one end by the tube end chuck 2 with its inner surface chucked, so that the inner diameter center of the one end of the tubular body 1 is Since the center of rotation of the tube end chuck 2 is likely to coincide with each other, and the virtual center line O ′ of the tubular body 1 is obtained by performing arithmetic processing on the measured value on the inner surface of the other end of the tubular body 1, the virtual center line O ′ is more likely to coincide with the true center line of the tubular body 1.
As described above, the measured value of the outer periphery of the tubular body 1 is obtained by deviating the rotation axis P ′ of the tube end chuck 2 that chucks the inner surface of one end of the tubular body 1 and the virtual central axis P ′ of the tubular body 1. Correct by amount. The photosensitive drum or the like is rotated in a state where the flange members are inscribed in both end portions thereof. However, the measurement method measures vibration while chucking and rotating the inner surface of one end portion of the tubular body 1. Then, the shake of the tubular body is measured along the actual usage state of the photosensitive drum or the like.
Since the virtual central axis of the tubular body 1 is obtained from the inner diameter center O of the other end portion of the tubular body 1 and the rotation center of the tube end chuck 2 at a position corresponding to the one end portion of the tubular body 1, the tubular body 1 A thickness deviation of 1 is also measured.
Therefore, the shake can be measured more accurately.

管状体1は両端支持でなく片端支持状態でその振れが測定されるので、両端の軸合わせが不要なことと、管状体1を管端チャック2へ保持させる時間と管状体1を管端ホルダ2から外す時間とがはるかに短縮されることとにより、より一層迅速に(短時間で)測定することができる。
また、管状体1は片端支持であるためその支持機構がより簡単(部品点数が少なくて済む)になり、設備費用がより低コストになる。
Since the deflection of the tubular body 1 is measured in a state where the tubular body 1 is supported at one end, not at both ends, axial alignment at both ends is unnecessary, the time for holding the tubular body 1 on the tube end chuck 2, and the tubular body 1 at the tube end holder. Measurement time can be made even faster (in a short time) by greatly reducing the time taken to remove from 2.
In addition, since the tubular body 1 is supported at one end, the support mechanism is simpler (the number of parts is small), and the equipment cost is further reduced.

前記実施形態の振れ測定方法および測定装置によれば、管状体1の内周における前記距離の計測及び外面の前記距離の測定は、いずれも非接触の計測手段ないし測定手段により行われるので、振れの測定中に管状体1の内外面を傷付けるおそれが少ない。
管状体1は管端チャック2へ縦方向に沿う姿勢で保持されるので、測定機器類の設置や作動がより容易である。
According to the shake measurement method and measurement apparatus of the embodiment, the measurement of the distance on the inner periphery of the tubular body 1 and the measurement of the distance on the outer surface are both performed by non-contact measurement means or measurement means. There is little risk of damaging the inner and outer surfaces of the tubular body 1 during the measurement.
Since the tubular body 1 is held on the tube end chuck 2 in a posture along the vertical direction, it is easier to install and operate measuring instruments.

管状体1は管端チャック2のセット面21へセットされた後当該ホルダへ保持される前に、押え部材4により前記管端ホルダ2の回転軸線に沿って前記セット面21へ押付けられるので、管端ホルダ2へ保持されたときに前記回転軸線と管状体1の中心線とのずれが小さくなる。
押え部材4は、管状体1を前記管端ホルダ2のセット面21へ押し付けたときにセット面21の反対側の当該管状体1の端部内周縁に円錐面の一部が接触する三個以上の円錐体40(又は円錐台体)を有し、全円錐体40間の中心部は管端ホルダ2の回転軸線へほぼ沿っているので、管状体1を前記セット面21へ押し付けたとき管状体の中心線と前記回転軸線とのずれが一層小さくなる。
After the tubular body 1 is set on the set surface 21 of the tube end chuck 2 and is held by the holder, the tubular body 1 is pressed against the set surface 21 along the rotation axis of the tube end holder 2 by the pressing member 4. When the tube end holder 2 is held, the deviation between the rotation axis and the center line of the tubular body 1 is reduced.
There are three or more pressing members 4 in which a part of the conical surface comes into contact with the inner peripheral edge of the end of the tubular body 1 opposite to the set surface 21 when the tubular body 1 is pressed against the set surface 21 of the tube end holder 2. Since the central portion between all the cones 40 is substantially along the axis of rotation of the tube end holder 2, the tubular body 1 is tubular when pressed against the set surface 21. The deviation between the center line of the body and the rotation axis is further reduced.

その他の実施形態
管端チャック2は管状体1を垂直姿勢でなく傾斜姿勢又は水平姿勢で保持するように構成されていても実施することができるが、垂直姿勢で保持するいわゆる縦型であるのがより好ましい。
前記変位計測手段3には、レーザ光用いた変位センサやその他の非接触式変位計測手段を使用し、あるいは接触式変位計測手段を使用することもできる。
管状体1の外周の測定点を測定する測定位置は、管状体1の長さ方向の一箇所に設けても実施することができる。
また、前記実施形態のように管状体1の長さ方向に沿って複数箇所に設ける場合には、各測定位置に対応する位置へそれぞれ距離測定手段5を設置するのに代えて、一組のレーザ投光部とレーザ受光部とを設置し、当該投光部と受光部とが管状体の長さ方向へ各測定位置を含む範囲を互いに同調して往復移動するように構成しても実施することができる。
この場合には、投光部と受光部が一つの設置位置に移動する毎に管状体を360°回転させる必要がある。
前記距離測定手段5には、渦電流変位センサやレーザ変位センサなどを用いることができるほか、接触式変位計を使用することもできる。
Other Embodiments Although the tube end chuck 2 can be implemented even if it is configured to hold the tubular body 1 in an inclined posture or a horizontal posture instead of a vertical posture, it is a so-called vertical type that holds the tubular body 1 in a vertical posture. Is more preferable.
As the displacement measuring means 3, a displacement sensor using laser light or other non-contact type displacement measuring means can be used, or a contact type displacement measuring means can also be used.
The measurement position for measuring the measurement point on the outer periphery of the tubular body 1 can be implemented even if it is provided at one place in the length direction of the tubular body 1.
Moreover, when providing in multiple places along the length direction of the tubular body 1 like the said embodiment, it replaces with installing the distance measurement means 5 in the position corresponding to each measurement position, respectively, and it is a set. Even if a laser projector and a laser receiver are installed, and the projector and the receiver are configured to reciprocate in synchronism with each other in the length direction of the tubular body including the respective measurement positions. can do.
In this case, it is necessary to rotate the tubular body 360 ° every time the light projecting unit and the light receiving unit move to one installation position.
The distance measuring means 5 can be an eddy current displacement sensor, a laser displacement sensor, or the like, or a contact displacement meter.

押え部材4の接触片40が三個以上である場合、それらは前記のように逆円錐状又は逆円錐台状である場合のほか、例えば図11で示すように、管状体1を押えた状態において、当該管状体1の端部内縁部へ接触する外側面を連続させたときの仮想外側面が総体として円錐面状を呈するものであれば、図9における管状体1の仮想中心軸O’と管端チャックの回転軸線P’とをより一致させ易いように実施することができる。
したがって、接触片40は複数個でなく例えば図12で示すように円錐台形状ないし円錐形状を有する単一のものでも同様に実施することができる。
When there are three or more contact pieces 40 of the pressing member 4, they are in the inverted cone shape or the inverted truncated cone shape as described above, as well as the state where the tubular body 1 is pressed as shown in FIG. 11, for example. 9, if the virtual outer surface when the outer surface that contacts the inner edge of the end portion of the tubular body 1 is made to have a conical shape as a whole, the virtual central axis O ′ of the tubular body 1 in FIG. And the rotation axis P ′ of the tube end chuck can be more easily matched.
Therefore, a single contact piece 40 having a truncated cone shape or a cone shape as shown in FIG.

前記のように構成された測定装置は、管状体の形状測定,外径測定,真円度の測定などにも利用することができる。   The measuring apparatus configured as described above can also be used for measuring the shape of a tubular body, measuring the outer diameter, measuring the roundness, and the like.

本発明に係る一実施形態の管状体の振れ測定装置の概略正面図である。1 is a schematic front view of a tubular body shake measuring apparatus according to an embodiment of the present invention. 前記実施形態の測定装置の変位計測手段と押え部材との位置関係を示す概略平面図である。It is a schematic plan view which shows the positional relationship of the displacement measurement means of the measuring apparatus of the said embodiment, and a pressing member. 前記実施形態の測定装置における管端チャックの拡大平面図である。It is an enlarged plan view of the tube end chuck in the measuring apparatus of the embodiment. 前記実施形態の測定装置の一部省略拡大縦断面図である。It is a partially omitted enlarged vertical sectional view of the measuring apparatus of the embodiment. 前記実施形態の測定装置における距離測定手段と管状体との位置関係を示す一部省略拡大平面図である。It is a partially omitted enlarged plan view showing the positional relationship between the distance measuring means and the tubular body in the measuring apparatus of the embodiment. 変位計測手段により計測されたデータをXY座標に変換する演算処理手順を説明するための図であって、前記変位計測手段の位置で水平方向に切断した管状体の概略端面図である。It is a figure for demonstrating the arithmetic processing procedure which converts the data measured by the displacement measurement means into XY coordinates, Comprising: It is a schematic end elevation of the tubular body cut | disconnected in the horizontal direction at the position of the said displacement measurement means. 変位計測手段により計測されたデータをXY座標データに変換した後当該変換後のデータをXY座標上にグラフ化した状態の説明図である。It is explanatory drawing of the state which converted the data measured by the displacement measurement means into XY coordinate data, and graphed the data after the said conversion on XY coordinates. 距離測定手段により測定されたデータを補正する補正データを算出する要領を説明するための図であって、変位計測手段の位置で水平方向に切断した管状体の概略端面図である。It is a figure for demonstrating the point which calculates the correction data which correct | amends the data measured by the distance measurement means, Comprising: It is a schematic end elevation of the tubular body cut | disconnected in the horizontal direction in the position of the displacement measurement means. 距離測定手段により測定されたデータを補正データで補正する演算処理手順を説明するための管状体の概略側面図である。It is a schematic side view of the tubular body for demonstrating the arithmetic processing procedure which correct | amends the data measured by the distance measurement means with correction data. 管端チャックの回転軸線P’から変位検出手段の計測位置までの距離Lの管状体の内径中心Oに対する影響を説明するための原理説明図で、(a)図は回転軸線P’〜変位検出手段の計測位置までの距離Lを半径とする円と当該距離Lに変位検出手段による計測値s(θ)を加えた円との関係を示す説明図、(b)図は 前記距離Lと前記計測値s(θ)からグラフ化された円を半径方向へ前記距離Lだけ縮小した説明図、(c)図は変位計測手段による計測値s(θ)からグラフ化された円を示す説明図である。FIG. 6 is a principle explanatory diagram for explaining the influence of the distance L from the rotation axis P ′ of the tube end chuck to the measurement position of the displacement detection means on the inner diameter center O of the tubular body. FIG. An explanatory view showing the relationship between a circle whose radius is the distance L to the measurement position of the means and a circle obtained by adding the measurement value s (θ) by the displacement detection means to the distance L, FIG. An explanatory diagram in which a circle graphed from the measured value s (θ) is reduced in the radial direction by the distance L, FIG. 5C is an explanatory diagram showing a circle graphed from the measured value s (θ) by the displacement measuring means. It is. 押え部材における接触片の変形形態を示す部分断面図である。It is a fragmentary sectional view which shows the deformation | transformation form of the contact piece in a pressing member. 押え部材における接触片の他の変形形態を示す部分断面図である。It is a fragmentary sectional view which shows the other deformation | transformation form of the contact piece in a pressing member.

符号の説明Explanation of symbols

1 管状体
10 管状体外周の測定点
2 管端チャック
2a エアスピンドル
20 案内軸部
21 セット面
3 変位計測手段
4 押え部材
40 接触片
41 保持枠
5 距離測定手段
50 レーザ投光部
51 レーザ受光部
52 測定位置
53 平行線
54 基準面
P 管端チャックの回転中心
P’ 管端チャックの回転軸線
O 内径中心
O’ 仮想中心軸
L1,L2,L3 管状体の長さ方向に沿う所定間隔毎の位置
,a,a 距離
DESCRIPTION OF SYMBOLS 1 Tubular body 10 Measuring point of tubular body outer periphery 2 Tube end chuck 2a Air spindle 20 Guide shaft part 21 Set surface 3 Displacement measuring means 4 Pressing member 40 Contact piece 41 Holding frame 5 Distance measuring means 50 Laser projecting part 51 Laser receiving part 52 Measurement position 53 Parallel line 54 Reference plane P Rotation center P ′ of tube end chuck Rotation axis O of tube end chuck O Diameter center O ′ Virtual center axes L1, L2, L3 Positions at predetermined intervals along the length direction of the tubular body a 1 , a 2 , a 3 distance

Claims (17)

回転可能な管端チャックへ管状体の内側面を押圧する状態で当該管状体の一端部を保持させ、
前記管端チャックにより前記管状体を回転させながら、当該管状体の他端部内における所定の計測位置から当該管状体の内周までの距離を計測して所定の回転角度毎の計測値を得るとともに、前記管状体の両端間の所定位置であって当該管状体の外周方向に離れた測定位置から前記管状体の外周までの距離を測定して前記回転角度毎の測定値を得、
前記計測値に演算処理を施すことにより管状体の前記他端部の内径中心を算出して当該内径中心と当該管状体の一端部と対応する位置における前記管端チャックの回転中心とから前記管状体の仮想中心軸を求め、
前記測定位置において前記管端チャックの回転軸線と直交する面における前記回転軸線に対する前記仮想中心軸の偏倚量により前記測定値を補正する手段を含む、
ことを特徴とする管状体の振れ測定方法。
Holding one end of the tubular body in a state of pressing the inner surface of the tubular body to a rotatable tube end chuck;
While measuring the distance from a predetermined measurement position in the other end of the tubular body to the inner periphery of the tubular body while rotating the tubular body by the tube end chuck, a measurement value for each predetermined rotation angle is obtained. Measuring the distance from the measurement position at a predetermined position between both ends of the tubular body to the outer circumference of the tubular body from the measurement position away from the outer circumferential direction of the tubular body,
An inner diameter center of the other end portion of the tubular body is calculated by performing an arithmetic process on the measured value, and the tubular body is calculated from the inner diameter center and the rotation center of the tube end chuck at a position corresponding to the one end portion of the tubular body. Find the virtual center axis of the body,
Means for correcting the measurement value based on a deviation amount of the virtual central axis with respect to the rotation axis in a plane orthogonal to the rotation axis of the tube end chuck at the measurement position;
A method for measuring the deflection of a tubular body.
前記測定位置は前記回転軸線との平行線を通る基準面に位置し、前記偏倚量は前記回転軸線と前記平行線とを通る面に投影された変化量であることを特徴とする、請求項1に記載の管状体の振れ測定方法。 The measurement position is located on a reference plane passing through a parallel line with the rotation axis, and the deviation amount is a change amount projected on a plane passing through the rotation axis and the parallel line. 2. A method for measuring runout of a tubular body according to 1. 前記回転角度毎の測定値を前記偏倚量により補正した補正後データの最大値から当該補正後データの最小値を減算する手段をさらに含むことを特徴とする、請求項1又は2に記載の管状体の振れ測定方法。 The tubular according to claim 1 or 2, further comprising means for subtracting a minimum value of the corrected data from a maximum value of corrected data obtained by correcting the measured value for each rotation angle by the deviation amount. Body shake measurement method. 前記測定位置は前記管状体の両端間の所定間隔毎に位置する状態で複数設定されていることを特徴とする、請求項1〜3のいずれかに記載の管状体の振れ測定方法。 The method of measuring a vibration of a tubular body according to any one of claims 1 to 3, wherein a plurality of the measurement positions are set in a state of being positioned at predetermined intervals between both ends of the tubular body. 前記管端チャックはエアスピンドルに取り付けられ、作動部が平面視において中心から当角度間隔に分割され作動時に管状体の内周方向に向かって等量ずつ拡大する複数の分割片によって構成されたチャックであることを特徴とする、請求項1〜4のいずれかに記載の管状体の振れ測定方法。 The tube end chuck is attached to an air spindle, and the chuck is constituted by a plurality of divided pieces that are divided at equal angular intervals from the center in a plan view and are enlarged by equal amounts toward the inner circumferential direction of the tubular body during operation. The method for measuring a deflection of a tubular body according to any one of claims 1 to 4, wherein: 前記管端チャックへ前記管状体を保持させる前に当該管状体を前記管端チャックへ当該管端チャックの回転軸線に沿って押し付けることを特徴とする、請求項1〜5いずれかに記載の管状体の振れ測定方法。 The tubular body according to any one of claims 1 to 5, wherein the tubular body is pressed against the tube end chuck along the rotation axis of the tube end chuck before the tubular body is held by the tube end chuck. Body shake measurement method. 前記管状体は前記管端チャックへ保持されたとき縦方向に沿う姿勢であることを特徴とする、請求項1〜6いずれかに記載の管状体の振れ測定方法。 The method of measuring a deflection of a tubular body according to any one of claims 1 to 6, wherein the tubular body is in a posture along a vertical direction when held by the tube end chuck. 前記計測位置から前記管状体の内周までの距離は非接触式の変位計測手段により計測されることを特徴とする、請求項1〜7のいずれかに記載の管状体の振れ測定方法。 The method of measuring a deflection of a tubular body according to any one of claims 1 to 7, wherein a distance from the measurement position to the inner periphery of the tubular body is measured by a non-contact type displacement measuring means. 前記測定位置から前記管状体の外周の測定点までの距離は非接触式の距離測定手段により測定されることを特徴とする、請求項1〜8のいずれかに記載の管状体の振れ測定方法。 The method of measuring a deflection of a tubular body according to any one of claims 1 to 8, wherein a distance from the measurement position to a measurement point on the outer periphery of the tubular body is measured by a non-contact type distance measuring unit. . 回転可能で回転軸線に対して直交するセット面を有し、当該セット面ヘ一端部がセットされた管状体の内側面を押圧する状態で当該管状体の一端部を保持する管端チャックと、
前記管状体と干渉しない所定の設置位置から前記セットされた管状体の前記他端部の内周の一部へ計測ヘッドが臨む位置までの範囲を移動可能な変位計測手段と、
前記管状体の両端間の所定位置であって当該管状体の外周方向へ離れた測定位置から当該管状体の外周までの距離を測定すべく設置された距離測定手段と、
を備えたことを特徴とする管状体の振れ測定装置。
A tube end chuck that has a set surface that is rotatable and orthogonal to the axis of rotation, and that holds one end of the tubular body in a state of pressing the inner surface of the tubular body on which the one end is set to the set surface;
A displacement measuring means capable of moving in a range from a predetermined installation position not interfering with the tubular body to a position where the measuring head faces a part of the inner periphery of the other end of the set tubular body;
A distance measuring means installed to measure a distance from a measurement position at a predetermined position between both ends of the tubular body and away from the outer circumference of the tubular body to the outer circumference of the tubular body;
An apparatus for measuring vibration of a tubular body, comprising:
前記距離測定手段は、前記管端チャックヘ保持された管状体の両端間に沿って所定間隔毎に複数設置されていることを特徴とする、請求項10に記載の管状体の振れ測定装置。 The tubular body run-out measuring apparatus according to claim 10, wherein a plurality of the distance measuring means are installed at predetermined intervals along both ends of the tubular body held by the tube end chuck. 前記管端チャックはエアスピンドルに取り付けられ、作動部が平面視において中心から当角度間隔に分割され作動時に前記管状体の内周方向に向かって等量ずつ拡大する複数の分割片によって構成されたチャックであることを特徴とする、請求項10又は11に記載の管状体の振れ測定装置。 The tube end chuck is attached to an air spindle, and the operating portion is configured by a plurality of divided pieces that are divided at equal angular intervals from the center in a plan view and are enlarged by an equal amount toward the inner circumferential direction of the tubular body during operation. The apparatus for measuring runout of a tubular body according to claim 10 or 11, wherein the apparatus is a chuck. 前記管端チャックのセット面へ前記管状体がセットされて管端チャックに保持される前に前記管状体を前記管端チャックの回転軸線に沿って前記セット面へ押し付けるべく作動する押え部材を備えたことを特徴とする、請求項10〜12のいずれかに記載の管状体の振れ測定装置。 A pressing member that operates to press the tubular body against the set surface along the rotation axis of the tube end chuck before the tubular body is set on the set surface of the tube end chuck and held by the tube end chuck. The apparatus for measuring runout of a tubular body according to any one of claims 10 to 12, wherein 前記押え部材は、前記管状体を前記セット面へ押し付けたときに当該管状体の前記他端部の内周縁へ接触する円錐形状ないし円錐台形状を有する一個の接触片を有するか、若しくは、前記管状体を前記セット面へ押し付けたときに当該管状体の前記他端部の内周縁へ接触する外側面を連続させたときの仮想外周面が総体として円錐面状を呈する状態の三個以上の接触片を有することを特徴とする、請求項13に記載の管状体の振れ測定装置。 The pressing member has a single contact piece having a conical shape or a truncated cone shape that comes into contact with the inner peripheral edge of the other end portion of the tubular body when the tubular body is pressed against the set surface, or When the tubular body is pressed against the set surface, three or more virtual outer peripheral surfaces when the outer surface contacting the inner peripheral edge of the other end portion of the tubular body is made continuous form a conical surface as a whole. It has a contact piece, The shake measuring apparatus of the tubular body of Claim 13 characterized by the above-mentioned. 前記管端チャックのセット面は水平であることを特徴とする、請求項10〜14のいずれかに記載の管状体の振れ測定装置。 The tubular body runout measurement apparatus according to any one of claims 10 to 14, wherein a set surface of the tube end chuck is horizontal. 前記変位計測手段は非接触式変位センサであることを特徴とする、請求項10〜15のいずれかに記載の管状体の振れ測定装置。 The tubular body shake measuring apparatus according to any one of claims 10 to 15, wherein the displacement measuring means is a non-contact type displacement sensor. 前記距離測定手段は非接触式の距離測定手段であることを特徴とする、請求項10〜16のいずれかに記載の管状体の振れ測定装置。 The tubular body shake measuring device according to any one of claims 10 to 16, wherein the distance measuring means is a non-contact distance measuring means.
JP2006092542A 2006-03-29 2006-03-29 Tubular deflection measurement method and apparatus Expired - Fee Related JP4897951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092542A JP4897951B2 (en) 2006-03-29 2006-03-29 Tubular deflection measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092542A JP4897951B2 (en) 2006-03-29 2006-03-29 Tubular deflection measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2007263895A JP2007263895A (en) 2007-10-11
JP4897951B2 true JP4897951B2 (en) 2012-03-14

Family

ID=38637017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092542A Expired - Fee Related JP4897951B2 (en) 2006-03-29 2006-03-29 Tubular deflection measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP4897951B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003235405A1 (en) * 2003-05-22 2004-12-13 Mitsubishi Chemical Corporation Light-sensitive body drum, method and device for assembling the drum, and image forming device using the drum
CN102607496B (en) * 2011-12-20 2015-04-22 烟台思科博量仪有限公司 Multi-parameter pneumatic comprehensive measurement device for water pump shell
JP6259847B2 (en) * 2016-02-05 2018-01-10 住友化学株式会社 Manufacturing method of cylindrical target
CN110455231A (en) * 2018-05-08 2019-11-15 上海新宇箴诚电控科技有限公司 A kind of detection device for realizing internal hole reference measurement of comparison circular runout
CN112781487A (en) * 2020-12-24 2021-05-11 浙江工业大学 Device for detecting surface flatness of circular tube
CN118758199A (en) * 2024-09-03 2024-10-11 江苏新长江无缝钢管制造有限公司 Steel pipe drift diameter measuring method and measuring device for steel pipe production

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243506A (en) * 1985-08-20 1987-02-25 Nippon Steel Corp Method of measuring bend of pipewise or rodwise body
JPH0770421B2 (en) * 1986-09-17 1995-07-31 日本石油化学株式会社 Improved oil immersion condenser
JPH02176408A (en) * 1988-12-01 1990-07-09 Mitsubishi Electric Corp Body-shape measuring apparatus
JPH073327B2 (en) * 1989-06-22 1995-01-18 住友金属工業株式会社 Method and apparatus for automatic measurement of tubular products
JPH09269211A (en) * 1996-03-30 1997-10-14 Nisshin Steel Co Ltd Outer diameter measuring method and device for pipe body, bar body and the like
JPH11325842A (en) * 1998-05-15 1999-11-26 Toshiba Corp Method and apparatus for measuring shape of long material
JP4623348B2 (en) * 2000-05-26 2011-02-02 三菱化学株式会社 Measuring method and manufacturing method of photosensitive drum
JP4720010B2 (en) * 2000-07-10 2011-07-13 三菱化学株式会社 Method for measuring vibration of electrophotographic photosensitive drum, and method for manufacturing electrophotographic photosensitive member using the method
JP4363830B2 (en) * 2002-09-12 2009-11-11 昭和電工株式会社 Tube shape measuring method, apparatus, tube inspection method, apparatus, tube manufacturing method and system

Also Published As

Publication number Publication date
JP2007263895A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US7328125B2 (en) Measuring method of cylindrical body
EP1992909B1 (en) Circular shape measurement method, cylindrical shape measurement method, and cylindrical shape measurement apparatus
US10073435B2 (en) Reducing errors of a rotatory device, in particular for the determination of coordinates of a workpiece or the machining of a workpiece
JP4897951B2 (en) Tubular deflection measurement method and apparatus
JP5265029B2 (en) Roundness measuring device and tip terminal pass / fail judgment method
JP3725817B2 (en) Aspheric lens decentration measuring method and decentration measuring apparatus
US20150052767A1 (en) Method and device for reducing errors in a turning device during the determination of coordinates of a workpiece or during the machining of a workpiece
JP6316858B2 (en) Automatic measuring device for motor shaft accuracy
JP2000501505A (en) Surface shape measurement
JP2008286535A (en) Apparatus, method and program for measuring roundness
JP6657552B2 (en) Flatness measurement method
JP2007071852A (en) Apparatus and method for measuring deep hole
CN113670196B (en) Method and device for measuring radial runout of precision spindle without standard rod
JP2008039707A (en) Device for measuring deflection of measuring object
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
JP2000205854A (en) Method for measuring size of machine part
JP2010032474A (en) Shape measuring apparatus and shape measuring technique
JP4891629B2 (en) Surface texture measuring machine, shape analysis program and recording medium
JP6496924B2 (en) Shape measuring method and shape measuring apparatus for cylindrical part of workpiece
JP2000249540A (en) Device and method for measuring shape of cylindrical object
JP4557940B2 (en) Method for measuring the shape of a cross-sectional circle perpendicular to the axis of the cylinder to be measured, and method for measuring the cylindrical shape of the cylinder to be measured
US20060074587A1 (en) Measuring method of circular shape, measuring method of cylindrical shape, and measuring apparatus of cylindrical shape
JPH08122050A (en) Contour shape-measuring method and tool for measurement
JP2006266910A (en) Measuring method and measuring device for cylindrical shape
JP2011117766A (en) Interference measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111223

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees