Nothing Special   »   [go: up one dir, main page]

JP4893365B2 - Microbubble generator and microbubble generator system - Google Patents

Microbubble generator and microbubble generator system Download PDF

Info

Publication number
JP4893365B2
JP4893365B2 JP2007046431A JP2007046431A JP4893365B2 JP 4893365 B2 JP4893365 B2 JP 4893365B2 JP 2007046431 A JP2007046431 A JP 2007046431A JP 2007046431 A JP2007046431 A JP 2007046431A JP 4893365 B2 JP4893365 B2 JP 4893365B2
Authority
JP
Japan
Prior art keywords
gas
flow
discharge
microbubble
microbubble generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007046431A
Other languages
Japanese (ja)
Other versions
JP2008207099A (en
Inventor
康博 福崎
勝利 野瀬
長武 高瀬
雅之 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2007046431A priority Critical patent/JP4893365B2/en
Publication of JP2008207099A publication Critical patent/JP2008207099A/en
Application granted granted Critical
Publication of JP4893365B2 publication Critical patent/JP4893365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は液体中に微細な気泡を供給するマイクロバブル発生装置及びこれを備えたマイクロバブル発生システムに関する。   The present invention relates to a microbubble generator for supplying fine bubbles into a liquid and a microbubble generator system having the microbubble generator.

水中に存在する直径数百μm以下の気泡はマイクロバブルとよばれ、径が微小であるほど様々な有用な特徴を発揮するようになり、それらに着眼した応用研究が各方面で盛んに実施されている。   Bubbles with a diameter of several hundreds of micrometers or less that exist in water are called microbubbles. The smaller the diameter, the more useful characteristics are exhibited, and application research focusing on them has been actively conducted in various fields. ing.

マイクロバブルの有する特徴は第一に気泡径が小さいため、水の表面張力との釣合いにより気泡内圧力が高く、その大きさは径に反比例して増大する。圧力が増大すると、ヘンリーの法則により気泡内気体の水中への溶解度が高まる。さらに、気泡径が小さい程、気液界面面積は増大し、1リットルの水中に10ccの空気を気泡化した場合、気泡径1mmでは界面面積0.03m2、10μmでは3m2、さらに1μmでは30m2にもなる。また、同時に気泡の浮上速度は気泡径が小さいほど遅く、マイクロバブルは長時間水中に滞留していられる。これらの特徴によりマイクロバブルの気体溶解効率は高く、様々な気体(例えば酸素)を効率的に水中に溶解できる。 The first characteristic of microbubbles is that the bubble diameter is small, so the pressure inside the bubbles is high due to the balance with the surface tension of water, and the size increases in inverse proportion to the diameter. When the pressure increases, the solubility of the gas in the bubbles in water increases according to Henry's law. Furthermore, as the cell diameter is small, the gas-liquid interfacial area is increased, 1 if the l 10cc of air in water and aerated, interfacial area 0.03 m 2 in bubble diameter 1 mm, 10 [mu] m in 3m 2, further 30m in 1μm Also 2 At the same time, the rising speed of the bubbles is slower as the bubble diameter is smaller, and the microbubbles stay in the water for a long time. Due to these characteristics, the gas dissolution efficiency of microbubbles is high, and various gases (for example, oxygen) can be efficiently dissolved in water.

第二に気液界面の現象が顕著に現れるようになり、水分子が電気双極子であることに起因する界面の負帯電により(但し、水温0〜40℃程度)、気泡間に反発力が作用しマイクロバブルが合一せずに存在できるという特徴がある。また、この負帯電により正荷電の物体を引き付けることができるという特徴がある。さらに、気泡により有機物や界面活性剤等の分子の疎水基を気液界面に吸着し水中から浮上分離する等の特徴がある。   Secondly, the phenomenon at the gas-liquid interface becomes prominent, and the repulsive force is generated between the bubbles due to the negative charge of the interface due to the water molecule being an electric dipole (however, the water temperature is about 0 to 40 ° C.). It has the feature that it acts and microbubbles can exist without being united. Further, there is a feature that a positively charged object can be attracted by this negative charging. Furthermore, there is a feature that a hydrophobic group of a molecule such as an organic substance or a surfactant is adsorbed on a gas-liquid interface by air bubbles and floats and separates from water.

これらの特徴の他にも、生理活性化現象やフリーラジカルの生成等、検証されつつある様々な特徴があり、広範な分野での応用が可能と目されている。   In addition to these characteristics, there are various characteristics that are being verified, such as physiological activation phenomenon and free radical generation, and it is expected to be applicable in a wide range of fields.

マイクロバブルの発生としては大きく分けて次の6つの方法が知られている(例えば非特許文献1)。(a)ベンチュリ管等を用いた流路拡大方式(非特許文献2及び特許文献1を参照)、(b)加圧溶解気体の過飽和析出方式(加圧溶解式)、(c)旋回流気泡せん断方式(旋回流式)、(d)オリフィス等を用いた高圧開放方式、(e)微細孔からの気体吐出方式、(f)超音波や機械による気泡破壊方式が知られている。   The generation of microbubbles is roughly divided into the following six methods (for example, Non-Patent Document 1). (A) Channel expansion method using a venturi tube or the like (see Non-patent Document 2 and Patent Document 1), (b) Supersaturated precipitation method of pressurized dissolved gas (pressurized dissolution method), (c) Swirl flow bubble A shearing method (swirl flow method), (d) a high-pressure opening method using an orifice or the like, (e) a gas discharge method from a fine hole, and (f) a bubble breaking method using ultrasonic waves or a machine are known.

いずれの方法も気泡発生方式や発生気泡の破壊方法を様々に工夫している。特に、(a)〜(d)の方法は圧力変動や水流によるもの、(e)の方法は気体を吐出する孔径を小さくすることによるもの、(f)の方法は水流以外の動力(媒質の振動や機械によるせん断)によるものである。
大成博文,「マイクロバブルの基礎」,泡のエンジニアリング,2005年,pp.423−429 藤原暁子,「ベンチュリ管を用いたマイクロバブル発生手法」,エコインダストリー,2006,Vol.11,No.3,27−30 特開2003−230824
Both methods devise various methods for generating bubbles and destroying generated bubbles. In particular, the methods (a) to (d) are based on pressure fluctuations and water flow, the method (e) is by reducing the diameter of the gas discharge hole, and the method (f) is a power other than water flow (medium This is due to vibration or mechanical shearing.
Hirofumi Taisei, “Basics of Microbubbles”, Foam Engineering, 2005, pp. 423-429 Reiko Fujiwara, “Microbubble generation method using Venturi tube”, Eco-Industry, 2006, Vol. 11, no. 3, 27-30 JP2003-230824

(a)の方式以外のマイクロバブル発生方法について以下のような問題がある。   The microbubble generation method other than the method (a) has the following problems.

(b)の方法は水を加圧するための大きなポンプ動力と気体供給のためのコンプレッサが必要となる。   The method (b) requires a large pump power for pressurizing water and a compressor for supplying gas.

(c)の方法はボイド率(気体の占める体積比)が1%程度より大きくすると気泡径が大きくなる。   In the method (c), when the void ratio (volume ratio occupied by the gas) is greater than about 1%, the bubble diameter increases.

(d)の方法は高圧を発生させる大きなポンプ動力が必要となる。   The method (d) requires a large pump power for generating a high pressure.

(e)の方法は発生気泡が大きくなる。この気泡を微細化するには孔を微細化して気体圧送用の高圧コンプレッサが必要となる。   In the method (e), the generated bubbles become large. In order to make these bubbles fine, a high-pressure compressor for gas pressure feeding by making the holes fine is necessary.

(f)の超音波による方法は定常的な用途に向かない。超音波発生や機械駆動のための余計な動力が必要となる。   The ultrasonic method of (f) is not suitable for steady use. Extra power is required to generate ultrasonic waves and drive the machine.

一方、(a)の流路拡大方式は(b)〜(f)の方法に比べて通水路を広く確保できるので夾雑物が溜まり難いという特徴がある。   On the other hand, the flow path enlargement method (a) has a feature that it is difficult to collect impurities because a water passage can be secured wider than the methods (b) to (f).

単一のベンチュリ管を用いた流路拡大式(以下、単一ノズル方式と称する)のマイクロバブル発生原理について図6を参照しながら説明する。   The principle of microbubble generation of a flow channel expansion type (hereinafter referred to as a single nozzle method) using a single venturi tube will be described with reference to FIG.

図6に示されたベンチュリ管5は円筒部51の下流側に絞り部52、喉部53、テーパー部54及び吐出部55が順次形成されて成る。円筒部51には空気導入管56が接続されている。円筒部51内に形成されている水流には空気導入管56から空気が導入される。前記水流は絞り部52を経ると喉部53までその流速を早め、圧力を低下させる。テーパー部54内では吐出部55に近づくにつれて前記水流の流速が低下してその圧力は外部水圧まで回復する。この圧力の回復に伴い、テーパー部54内の気泡57は圧縮される。そして、これと同時に、テーパー54内の液相が吐出部55から吐出される過程で、気液二相流における音速の低下現象により喉部53近傍での流速が音速を超えて衝撃波が発生する。この衝撃波により気泡57が破壊されて微細化する。   The venturi tube 5 shown in FIG. 6 has a throttle part 52, a throat part 53, a taper part 54, and a discharge part 55 formed in this order on the downstream side of the cylindrical part 51. An air introduction pipe 56 is connected to the cylindrical portion 51. Air is introduced from the air introduction pipe 56 into the water flow formed in the cylindrical portion 51. When the water flow passes through the throttle portion 52, the flow velocity is increased to the throat portion 53 and the pressure is reduced. In the taper part 54, the flow velocity of the water flow decreases as the discharge part 55 is approached, and the pressure recovers to the external water pressure. As the pressure recovers, the bubbles 57 in the tapered portion 54 are compressed. At the same time, in the process in which the liquid phase in the taper 54 is discharged from the discharge portion 55, the flow velocity near the throat 53 exceeds the sound velocity due to the phenomenon of sound velocity drop in the gas-liquid two-phase flow, and a shock wave is generated. . Bubbles 57 are destroyed and refined by this shock wave.

しかしながら、単一ノズル方式には次の問題点がある。高ボイド率を達成するためにポンプ動力を増大させる必要がある。発生気泡濃度が100〜200個/mlと薄い。発生気泡分布ピーク値が100μm程度と大きい。単一流路のノズルのため絞り部の圧損が大きく、大きなポンプ動力が必要となる。配管内圧力が高くなるため空気供給用コンプレッサが必要とされる。気泡径を数十μm程度にするには界面活性剤が必要となる。   However, the single nozzle method has the following problems. The pump power needs to be increased to achieve a high void rate. The generated bubble concentration is as thin as 100 to 200 / ml. The generated bubble distribution peak value is as large as about 100 μm. Since the nozzle has a single flow path, the pressure loss of the throttle portion is large and a large pump power is required. Since the pressure in the pipe becomes high, an air supply compressor is required. A surfactant is required to make the bubble diameter about several tens of μm.

そこで、本発明のマイクロバブル発生装置は、気液混相流が供給される流通路と、この流通路の一端側で前記気液混相流を受ける受圧部と、この受圧部の近傍の流通路側面から前記気液混相流を導入してマイクロバブルを生成する複数の吐出路とを有し、前記受圧部の内面は湾曲した凹面に形成され、前記吐出路の内面は出口径が大径となるようなテーパー状に形成され且つ当該各吐出路の開き角度は当該吐出路の入口と出口の差圧が極大となるように設定されているTherefore, the microbubble generator of the present invention includes a flow passage to which a gas-liquid mixed phase flow is supplied, a pressure receiving portion that receives the gas-liquid mixed phase flow on one end side of the flow passage, and a flow passage side surface in the vicinity of the pressure receiving portion. A plurality of discharge passages for introducing the gas-liquid mixed phase flow to generate microbubbles, the inner surface of the pressure receiving portion is formed in a curved concave surface, and the inner surface of each discharge passage has a large outlet diameter. The opening angle of each discharge passage is set so that the differential pressure between the inlet and the outlet of the discharge passage is maximized .

また、マイクロバブル発生システムは、マイクロバブル発生装置が設置される槽と、この槽内の液相を循環的に供給するための配管と、この配管に設置されるポンプと、このポンプによって前記配管内を流通する液相に気体を供する吸気装置とを備え、前記マイクロバブル発生装置は、前記配管内を流通する液相に前記気体が供されて生じた気液混相流が供給される流通路と、この流通路の一端側で前記気液混相流を受ける受圧部と、この受圧部の近傍の流通路側面から前記気液混相流を導入してマイクロバブルを生成する複数の吐出路とを有し、前記受圧部の内面は湾曲した凹面に形成され、前記吐出路の内面は出口径が大径となるようなテーパー状に形成され且つ当該各吐出路の開き角度は当該吐出路の入口と出口の差圧が極大となるように設定されているThe microbubble generation system includes a tank in which a microbubble generator is installed, a pipe for circulatingly supplying a liquid phase in the tank, a pump installed in the pipe, and the pipe by the pump. An air intake device that supplies gas to the liquid phase that circulates in the interior, and the microbubble generator is configured to supply a gas-liquid mixed phase flow that is generated by supplying the gas to the liquid phase that circulates in the pipe. A pressure receiving portion that receives the gas-liquid mixed phase flow at one end of the flow passage, and a plurality of discharge passages that introduce the gas-liquid mixed phase flow from the side surface of the flow passage near the pressure receiving portion to generate microbubbles. And the inner surface of each pressure receiving portion is formed in a curved concave surface, the inner surface of each discharge passage is formed in a taper shape with a large outlet diameter, and the opening angle of each discharge passage is Maximum pressure difference between inlet and outlet It is sea urchin set.

以上の発明によれば同一ポンプ動力の単一ノズル方式にノズル圧損を低下し、それに伴いポンプ吐出量を増やすことができ、比較的小さなポンプ動力でもより多くの気体を気液混相流として導入可能となりボイド率が高くなる。また、前記発明によって得られるマイクロバブルの濃度は単一ノズル方式によって得られたものより高濃度となり、より多くの気体を液体中に効率よく溶解できる。さらに、前記発明によれば、単一ノズル方式に比べて微細な気泡径分布(気泡径ピーク値50μm以下)を有するマイクロバブルを生成できる。したがって、界面活性剤等の補助的な手段が不要となる。   According to the above invention, the nozzle pressure loss can be reduced to a single nozzle system with the same pump power, the pump discharge amount can be increased accordingly, and more gas can be introduced as a gas-liquid mixed phase flow even with relatively small pump power And the void ratio increases. Further, the concentration of microbubbles obtained by the above invention is higher than that obtained by the single nozzle method, and more gas can be efficiently dissolved in the liquid. Furthermore, according to the said invention, the microbubble which has a fine bubble diameter distribution (bubble diameter peak value 50 micrometers or less) compared with a single nozzle system is generable. Therefore, auxiliary means such as a surfactant are not necessary.

また、前記発明は気体を自吸できるのでコンプレッサが不要となる。したがって、エネルギー使用量が削減され、システム構成が簡素化する共にコストが低減する。   Moreover, since the said invention can self-suck gas, a compressor becomes unnecessary. Therefore, the amount of energy used is reduced, the system configuration is simplified, and the cost is reduced.

単一ノズル方式ではマイクロバブルを発生させるためにノズルの入口の断面積を小さくすると共に多くの水流量(流速)を確保する必要がある。一方、前記発明は吐出路の数と入口断面積によって圧損を調整することが可能であると共に吐出路の開き角を最適化することで、ポンプから見た圧損が低減し、マイクロバブルが効率的に生成される。これにより、ポンプ動力が低減し、エネルギー効率が高くなると共にコストを削減できる。特に、本発明において、吐出路の開き角度は当該吐出路の入口と出口の差圧が極大となるように(例えば9°〜11°となるように)設定されているので、マイクロバブルを効率的に微細化することがきる。 In order to generate microbubbles in the single nozzle system, it is necessary to reduce the sectional area of the inlet of the nozzle and to secure a large water flow rate (flow velocity). On the other hand, according to the invention, the pressure loss can be adjusted by the number of discharge passages and the sectional area of the inlet, and by optimizing the opening angle of the discharge passage, the pressure loss seen from the pump is reduced and the microbubbles are efficient. Is generated. This reduces pump power, increases energy efficiency, and reduces costs. In particular, in the present invention, since the opening angle of the discharge passage (as a example 9 ° to 11 °) the pressure difference between the inlet and outlet of the discharge passage is such that the maximum has been set, the microbubbles efficiency Can be refined.

また、前記マイクロバブル発生装置において、前記複数の吐出路は前記流通路の軸を中心に放射状に接続するとよい。前記流通路の軸を中心に放射状にマイクロバブルが吐出されるのでマイクロバブルを等方的且つ広範囲に供給できる。   Further, in the microbubble generator, the plurality of discharge paths may be connected radially about the axis of the flow path. Since the microbubbles are ejected radially around the axis of the flow path, the microbubbles can be supplied in an isotropic and wide range.

前記複数の吐出路はマイクロバブルを前記流通路の軸方向に吐出するように配置してもよい。単一方向へのマイクロバブルの供給が可能となる。   The plurality of discharge paths may be arranged to discharge microbubbles in the axial direction of the flow path. It is possible to supply microbubbles in a single direction.

また、前記発明においては、前記気液混合流を受ける受圧部の面が湾曲加工された凹面に形成されているので、前記流通路内の気液混相流が前記流通路の内周方向へ拡散されて個々の吐出路に均等に供され易くなる。 In the present invention, since the pressure receiving surface that receives the gas-liquid mixed flow is formed into a curved concave surface, the gas-liquid mixed phase flow in the flow passage diffuses in the inner circumferential direction of the flow passage. It becomes easy to be provided to each discharge path equally.

前記マイクロバブル発生システムにおいて、前記吸気装置は前記ポンプの二次側に設置するとよい。前記ポンプの内部に気体溜まりが生じ難くなり、気液混相流が安定化する。   In the microbubble generation system, the intake device may be installed on the secondary side of the pump. Gas accumulation is less likely to occur inside the pump, and the gas-liquid mixed phase flow is stabilized.

前記吸気装置には気体流量調節弁を備えるとよい。自吸する吸気量が可変となるので気泡径分布のピーク径をある程度変えられるようになる。   The intake device may include a gas flow rate control valve. Since the amount of intake air that is self-priming becomes variable, the peak diameter of the bubble diameter distribution can be changed to some extent.

前記気体としては空気、酸素、オゾンまたは二酸化炭素が例示される。各種用途に応じたマイクロバブルを生成できる。   Examples of the gas include air, oxygen, ozone, and carbon dioxide. Microbubbles can be generated for various applications.

したがって、以上の発明によればエネルギー的に効率良く且つより微細なマイクロバブルを発生できる。   Therefore, according to the above invention, energy-efficient and finer microbubbles can be generated.

図1(a)は発明の第一の実施形態に係るマイクロバブル発生装置1の平断面図である。図1(b)はマイクロバブル発生装置1の断面図である。   FIG. 1A is a plan sectional view of a microbubble generator 1 according to a first embodiment of the invention. FIG. 1B is a cross-sectional view of the microbubble generator 1.

マイクロバブル発生装置1は吐出部10と配管部11とを備える。吐出部10の内部には流通路101と受圧部12と吐出路13とが形成されている。流通路101は配管部11の流通路111と連通している。流通路101の内径は流通路111の内径と同径となっている。流通路101には流通路111を介して気液混相流が供給される。   The microbubble generator 1 includes a discharge unit 10 and a piping unit 11. A flow passage 101, a pressure receiving portion 12, and a discharge passage 13 are formed inside the discharge portion 10. The flow passage 101 communicates with the flow passage 111 of the piping part 11. The inner diameter of the flow passage 101 is the same as the inner diameter of the flow passage 111. A gas-liquid mixed phase flow is supplied to the flow passage 101 via the flow passage 111.

受圧部12は前記気液混相流を受ける。受圧部12は流通路101の一端に形成されている。受圧部12はその最大内径が流通路111と同径に形成されている。また、受圧部12内の前記気液混相を直接受ける面121は図1に示されたように湾曲加工された凹面に形成されている。 The pressure receiving unit 12 receives the gas-liquid mixed phase flow. The pressure receiving portion 12 is formed at one end of the flow passage 101. The pressure receiving portion 12 has a maximum inner diameter that is the same as that of the flow passage 111. Further, the surface 121 that directly receives the gas-liquid mixed phase in the pressure receiving portion 12 is formed as a concave surface that is curved as shown in FIG.

吐出路13はマイクロバブルを含んだ液相を吐出する。吐出路13は図1(a)及び図1(b)に示されたように面121近傍の流通路101側面に複数接続されている。個々の吐出路13は流通路101の軸を中心に放射状に接続されている。また、吐出路13の内面は吐出路13の出口径が大径となるようなテーパー状に形成されている。   The discharge path 13 discharges a liquid phase containing microbubbles. As shown in FIGS. 1A and 1B, the discharge passage 13 is connected to the side surface of the flow passage 101 near the surface 121. The individual discharge passages 13 are radially connected around the axis of the flow passage 101. Further, the inner surface of the discharge passage 13 is formed in a tapered shape so that the outlet diameter of the discharge passage 13 is large.

流通路101内の気液混相流は受圧部12によって激しくぶつかり合い流通路101の内周方向へ拡散されて個々の吐出路13に均等に供される。個々の吐出路13内に導入された気液混相流は、吐出路13の入り口付近の高速流により水圧の低下を起こし、前記混相流に含まれる気泡を大きくさせる。また、所定の流速以上になるとキャビテーションの発生により溶存気体の気泡を生成させる。これら気泡は吐出路13の出口部に移動するにつれて急速に回復する水圧によって破壊されマイクロバブルとなり吐出される。また、同時にこの吐出の過程において、気液二相流における音速の低下現象により吐出路13の入口付近での流速が音速を超え、これにより衝撃波が発生する。この衝撃波によって気泡が破壊されて微細化する。また、マイクロバブル発生装置1は流通路101の軸を中心に放射方向に水流を吐出できるので広範囲に等方的なマイクロバブルの供給が求められる用途に適する。   The gas-liquid mixed phase flow in the flow passage 101 collides violently by the pressure receiving portion 12 and is diffused in the inner peripheral direction of the flow passage 101 and is provided to the individual discharge passages 13 equally. The gas-liquid mixed phase flow introduced into the individual discharge passages 13 causes a drop in water pressure due to the high-speed flow near the entrance of the discharge passages 13 and enlarges bubbles contained in the mixed phase flow. Further, when the flow velocity exceeds a predetermined flow rate, bubbles of dissolved gas are generated by the generation of cavitation. These bubbles are destroyed by water pressure that rapidly recovers as they move to the outlet portion of the discharge passage 13 and are discharged as microbubbles. At the same time, in this discharge process, the flow velocity near the inlet of the discharge passage 13 exceeds the sound velocity due to the phenomenon of a decrease in the sound velocity in the gas-liquid two-phase flow, thereby generating a shock wave. Bubbles are destroyed and refined by this shock wave. Moreover, since the microbubble generator 1 can discharge a water flow in the radial direction around the axis of the flow passage 101, it is suitable for applications that require isotropic supply of microbubbles over a wide range.

発明の第二の実施形態に係るマイクロバブル発生装置としては例えば図2に示されたマイクロバブル発生装置2が挙げられる。図2(a)はマイクロバブル発生装置2の斜視図である。図2(b)はマイクロバブル発生装置2のA−A断面図である。図2(c)はマイクロバブル発生装置2のB−B断面図である。   An example of the microbubble generator according to the second embodiment of the invention is the microbubble generator 2 shown in FIG. FIG. 2A is a perspective view of the microbubble generator 2. FIG. 2B is a cross-sectional view of the microbubble generator 2 taken along the line AA. FIG. 2C is a cross-sectional view of the microbubble generator 2 taken along the line BB.

マイクロバブル発生装置2はマイクロバブルを配管部21の軸方向に吐出すること以外はマイクロバブル発生装置1と同じ構成となっている。すなわち、マイクロバブル発生装置2は図2(a)に示されたように吐出部20と配管部21とを備える。   The microbubble generator 2 has the same configuration as the microbubble generator 1 except that the microbubbles are discharged in the axial direction of the piping part 21. That is, the microbubble generator 2 includes a discharge unit 20 and a piping unit 21 as shown in FIG.

吐出部20の内部には図2(c)に示したように流通路201と受圧部22と吐出路23とが形成されている。流通路201は配管部21の流通路211と連通している。流通路201の内径は流通路211の内径と同径となっている。流通路201には流通路211を介して気液混相流が供給される。   As shown in FIG. 2C, a flow passage 201, a pressure receiving portion 22, and a discharge passage 23 are formed inside the discharge portion 20. The flow path 201 is in communication with the flow path 211 of the piping part 21. The inner diameter of the flow passage 201 is the same as the inner diameter of the flow passage 211. A gas-liquid mixed phase flow is supplied to the flow passage 201 via the flow passage 211.

受圧部22は流通路201を介して導入された気液混相流を受ける。受圧部22の最大内径は流通路211と同径に設定されている。また、受圧部22内の前記気液混相流を直接受ける面221はマイクロバブル発生装置1の受圧部12と同様に湾曲加工されている。   The pressure receiving unit 22 receives a gas-liquid mixed phase flow introduced through the flow passage 201. The maximum inner diameter of the pressure receiving unit 22 is set to the same diameter as the flow passage 211. Further, the surface 221 that directly receives the gas-liquid mixed phase flow in the pressure receiving unit 22 is curved similarly to the pressure receiving unit 12 of the microbubble generator 1.

吐出路23はマイクロバブルを含んだ液相を吐出する。吐出路23は面221近傍の流通路201側面に複数接続されている。個々の吐出路23は図2(b)に示されたように流通路211と同軸方向に設置されると共に流通路211の軸を中心に円弧状に配置されている。そして、図2(c)に示されたように吐出路23の内面は吐出路23の出口径が大径となるようなテーパー状に形成されている。   The discharge path 23 discharges a liquid phase containing microbubbles. A plurality of discharge passages 23 are connected to the side surface of the flow passage 201 near the surface 221. As shown in FIG. 2B, the individual discharge passages 23 are installed in the same direction as the flow passage 211 and are arranged in an arc shape around the axis of the flow passage 211. As shown in FIG. 2C, the inner surface of the discharge path 23 is formed in a taper shape so that the outlet diameter of the discharge path 23 is large.

配管部21内の気液混相流は受圧部22により激しくぶつかり合い流通路201の内周方向へ拡散されて個々の吐出路23に均等に分配される。前記分配された気液混相流は図1を参照しながら先に述べたマイクロバブル発生装置1と同様の動作原理によりマイクロバブルを発生させて吐出路23から吐出する。マイクロバブル発生装置2は単一方向へのマイクロバブルの供給が求められる用途に適する。   The gas-liquid mixed phase flow in the pipe portion 21 collides violently by the pressure receiving portion 22 and diffuses in the inner peripheral direction of the flow passage 201 and is evenly distributed to the individual discharge passages 23. The distributed gas-liquid mixed phase flow generates microbubbles by the same operating principle as the microbubble generator 1 described above with reference to FIG. The microbubble generator 2 is suitable for applications that require the supply of microbubbles in a single direction.

マイクロバブル発生装置1,2の吐出路13,23の開き角θは8°〜12°程度に設定される。拡大する流路では6°以下及び12°以上の角度で抵抗係数が増大し、同一のポンプ動力で送水できる流量が減少する。この観点から最も流量が多い角度は6〜12°程度である。また、泡を微細化させるために吐出路13,23の入口と出口との圧力差を大きくすること必要である。図5に示された抵抗係数を考慮した圧力差(圧力損失)と開き角の関係(入口直径3mm及び全長30mmの単一ノズル方式の場合)によると圧力差を最も大きく確保できる角度は9°〜11°となっている。したがって、マイクロバブルを発生させるための吐出路13,23の開き角は9°〜11°程度に設定するとなおよい。   The opening angle θ of the discharge paths 13 and 23 of the microbubble generators 1 and 2 is set to about 8 ° to 12 °. In the expanding flow path, the resistance coefficient increases at an angle of 6 ° or less and 12 ° or more, and the flow rate that can be supplied with the same pump power decreases. From this viewpoint, the angle with the largest flow rate is about 6 to 12 °. Further, it is necessary to increase the pressure difference between the inlets and outlets of the discharge passages 13 and 23 in order to make the bubbles finer. According to the relationship between the pressure difference (pressure loss) and the opening angle in consideration of the resistance coefficient shown in FIG. 5 (in the case of a single nozzle system having an inlet diameter of 3 mm and a total length of 30 mm), the angle at which the largest pressure difference can be secured is 9 °. It is ˜11 °. Therefore, the opening angle of the discharge passages 13 and 23 for generating microbubbles is preferably set to about 9 ° to 11 °.

吐出路13,23の開き角が大きく設定されるにつれて気泡が微細化する位置が吐出路13,23の入口に接近する。例えば、吐出路13,23の入口直径が3mmのもので8L/min程度の流量では開き角が6°で約20mm、9°では約15mm、15°では約5mmと気泡微細化に必要な距離が短くなる。したがって、吐出路13,23のサイズを小さくするためには吐出路13,23の開き角を大きくすればよいが、図5を例示して説明した圧力差(圧力損失)と開き角の関係を考慮して開き角を選定する必要がある。   As the opening angle of the discharge passages 13 and 23 is set larger, the position where the bubbles become finer approaches the inlets of the discharge passages 13 and 23. For example, when the inlet diameter of the discharge passages 13 and 23 is 3 mm and the flow rate is about 8 L / min, the opening angle is about 20 mm at 6 °, about 15 mm at 9 °, and about 5 mm at 15 °. Becomes shorter. Therefore, in order to reduce the size of the discharge passages 13 and 23, the opening angle of the discharge passages 13 and 23 may be increased. However, the relationship between the pressure difference (pressure loss) and the opening angle described with reference to FIG. It is necessary to select the opening angle in consideration.

吐出路13,23の形状は先に説明した通りテーパー状すなわち円錐状の拡大管である。吐出路13,23の入口部の形状については鋭角部分を削り丸みを呈するようにすれば流体的抵抗が軽減されてさらに圧力損失が低減するのでポンプ動力が軽減される。   The shape of the discharge passages 13 and 23 is a tapered or conical expansion tube as described above. As for the shapes of the inlet portions of the discharge passages 13 and 23, if the acute angle portion is cut and rounded, the fluid resistance is reduced and the pressure loss is further reduced, so that the pump power is reduced.

また、マイクロバブル発生装置1,2のボイド率はポンプ動力0.56kW−2P、水流量30L/min程度、吐出路の圧損0.2MPa程度の条件で5%程度となることが実験的に確認された。このとき、吐出路13,23(8個備えている)の入口断面積は25mm2程度であり、吐出路13,23の入口寸法は口径2mm程度に設定されたものである。尚、比較例として、入口断面積25mm2に設定された従来の単一ノズル方式のマイクロバブル発生装置によって得られた気泡は1mm以上の粗大気泡となり、同一入口断面積の吐出路13,23を有するマイクロバブル発生装置1,2によって生成されるようなマイクロバブル(気泡径ピーク値50μm以下)は得られなかった。 In addition, the void ratio of the microbubble generators 1 and 2 is experimentally confirmed to be about 5% under the conditions of pump power of 0.56 kW-2P, water flow rate of about 30 L / min, and discharge path pressure loss of about 0.2 MPa. It was done. At this time, the inlet cross-sectional area of the discharge passages 13 and 23 (8 provided) is about 25 mm 2 , and the inlet dimension of the discharge passages 13 and 23 is set to about 2 mm in diameter. As a comparative example, bubbles obtained by a conventional single-nozzle microbubble generator set to an inlet cross-sectional area of 25 mm 2 become coarse bubbles of 1 mm or more, and discharge channels 13 and 23 having the same inlet cross-sectional area are formed. Microbubbles (bubble diameter peak value of 50 μm or less) as generated by the microbubble generators 1 and 2 possessed were not obtained.

したがって、単一ノズル方式のマイクロバブル発生装置に比べてマイクロバブル発生装置1,2ではより少ないポンプ動力でより微細且つ高濃度のマイクロバブルを界面活性剤等の補助的手段を用いることなく発生することができる。   Therefore, compared to the single-nozzle microbubble generator, the microbubble generators 1 and 2 generate finer and higher-concentration microbubbles with less pump power without using auxiliary means such as a surfactant. be able to.

以上のようにマイクロバブル発生装置1,2によれば吐出路13を複数有することで、単一ノズル方式のマイクロバブル発生装置に比べてノズル圧損が低減し、これに伴いポンプ吐出流量が増大する。この流量の増大に伴い流通路111,211内の気液混相流の流速が増加するので、自給空気吸気量が高まり、高いボイド率が達成される。そして、高ボイド率にて微細な気泡が発生し、高濃度のマイクロバブルが得られる。したがって、様々な用途例えば工場廃水処理、洗浄、油脂分離、汚水の浮上分離等に適用できる他に、水質浄化や農業、養殖におけるマイクロバブル含有水の供給用として適用できる。   As described above, according to the microbubble generators 1 and 2, by having a plurality of discharge passages 13, the nozzle pressure loss is reduced as compared with the single-nozzle microbubble generator, and the pump discharge flow rate is increased accordingly. . As the flow rate increases, the flow velocity of the gas-liquid mixed phase flow in the flow passages 111 and 211 increases, so that the amount of self-supplied air intake increases and a high void ratio is achieved. Then, fine bubbles are generated at a high void ratio, and high concentration microbubbles are obtained. Therefore, it can be applied to various uses such as factory wastewater treatment, washing, oil separation, flotation separation of sewage and the like, as well as supply of microbubble-containing water in water purification, agriculture and aquaculture.

マイクロバブル発生装置1,2が適用されるマイクロバブル発生システムとしては例えば図3に示されたマイクロバブル発生システム3や図4に示されたマイクロバブル発生システム4が挙げられる。   Examples of the microbubble generation system to which the microbubble generators 1 and 2 are applied include the microbubble generation system 3 shown in FIG. 3 and the microbubble generation system 4 shown in FIG. 4.

マイクロバブル発生システム3は、マイクロバブル発生装置1(またはマイクロバブル発生装置2)が設置される槽31と、この槽31内の液相を循環的に供給するための配管32と、この配管32に設置されるポンプ33と、このポンプ33の二次側に設置される吸気装置34とから成る。マイクロバブル発生装置1(またはマイクロバブル発生装置2)は槽31内に滞留した液相に浸漬される。ポンプ33は既知の渦流ポンプを採用すればよい。吸気装置34は気体を導入する吸気管35を備える。吸気装置34は既知のエジェクタ等を採用すればよい。また、吸気管35には気体流量調節弁を設けると自吸する吸気量を変えることにより気泡径分布のピーク径を変えることができる。吸気量を少なくすると発生気泡径は小さくなり、吸気量を多くすると発生気泡径は大きくなる。   The microbubble generating system 3 includes a tank 31 in which the microbubble generating device 1 (or the microbubble generating apparatus 2) is installed, a pipe 32 for circulatingly supplying the liquid phase in the tank 31, and the pipe 32. And a suction device 34 installed on the secondary side of the pump 33. The microbubble generator 1 (or microbubble generator 2) is immersed in the liquid phase staying in the tank 31. The pump 33 may be a known vortex pump. The intake device 34 includes an intake pipe 35 for introducing gas. The intake device 34 may employ a known ejector or the like. In addition, if the gas flow rate adjusting valve is provided in the intake pipe 35, the peak diameter of the bubble diameter distribution can be changed by changing the amount of intake air that is sucked. When the intake amount is decreased, the generated bubble diameter is reduced, and when the intake amount is increased, the generated bubble diameter is increased.

吸気装置34よって導入される気体としては空気、酸素、オゾン、二酸化炭素等が挙げられ、利用目的に合わせて適宜選択されると共にこれまで述べたマイクロバブル発生装置1,2の形態との組み合わせにより、様々なマイクロバブルの生成と、高効率な気体の溶解が可能となる。   Examples of the gas introduced by the intake device 34 include air, oxygen, ozone, carbon dioxide, and the like, which are appropriately selected according to the purpose of use and combined with the forms of the microbubble generators 1 and 2 described so far. It is possible to generate various microbubbles and dissolve gas with high efficiency.

一方、マイクロバブル発生システム3は吸気装置34がポンプ33の一次側に設置されていること以外はマイクロバブル発生システム2と同じシステム構成となっている。   On the other hand, the microbubble generation system 3 has the same system configuration as the microbubble generation system 2 except that the intake device 34 is installed on the primary side of the pump 33.

マイクロバブル発生システム3,4は吸気装置34を介して気体を自吸できるので、コンプレッサが不要となり、配管32内に水流を発生させるポンプ33の動力のみを要するだけである。ポンプ33によって吸引された槽31内の液相の一部は配管32内を流通し吸気装置34を経て槽31内に戻る。配管32内では気液混相流となった流れがマイクロバブル発生装置1(またはマイクロバブル発生装置2)から吐出される過程で発生したマイクロバブルが槽31の液相に供給される。   Since the microbubble generation systems 3 and 4 can self-suck the gas via the intake device 34, a compressor is unnecessary, and only the power of the pump 33 that generates a water flow in the pipe 32 is required. A part of the liquid phase in the tank 31 sucked by the pump 33 circulates in the pipe 32 and returns to the tank 31 through the intake device 34. In the pipe 32, microbubbles generated in the process in which the flow that has become a gas-liquid mixed phase flow is discharged from the microbubble generator 1 (or the microbubble generator 2) are supplied to the liquid phase of the tank 31.

(a)発明の第一の実施形態に係るマイクロバブル発生装置の平断面図,(b)前記マイクロバブル発生装置の断面図。(A) The cross-sectional view of the microbubble generator which concerns on 1st embodiment of invention, (b) Sectional drawing of the said microbubble generator. (a)発明の第二の実施形態に係るマイクロバブル発生装置の斜視図,(b)前記マイクロバブル発生装置のA−A断面図,(c)前記マイクロバブル発生装置のB−B断面図。(A) The perspective view of the microbubble generator which concerns on 2nd embodiment of invention, (b) AA sectional drawing of the said microbubble generator, (c) BB sectional drawing of the said microbubble generator. 発明に係るマイクロバブル発生装置が適用されるマイクロバブル発生システムの構成図。The block diagram of the microbubble generation system to which the microbubble generator which concerns on invention is applied. 発明に係るマイクロバブル発生装置が適用されるマイクロバブル発生システムの構成図。The block diagram of the microbubble generation system to which the microbubble generator which concerns on invention is applied. 吐出路の開き角と差圧との関係を示した特性図。The characteristic view which showed the relationship between the opening angle of a discharge path, and differential pressure | voltage. 従来のマイクロバブル発生装置の断面図。Sectional drawing of the conventional microbubble generator.

符号の説明Explanation of symbols

1,2…マイクロバブル発生装置
3,4…マイクロバブル発生システム
10,20…吐出部、11,21…配管部、12,22…受圧部、13,23…吐出路
31…槽、32…配管、33…ポンプ、34…吸気装置、35…吸気管
101,111,201,211…流通路
DESCRIPTION OF SYMBOLS 1, 2 ... Micro bubble generator 3, 4 ... Micro bubble generation system 10, 20 ... Discharge part, 11, 21 ... Piping part, 12, 22 ... Pressure receiving part, 13, 23 ... Discharge path 31 ... Tank, 32 ... Piping , 33 ... pump, 34 ... intake device, 35 ... intake pipe 101, 111, 201, 211 ... flow passage

Claims (7)

気液混相流が供給される流通路と、
この流通路の一端側で前記気液混相流を受ける受圧部と、
この受圧部の近傍の流通路側面から前記気液混相流を導入してマイクロバブルを生成する複数の吐出路と
を有し、
前記受圧部の内面は湾曲した凹面に形成され
前記吐出路の内面は出口径が大径となるようなテーパー状に形成され且つ当該各吐出路の開き角度は当該吐出路の入口と出口の差圧が極大となるように設定されたこと
を特徴とするマイクロバブル発生装置。
A flow path through which a gas-liquid mixed phase flow is supplied;
A pressure receiving portion that receives the gas-liquid mixed phase flow at one end of the flow path;
A plurality of discharge passages for generating microbubbles by introducing the gas-liquid mixed phase flow from the flow passage side surface in the vicinity of the pressure receiving portion;
The inner surface of the pressure receiving portion is formed as a curved concave surface ,
The inner surface of each discharge passage is formed in a taper shape so that the outlet diameter is large, and the opening angle of each discharge passage is set so that the differential pressure between the inlet and outlet of the discharge passage is maximized. <br/> Microbubble generator characterized by the above.
前記複数の吐出路は前記流通路の軸を中心に放射状に接続されたこと
を特徴とする請求項1に記載のマイクロバブル発生装置。
2. The microbubble generator according to claim 1, wherein the plurality of discharge passages are radially connected around an axis of the flow passage.
前記複数の吐出路はマイクロバブルを前記流通路の軸方向に吐出するように配置されたこと
を特徴とする請求項2に記載のマイクロバブル発生装置。
The microbubble generator according to claim 2, wherein the plurality of discharge paths are arranged to discharge microbubbles in an axial direction of the flow path.
マイクロバブル発生装置が設置される槽と、
この槽内の液相を循環的に供給するための配管と、
この配管に設置されるポンプと、
このポンプによって前記配管内を流通する液相に気体を供する吸気装置と
を備え、
前記マイクロバブル発生装置は、
前記配管内を流通する液相に前記気体が供されて生じた気液混相流が供給される流通路と、
この流通路の一端側で前記気液混相流を受ける受圧部と、
この受圧部の近傍の流通路側面から前記気液混相流を導入してマイクロバブルを生成する複数の吐出路と
を有し、
前記受圧部の内面は湾曲した凹面に形成され
前記吐出路の内面は出口径が大径となるようなテーパー状に形成され且つ当該各吐出路の開き角度は当該吐出路の入口と出口の差圧が極大となるように設定されたこと
を特徴とするマイクロバブル発生システム。
A tank in which a microbubble generator is installed;
Piping for cyclically supplying the liquid phase in the tank;
A pump installed in this pipe,
An intake device for supplying gas to the liquid phase flowing through the pipe by the pump;
The microbubble generator is
A flow path through which a gas-liquid mixed phase flow generated by supplying the gas to the liquid phase flowing through the pipe is supplied;
A pressure receiving portion that receives the gas-liquid mixed phase flow at one end of the flow path;
A plurality of discharge passages for generating microbubbles by introducing the gas-liquid mixed phase flow from the flow passage side surface in the vicinity of the pressure receiving portion;
The inner surface of the pressure receiving portion is formed as a curved concave surface ,
The inner surface of each discharge passage is formed in a taper shape so that the outlet diameter is large, and the opening angle of each discharge passage is set so that the differential pressure between the inlet and outlet of the discharge passage is maximized. <br/> Microbubble generation system characterized by
前記吸気装置は前記ポンプの二次側に設置されること
を特徴とする請求項に記載のマイクロバブル発生システム。
The microbubble generation system according to claim 4 , wherein the intake device is installed on a secondary side of the pump.
前記吸気装置は気体流量調節弁を備えたこと
を特徴とする請求項に記載のマイクロバブル発生システム。
The microbubble generation system according to claim 4 , wherein the intake device includes a gas flow rate control valve.
前記気体は空気、酸素、オゾンまたは二酸化炭素であること
を特徴とする請求項に記載のマイクロバブル発生システム。
The microbubble generating system according to claim 4 , wherein the gas is air, oxygen, ozone, or carbon dioxide.
JP2007046431A 2007-02-27 2007-02-27 Microbubble generator and microbubble generator system Expired - Fee Related JP4893365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046431A JP4893365B2 (en) 2007-02-27 2007-02-27 Microbubble generator and microbubble generator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046431A JP4893365B2 (en) 2007-02-27 2007-02-27 Microbubble generator and microbubble generator system

Publications (2)

Publication Number Publication Date
JP2008207099A JP2008207099A (en) 2008-09-11
JP4893365B2 true JP4893365B2 (en) 2012-03-07

Family

ID=39783871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046431A Expired - Fee Related JP4893365B2 (en) 2007-02-27 2007-02-27 Microbubble generator and microbubble generator system

Country Status (1)

Country Link
JP (1) JP4893365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025035214A1 (en) * 2023-08-16 2025-02-20 Poseidon Ocean Systems Ltd. Oxygenation assembly for aquaculture, and diffuser thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170409B2 (en) * 2008-04-03 2013-03-27 国立大学法人 筑波大学 Swirl type microbubble generator
FR2939423B1 (en) 2008-12-09 2011-12-09 Yves Lecoffre METHOD AND DEVICE FOR TREATING AT LEAST ONE COMPOUND TRANSPORTED IN A LIQUID
JP2010223525A (en) * 2009-03-25 2010-10-07 Osaka Gas Co Ltd Method and device of removing scale attached to piping of heat exchanger
JP2011056436A (en) * 2009-09-11 2011-03-24 Teikoku Electric Mfg Co Ltd Fine air bubble generator
JP2011173038A (en) * 2010-02-23 2011-09-08 Panasonic Electric Works Co Ltd Device for discharging ozone bubble-containing water
JP5914802B2 (en) * 2012-03-08 2016-05-11 パナソニックIpマネジメント株式会社 Gas dissolving device
JP5861890B2 (en) * 2012-08-23 2016-02-16 清水建設株式会社 Method for measuring the amount of dissolved gas in a pressurized liquid
JP5740684B2 (en) * 2012-09-28 2015-06-24 アイエムティー株式会社 Bubble generator
ITPR20120090A1 (en) 2012-12-21 2014-06-22 Gea mechanical equipment italia spa PROCEDURE AND HOMOGENIZATION SYSTEM WITH FLOW REVERSAL
WO2015030035A1 (en) * 2013-08-28 2015-03-05 国立大学法人筑波大学 Cleaning device and cleaning method
KR101546593B1 (en) 2013-12-27 2015-08-21 주식회사 일성 A device for generating micro bubble
KR101863769B1 (en) * 2015-09-08 2018-06-01 마이크로맥스 영농조합법인 apparatus of generating macro or nano bubble
JP6637774B2 (en) * 2016-01-28 2020-01-29 株式会社ハナダ Dissolved oxygen increase device
CN106390786A (en) * 2016-10-21 2017-02-15 杭州巧润科技有限公司 Micro-nano bubble generator
CN107638849B (en) * 2017-11-03 2023-05-05 西南石油大学 Natural gas hydrate synthesis reaction kettle
GB2586301B (en) * 2020-04-07 2021-08-25 Splash Tm Gmbh Stable-Foam inhalation Device and Cartridge
JP7112795B1 (en) 2020-09-17 2022-08-04 宇都宮工業株式会社 Conduit system
KR102575659B1 (en) * 2021-04-02 2023-09-06 김의진 Wastewater treatment apparatus using stirring convection of air supply and filtration
KR102458487B1 (en) * 2021-04-02 2022-10-25 김의진 Wastewater treatment apparatus with improved microbubble water generation and diffusion
JP7698987B2 (en) 2021-06-04 2025-06-26 リンナイ株式会社 Microbubble generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2550469B1 (en) * 1983-08-09 1985-10-04 Alsthom Atlantique MICROBUBBLE INJECTOR
US5720551A (en) * 1994-10-28 1998-02-24 Shechter; Tal Forming emulsions
JP3879789B2 (en) * 1997-09-16 2007-02-14 シンユー技研株式会社 Steam desuperheater
JP4060484B2 (en) * 1999-03-16 2008-03-12 阪神動力機械株式会社 Underwater stirring device
JP2002239537A (en) * 2001-02-14 2002-08-27 Araco Corp Excess gas separation tank
JP2002331011A (en) * 2001-05-11 2002-11-19 Matsushita Electric Ind Co Ltd Fine bubble generator
JP2003164861A (en) * 2001-12-03 2003-06-10 Oputeku:Kk Ozone water deozone system
JP4310252B2 (en) * 2004-09-14 2009-08-05 白谷 喜久雄 Microbubble generator and microbubble generator using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025035214A1 (en) * 2023-08-16 2025-02-20 Poseidon Ocean Systems Ltd. Oxygenation assembly for aquaculture, and diffuser thereof

Also Published As

Publication number Publication date
JP2008207099A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP4893365B2 (en) Microbubble generator and microbubble generator system
CN107744732B (en) A tubular micro-bubble generator
JP6169749B1 (en) Microbubble generator
JP6960281B2 (en) Fine bubble liquid generator
JP5000583B2 (en) Micro / nano bubble generation method and apparatus, and micro / nano bubble water generation apparatus
EP3009184A1 (en) Micro and nano bubble generating method, generating nozzle, and generating device
KR101379239B1 (en) Nano bubble generating system
JP2008086868A (en) Microbubble generator
JP2012139646A (en) Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus
JP4426612B2 (en) Fine bubble generation nozzle
JP2007209953A (en) Microbubble generating system
CN113750892B (en) A high-throughput micro-nano bubble generation system
WO2021186156A2 (en) A microbubble generator
KR20110088355A (en) Gas-liquid Mixing Circulation Generator
JP4884693B2 (en) Micro bubble generator
WO2018100553A1 (en) Apparatus and method for producing and dispersing nano-sized structures
JP6047210B1 (en) Aeration stirrer
CN218281295U (en) Microbubble generator and mixed phase reactor
JP2003245533A (en) Ultrafine air bubble generator
JPH1066962A (en) Sewage treating device
KR100582267B1 (en) Microbubble generation method using microfilter and apparatus for same
JP2001276589A (en) Aerator
CN211864584U (en) Micro-power gas-liquid or liquid-liquid mixed nano-scale fluid generator
CN111151150A (en) Micro-power gas-liquid or liquid-liquid mixed nano-scale fluid generator
JP2001259395A (en) Aerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4893365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees